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Abstract

In this paper we propose o flexible model for interactions
among obfects. The model allows multiple classes of ob-
jects to interact through the same event. A dynamic
number of objects from each class can participate in an
interaction. Communicalion in our medel i3 multiple-
way.

Concrete parameters of an event are obfained by con-
strainks being fmposed locally on ench object that pariici-
pates in the event, Bestdes being versabile, the proposed
indercction model allows the establishment of different
levels of aggregalion or fragmentation, according fo the
indermediale stales one might wand {o observe,

This leads fo o wseful mechanism for the decompo-
sition of systems inlo subsystems, which facilitates the
maintcnance of global constrainis,

Keywords:

Interaction constraints, event, object oriented model,
participation of objects, local and global views, synchro-
nization and communication, specifications.

1 Introduction

Software Engineering has embraced object orientation
as one of the archetypes with the most potential for
future development. Object orientation has been ap-
plied successfully in all stages of software development,
from analysis to implementation, allowing soff transi-
tions among the stages.

In recent wears, a number of object oriented pro-
gramming languages (OOPL) have been devised, such
as C++, Eiffel and Java. Moreover, various object ori-
ented specification languages (OOSL) have also been
developed, such as Object-% (Carrington et al., 1990],
(ASIS (Pastor et al., 1992), and TROLL (Hartmann e
al., 1994} among others, In both, the objects which are
grouped in clisses are stars. However the way the ab-
jects communicate with each other s different between
the two types of languages.

= In OOFL, objects interact through what are
termed methods, which allow the states of the ob-
jeets o be consulted and modified. Methods are
also used to create and destroy objects.

o In OOSL, the interactions are usually based on
events which are considered an abstraction of
methods. Events also allow communication of pa-
rameters among the various objects involved.

Communication through events is not exchusive to
OOSE. Tt is also used in process oriented specification
languages such as CSP (Hoare, 1985), CC8 (Milner,
198%9), and LOTOS (IS0, 1989}, which are used in spec-
ification of distributed systems.

Another factor involved is the number of objects that
participate when communication occurs. Usually, com-
munication is 1:1, following the client fserver approach,
with cne-way transfer of paramcters,



J. Tomas, JA Troyano and M. Torg: Specifiing inleractions among Objects through Constrainis

In this paper, we present an alternative from the
point of view of object oriented specification, proposing
a two-way form of communication (n-way in general)
among objects by means of interactions at event level.
This approach 15 not new, appearing in the literature
in different forms; rendezsvous multiple-way in SR {An-
drews, 1991), n-ary rendezvous in LOTOS, relationships
in TROLL {Jungclaus et al., 1993), and multiparty syo-
chronous interactions in [P (Francez and Forman, 1996)
amaong others,

Interactions in all the above languages are based on
a number of parts (processes); this number being fixed
and well-known at the time of specification. The ap-
proach we propose fixes the classes (which can be more
than two) which interact in an event. In conirast to
the number of processes, the number of objects in each
participating class can be dynamic, and may even be
unknown at specification time,

This provides an extremely flexible model, with syn-
chronous interactions among multiple objects, which ne-
gotiate the communication af multiple values, The inter-
connections between classes are described by what are
called interaction constraints, As we will show in this
paper, interaction constraints alzo facilitate the mainto-
nance of global constraints (constraints imposed at sys-
tem level),

We have also defined a specification language based
on our model, called TESORO (Torres, 1997, Trovano,
1998). This work iz part of the result of & research
project in which five Spanish universities are collabo-
rating, The objective of the project is to obtain new
tools and methodologies that will facilitate the develop-
ment of quality software, i.e. software which is correct,
maintainable and reusable,

The paper is ecrganized as follows. In the next section
we analyze how synchronizm can be the basis for the de-
composition of a system, impaosing local constraints that
help to set the constraints of a full system. In Section 3,
we analyze the power of our interaction operator com-
pared to other operators.

In Section 4 we describe how the interaction con-
straints are specified in our model. In Section 5 the
semantics of interaction constraints are defined, in or-
der to specify global behavior of a system. In Section
6 we consider the practical implications of the proposed
interaction model. In the final section we discuss our
conclusions,

2 Local Constraints vs. Global

Constraints

We can see a system as a set of objects interacting with
each other concurrently. When the system s relatively

complex, use of the object approach can be crucial, as
it allows mechanisms such as inheritance, association
and aggregation to be used {permitting a system to be
defined at several levels of abstraction).

Each object has a local state, on which we can im-
pose local constraints, The behavior of an object is de-
termined by the events in which it participates, This
behavior can be of two kinds:

1. erternal; formed by events through which the ob-
ject interacts with other abjects

2. internal; formed by events in which the object
does not interact with other objects, These events
will be unnoticed by the rest of the system.

It is thus easier o study each obiject imdividually,
but in large systems this can lead us to miss the overall
picture. This, in addition to the increase in complexity
of the interactions among objects as the size of the sys-
tem increases, can make it difficult to understand the
full system.

2.1 A Simpler Way to Study the System

The study of a full system can be made easier if the in-
teractions between objects are macde to be synchronous,
taking as a basis the externally observable behavior of
a set of objects and hiding their internal behavior.,

The externally observable behavior is described by
a st of events; the events that the set of objects use
to interact with their environment, This process is also
simplificd if some of the objects are encapsulated in a
single object (a compound or aggregate object), forming
several levels of abstraction. Interactions among objects
are carried out by means of synchronization of the com-
Mo events,

This process can be repeated for each subsystem
of the system. In these subsystems we will make vis-
ible only the externally observable behavior, hiding the
interactions which do not impact on the environment
among the subsystem compoments,

This approach simplifies the system to a single ob-
ject. The object has a state equivalent to the global
state of the system. Local constraints on the objects of
the system will give us global constraints on the global
state. Thus we have removed all irrelevant aspects, at
system level, from the object representing the system.

We can approach this process from the other direc-
tion, by decomposing a system into several subsystoms,
amd these in turn into further subsystems, and =0 on
until the desired level of abstraction is reached. If the
modification of the object's state is carrbed out individ-
ually when it participates in an event, then synchronous
interactions can also be used to model transactions.
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*— Ohbjects (possally compound)

Interactions among objects

Semantic
Design

Figure 1: Compasition and decomposition processes of
A EYSLEm.

In this approach, each object involved in an interac-
tion changes its state individually. This is considered a
change of the state of the system at the individual level.

The two processes, composition and decomposition,
are shown in Figure 1.

We can establish the following relationship between
the imposition of global or local constraints on objects
that interact synchronously:

S+C+Iz=5,+C;
where

s 5 denotes local states of objects,

» O denotes constraints that are established on local
states of objects,

s [, indicates interactions by means of synchronous
events among the objects composing a system,

» 5 indicates that a set of objects is considered as
a system (aggregate object) with a global state,

O, represents constraints on the global state of the
sysbem.

This relationship iz symbolic, and its only purpose
is to show the approach that we follow in our work.

2.2 Synchronous or Asynchronous In-
teractions?

Az mentioned above, the decomposition process for sys-
tems interacting synchropously is given by the partici-
pation of objects in an cvent.

We prefer the synchronous model for interactions be-
tween objects, to the asynchronous maodel, for the fol-
lowing additional reasons:

# Synchronizm is a more basic communication meth-
o, which can be used vo implement other commu-
nication models (Hoare, 1983, Milner, 1989].

¢ The execution of a synchronous communication
event immediately provides the participating ob-
Jects with the information that communication has
taken place. This facilitates the specifications for
the detection of deadlocks. In contrast, in the
asynchronous model, it 8 necessary to program
such information explicitly. (Manna and Pnueli,
1992).

# In the asynchronous model we usually need to dis-
tinguish between a source object and a receiver
abject. In the synchronous medel i€ is not usually
necessary to make this distinetion,

¢ [n the synchronows model, communication is eas-
ier among several objects, while the asynchronous
model is more focused on one-to-one communica-
tion (Denker and Kaster-Filipe, 1996).

3 Interactions Among Objects

To wnplement the idea presented in the previous sec-
Lion, we present a new operator for interactions among
objects, which is very Aexible and has great descriptive
POWET,

3.1 Other Interaction Operators

The bibliography gives references for various definitions
of operators which allow the concurrent behavior of a
system to be defined. Some of the most widely used
operators have been defined for the algebra of processes
{Hoare, 1985; 150, 1989; Milner, 1989). For cxample,
LOTOS, a language quite rich in this sense, has three
operators o express the parallelism of processes. Their
behavior is describexd by means of behavior expressions:

1. Pure interleaved: Al||B

If & and B are two processes, then A|||B denotes
their independent compozition, In other words,
the two processes do not synchronize in any event.

2. Full symchronization: A||B If & and B are two in-
terdependent processes, then A)|B is a new process
that ropresents a parallel composition in which &
and B st synchronize in all their events. This is
a full synchronization operation, both at process
level (mot only A and B but all their subprocess
participate) and at event level (1hey have to syn-
chronize in all events). Since an entire subsystem
has to evolve at the same time, ) any part canmot
ovolve, it blocks the rest of the subsystem.

3. Emplicit symchronization:  Al[g1,-.-.gx]lE If &
and B are two processes, then the expression
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Al[g1,- - -, n]|B represents a new process in which
& and B must synchronize in each event oceur-
ring through the gates (communication channels)
Bts--.1Bn. We then have full synchronization at
pracess level and partial synchronization at event
level (since the processes do not have to synchro-
nize in all events). This operator allows a more
flexible interaction among processes than full syn-
chronization, however the entire subsystem has to
evolve at the same time.

These operators allow several processes (or classes)
to interact in a single event. Either an entire class, or
only a single object of the class may participate. There
are, however, situations in which a dynamic set of ob-
jects must interact individually, usually when the ab-
Jects are chosen as a function of their states. Some ex-
amples might include:

- The coach of a team summons all his uninjured
players.

= A bank cancels all the accounts of one particular
CUSLIMET.

- A professor calls all those of his students whao
failad.

= A company has three cars to award to its best
amplovess.

Specifying situations such as these with the above
operators may require specifications at a lower level,
which can be complex and difficult to understand. Even
worsn, these specifications can readily lead to eortain
problems, such as deadlocks.

3.2 An Example: The Dining Philoso-
phers Problem

Throughout the remainder of the paper we will illus-
trate the ideas prescnted in the previous section with
the “dining philosophers problem™, a typical problem in
concurrent programming (originally introduced by Di-
jkstra, 1971).

To specify this problem, we define the classes
Philosopher and Fork. Objects of the Philosopher
class will have a cyclical behavior that revolves around
thinking and eating. Each philosopher has to pick up the
forks placed in his right and left hands to cat. Philoso-
pher events are takeFork and releaseFerk, and fork
events are isTaken and isAeleased. The nature of cach
event is clear from its name,

If we solve this problem with the type of interactions
described above (where each class, either a single object
or all objects participate), a philosopher will only be

able to pick up one fork at & time. The possible inter-
actions between philosophers and forks by means of the
event takeFork are shown in Figure 2. Similar inter-
actions will take place for the event releaseFork, A
line in the figure between two objects indicates an in-
teraction between these objects. For example, the two
lines (interactions) leading from phil, indicate that this
philosopher can take cither fork, or fork, (but not both
al the same time) and that he can not take any other
fork.

phil | takeFork = isTaken | fork;
phils | takeFork isTaken | forks
phils | takeFork isTaken | forks

Figure 2: Interactions in the philosophers problem.

The corresponding class diagram, in UML {Uni-
fied Maodelling Language) notation (Booch ef al., 1999;
Rumbaugh ef o, 1999) is shown in Figure 3. In this
diagram we have two classes (Philosopher and Fork)
and three associations, represented by lines (not to be
confused with interactions):

# The first association indicates which fork is to the
right of a philosopher. Similarly, the same assoc-
ation shows which philosopher i to the left of a
fork,

* The second association (called uses) represents a
philosopher using a fork. Numbers appearing at
both ends of this association represent the multi-
plicity or number of objects that can be linked. A
philosopher thus can have 0, 1 or 2 forks and a
fork can be taken, or not taken, by one (and only
one) philosopher.

# The third association ia similar to the first one,
reversing left and right.

A similar class diagram to that shown in Figure 3
appears in (Rumbaugh ef al, 1991). The inconvenience
of this approach is that since a philosopher has first to
pick up one fork (either the left or the right) and then
the other one, a deadlock may take place; for example
when all philosophers pick up a fork. ‘This is usoally
solvied by adding some synchronization mechanism such
as semaphores or monitors (Andrews, 1991; Ben-Hari,
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dinesLaft forkRight
] ]
Phitesopher e Fark
0.1 0.2
I |
dinesFight forkLelt

Figure 3: Class diagram of the philosophers problem.

1991}, or adding new coordination processes which lead
to a less clear specification. For example, 5 [(Manas,
1989), & solution is presented in LOTOS with three pro-
Cesses;

# users represents the philosophers. Each philoso-
pher first takes the fork to his right, then the left
fork. Later he releases them in the same order,
This behavior is interleaved among the philoso-
phers.

s service represcnts the forks. Each fork can be
picked up either from the right or the left, and
once picked up, can be released,

o vatchdog monitors the philosophers” behavior,
forbidding the simultaneous picking up of more
than four left forks, preventing deadlock.

This specification has two disadvantages; (1) a new
process had to be added to prevent deadlocks, and
(2} the philosophers are obliged to take the forks in a
certain order (ficst left, then right).

Owur approach does not limit the number of objects
in a class participating in an interaction. To avoid dead-
locks, we assign the two forks that correspond to a given
philosopler at the same time, in the same interaction. In
the class diagram in Figure 3, this would be reflected by
changing the multiplicity of the association uses from
0.2 to 0,2 (see Figure 5). We will study the specifica-
tion of this problem in more detail in Sections 4.3.1 and
5.2,

4 Interaction Constraints

Having presented the main features of our interaction
operator, we will look at the necessary aspects for its
definition in more detail. In our model, objects evolve
when they synchronize in events. In fact, interaction
constraints define the way in which objects of several
classes synchronize in events,

Eacli objeet has a local state, which can only be mod-
ified for the object’s participation in events, Commamni-
cation must oocur synchronously; thus the specification
of how the objects interact is a very important aspect

of the model, For several objects to interact with each
other, two things must occur:

1. Symchronization. For an event to happen, each
object that iz 1o participate must agree to do so,

. Communication. Objects must reach agreement
about the values of the parameters that they will
communicate to each other. For this to occur,
each of the objects establishes its participation
constraints, This allows us to model more com-
plex interactions than the traditional client/server
approach.

Inn our model, events are described by means of com-
rmntcation channels, which have the same names as the
events. All objects of a class share the communication
channels defined in the class, A channel is defined by the
name and the types of the parameters communicated in
the events, In summary, the definition of a channel is
the definition of an event template,

4.1 Local and Global Views of a Chan-
nel

From the poant of view of interclass communication, we
will =ay that channels constitute the interface of a class.
Through the channels, concrete events take place, in
which objects of a class participate, When we define a
channel, we give it & name and enumerate its parame-
Lers,

Of imterest to us in the method is the local point
of view that a class has of a channel. When more than
one ohject must synchronize in an event, not all of them
may have the same view of the channel, but they will
all take part in a single event. We call a single event in
which several objects synchronize, a global event, Local
views of events in the specification of a class allow us to
ignore the aspects of global events that are not relevant
to the class. This makes the class independent of the
rest of the system.

In acldition, objects of a class can see different global
events in the same way, and with the same effects under
the same conditions, They may then correspond to a
single local view. The structure of a global channel is
made up of the different views (local views) that classes
have of that event. These local views of the channels
may bhave different names; even the number of parame
ters may differ between classes,

This iz unified by means of interaction constraints
among claszes, Thus each class sees in & global channel
what interests it. Interaction constraints interconnect
classes in order to configure the system, This concept
of locality also facilitates reuse at specification level.
Therefore, we can have a library of classes and use inter-
artion constraints to interconnect the different channels
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Figure 4: Graphical representation of an interaction be-
tween two classes.

of classes. A different sot of interaction constraints will
give rise to systems of objects which interact in a differ-
ent way,

4.2 Specifying Interaction Constraints

The main objective of interaction constraints is to de-
termine the following points:

1. What classes of objects must interact? This con-
figuration is static, since the classes are known at
specification time.

2. What objects will participate? As objects are not
known at specification time, this configuration is
dynamic and is established by means of the de-
fined constraints.  Additionally, there are situa-
tions where we can identify the objects that want
to participate in the interaction,

3. Through what events will objects interact? It is
necessary to indicate which local events refer to
the same global event.

4. How do objects communicate? As evenis allow
parameters to be communicated, it is necessary to
establish associations between these parameters o
reflect communication among objoects.

The graphical notation of an interaction among ob-
jects of two classes is shown in Figure 4. Interactions
involving meore than two classes are obtained by gener-
alizing this case.

The textual notation for the specification of interac-
tion constraints is as follows:

Interaction copatraints

engipar): ol {idy ) oomy (pars ) Trmge] = L
= ol (ids } . cfig (pars) [rf-l-.ﬂ'q.] i
wnd ;
where

- ¢l is the name of the classes whose ohjects will
participate in the interaction,

- id; is the ID of the obhject of the class ef; that iz 1o
participate in the event. It is only defined when a
single object of el; is to participate and its ID is
known., Otherwise, if the event oceurs, all objects
meeting their constraints will participate,

= iy, indicates the multiplicity or number of ob-
jects of the class cl; that are to participate through
the channel cn;. We will indicate the range using
the notation min..maz where min indicates the
minimum number of objects and maz the masxi-
mum number of objects to participate in the in-
teraction. In the case that there iz no maximum
limit, max will be replaced by an asterisk ‘+'. We
will use num to indicate the exact number of ob-
jects. ‘When rng; is not defined, it denotes the
implicit range 1..s.

- eng will be the name of the global channel whose
parameters are par.  These parameters are ob-
tained from the local views,

An event can happen only if each ¢lass participating
in the interaction does not have fewer ohjects ready to
participate than defined in the corresponding range.

If any class has too few objects ready to participate,
the event cannot take place. If any class has more ob-
jects ready to participate than the defined range, the
maximum possible number of them will be chosen arhbi-
trarily. For example, the following interaction:

cnla, b, el cly.cmp{a,b) =
clz.ena({b)[2..4] = clyle).enyia);

denotes that as many objects as possible (at least one)
from class 1y, 2 to 4 objects from cly, and one object
from class cly will participate. Furthermaore, the global
channel en will have three parameters:

* & comes from the channels cny and eny. This pa-
rameter must take the same value in all the partic-
ipating objects from their corresponding classes,

* b comes from the channels en; and cny. Again, as
in the previous case, the parameter must take the
same value, and

* ¢ comes from the ID of an object in the class c1;.

The flexibility of our operator s matched in zome
other approaches which use transactions or groups of
actions that are earried out on an all-or-nothing ba-
gis. However, transactions, although quile powerful,
are clearly a lower level mechanism. For example, it
is necesgary o detail the intermediate states of which
the transaction is composed, or the order in which it
I$ necessary Lo carry out each action. In our proposed
interaction operator it is only indicated which elements
are involved in an interaction, without giving the con-
crete details of how the transaction itself is carried out.
This is done in a later refinement process which will be
derived from the defined interactions.
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Figure 5: Definitive class diagram of the philosophers
problem,

4.3 Some Examples

In this section we illustrate the use of the interaction op-
erator with two examples; the dining philosophers prob-
lemn described in Section 3.2, and the automated bank-
ing problem. We will study the first example in some
detail, since it is quite simple, and Nusteative of some
of the problems that have to be solved. The second ex-
ample is more complex; and we study it only partially,
highlighting those aspects where the increased descrip-
tive power and abstraction of our proposed interaction
operator give it an advantage over other methods,

4.3.1 The Dining Philosophers Problem

Recall that the classes in the dining philosophers prol- -
lern are Philesopher and Fork, Since the number of
philosophers {and forks) (mumPhal) is itrelevant, we will
assume that numPhil > 2.

First we will define what attributes the state of each
object is composed of. We need an attribute to denote
the current situations of philosophers and forks. Let atp
be this attribute for the philosophers. It will be able to
take the values {thinking, eating}. Let stf be the
attribute for the forks. It will be able to take the values
{free, tusy}l. We will have local events takeForks
and releaseForks for the philosophers, and isTaken
and isReleased for the forks. The definitive class dia-
gram is shown in Figure 5.

The behavior of the classes Philosopher and Fork
is described by the following rules:

1} {p-scps=thinking}
Fhilosopher (p} . takeForks

{p.stp'=sating])

2} {{p.stp=eating)}
Fhiloscpher (p) . releaseForks
{p-stp'=thinking}

3) {(f-p.:fnrk]'_ul-:lt W !-p.fnrﬂighﬂ A f_osti=free}
Fork(f).isTaken(p)
{f.ouf ' =buay]

4) {{f=p.forkleft ¥ f=p.forkRight} A f.sti=busy}

Fork(f).iaRelensad (p)
{f.avf'=frea}

The first rule establishes that a philosopher must be
thinking in order to take his forks. If the latter event
occurs, his state will change to eating. The second rule
says that a philosopher p must be eating in order to
release his forks; if that event takes place then his state
will change to thinking. The corresponding automata is
shown in Figure 6.

The third rule describes when a philosopher can pick
wp the fork £. This fork must be free, and also must be
one of the forks to the right or left of the philosopher
whose 1D is passed as a parameter. If this event takes
place, the state of the fork will change to busy. Finally,
the fourth rule establishes in a similar way that a fork £
must be busy in order to be released, in which case its
state will change to free. The corresponding automata
is shown in Figure 7.

We need 1o establish two interactions among objects
of the twa classes:

1. When a philosopher takes a fork, it must dizsappear
fromm the table (so that ancther philosopher can
not take it). Also, to avoid problems of deadlocks,
a philosopher must take his two forks at the same
Lime.

2. When a philosopher lets go of a fork, it must be
avatlable on the table again. The philegopher must
release his two forks at the same time. {Although.
he could also releass them one at a time, we believe
the proposed way iz hetter.)

A graphical representation of these interactions is
shown in Figure 8. The specification of the interaction
constraints is as follows:

Interaction constraints
take{p): Philesopher{p).takeForks =
Fori.isTaken{p) [2];
rolessgalpl: FPhilesopher(p) relesseForks =
Fork.isReleased(p) [2] ;
end;

It can be seen that each global channel has one pa-
rameter, indicating which philosopher wants to take or

release his forks.

Figure 6: Automata representing the philosophers be-
liavior.

lah.'_F_'mI'_-:

releaseForks
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{ﬂ:ﬂld_’ is']_.'h.l_aeu{p}

{cond) isReleased(p)
where cond = ([ = pforkLeft) or (f = pforkRight)

Figure 7: Automata representing the forks behavior.,

4.3.2 The Automated Banking Problem

In this section we will specify an automated banking
system. Since the problem is quite extensive, we will
restrict our study to certain interactions that form part
of the problem; those that are concerned with making
deposits and with closing accounts. The simplified class
diagram iz shown in Figure 9. As can be seen, we will
congider only four classes:

* Customer represents clients of a particular bank,
The class has two associations to indicate that
a client can have multiple accounts and several
cards. Events which are considered local events
are deposit to make deposits, and clesedccount.

* Account to represent client accounts. An account
can belong to several clients and can be accessi-
ble to different cards. This class has an attribute
to denote the balance. The events considered lo-
cal events are deposit, and close to close the
account.

» Card to reprosent the banking cards of the clients,
Each card is personal; it can belong to only one
client and is associated with a single account.
Events considered local events are depesit and
invalidate to cancel a card,

= ATH to represent antomated teller machines, This
class has a variable to indicate whether an auto-
mated teller is active. The only event considered
to be a local event i3 deposit.

In Figure 9 the association roles are not shown, for
clarity. For the role names of an association, we will use

inkeFarks take isTaken
[Philcsopher Y 3| Fork

releaseForks TRLEASE  jsReleased

1 2

Figure § Interaction constraints beiween the classes
Philosepher and Fork.

the class names that are at the corresponding end of that
association. For example, the set of cards associated
with an account a is denoted by the role a. card.

Part of the behavior of the classes Customer,
Account, Card and ATM is described by the following
rules:

1} {lcrd.customer = 2} and (m > 0} )
Customer (c) .depositicrd, =)

2} {a € c.account}
Customer (c) .closedccount (a)

3} {erd.account = a}
Accoumt (a) . depesiticrd, m)
{a.balance’ = a.balance * m}

4) {a.balance = 0}
Aceountial . close

3} {erd.sccount = a}
Card{ced) . invalidate(a)

6) {r.ishcuive}
ATH(t) .deposit

The first rule establishes that a customer may make
a deposit to an account using a banking card if the card
belongs to him and the amount is greater than 0. The
second rule says that a customer can close an account
if it is her own account. The third rule indicates that
for a card to be used to deposit to an account, the card
miust be associated with that account, The fourth rule
specifies that to close an account, the balance must be 0,
The fifth rule states that a card is invalidated (the object
is destroyed) when the account passed by the parameters
coincides with the associated account. Finally, the sixth
rule stipulates that a deposit can only be made when the
automated teller is active.

The specification of interaction constraints is as fol-
lows:

Customer - owns Card
*
1.* ’
has
1 i5 nccesspd by
Account ATM

Figure 3: Partial class diagram of the banking problem.



J. Tomes, J A Troyano and M. Tors: Specifing interactions among Objects through Constraiinds

Interaction constraints
depositic,erd,m,th: ATH{t).dapoait =
Customar{c) .deposit {crd,m) =
Account (a) .deposit (crd,m) ;
close(ec,a): Custemaric).closslccount{a) =
Account(a).cleas = Card.invalidate{al;

and;

The interaction to make a deposit specifies that an
automated teller, and a customer and an account in-
teract. If all local constraints are met, then the event
deposit can occur. The interaction to close an account
is more interesting. This interaction specifies that & cus-
tomer, the account indicated by the customer, and all
cards associated with the account must be involved in
the interaction.

5 Dynamics of a System

In order to define the global behavior of & system, we
need to see what condition must be met so that a global
event can happen, and what the effects on those objects
participating in the event will be. Since more than one
object may participate in an interaction, we will use
the extension or population of a class in order to define
which objects will participate in the interaction.

5.1 Notation
Let us suppose that we have defined the following inter-

action:

cly .cmy (pary ) [min, .maz,] = ...
= gl . cny, (par, ) [min,..maz.];

cng(par) :

where the classes cly with local views eny, i € {l.n}
participate. We will use the following notation;

# We describe the local behavior of objects of the
class cl; by the notation {pre Jen{post,}. This
indicates that objects of the class which meet the
condition {pre, }, evaluated on their current state,
will participate in the event cny. If the event hap-
pens, the state of the objects which participated
will become that described in {post}.

# We use the notation ob.at to refer to the attribute
af of an object with ID ob. We also use the nota-
tion ob.exp to denote the expression erp evaluated
on the state of the object ob.

# We distinguish the value of an attribute before
the occurrence of an event from its value after the
event by adding a prime (*) to the attributes,

» The notation el; denotes the population or exten-
sion of the class cl;.

s We denote by cf;.cn; objects of the class cl; that
participate in an interaction through channel en;.
This set is composed by all objects which meet
condition pre;. If there are more objects than nec-
essary, the largest possible number of them will be
taken.

The global behavior of the system with regard to
event cng is given by:

{pre} eng {post}

where

N ((¥eb € cieng e obpre) A

i£{l..n}

(#cli.cn; € {min;..maz}))

poat = |||"‘.. (vob € ofj.cn; » ob.post;)
ief1..n}

Thus, in order for a global event to happen, for each
local view, each participating object must meet its con-
straints, The number of objects required to participate
must also be present. Then, if the event occurs, all
the objects which participated will modify their state
according to the local definition of the corresponding,
class,

In this way, at each instant in time, we can know
which events could potentially take place. Only one
global event may take place at a time. If more than
one event is ready to take place, the cholce of which
event is to take place will be non-deterministic. If no
event may take place, the system is said to be blocked
(for the case of non-terminating systems),

e

5.2 An Example: The Dining Philoso-
phers Problem

We continue with the example given in Section 4.3.1.
According to the interaction constraints defined and the
local constraints imposed on each class, and using the
definitinong of Section 5.1, the global hehavior of the sys-
tem is defined as follows:

{pre;} take(p) {posti]
{pre,} releasalp) {post.}

where
pre; = tp.:tp-thin’tiug] A (%1 € Fork.is n e

(f=p.forkleft v f=p, forkRight]) A
(f.stp=freal) A (8Fork inslaken = 2}
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post; = (p.stp'=eating) A
(vt e Fm% » f_oatd '=huay)

pre. = (p.stp=eating) A (¥f ¢ Fork isBelenzed
{(f=p.forkLeft V f=p.forkRight} A
(f.atp=busy)) A (#Fark.isReleased = 2)

post, = (p.stp'=thinking) A

{¥f € Fork.isBalensad & f.atf'=free)

The system will be correct if the following properties
(Ben-Hari, 1991) are met:

1. A philosopher eats only if he has two forks.

2. No two philosophers may have the same fork si-
multaneously.

3. Deadlocks are not allowed. {Deadlock arises when
na évent can ooour, )

4. No individual may starve. Starvation occurs when
there is a philosopher who can never take both his

forks.

Property 1 A philasopher may et only if he has fwe
Jorks.

The state of the system with our specification Is
given by the following formnla:

Wp € opher =
{p.stp=thinkizg A p.forks=d) W (p.stpeeating
A p.foriks={p.forklefe, p.forkRight})

where p. forks denotes the set of forks that the philoso-
pher p is using, given by the association wees. The state
of this system expresses that each philosopher is cither
thinking or eating. If a philosopher is thinking, he will
not be using any fork. When he iz eating, he will be
using the forks that are to his left and to his right.

Property 2 No two philosophers may hold the same
Jork simulteneously.

In our system, this is expressed also as;

Vs, pr € PRTToaopEer | puips o

(ps -Torks M pa.forks) = @
i.e., no two philosophers can be holding the same fork,
Property 3 No deadinck.

A system has no deadlocks if in any state there is at
least one event which may ocour. In our specification
of the dining philosophers problem, an event of taking
or releasing forks can take place in any state. We can
prove this, starting from the global state of the system
defined above. If we have at least two forks and two
philosophers, there will always bo at least one philoso-
pher thinking (for not all can eat at the same time) in
any state. There are four possibilities:

-—-iﬁ]"'
L)
r{4]
(2)

Figure 10: Observable behaviour in the philosophers
prohlem.

1. All forks are free (no eating philosophers). Then
the event of taking forks can take place,

%, Some philosophers are eating, but there are
enough free forks that some thinking philosophers
can eat. The events which may oecur are taking
forks or releasing forks,

3. There are some free forks, but the thinking
philosophers can not take both their forks, beeause
some of them are being used by ather philosophers
(numfil/2 philosophers are cating). The events
which can occur are releasing forks.

4. There are no free forks (when there are an even
number of philosophers). Then events of releasing
forks can occur.

The observable behavior of the problem with five
philesophers iz shown in Figure 10, The system has 11
states, where in cach stave, the situation of the philoso-
phers and the forks is stipulated. For example, the state
(1,4) indicates that philosophers 1 and 4 are cating,
while philosophers 2, 3 and 5§ are thinking. This implies
that forks 5, 1, 3 and 4 are busy, while fork 2 is [ree.
The central state is the initial state of the system (all
philosophers are thinking). With regard to events, {[n)
indicates when philosopher ntakes his left and right
forks, and the event rin) denotes when philosopher n
releases the two forks that he had, It can be seen tlas
this system iz free from deadlocks, as there are transi-
tions starting from any state. An algorithm for formal
deadlock detection in conceplual schemas can be found
in [Dedne and Snoeck, 19495).

Property 4 No individual starves.
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In our specification, we do not prevent the starvation
problem. Thus a philosopher n can die of starvation if
the event that he picks up his forks, take{n), never
happens. This problem can solved by applying fairness
in the occurrence of events, for instance, if events that
can peeur are gueued using the FIFQ criterion.

6 Application

6.1 TESORO

The interaction model deseribed in this paper has served
a5 the basis for aur definition of the object oriented spec-
ifeation language TESORO.

In TESORO, a system is specified through different
kinds of constraints. Three kinds of constraints are de-
fined according to the way they affect objects:

1. Comstraints en states of ebjects. These allow us to
define constraints on values of attributes (which
can be constant, variable or derived). Each at-
tribute has a type, defined by an abstract data type
ADT, defined in the ACT ONE language (Ehrig
and Mahr, 1985; Claben, 1992) or in a class of ob-
jects. According to the number of affected states,
these constraints can be of two kinds:

(a) Static constraints. These delimit the values
of attributes and must be met in any state, I
they are met in the current state, they should
continue being met in the nezt state. I an
object does not meet these constraints in the
initial state, it will not be created.

(k) Dynomic construints. These are bonds be-
tween two states; the current and the next
state, Dypamic constraints can be of two
types: (1) state changes associated with oc-
currence of an event, which have the re-
stricted form of an assignment, and (2) more
generic transition constraints, which are not
associated with events and act according to
defined state changes.

2. Participation constraints. These define when an
object is interested In participating in an event.
They are predicates established both on the state
of an ohject and on parameters of an event. 1f they
are ot met, they will prevent the participation of
the object in that event.

4. Interaction constraints. The model deseribed in
this paper.

Besides the individual features described  in
TESORO, the extension of classes takes on special

relevance in this language. We can define constraints
that must be met collectively by all objects of a class
(thase that exist in a given instant).

In TESORO, several operators also exist which allow
the carrying out of 00 specifications at a superior level
of abstraction, These operators allow the definition of
relationships of association, aggregation and inberitance
mmong classes. More details can be found in (Torres,
1997). In (Troyano, 1998), a rigorous study is made of
behavior compatibility in a hicrarchy of classes.

6.2

The benefits of cxceutable specifications are clear; they
provide a protoiype of what is specified. Prototypes
can be considered as anfmations suitable 1o validate the
specification requirements, [acilitating communication
between user and analyst, Thus, an executable speci-
fication, besides representing a conceptual model of the
syatem, represents amodel of behavior of the software to
implement. However, this has a cost. Often the analyst
is foreed o make some implementation decisions that
are unnecessary in the specification stage, which may
confuze the programmer (Bowen and Hinchey, 1995).
Kon-executable specifications have the opposite advan-
tages and disadvantages. Thus, we can find as many de-
fenders of exceutable specifications (Fuchs, 1992) as of
non-execitable specifications (Hayes and Jones, 1989).

We prefer execntable specifications, but without los-
ing the advantages of abstract specifications. This has
the inconvenience of an increased degree of difficulty in
the implementation of the proposed model. We have
implemented our interaction mechanisn in two differ-
Ol wWays:

HRemarks on Implementations

« First, using the LOTOS language. LOTOS is
a standard language for the specification of dis-
tributed systems, based on the algebra of pro-
cesses.  The equivalence between TESORO and
LOTOS is shown in (Torres, 1997). We gain sev-
eral wdvantages by using a LOTOS-like prototyp-
ing lnmpuage. As LOTOS is also a specification
language, the equivalence with TESORO is carried
out at i similar lovel of abstraction. Moreover,
pumerous tools have been developed that allow
checking the correctness of specifications written
in this language. LOTOS consists of two parts;
ane of specification of ADT based on the ACT
ONE language, and the other part for the descrip-
tion of behavior, based on the algebra of processes,
Thus the equivalence between TESORO and LO-
TOS as ADT level is direet. The work is reduced
1o the representation of objects by means of pro-
s,
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Using LOTOS thus simplified the task of con-
structing TESORO specifications. The main prob-
lems encountered were the differences between the
interaction mechanisms of the two languages. This
work also served to confirm the power of TESQORO
for the specification of concurrent systems.,

» Second, the interaction mechanism was imple-
mented by creating an extension to the [P lan-
guage (France: and Forman, 1996). This exten-
sion, called IPICX (Corchuelo and Martin, 1998),
adds to the [P language the possibility of com-
municating procesacs through interaction chan-
nels that are specificd by means of symbolic con-
straints. These constraints allow us to determine
the set of processes that will interact and the data
that will be exchanged among them. The method
is still based on interactions among multiple par-
ticipants, but the approach followed in IPICX pro-
vides a more gencral communication mechanism
that is not restricted to a simple passing of values.
Besides defining the language, an implementation
of IFICX has also been obtained, exploiting the
possibilities of techniques of lazy and incremental
evaluation.

These implementation methods have helped us to
test TESORO, although they are not very efficient when
the specifications are complex, especially in distributed
environments. We are in the process of obtaining ag-
tomatic implementations using lower level mechanisms,
such as client/server communication and transactions,
in order to obtain more efficient implementation.

7 Conclusions and Future Work

In this paper we have presented a fexible model for in-
teractions among objects which allows multiple classes
of objects to interact through the same event. We con-
gider events Lo be units of synchronization and (m-way)
communication among objects.

In our model, the specification is made by defining
constraints imposed locally on objects, The global view
of a system is obtained by defining the interaction con-
straints that exist among objects, For each class, the
ohjects that will be able to participate in an interaction
are all those that satisfy their constraints,

Global constraints can be imposed on a system o
on & part of it (a subsystem) by having objects keep
these constraints locally, These objects must interact in
& synchronous way with the rest of the system.

The model has been illustrated wsing the example
of the dining philosophers problem. We specified the
system by means of rules that define the possible state

transitions of the objects composing the system. To
provide a global view of the system, we have defined in-
teraction constraints. We then described the conditions
that have to be met in order that an event of the system
can occur, We also showed that the system specified is
free from deadlocks. In addition, we showed a partial
specification of another example, the automated bank-
ing problem. Further examples can be seen in {Torres,
1997).

Finally, we have presented some practical resules
of our work. The main featurcs of the TESOROD lan-
guage, which is based on the mode] given in this paper,
hawe been described, as well as the main implementation
tazks that have been carried out.

Plans for further work are focused on automatic
methods for abtaining implementations wsing lower level
mechanisms, such as client/server communication and
transactions, which assure the same properties as the
original specifications, In & transparcnt way. We also
plan to develop a methodology that allows us te use in-
teraction constraints in & software development procoss.

Our work i= part of a Spanish research project called
MENHIR, in which departments of five universitics are
collaborating. The project concentrates on the study of
models, environments and new toals for Requirements
Engineering. Up to this point in time, the TESORO
specification language based on the modal descrilied
in this paper has been one of the main results of the
project. In addition, the pericdic MENHIR meetings
have grown into national workshops with international
participation,

References

G.H. Andrews. Concurrent Programming, Principles
amd Practice.  Benjamin/Cummings Publishing Com-
pany, 1991,

M. Ben-Hari., Prnoples of Concurrent and [Dis-
frabuted Progromming. Prentice Hall International Se-
ries in Computer Science, 1991,

G. Booch, I. Jacobson, and J. Rumbaugh.  The
Unified Modeling Language [Fser Guide.  Addison-
Wesley, 1909,

J.P. Bowen and M.G. Hinchey. Ten Command-
menis of Formal Methods, TEEE Computer, pp. 56-G2,
April 1995,

D). Carrington, . Duke, R. Duke, P. King, G.A.
Rose and G. Smith. Object-Z: An Object Oriented
Extension fo &, In Formal Description Technigues, [T,
pp. 281-206. Elsevier Science Publishers B.V.(Narth-
Holland). IFIP, 1990,

I. Claflen. ACT System - User Manual, Institut fir



J. Tomes, J.A Troyano and M. Toro: Specifying intersctions among Obfects through Consiralnfs

Software und Theoretische Informatik. ‘Technische Uni-
versitt Berlin, 1992,

R. Corchuelo and O, Martin, Multiparty Interaction
by Means of Interaction Channels. Proc. of 9th. [I'n-
ternational Conference on Compuling and Information,
pp. 35-42, 1998,

G. Dedene and M. Snoeck. Formal Deadlock Elimi-
nation in an Object Oriented Conceptual Schema. Data
8 Knowledge Engineering, Vol. 15, pp. 1-30, 1995,

G, Denker and J. Kster-Filipe, Towards a Model for
Asynchronously Communicating Objects,  Proc.  2nd
Int. Baltic Workshep on Datebases and Information
Syafems, 1996,

E.W. Dijkstra. Hierarchical Ordering of Sequential
Processes. Acta Fnfermaticn, Vol. 1, No 2, pp. 115135,
1871,

H. Ehrig and B. Mahr. Fundamenials of Algebraic
Specification, Part 1. Springer Verlag, 19835,

M. Francez and [.LIR. Forman, nteracting Processes.
A Multiparty Appreach to Coordinated Dustributed Pro-
gramming. Addison-Wesley, 1996,

MN.E. Puchs. Specifications are (Preferably) Exe-
cutable. Software Enginesning Journal, Vol. 7, No. 5,
pp. 323-334, September 1902,

T. Hartmann, (. Saake, R. Jungelaus, P. Har-
tel and J. Kusch. Revised Version of the Modeling
Language TROLL. I'nformalik-Bericht 94-09, Technis-
che Universitt Braunschweig, 1994,

I.J. Hayes and C.B. Jones. Specifications are not
(MNecessarily) Executable. Soffware Enpnesring Jour-
nal, Vol. 4, No. 6, pp.330-338, November 1989,

C.A.R. Hoare. Communicaling Sequentiel Processes,
Prentice Hall International Series in Computer Science,
1985,

150 - Information Processing Systems - Open Systems
Interconnection. LOTOS, A Formal Description Tech-
nigue Bosed on the Temporal Ordering of Observational
Behavior, 150 8807, 1989,

R. Jungclaus, T. Hartmann and . Saake. Re-
lationships between Dynamic Objects, In Informalion
Modelling Knowledge Bases I'V: Concepts, Methods and
Systems. pp. 425-438, 1993,

Z. Manna and A. Poueli. The Temporal Logic of He-
active and Concurrent Systems. Specification. Springer-
Verlag, 1992,

J.A. Mans, Dining Philosophers: A Constraing
Oriented-Specification.  The Formal Description Tech-
nagques LOTOS, pp. 439-451. Elsevier Science Publish-
ers B.Y. (North-Holland). IFIP, 1939,

R. Milner, Communication and Cencurrency. Pren-
tice Hall Int. Series in Computer Science, 1980,

0. Pastor, F. Haves, and 5. Bear, OASIS: An
Object-Oriented Specification Language, Proc, of Jith
Int. Conference on Advanced Information Systems En-
gineering CASERE, pp. J48-363, May 1992

J. Rumbaugh, M. Blaha, W. Premerlani, F, Eddy
and W. Lorensen. Oject-Oriented Modelling and De-
sign, Prentice Hall, 1991,

J. Rumbaugh, G. Booch, and I. Jacobson, The
Unificd Medeling Longuage Reference Manual, Addison-
Wesley, 1909,

J. Torres, (hject Oriented Specifications based on Con-
straints. PhD Thesis, Department of Languages and
Computer Svstems. University of Seville, December
1997,

J.A. Trovano. [nheritance and Classification in an
ject Chiented Specification Language. PhD Thesis,
Department of Languages and Computer Systems. Uni-
versity of Seville, June 1908,



o Tomes, JA Troyano and M. Tom: Specifying Interactions among Objecis through Consirsints

Jestis Tarres obtaived the P, degree in Computer Science in 1997 a1 the Sevitle Univ eraity
in Spain. He is profissar since [990 in the Deparimeny of Languages and Comprter Systems

arf e Seville \'.-'-'In:t'rr:.'[r. Hix research nierests are i the qreas H_l'-”.'l'i'll'll'-l'ﬂ'-ll'r.'r-I.'ITII;.EITI'\-I'FIH‘]:.
abfect avtentation aud distributed systems,

A, Trayame received his Pir. 0. degree in Computer Scivmoe in [99E fram the Soville University
i Spaaten. Simoe T990 be iz professor in the Department of Langiages and Compuier Systems

af the Seville University. His research is centered in obfect oriented specification lamguages,
fnheritanee and elassifcation,

Miguel Torg obtained the PRI, degree in Engineering in I937 ar the Seville University in
Jpain. He ix professar sinee [958 and divector since 1993 of the Departaent af Langiages
and Computer Systems ai the Seville University, His research inferesis include Satwitre
emgrimeering, distribiied svarems and formal meethods,




