Variants of mixed parsing of TAG and TIG

Miguel A. Alonso" — Victor J. Diaz™

* Departamento de Computacion, Universidade da Corufia
Campus de Elvifia s/n, 15071 La Corufia (Spain)

alonso@udc.es

** Departamento de Lenguajes y Sistemas Informaticos, Usidaat de Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla (Spain)

vidiaz@lsi.us.es

ABSTRACTTree Adjoining Grammar (TAG) is a useful formalism for describing the syiata
structure of natural languages. In practice, a large part of wide cage TAGs is formed
by trees that satisfy the restrictions imposed by Tree Insertion Gramnh@j,(& simpler for-

malism. This characteristic can be used to reduce the practical complexibpA® parsing,

applying the standard adjunction operation only in those cases in which thmesigubic-time

TIG adjunction cannot be applied. A major obstacle to this task is posed biat¢héhat si-

multaneous adjunctions are forbidden in TAG but they are allowed in TiGi#article, we

describe several algorithms for mixed parsing of TAG and TIG: a fing forbidding simul-

taneous adjunctions, a second one allowing this kind of adjunctions, anitdactie which

extends the second one to preserve the correct prefix property.

RESUME.La Grammaire d’Arbres Adjoints (TAG) est un formalisme utile pour dédarstruc-
ture syntaxique des langues naturelles. En pratique, la plupart des TRE@ couverture
contiennent des arbres qui satisfont les restrictions imposées par len@edre d’Insertion
d’Arbres (TIG), qui est un formalisme plus simple. Cette caractéristiupigt étre employée
pour réduire la complexité pratique de I'analyse TAG, en appliquant Fapén d’adjonction
standard seulement dans les cas ou I'adjonction TIG, plus simple, nepps\étre appliquée.
L'un des plus grands obstacles a cette tache réside dans le fait que lextdjts simultanées
sont interdites en TAG mais elles sont permises en TIG. Dans cet artitls,décrivons plu-
sieurs algorithmes pour I'analyse mixte de TAG et de TIG : 1) celui quidittkes adjonctions
simultanées ; 2) celui qui permet ce type d’adjonction; et 3) celui tpriééle deuxieme afin de
préserver la propriété du préfixe correcte.

KEYWORDSparsing, tree adjoining grammar, tree insertion grammar.

MOTS-CLES : analyse syntaxique, grammaires d'arbres adjoints, grammaires etfios
d’arbres.

TAL. Volume 44 - 1 3/2003, pages 41 & 65

42 TAL. Volume 44 - i 3/2003

1. Introduction

Tree Adjoining Grammar (TAG) [JOS 75, JOS 97, ABE 00] and Thesertion
Grammar (TIG) [SCH 95] are grammatical formalisms that mae of a tree-based
operation called adjunction. However, adjunctions areenestricted in the case of
TIG than in the case of TAG, which has important consequendtbsrespect to the
set of languages generated and the worst-case complexpgrsihg algorithms:

— TAG generates tree adjoining languages, a strict supefsaintext-free lan-
guages, and the complexity of parsing algorithms i©im) for time and inO(n*)
for space with respect to the lengttof the input string.

— TIG generates context-free languages and can be pargg¢hif) for time and
in O(n?) for space.

— The correct prefix property [SCH 91] is preserved by TIG pesswithout in-
creasing their computational cost. In the case of TAG, pvésg this property in-
volves an increase in the space complexity fr®m?) to O(n®) [NED 99].

Although the powerful adjunction provided by TAG makes iefig for describing
the syntax of natural languages, most of the trees involve@dde coverage grammars
like XTAG [DOR 94] do not make use of such operation, and sorgelgortion of
XTAG is in fact a TIG [SCH 95]. As the full power of a TAG parses only put
into practice in adjunctions involving a given set of trewsapply a parser working
in O(n"%) time complexity when most of the work can be done b@@:3) parser
seems to be a waste of computing resources. In this artiel@rapose to improve the
practical efficiency of TAG parsers by applying mixed parsteategies that takes the
best of both worlds: those parts of the grammar that corredpma TIG are managed
in O(n?) time andO(n?) space complexity, and only those parts of the grammar
involving the full kind of adjunction present in TAG are maeal inO(n%) time and
O(n*) space complexity®(n°) space complexity in the case of parsers satisfying the
correct prefix property).

This article may be outlined as follows. The remainder of thection is devoted
to describe the notation used in the article. In section 2 wesent a mixed parsing
algorithm in which at most one auxiliary tree is allowed tcdooined at a given node.
This algorithm is modified in section 3 to allow simultaneaaunctions. New mod-
ifications are considered in section 4 in order to presereectirrect prefix property.
The computational complexity of these algorithms is anedyin section 5 and their
practical efficiency is studied in section 6. Section 7 pnésénal conclusions.

1.1. Tree Adjoining Grammars

Formally, a TAG is a 5-tupl& = (Vn, Vp, S, I, A), whereVy is a finite set of
non-terminal symbolsir a finite set of terminal symbolsy € Vy the axiom of the
grammar,I a finite set ofinitial treesand A a finite set ofauxiliary trees I U A
is the set oklementary treeslinternal nodes of elementary trees are labeled by non-

Variants of mixed parsing of TAG and TIG 43

s

s) vp /\
/\ \/\ NP vP
NP VP vP Adv ‘ /\

John VP Adv

John runs slowly

i Auxiliary tree
Inital tree Y runs slowly

Derived tree

Figure 1. Adjunction operation

terminals and leaf nodes by terminals or the empty stringxcept for just one leaf
per auxiliary tree (thdoot) which is labeled by the same non-terminal used as the
label of its root node. The path in an auxiliary tree from tbetrnode to the foot
node is called thepineof the tree. New trees are derived agjunction let v be an
elementary or derived tree containing a nddelabeled byA and lets be an auxiliary
tree whose root and foot nodes are also labeled byhen, the adjunction of at the
adjunction nodeV” is obtained by excising the subtreepfvith root N7, attaching
(£ to N7 and attaching the excised subtree to the fogt.dfVe can add constraints on
the nodes of elementary trees so the adjunction on a nodeecarabdatory, optional
or forbidden. The string language of a TAGis defined as the set of yields of all
the trees derived from initial trees rooted by the axiom &f ghammar [JOS 97]. We
illustrate the adjunction operation in Fig. 1, where we skogimple TAG with two
elementary trees: an initial tree rooted S and an auxilieag tooted VP. The derived
tree obtained after adjoining the VP auxiliary tree at thdentabeled by VP located
in the initial tree is also showh.

1.2. Treelnsertion Grammars

We can consider the sed as formed by the union of the sets;, containing
left auxiliary treesin which every nonempty frontier nodés to the left of the foot
node, A g, containingright auxiliary treesin which every nonempty frontier node is
to the right of the foot node, andy, containingwrapping auxiliary treesn which
nonempty frontier nodes are placed both to the left and taithe of the foot node.
Figure 2 shows three derived trees resulting from the adijpmof a wrapping, left
and right auxiliary tree, respectively. We can note fromt thigture that the trees
derived by the adjunction of left an right auxiliary trees aimpler than those derived

1. The operation o$ubstitutioncan also be defined for TAG, but it does not increase the genera-
tive power of the formalism. The incorporation of substitution to the paralggrithms defined

in this article is straightforward and does not modify their complexity.

2. An empty frontier node is a leaf node labeled by the empty string

44 TAL. Volume 44 - i 3/2003

Wrapping Left Right
auxiliary tree auxiliary tree auxiliary tree

Figure 2. Adjunction of left, right and wrapping auxiliary trees

a B, Br
S S S
b a S S c

Figure 3. Example of TIG grammar

by wrapping auxiliary trees. It is just this evidence whictroduces the notion of
Tree Insertion Grammars.

Given an auxiliary tree, those nodes placed on the spinealedspine nodes
and those nodes placed to the left (resp. right) of the spimealledleft nodeqresp.
right node$. The setAg;, C Ay (resp. Asg C Apg) of strongly left(resp. strongly
right) auxiliary trees is formed by trees in which no adjunctiopé&mitted on right
(resp. left) nodes and only strongly left (resp. right) diaxy trees are allowed to
adjoin on spine nodes. We denote My the setA — (As, U Asg). Given the set
A of a TAG, we can determine the sdts;, as follows: firstly, we determine the set
Ay, examining the frontier of the trees iA and we setAg; := Ap; secondly, we
eliminate fromA g, those trees that permit adjunctions on nodes to the rightesf t
spine; and thirdly, we iteratively eliminate from s, those trees that allow adjoining
trees inA — Agy, on nodes of their spined s is determined in an analogous way.

In essence, a TIG is a restricted TAG where auxiliary treestrba either strongly
left or strongly right and adjunctions are not allowed intrand foot nodes of auxiliary
trees. There is also a different approach between both fmmavith respect to the
way adjunctions are performed. In contrast with TAG, whenéy@n auxiliary tree
can be adjoined at a node, TIG enables simultaneous adjasctie., the adjunction
of several auxiliary trees on a node of a tree. We illustriaigpoint in Figure 3 where
a TIG grammar with an initial tree, a left auxiliary tree3;, and a right auxiliary tree

Variants of mixed parsing of TAG and TIG 45

Br is depicted. When simultaneous adjunctionsgf and Sy is allowed at the root
node ofa, the TIG language ia*bc*, i.e., an optional sequence @ followed by a

b and followed by an optional sequenceds. In contrast, if simultaneous adjunction
was not allowed, we could not combine the left and right aaxil trees, and the
language generated would be the union of the striigandbc.®

1.3. Notation for parsing algorithms

We will describe parsing algorithms usirRarsing Schemataa framework for
high-level descriptions of parsing algorithms [SIK 97].pArsing systenfor a gram-
marG and stringa; . .. a,, is a triple(Z, H, D), with Z a set ofitemswhich represent
intermediate parse resulty, an initial set of items calledypothesighat encodes the
sentence to be parsed, afda set ofdeduction stepthat allow new items to be de-
rived from already known items. Deduction steps are of thenfét-="tcong meaning
that if all antecedents; of a deduction step are present and the conditomsl are
satisfied, then the consequeénshould be generated by the parser. ABet. 7 of
final itemsrepresent the recognition of a sentence.p@sing schemas a parsing
system parameterized by a grammar and a sentence.

Given an input string; . . . a,,, the hypothesis of all parsing systems described in
this article will be defined in the standard way:

H={la,i—1i]|a=a;,1<i<n }

In order to describe the parsing algorithms for tree-basethélisms, we must
be able to represent the patrtial recognition of elementagst Parsing algorithms
for context-free grammars usually denote partial recagmiof productions by dotted
productions. We can extend this approach to the case obtaeed grammars by
considering each elementary trgeas formed by a set of context-free productions
P(~v): anodeN"” and its childrenV} . .. N are represented by a productidi’ —
Ny ... NJ. Thus, the position of the dot in the tree is indicated by tbsitpn of the
dot in a production irP(y). The elements of the productions are the nodes of the tree.

To simplify the description of parsing algorithms we comsidn additional pro-
duction T — R for eacha € I and the two additional productions — R” and
F? — | foreach3 € A, whereR? andF” correspond to the root node and the foot
node of 3, respectively. After disabling” and L as adjunction nodes the generative
capability of the grammars remains intact. We introduce #te following notation:
given two pairs(p, ¢) and (i, j) of integers,(p,q) < (4,7) is satisfied ifi < p and
q < j and given two integerg andq we definep U g asp if ¢ is undefined and agif
p is undefined, being undefined in other case.

We usel € adj(IN7) to denote that an auxiliary tre@ may be adjoined at node
N7 of the treey. If adjunction is not mandatory a/” thennil € adj(N") where

3. We remind you that TIG forbids adjunction at the root nodes of auxiliags.

46 TAL. Volume 44 - i 3/2003

Figure 4. Graphical representation of the items in the $gf;,,

nil ¢ I U A is a dummy symbol. If adjunction is not allowed &t' then{nil} =
adj(N7). We also uséabel(N7) to denote the label of a nodg” belonging to an
elementary tree.

2. Mixed parsing without simultaneous adjunctions

In this section we define a parsing syst@mx, = <IMix17H,DMiX1> corre-
sponding to an Earley-like TAG parser merged with an Ealikey-TIG parser, in
which the adjunction of strongly left and strongly right diaty trees will be man-
aged by specialized deduction steps, the rest of adjursctidhbe managed with the
classical deduction steps included in most TAG parsers [RBD In this parsing al-
gorithm, simultaneous adjunctions are not allowed. Thsfollow the standard TAG
definition of adjunction. With slight modifications, thisrgng system corresponds to
the parsing algorithm shown in [ALO 02].

2.1. Items

The items in the sefyjix, are of the formNY — Je v, 4,5 | p,q | adj] such that
NY - v eP(v),yeITUA0<i<j<n,(pq) =(—,—)or(p,q) < (i,5),and
adj € {true, false}. The two indices with respect to the input stringnd; indicate
the portion of the input string that has been spanned fi¢see figure 4). Ify € A, p
andq are two indices with respect to the input string that indidhgt part of the input
string recognized by the foot node ofif it is a descendant of. In other case they
are undefined, which is denoted py= ¢ = —. The last boolean componedt; is

needed to manage mandatory adjunctiedy: = true if and only if an adjunction has

Variants of mixed parsing of TAG and TIG 47

taken place alv”, otherwisead;j = false. Therefore, this kind of items satisfy one of
the following conditions:

)ye A, (p,q) # (—,—)andd # ¢ spanszit1...ap F¥ agy1 ... a4
2)§ # ¢, (p,q) = (—,—) andd spans the string; 11 . . . a,.

3)0 = ¢, (p,q) = (—,—), % = j, adj = false. The last boolean component
indicates that any tree has been adjoinefy at

4)6 = ¢, (p,q) = (—,—), adj = true and there exists 8 € Agy, such that
B € adj(N”) andR” spansa;1 ...a; (i.e., 3 has been adjoined @7). In this
case; andj indicate the portion of the input string spanned by the laftikkary tree
adjoined atV".

In this algorithm, the last boolean component of items is alsed to control that
at most one adjunction has been performed on a node. A valuaefndicates that
an adjunction has taken place on the ndde and therefore further adjunctions on
the same node will be forbidden. A value fafse indicates that no adjunction was
performed on that node. In this case, during future proogssiis item can play the
role of the item recognizing the excised part of an elemgni@e to be attached to
the foot node of a right auxiliary tree. As a consequence; onk adjunction can take
place on a node, as is usual for TAG parsers.

2.2. Deduction steps
The set of deduction steps is formed by the following subsets

_ Init Scan € Pred Comp
Dytix; = Diiixy Y Dty Y Dty Y Pty Y Dty Y
AdjPred FootPred FootComp AdjComp
DMixl U Dl\/ﬁ)q U DMixl U DMixl U

LAdjPred LAdjComp RAdjPred RAdjComp LRFoot
Diti; Y Diiig U Dyjiy, U Dyjiy, U Difix,

The parsing process starts by creating the items corregpgiwproductions hav-
ing the root of an initial tree as right-hand side and the ddhe leftmost position of
the right-hand side:

phit - — I A S =label(R®
M = T oR,0,0 | —,— | false] - abel(R?)

A set of deductive steps iR}/ ande{i’jzp traverse each elementary tree while
steps ira)ﬁgjg andDygy;,, scan input symbols and the empty symbol, respectively:

prred _ (N7 =00 Mv,ij|p.q|adj] nil €adj(M) v .
Mix; [MY — v, 5,5 | —, — | false] (38 € Asp U Asg, B € adj(M"?))

48 TAL. Volume 44 - i 3/2003

[NY — 68 Mv,i,j|p,q| adj],
DCc?mp _ [M’Y - ’U.,j7k | p/aq/ | adjl}
M [NT — MY e v, ik [pUp,qU ¢ | adj]

with (nil € adj(M?) A adj’ = false) V
(38 e A, geadj(M") A adj’ = true)

[NY - 6o M7v,i,j | p,q| adj],
pScan _ [amj’j + 1]
[NY = MY ev,i,j+1]p,q|adj]

Mix; — a = label(M")

. [NV seMWij|p.q|adj
[NV — MY e v,i,j | p,q| adj]

Mix; = ¢ = label(M")

The rest of steps are in charge of managing adjunction dpagatIf a strongly
left auxiliary tree € Agy, can be adjoined at a given nodé”, a step ir@hﬁfpmd
starts the traversal of. When3 has been completely traversed, a step{fi "
starts the traversal of the subtree correspondiniy/foand sets the last element of the
item totrue in order to forbid further adjunctions on this node.

) M7 — ev,i,i| —,— | false] .
pLAdjPred _ [b J di(M") A A
Mix, [T — oRA 4,1 | —, — | false] peadiM?) A feAst
(M"Y — ev,i,i| —,— | false],
) T — RPe,i,j | —, — | false]
,DLAdJCOmp _ [> ’ c A AN € adj(M"”
Mixy [MY — ev,i,j | —, — | true] b ot B & adi(M)

If a strongly right auxiliary tree3 € Aggr can be adjoined at a given nodé”,
when the subtree corresponding to this node has been catyplieiversed, a step in
Dy iPred starts the traversal of the trgk When g has been completely traversed,
a step irTDf\‘/[‘?Xdljcomp updates the input positions spannedidy taking into account
the part of the input string spanned Byand sets the last element of the itemitae
in order to forbid further adjunctions on this node.

DRAdjPred _ [M7 — ve,i,j | p,q | false]

AdjPred _ Asp A B € adj(M”
N [T = eRP,j,j | —— | false] © € Asr A B €adid7)

(MY — ve,i,j | p,q| false],
DRAdeomp _ [T - Rﬁ.ajv k | - ‘ false]
Mix [MY — ve i,k | p,q | true]

BeAsg N Becadj(M")

Variants of mixed parsing of TAG and TIG 49

No special treatment is given to the foot node of strongly defd right auxiliary
trees and so, it is simply skipped by a step in theT2gf "

F5 oL, j,j,adj]
DLRFoot _ [IVENE) A UA
Mixy [F7 = Le,j, j, adj] B € AsL SR

A step inDyi) " predicts the adjunction of an auxiliary tréec A’ at a node of
an elementary treg and starts the traversal gf Once the foot off has been reached,
the traversal off is momentary suspended by a stefDifft"*¢4, which re-takes the
subtree ofy which must be attached to the foot@f At this moment, there is no infor-
mation available about the node in which the adjunctiop bais been performed, so
all possible nodes are predicted. When the traversal of agtesllsubtree has finished,

a step ierfﬁitlcomp re-takes the traversal ¢f continuing at the foot node. When the

traversal of is completely finished, a deduction stem@?ifomp checks if the sub-
tree attached to the foot @f corresponds with the adjunction node. The traversal of
M7 (and therefore the adjunction ofat A7) is finished by a step i@ﬁ?ﬁp, taking
into account thap’ and¢’ are instantiated if and only if the adjunction node is on
the spine ofy. It is interesting to remark that we follow the approach oE[D99],

splitting the completion of an adjunction betweB(g)“*™" and Dy,

DAdercd _ [NA/ - 5.M7V’Z‘7j ‘pvq ‘ CLdj]

/ . ¥
Mixi T T S eRA,j,j | -, — | fals] Be A AN Beadj(M)
DFootPred _ [Fﬁ —el, k’ k | IR | false] 6 Al A ﬂ d(M'Y)
Mix; T MY = eu,k, k| —,— | false] € € ad]
[FP — ol k,k|—,— | false],
FootComp M7 — ve, k1| p/,q | false] , .
Paoe " = [F8 — Le k,l|Fk,I|false] feA” A feadiM?)

[T — RPe,j,m | k,1| false],
[MY — ve kL |p,q | false]

DAdeomp _
[MY — ve, j,m | p/,q | true]

Mixq

Be A A BeadjM)

The input string belongs to the language defined by the grarifradinal item in
the setF = { [T — R%e,0,n| —,— | false] [a € I A S =label(R*) } is gen-
erated.

3. Mixed parsing with simultaneous adjunctions

Let us consider now that the trees in Figure 3 define a TAG.ifcthse, to generate
the language*bc* we need to perform several adjunctions®fandSy at their root

50 TAL. Volume 44 - 1 3/2003

nodes. When parsing a sentence, derived trees are obtaiingdius expensive TAG
adjunction operation although we know the similarities lwEtTAG grammar with

a TIG grammar. In fact, allowing simultaneous adjunctiod disabling adjunction

at the root nodes ofi;, and (G, the same set of derived trees would be produced
using the cheaper TIG adjunction operation. Whenever we hauéficient number
of auxiliary trees with this property in a TAG grammar, we aploit the benefits
of TIG adjunction allowing simultaneous adjunction andathitng the adjunctions
at the root nodes of auxiliary treésFor example, we can note that determiners or
adjectives are usually modeled in XTAG with left auxiliangés but relative clauses
are modeled with right auxiliary trees. Whenever we need tdifg@ noun with both
determiners and relative clauses we can combine left aid aigxiliary trees in this
way. The interesting point is that 93% of the spines of theilauy trees in XTAG
contain only the root and the foot node, so this modificatian belp to improve
parsing performance.

In this section we define a parsing Syst@&MWrix, = <IMiX2,H,DMiX2> corre-
sponding to a mixed parsing algorithm for TAG and TIG in whigmultaneous ad-
junctions are allowed on any node, with the following ordgri the adjunction of
strongly left auxiliary trees will take place before the @djtion of other types of
trees. This ordering has been established for compatihilith the definition of si-
multaneous adjunctions in TIG [SCH 95]. With slightly modétions, this parsing
system corresponds to the parsing algorithm shown in [ALD 03

3.1. Items and deduction steps

Items in the sef\ix, have the same form than items in the 3gt,, . However,
given that more than one tree is allowed to be adjoined atengiede, the last boolean
componentzdj hastrue as value if and only if one or more adjunctions have taken
place atN7, otherwisead; = false. In particular,i andj will indicate the portion
of the input string spanned by the strongly left auxiliaryes adjoined av” if there
exists a sequence of strongly auxiliary trees that have bd@ined atNV”, § = ¢,
(p,q) = (—, —) andadj = true.

The set of deduction steps is formed by the following subsets

_ Init Scan 5 Pred Comp
Dyiix, = Dhiix, Y Prity Y Phtix, Y P, Y D, Y
LAdjPred LAdjComp RAdjPred RAdjComp LRFoot
DMiX2 U DMng U DI\ﬁxQ U DMiXQ U DMixl U

AdjPred FootPred FootComp AdjComp Comb
Dilix, YDy 0 YU Diixg UDwmix, Y Diiixy

4. Simultaneous adjuntion does not increase the generative capability@®tuia to the simul-
taneous adjunction of a set of auxiliary trees on a given node can béasitiby an adjunction
at that node followed by a sequence of (traditional, non simultaneojg)dibns at the root
nodes of the auxiliary trees.

Variants of mixed parsing of TAG and TIG 51

The starting of the parsing process and the scanning of tatraymbols and the
empty string is performed as iRy, - In contrast, prediction and completion are
performed differently: steps P! do not need to check any condition, while steps
in Dgﬁf;p must ensure that mandatory adjunction and forbidden atdpmeconstraints
(nil ¢ adj(M7) and{nil} = adj(M?), respectively) are satisfied.

Pr_cd _ [N’Y —>5.M’YV7Z.’.]' |p7q | Cldj]
Mixs [MY — ev,j,j | —, — | false]

[NV =50 Mv,i,5 | p,q|adj],
DCQmp _ [M’Y - ’U.,j7 k |p/7q/ | adj/] adjl = true |f nil ¢ adJ(M”)
Misx [NV — MY ev, ik | pUp,qUq | adj] adj’ = falseif {nil} = adj(M")

In left adjunctions, the value of the boolean componentafiist antecedent item
of steps iNDy ™! and Dy I is not relevant. Simultaneous adjunctions of
several strongly left auxiliary trees on a nodi&” is achieved by applying a pair of
stepsDy I ! and Dy V9™ for each auxiliary tree.

; MY — ev,i,j | — — | adj] .
DLAdJPrcd _ [) by) di(MYY A A
Mixs [T—>0Rﬁ,j,j|—7—\false] B € adj() peAst
[M’Y - .Uvimj ‘ Ty T | adjL
: T — RPe,j,k | —, — | false]
DL/_\dJComp _ [»Js ’ A A di(M?
Mixz [MY — ev,i, k| —, — | true] BeAsL A feadi(M)

A similar modification must be performed for deduction stepsharge of dealing
with right adjunctions. Simultaneous adjunctions of sal/strongly right auxiliary
trees on a noda/” is achieved by applying a pair of steﬁ%ﬁijp“’d andDﬁﬁfcomp
for each auxiliary tree.

- M = ve,i,j | p.q| ad] .
,DRAdJPre(l — [5 0y B c A A c d MY
Mix [T - .Rﬁ7jaj ‘ R | fa’lse] ﬂ St 6 ¢ J()

(MY — we.i,j | p,q | adj],
RAdjComp __ [T - Rﬁ.a]v k | —, ‘ false]
Mixo -

Agsr A dj(M”
[MY — ve i k| p,q | true] B €Asp N €adi(MT)

The traversal of an auxiliary tre@ € A’ that can be adjoined at a nodé” is

started once the traversal of the productial? — euv has been started by B!

step. This way we make possible to adjoin\ét several strongly left auxiliary trees

52 TAL. Volume 44 - 1 3/2003

prior to 3. Deduction steps iD§goiled, DIPLCOmP and DT perform tasks

1X2

analogous to those @ ed, DY CO™P and Dy O™, respectively.

; MY — ev,i,j | —, — | adj] .
,DA(.lJPred — [5 by 3 A A di(MY
Mixa [T — oRA,j,5 | —, — | false] pe f € adi(M7)
FP — el k,k|—,— | adj]
DFo_otPred _ [» Yy ? A/ A di MY
Mixa [= ev ki k| —— | false] " € B € adi(M7)
[Fﬁ - .LJ?Z | R | dej],
’o -/
,DFootComp _ [M’Y - UO,l,m | p,q | Cld]] ﬁ c A’ A 6 c ad‘](M'y)

Mix [FP— Lel,m|l,m | adj]

[T — RPe k,r |1, m | false],
DAdeomp _ [MFY — Ve, la m | p/a q/ ‘ ad]]
Mixs =

/ : Yy
[MY — ve k7| p,q | true] feA N feadi(M)

Simultaneous adjunctions of several auxiliary treesdihis achieved by using

the consequent item generated by a deduction stépfmgpfed as antecedent of a

deduction step i) " to start the adjunction of an auxiliary trgé € A’. When

the traversal of?’ has finished, a step mﬁﬁ?f"mp re-takes the traversal ¢f at the
foot node. The process is repeated for each auxiliary tréehwdito be simultaneously
adjoined.

The subseD{2™" is needed to put together the results corresponding to el si
taneous adjunctions of strongly left and wrapping auxiliaees:

[M’Y - .Uaiaj | —y, | true],
DCme _ [M’Y - U.,j,k | P, q | true]
Mixo

(MY — ve,i, k| p,q | true]

The input string belongs to the language defined by the grarfradinal item in
the setF = { [T — R%e,0,n| —,— | false] | € I A S =label(R*) } is gen-
erated.

3.2. An example of parsing

The behavior of this algorithm is illustrated by means of aareple. Figure 5
shows the adjunction of a strongly-left auxiliary trég, a strongly right auxiliary tree
Gr1, two wrapping trees,,; and,,2, a strongly-left auxiliary tregg;» and a strongly
right auxiliary trees,.o, enumerated in a top-down view of the resulting derived, tree
which is obtained as follows:

Variants of mixed parsing of TAG and TIG 53

Bz

@N EE?%\

)
IEEEEEEERN

Brz: 4

Bra: 6
@ k6

i5 k5

Figure 5. An example of simultaneous adjunctions

1) Once the adjunction nod¥ " is reached at positiofy, a step irfl)f/ﬁ‘j(‘; gener-

ates the itemiM” — ev, j1,j1 | —, — | false]. Then, a step iﬂ)lﬁﬁ‘fjpred is applied
in order to start the adjunction &, which is finished by a step ify;;)°"” that

generates the itefd/” — ev, jy,ja | —, — | true].

2) Strongly right auxiliary trees do not span anything to tik of their spine,
therefore no action is performed with respect?q at this moment. Instead, a step
in DAdPred predicts the adjunction of the auxiliary tre®,;, generating the item

Mixa
[T - .Rgudhj?vj? | T | fa‘lse]'
3) When the foot node o8, is reached at positiogi, a step inDyo e gen-
erates the itemMM” — ev,js,j3 | —, — | false]. A deduction step ir@ﬁ‘fjfred

takes this item as antecedent and starts the adjunctigh,£f generating the item

54 TAL. Volume 44 - 1 3/2003

[T — eRP»2 j3 j3 | — — | false]. When the foot node o, is reached at posi-
tion j4, the traversal ofy is re-taken at\/” by means of the application of a step in
DypotPred, generating the consequent itéhd” — ev, jy, js | —, — | false].

4) The adjunction off; is then predicted by a deduction steply;; /""", The
completion of this adjunction by a step LAdjComp gives as a result the genera-

Mix
tion of the item[M" — ev,j4, 55 | — — | tl"lzle]. It is interesting to remark that
the ordering imposed on the trees involved in simultanedjations has been pre-
served due to the adjunctions @8f and ;> have been completely performed before

the adjunction of other types of auxiliary trees.

5) 3,2 is not considered at this moment. Once the subtree rootédd bas been
completely traversed, we get the itéM” — ve, j4, ks | —, — | true].

6) At this moment, a step iy starts the adjunction of,» by generating

the item[T — eR”"2 ks ks | —, — | false]. When a step iﬂ)ﬁﬁ?comp performs the
completion of this adjunction, the itefd/” — ev, js, kg | —, — | true] is generated.
7) At this point, a step irﬂ)fﬁf(zcomp re-takes the traversal of,,, generat-

ing the item[FA»2 — e j; ke | ja,ke | false] which means that the subtree
corresponding to the adjunction node of this auxiliary tieexpected to span the
substringa;,+1...ax,. The complete traversal of,. is indicated by the item

[T — RPw2e,j3, kr | ju, ko | false], which is used by a step iPy.. "™ to generate
the item[M" — wve, j3, k7 | —, — | true] indicating that the adjunction corresponding

to B2 has been completed.

8) Then, a step iﬂ)f/f’iizcomp is in charge of re-taking the traversal 8f,;, gen-

erating the item{F+1 — e, j3 k7 | js, k7 | false] which means that the subtree
corresponding to the adjunction node of this auxiliary ieeexpected to span the sub-
stringay, 11 . . . a,. The adjunction of,.; is finished by a step i@y) °™?, yielding

the item[M?” — ve, jo, kg | —, — | true].
9) At this moment we have two possibilities in order to adjgjn:

a) A step inDy; combines the iteriM™ — v, jy,j> | —, — | true] and
the item[M" — wve, jo, ks | —, — | true] in order to obtain the consequent item
[MY — wve, ji1,ks | —,— | true]. Then, the adjunction of,.; can be predicted
by a step inDy; 25!, Once this strongly right auxiliary tree has been compjetel
traversed, the itenpM"” — we,ji, ko | —, — | true] is generated by a a step in
DRAdeomp

Mixo .

b) A step in Dy starts the adjunction of,.,. Once this auxiliary
tree has been completely traversed, the ited?” — wve, jo, kg | — — | true]
is generated by a step By """, Then, a step iD{2"> combines the items
[M7 — ev,j1,j2 | — — | true] and[M7 — wve, ja, kg | —, — | true] to obtain the
item[M"Y — ve, jy1, kg | —, — | true].

This spurious ambiguity could be eliminated by imposing aemestrictive order-
ing of trees in simultaneous adjunctions: one possibibityoi force that trees im’
should be adjoined first, then treesAy;, and finally trees inA s r; other possibility

Variants of mixed parsing of TAG and TIG 55

is to force that trees il 57, should be adjoined first, then treesAf and finally trees
in Agg.

4. Mixed parsing preserving the correct prefix property

Parsers satisfying theorrect prefix propertyuarantee that, as they read the input
string from left to right, the substrings read so far are digrefixes of the language
defined by the grammar. More formally, a parser satisfiesdhect prefix property if
for any substring:; . . . ai read from the input string; . .. axakg11 - . - a,, guarantees
that there exists a string of tokehs. . . b,,, whereb; need not be part of the input
string, such that; ... axb; ... b, is a valid string of the language.

In this section we define a parsing syst®gx, = <IM1X37H,DMiX3> corre-
sponding to a mixed parsing algorithm for TAG and TIG presegthe correct prefix
property and allowing simultaneous adjunctions on any node

4.1. Items

We adapt the approach of Nederhof in [NED 99], adding a newipas: to items
corresponding to auxiliary trees id’. This new element is used to indicate the po-
sition of the input string corresponding to the left-mostreme of the frontier of the
tree to which the dotted rule in the item belongs. To fad#itthe understanding of
items, we considelyix, as formed by the union of the following six subsets:

Iﬁfﬁs: A subset with items of the form—, N7 — ev,i,j | —, — | adj] such that
N7 - v eP(v),y € IUAsLUAgR,0 < i < j,andadj € {true,false}. The
last boolean component is used to control adjunctiaa$:= true if and only
if a strongly left auxiliary tree has been adjoinedNdt, otherwisead;j = false
andi = j. If an adjunction has taken place &t ¢ and;j indicate the portion
of the input string spanned by the strongly left auxiliases adjoined av”.

Iﬁfgs A subset with items of the forf-, N7 — de v,4,j | —, — | adj] such that
NY = v e P(vy),ye€ IUAg;, UAggr, 0 <i<j, andadj € {true, false}.
The two indices with respect to the input stringndj indicate the portion of
the input string spanned ky The boolean componeat]j is needed to manage
mandatory adjunctiorudj = true if and only if one or more adjunctions have
taken place aiV?, otherwiseadj = false. It is interesting to remark that if
the auxiliary tree adjoined av” belongs toAs;, the part of the input string
spanned by that tree is a prefixaf, . .. a;.

Il(wzi") : A subset with items of the fornfh, N° — ev,i,5 | — — | adj] such that

x3"

NP —vePB),Be€ A, 0<h<i<j andadj € {true, false}. These
items are similar to items in the subﬁﬂ“) except for the fact that now the

ixg?

56 TAL. Volume 44 - 1 3/2003

tree involved in each item belongs #/. Therefore, the value afd; has the

same meaning than for itemsﬂﬁﬁli‘;}3 but now the value ok must be set to the
position of the input string at which the traversal®fvas started. For trees in
A’, the position is needed to ensure the correct prefix property is presetved a
the time of predicting the subtrees pending from their fandes.

Iﬁf}fe’: A subset with items of the forrfh, N — § e 1,4,5 | —, — | adj] such that
NP = sveP(B),B € A’,0<h<i<jadj € {true, false} and the foot
node of is not a descendant of any nodejinThese items are similar to items
in the subseflf/}f’,za, in particular the value afdj has the same meaning than for

items inlﬁf)za.

Iﬁfﬁs: A subset with items of the fornfh, N* — §ev,4,5 | p,q | adj] such that
NP — v eP(B),B€ A’,0<h<i<jadj € {true, false}, (p,q) < (i,7)
and the foot node of is a descendant of a nodednThe substring spanned by
OIS Git1...ap aq+1 - --aj. Thus,p andg are positions in the input string
indicating a discontinuity in the string recognized By due to the substring
ap+1 - - - aq Should be spanned by the node at which the auxiliary frédes
been adjoined. With respect to the boolean componefjt,= true if some
auxiliary tree has been previously adjoined\at, otherwisendj = false.

Z\;)..: A subset with items of the for{M” — ve,i,j | p,q | true]] such that
MY —veP(B),Be A 0<i<jand(p,q) = (- —)or(p,q) < (4,]).
These items are generated as a kind of intermediate itermgdhie completion
of the adjunctions of auxiliary trees iA’.

4.2. Deduction steps
The set of deduction steps is formed by the following subsets

__Init Scan & Pred! Pred? Comp
Dytixg =Dhiixs Y Py Y Pitixs Y P, Y Phiixs Y P Y
LAdjPred LAdjComp RAdjPred RAdjComp LRFoot
Dy ixs U Dylixg U Dyfis U Dty U Dyis Y

AdjPred FootPred FootComp AdjComp? AdjComp?
DMiX3 U DMiX3 U Dl\/ﬁxg U DMiX3 U DMiX3

The parsing process starts by creating the items correapgitmproductions hav-
ing the root of an initial tree as right-hand side and the ddhe leftmost position of
the right-hand side:

Dt — I = label(R*
Mixa ™ [_ T — eR®,0,0 | —, — | false] @€l A S§=label(R?)

Variants of mixed parsing of TAG and TIG 57

In order to preserve the correct prefix property, we must by eareful when
predicting the left-most child of a given nodé”. Thus, to generate the consequent
item in a deduction step corresponding to the suD:Y‘i@;f(f

pPred' _ [h, N7 — eMv,i,5 | —, — | adj]
Mixs [h, MY — ev,j,j | —, — | false]

one of the following conditions must be satisfied:

1) Adjunction is forbidden at nod® ™ andad; = false.

2) Adjunction is optional at nod&’” but any strongly left auxiliary tree can be
adjoined at this node. As a consequence, the valugjo$hould befalse.

3) Adjunction is optional at nod&” and some strongly left auxiliary tree can be
adjoined at this node or there exists some auxiliary treémiging to A’ U Ag g that
can be adjoined av”. No restriction is applied on the value @f;.

4) Adjunction is mandatory at nod®¥” but only strongly left auxiliary trees can
be adjoined at this node. The values@lj should berue to guarantee that at least one
adjunction has been performed/gt'.

5) Adjunction is mandatory at nod€” but any strongly left auxiliary tree can be
adjoined at this node. As a consequence, the valugjoshould befalse.

6) Adjunction is mandatory at nod¥” but there exists some auxiliary trees be-
longing to A’ U A g that can be adjoined &(”. The value ofidj is not restricted at
this moment.

The rest of children of a given nod®¥” are predicted as in th®y;,, parsing
system:
Z)Pred2 _ [th’Y - 5.M’YV7i7j ‘ p,q ‘ ad]]
Mixa ™ [h, M7 — e, j,j | —, — | false]

0F#¢€
Once the children oM™ have been completely traversed, a ste@ﬁﬁgp
[h,NY — 68 Mv,i,j | p,q| adj],

Comp _ [h, MY — ve,j. k| p',q | adj']
Mixs [h, NY = MY ev ik | pUp,qUq | adj)

should be applied, checking that one of the following cand is satisfied:

1) Adjunction is mandatory a¥/” andadj’ = true.

2) Adjunction is forbidden ab/” andad;’ = false.

3) Adjunction is optional ab/” and therefore there are no restrictions on the value
of adj.

Input symbols and the empty string are recognized by dedluctieps irﬂ)iﬁ?g;
andDyy;, ., respectively:

58 TAL. Volume 44 - 1 3/2003

[h,N’Y — 5.M’Yl/7i,j ‘pvq | adj]v
la,j,j + 1]

DSC.an: = label(M"”

Mix [h, NY = MY ev,i,j+1]|p,q]| adj] @ = fabel(M)
h,N’Y 5 M’Yv'7. ? d

Ditig = [—oeMvijlpaledl g

[h, NY — 6M7 e v,i,j | p,q | adj]

If a strgngly left auxiliary tree3 € Ay, can be adjoined at a given nodé”, a
LAdjPred

step inDyy;, starts the traversal gf. Wheng has been completely traversed, a
step inDy“°™? starts the traversal of the subtree correspondiny/toand sets the

last element of the item tarue in order to indicate that an adjunction has taken place
on this node. As ifP\ix,, Simultaneous adjunctions of several strongly left aaxyi
trees on a nod&/"” is achieved by applying a pair of ste@%ﬁfﬁpmd andeﬁgcomp

for each auxiliary tree.

; h, M7 — ev,i,j | —, — | adj])
DLAdJPred _ [) 5 by) (M) A A
Mixs [, T — oRA j,j5| —, — | false] feadiM?) N B EAst
[thV - .Uviaj | R | adj]a
. —, T — RPe j, k| —,— | false]
,DLAdJComp _ [) s Js) A A di(MY
Mixs [h, MY — ev, i,k | —, — | true] Be st B € adj(M7)

If a strongly right auxiliary tree3 € Agr can be adjoined at a given nodé”,
when the subtree corresponding to this node has been catydietversed, a step in

DyniPred starts the traversal of the trge When g has been completely traversed,

a step inDy; ' “°™ updates the input positions spannedidy taking into account
the part of the input string spanned Byand sets the last element of the itentitae
in order to indicate that an adjunction has taken place anrtbde. AS inPygix,,
simultaneous adjunctions of several strongly right aarylitrees on a nodad/” is

: : : AdjPred RAdjC A
achieved by applying a pair of steg; """ and Dy~ for each auxiliary
tree.

DRAdjPred _ [h, M7 — ve,i,j | p,q | adj]
Mixs [, T — oRA j,j | —, — | false]

Be Asg A B e adj(M)

[h,M'Y — ve i,] ‘ D, q ‘ adj]7
«DRAdeomp _ [73 T— Rﬁ‘;j, k | —y, | false]
Mixs [hy, MY — ve i k| p,q | true]

BeAsg N B€adj(M")

Variants of mixed parsing of TAG and TIG 59
The foot nodes of strongly left and right auxiliary trees skgpped by a step in the
setDyftroot:

DLRFoot _ [77Fﬁ - 'J—vjaj | I ‘ adj]
Mixs [_aFB - L.ajaj | R ‘ ad]]

B€AspUAggr

A step inDy)¢ predicts the adjunction of an auxiliary tréec A’ in a node

of an elementary tree, storing the positiorj at which the traversal of was started.
,DAdered _ [haM’Y - .Uvimj ‘ R | adj}

: = A’ A dj(M”
Mis = [T = eRP,j,j | = — | false] | © § € adi(M7)

Once the foot of3 has been reached, the traversabaé momentary suspended by a
step inDypoiPred, which re-takes the subtree gfwhich must be attached to the foot
of 3, checking the position at which the traversahoivas suspended is compatible
with the position at which the traversal Gfwas started.

[h, MY — ov,i,j | —, — | adj]
'F5—>0J_kk|——\adj]
DqutPred: [‘7’ v ? EA’ N c adj(M"”
Mixs [h, M7 — ov, k, k| —, — | adj] b p & adi()

When the traversal af/” has been completed, a stemﬁﬁf(zcomp re-takes the traver-
sal of 5 continuing at the foot node, checking again that the pasiibwhich the
traversal ofy was suspended is compatible with the position at which tietsal of
0 was started. These checkings are needed to guarantee thetgefix property is
preserved at any moment.

[h, MY — ov,i,j | —, — | adj],
[jaFﬁ - .J—vlvl | R | (ldj],
h, M7 — ve, l,m|p,q¢ | adj’
Di‘/ﬁizComp: [- |p q | J] 5€A, A ﬂGad‘](M’Y)

[J, FP — Le.l,m|l,m | adj]

When the traversal g8 is completely finished, a deduction stem@,?ifompl checks

if the subtree attached to the foot gfcorresponds with the adjunction node. The
adjunction if finished by a step 'rl?ﬁi{fompz, taking into account that’ andq’ are
instantiated if and only if the adjunction node is on the spity.

[j, T — RPe,j,r | I,m | false],

; h, MY —ve l,m|p,q | adj]
padicomy’ __[A: — ’ €A’ A Beadj(M”
Mo 7~ ve g [g [rue]] g adir)

[haM’y - .’Uaimj ‘ T | Cldj],

[[MY — ve, j,r | p,q" | true]],

: h, MY — ve,l,m | p',q¢ | adj
pAGComs” _ { phd ladi) 5 adi(M)

h, M7 — ve i, r|p/ q | true]

60 TAL. Volume 44 - 1 3/2003

Simultaneous adjunctions of several auxiliary treegie A’ is achieved by using

H T Pred
the consequent item generated by a deduction stdp}@ﬂj(g ed as antecedent of a

deduction step i, 1" to start the adjunction of an auxiliary trgé € A’. When
3

the traversal of?’ has finished, a step 'erfi‘j(ZC”mp re-takes the traversal ¢f at the

foot node. The process is repeated for each auxiliary tréehitto be simultaneously
adjoined.

A major difference of this parsing system with respedPtg;., is thatCombsteps
are not needed, due to the strong prediction performed Wﬁtﬂ)ﬁﬂiﬁl guarantees
that simultaneous adjunctions are applied from left totrighh respect to the input
string.

The input string belongs to the language defined by the granfraafinal item

in the setF = { [, T — R%,0,n| —,— | false] |« € I A S = label(R%) } is
generated.
5. Complexity

The worst-case space complexity of the algorithms desgitiyd i, andPyix,
is in O(n*), as at most four input positions are stored into items cpording to
auxiliary trees belonging tel’. For Pyix,, the worst-case space complexity is in
O(n®). In all cases, initial trees and strongly left and right diaxy trees contribute
O(n?) to the final result.

With respect to the worst-case time complexity:

— TIG adjunction, the adjunction of a strongly left or righibdiary tree on a node
of a tree belonging td U As; U Asg, is managed irO(n?) by LAdjCompand
RAdjComgpsteps in all algorithms.

—In Py, and Py, full TAG adjunction is managed i@ (n°) by AdjComp
deduction steps, which are in charge of dealing with auyilteees belonging tod’.
In fact, O(n") is only attained when a wrapping auxiliary tree is adjoinedacspine
node of a wrapping auxiliary tree. The adjunction of a wragpauxiliary tree on a
right node of a wrapping auxiliary tree is managedln°) due toCompdeduction
steps.

—In Py, full TAG adjunction is managed i (n°) by AdjComp steps and
in O(n®) by AdjComg steps when a wrapping auxiliary tree is adjoined on a spine
node of a wrapping auxiliary tree, thus given an overall ctaxipy of O(n°). The
adjunction of a wrapping auxiliary tree on a right node of apping auxiliary tree
is managed ir0(n?) by AdjComg steps and irO(n?) by AdjComg steps, but in
O(n®) by Compdeduction steps.

— The adjunction of a strongly right auxiliary tree on a sporeright node of a
wrapping auxiliary tree is managed @(»°) time due toRAdjCompdeduction steps.

Variants of mixed parsing of TAG and TIG 61

— Other cases of adjunction, e.g., the adjunction of a stydef or right auxiliary
tree on a spine node of a tree belonging#y, — Asy.)U(Ag — Asgr), are managed
in O(n?).

Transitive and Ditransitive

(1) Srini bought a book

(2) Srini bought Beth a book

Arguments and Adjuncts

(3) Srini bought a book at the bookstore

(4) he putthe book on the table

(5) *he put the book

Ergative and Intransitive

(6) the sun melted the ice

(7) theice melted

(8) EIlmo borrowed a book

(9) *abook borrowed

Sentential Complements

(10) he hopes Muriel wins

(11) he hopes that Muriel wins

Relative Clauses

(12) the man who Muriel likes bought a book
(13) the man that Muriel likes bought a book
Auxiliary Verbs

(14) the music should have been being played for the president
Extraction

(15) Clove caught a frisbee

(16) who caught a frisbee

(17) what did Clove catch

Unbounded Dependencies

(18) the aardvark smells terrible

(19) the emu thinks that the aardvark smells terrible
(20) who does the emu think smells terrible

(21) who did the elephant think the panda heard the emu said smells terrible
Adjectives

(22) Herbertis angry

(23) Herbertis angry and furious

(24) Herbert is more livid than angry

(25) Herbert is more livid and furious than angry

Table 1. Sentences used in the XTAG experiment

62 TAL. Volume 44 - 1 3/2003

6. Experimental results

We have incorporated the parsing algorithms describedisnattticle into a naive
implementation in Prolog of the deductive parsing machies@nted in [SHI 95]. As
a first experiment, we have compared the performance of tHeyEkke parsing algo-
rithms for TIG [SCH 95] and TAG [ALO 99] with respect to TIGsoFthis purpose,
we have made the experiments on two simple TtGs= {«, 8.} andGr = {«a, Br}
(see Figure 3). For a TIG, the time complexity of the adjumtttompletion step of
a TAG parser isO(n?), in contrast with theD(n3) complexity of left and right ad-
junction completion for a TIG parser. Therefore, we expedtee TIG parser to be
considerably faster than the TAG parser. In effect,dqr we have observed that the
TIG parser is up to 18 times faster than the TAG parser, buhéndase of=y the
difference becomes irrelevant.

These results have been corroborated by a second expeperotmed on artifi-
cial TAGs with the mixedPy;i«) and the TAG parser: the performance of the mixed
parser improves when strongly left auxiliary trees are imed in the analysis of the
input string.

In a third experiment, we have taken a subset of the XTAG graniDOR 94],
consisting of 27 elementary trees that cover a variety ofliEngonstructions: rel-
ative clauses, auxiliary verbs, unbounded dependenciéscéon, etc. In order to
eliminate the time spent by unification, we have not considé¢he feature structures
of elementary trees. Instead, we have simulated the featisiag local constraints.
The set of sentences used in the experiment is shown in talifeery sentence has
been parsed without previous filtering of elementary trees.

First of all, we have implemented a combined pafBgr., where simultaneous
adjunctions are forbidden and we have corroborated thétsaaaluded in [ALO 02]:
the application of the parséPysx, results in a reduction in time, with respect to
classical Earley-like parsers for TAG, that varies in patege from31% to 0%, de-
pending on the kind of trees involved in the analysis of eattience. Then, we have
compared the parseByix,, Pumix, andPyy, to test the benefits of simultaneous
adjunctions and preserving the correct prefix property. |&&oshows the results of
this experiment:

— The first column is the number of the corresponding sentemizble 1.

— The second and third column show the time, in seconds, SyguarsersP iy,
andPix, in the analysis of each sentence, respectively.

— The fourth column, labeled 5, shows the difference, in percentage, of the time
spent byPyix, With respect taP iy, . Negative values indicate real improvements.
As we can observeP iy, obtains a reduction in time that varies in percentage from
46% to 12%, depending on the kind of trees involved in the analysis ohesentence.
We would like to address the results obtained by our approaséntences 12, 13 and
14 where simultaneous adjunctions of left and right aunilizees must be applied.
In these cases, the pardey;;,, needs to apply a classical wrapping adjunction.

Variants of mixed parsing of TAG and TIG 63

— The fifth column shows the time, in seconds, spent by theep&rg;., for each
sentence.

— The sixth column, labeled 3, shows the difference, in percentage, of the time
spent byPyix, With respect tdP iy, . It is interesting to remark that preserving the
correct prefix property increases the computational coshefparsing process from
11% to 50%. These results suggest that, although the timpleaity is in O(n) for
both parsers, some constants involved in the expressiconopiexity forP sy, must
be greater than the corresponding onesHef,. A detailed examination of the trace
of both executions shows that:

1) In the traversal of initial and strongly left and right dliaty trees, the num-
ber of deduction steps applied by both parsers is the samgalil the gain in perfor-
mance due to considering a part of the grammar as a TIG inatdiyP i, -

2) In the traversal of wrapping auxiliary trees, the numblededuction steps
applied byP iy, is slightly lower tharP iy, -

3) Independently of the kind of trees involved in the analydia sentence, the
number of inferences (i.e., the number of CALL and REDO pranted by the Prolog
interpreter) is higher ifPysix, than inPyix, , due to the complex checkings performed
by Pred' steps.

— Finally, the seventh column, labeléd 5, shows the difference, in percentage,
of the time spent byP i, With respect tdPysix, . We can observe thdtyiy, obtain
better results for 76% of the sentences.

7. Conclusion

We have defined several parsing algorithms which reduce rigtipal complex-
ity of TAG parsing by taking into account that a large part ofual TAG grammars
can be managed as a TIG. Several approaches has been tadistiparser forbid
simultaneous adjunctions, the second one extends thecelbadjunction operation
in TAG by considering the possibility of simultaneous adjtions at a given node,
and the third one allows simultaneous adjunctions at the tirpreserves the correct
prefix property.

Practical experiments performed on a subset of the XTAG gram show that
considering simultaneous adjunctions improves highlypduesing efficiency due to a
larger number of adjunctions can be managed as TIG adjurgctib contrast, pre-
serving the correct prefix property in mixed parsers havevshto be of little interest
due to the high cost involved by the stronger predictions thast be performed to
satisfy such property.

The performance of the algorithms could be improved by meétise application
of practical optimizations, such as the replacement of timeponentg andq of items

[N" - dev,i,j|pq] € Iﬁ‘fi)x by the list of all adjunctions that are still under com-

64 TAL. Volume 44 - 1 3/2003

Time Time Time
Sentence Puix, Puixs AN P Mixcs Aos A3
) 013 008 -3846% 0.12 +50.00% +7.69%
(2) 0.17 0.11 -35.29% 0.15 +35.36% -11.76%
3) 0.21 0.15 -28.57% 0.20 +33.33% -4.76%
4) 0.18 0.13 -27.78% 0.18 +38.46% -0.00%
(5) 0.10 0.07 -30.00% 0.10 +42.85% -0.00%
6) 017 011 -3529% 0.6 +45.45% -5.88%
(7 0.10 0.07 -30.00% 0.09 +28.57% -10.00%
(8) 0.13 0.08 -38.46% 0.11 +37.05% -15.38%
(9) 0.08 0.06 -25.00% 0.08 +33.33% -0.00%

(10) 021 014 -3333% 019 +3571% -9.52%
(11) 027 020 -2593% 027 +35.00% -0.00%
(12) 0,32 024 -2500% 0.36 +50.00% +12.50%
(13) 0.28 021 -25.00% 0.30 +42.85% +7.14%
(14) 033 029 -12.12% 041 +37.93% +24.24%
(15) 012 009 -2500% 011 +22.22% -8.33%
(16) 012 0.09 -2500% 011 +22.22% -8.33%
(17) 0.13 0.07 -46.15% 0.10 +42.85% -23.08%
(18) 010 007 -30.00% 009 +28.57% -10.00%
(19) 0.32 027 -1563% 038 +40.74% +18.75%
(20) 021 012 -42.86% 019 +58.33% -9.52%
(21) 058 0.39 -32.76% 059 +51.28% +1.72%
(22) 0.09 0.07 -2222% 0.08 +14.28% -11.11%
(23) 0.14 0.09 -3571% 010 +11.11% -28.57%
(24) 012 008 -33.33% 011 +2500% -8.33%
(25) 013 010 -23.08% 012 +20.00% -7.69%

Table 2. XTAG results, in seconds, f@hix, andPyx, andPyix, parsers

pletion on N7 [CLE 01], albeit this modification increase the worst-casmplexity
of the algorithm.

Acknowledgements:We would like to thank Margarita Alonso for her comments
and suggestions. This research has been supported in pislinisterio de Ciencia y
Tecnologia (grants TIC2000-0370-C02-01, FIT-15050022006, HP2001-0044 and
HF2002-81), Xunta de Galicia (grants PGIDT01PXI10506PGIH TO2SINO1E and
PGIDITO3SIN30501PR) and Universidade da Coruia.

8. References

[ABE 00] ABEILLE A., RamBow O., “Tree Adjoining Grammar: an Overview”, BEILLE
A., RamBow O., Eds.,Tree Adjoining Grammars. Formalisms, Linguistic Analysis and

Variants of mixed parsing of TAG and TIG 65

Procesing vol. 107 of CSLI Lecture Noteschapter 1, p. 1-68, CSLI Publications, Stan-
ford, California, 2000.

[ALO 99] ALONSOM., CABREROD., DE LA CLERGERIEE., VILARES M., “Tabular Algo-
rithms for TAG Parsing”, Proc. of EACL'99, Ninth Conference of the European Chapter of
the Association for Computational Linguistj&ergen, Norway, June 1999, p. 150-157.

[ALO 02] ALONSO M., CARRILLO V., DiAz V., “Mixed Parsing of Tree Insertion and Tree
Adjoining Grammars”, @RIJOF. J., RQUELME J. C., TorRO M., Eds.,Advances in Ar-
tificial Intelligence - IBERAMIA 2002/0l. 2527 ofLecture Notes in Artificial Intelligence
p. 694-703, Springer-Verlag, Berlin-Heidelberg-New York, 2002.

[ALO 03] ALoNsoO M., Diaz V., “Parsing Tree Adjoining Grammars and Tree Insertion
Grammars with simultaneous adjunction#roc. of 8th International Workshop on Parsing
Technologies (IWPT 2003). 19-30, Nancy, France, April 2003.

[CLE 01] DEe LA CLERGERIEE., “Refining Tabular Parsers for TAGsProceedings of Lan-
guage Technologies 2001: The Second Meeting of the North AmericgteCiof the As-
sociation for Computational Linguistics (NAACL'QIEMU, Pittsburgh, PA, USA, June
2001, p. 167-174.

[DOR 94] DoRANC., EGEDID., HOCKEY B. A., SRINIVAS B., ZAIDEL M., “XTAG System
— A Wide Coverage Grammar for English”Proc. of the 15th International Conference
on Computational Linguistics (COLING’94Kyoto, Japan, August 1994, p. 922-928.

[JOS 75] DsHIA. K., LEVY L. S., TAKAHASHI M., “Tree Adjunt Grammars”,Journal of
Computer and System Sciences. 10, num. 1, 1975, p. 136-162.

[JOS 97] DsHIA. K., SCHABESY., “Tree-Adjoining Grammars”, RZENBERGG., SALO-
MAA A., Eds. Handbook of Formal Languages. Vol 3: Beyond Wodltapter 2, p. 69-123,
Springer-Verlag, Berlin/Heidelberg/New York, 1997.

[NED 99] NEDERHOFM.-J., “The Computational Complexity of the Correct-Prefix Property
for TAGs”, Computational Linguistigsvol. 25, num. 3, 1999, p. 345-360.

[SCH91] SHABES Y., “The Valid Prefix Property and Left to Right Parsing of Tree-
Adjoining Grammar”, Proc. of Il International Workshop on Parsing Technologies,
IWPT'91, Cancun, Mexico, 1991, p. 21-30.

[SCH 95] SHABESY., WATERS R. C., “Tree Insertion Grammar: A Cubic-Time Parsable
Formalism That Lexicalizes Context-Free Grammar Without Changing tkesTPro-
duced”,Computational Linguisticsvol. 21, num. 4, 1995, p. 479-513, Also as Technical
Report TR-94-13, June 1994, Mitsubishi Electric Research Lahd@gatcCambridge, MA,
USA.

[SHI 95] SHIEBERS. M., SCHABESY., PEREIRAF., “Principles and Implementation of De-
ductive Parsing” Journal of Logic Programmingvol. 24, num. 1-2, 1995, p. 3-36.

[SIK97] SIKKEL K., Parsing Schemata — A Framework for Specification and Analysis of
Parsing AlgorithmsTexts in Theoretical Computer Science — An EATCS Series, Springer-
Verlag, Berlin/Heidelberg/New York, 1997.

