
A Heuristic Process for Local Inconsistency

Diagnosis in Firewall Rule Sets
1

S. Pozo
Department of Computer Languages and Systems, Computer Engineering High School, University of Seville, Spain

Email: sergiopozo@us.es

R. Ceballos, R.M. Gasca
Department of Computer Languages and Systems, Computer Engineering High School, University of Seville, Spain

Email: {ceball,gasca}@us.es

Abstract— Writing and managing firewall ACLs are hard

and error-prone tasks for a wide range of reasons. During

these tasks, inconsistent rules can be introduced. An

inconsistent firewall ACL implies in general a design error,

and indicates that the firewall is accepting traffic that

should be denied or vice versa. However, the administrator

is who ultimately decides if an inconsistent rule is a fault or

not. Although many algorithms to diagnose inconsistencies

in firewall ACLs have been proposed, they have different

drawbacks regarding many aspects of the consistency

management problem, which can prevent their use in a wide

range of real-life situations. The most important one is that

they give complete and minimal results, but their

algorithmic complexity is too high, making the problem

intractable for even reasonably-sized ACLs. In this paper

we present an analysis of the consistency diagnosis problem

in firewall ACLs. Based on this analysis, we propose to split

the process in several parts that can be solved sequentially:

inconsistency detection and isolation, inconsistent rules

identification, and inconsistency characterization. Our

algorithms are the first which can solve the detection,

isolation, and identification problems in quadratic time

complexity, giving complete but not necessarily minimal

results. A theoretical complexity analysis as well as

experimental results with real ACLs is given.

Index Terms— diagnosis, consistency, conflict, anomaly,

firewall, acl, ruleset

I. INTRODUCTION

Your goal is to simulate the usual appearance of papers

in a Journal of the Academy Publisher. We are requesting

that you follow these guidelines as closely as possible.

A firewall is a network element that controls the

traversal of packets across different network segments. It

is a mechanism to enforce an Access Control Policy,

represented as an Access Control List (ACL). Firewalls

use obligation policies. Obligation policies can be

represented as Event Condition Action Rules (ECA

Rules) that must perform certain actions over a subject (in

the firewall case, the subject is always traffic) when

certain events occur. Thus, a layer 3 Firewall ACL is in

general a list of linearly ordered (total order)

condition/action rules. The condition part of a rule is a set

of condition attributes or selectors. The condition set is

typically composed of five elements, which correspond to

five fields of a packet header [14]. Some of these

selectors can be expressed as naturals, and others as both

naturals and intervals of naturals. In firewalls, the process

of matching TCP/IP packets against rules is called

filtering. A rule matches a packet when the values of each

field of the header of a packet are subsets or equal to the

values of its corresponding rule selector. The action part

of the rule represents the action that should be taken for a

matching packet. In firewalls, two actions are possible:

allow or deny a packet. A firewall ACL is commonly

denominated a rule set.

Writing ACLs is a time-consuming and error-prone

task for several reasons [16]. One of the main ones is that

networks have different access control requirements (or

objectives) which must be translated by a network

administrator into firewall ACLs. The gap between the

high-level access control requirements and low-level

ACLs is too wide. Low-level firewall languages are, in

general, difficult to learn, use and understand, and are

very different from each other in syntax and semantics.

Although many high-level languages have been proposed

in order to reduce design complexity and (thus design

faults), node of them have been widely adopted by the

industry for various reasons [2]. In addition, its use does

not guarantee that the resulting ACL is fault-free, thus a

method to diagnose design faults must be applied in order

to correct them prior to ACL deployment.

1 This paper is a revised and extended version of a paper published

in SECRYPT 2008 [11].

698 JOURNAL OF NETWORKS, VOL. 4, NO. 8, OCTOBER 2009

© 2009 ACADEMY PUBLISHER
doi:10.4304/jnw.4.8.698-710

Furthermore, complexity of networks is constantly

increasing, as changes in requirements, topology, etc.

occur with higher frequency and density. According to

Taylor [14], the number of rules in a firewall ACL

usually ranges between a few ones and five thousand. For

this reason, the management of firewall ACLs is also a

very hard task. For example, changing from one firewall

platform to another often means a complete rewrite of the

ACL, and thus new faults can be introduced. In addition,

ACL updates can also introduce new design faults [10].

One of the most important and frequent faults during

ACL design and management are inconsistencies. A

firewall ACL with inconsistent rules implies in general

design faults, and indicates that the firewall is accepting

traffic that should be denied or vice versa. This can result

in severe problems such as unwanted accesses to services,

denial of service, overflows, etc. ACL consistency is of

extreme importance in several contexts, such as highly

sensitive applications (e.g. health care). Thus, algorithms

and tools to automatically isolate and characterize

inconsistencies must be provided in order to give firewall

administrator enough information to correct them and

reduce the number of faults in firewall ACLs.

Many algorithms to diagnose inconsistencies in

firewall ACLs have been proposed, and in all of them is

the firewall administrator who ultimately decides which

rules have to be corrected. However, these algorithms

have many drawbacks regarding different aspects of the

consistency management problem. The most important

one is that they pre-process the firewall ACL using

different types of non-trivial decompositions in order to

use more efficient abstract data types and techniques.

However, the proposed decomposition techniques

increase the number of rules in the ACL and have worst-

case exponential time and space complexity. As a

consequence, results of these consistency management

algorithms are given over the modified ACL, and have to

be interpreted by the firewall administrator. Furthermore,

their time and space complexity is very important, since

these algorithms are being used in a new range of

applications in resource-constrained devices in ubiquitous

networks, such as ad-hoc network node real-time ACL

updates [10], real-time IDS or IPS rule updates, etc.

In this paper we propose to take a different approach in

order to make the problem tractable for real-life, big rule

sets. We propose to divide consistency diagnosis in three

sequential steps (Fig. 1). This paper focuses in the first

two parts of the process (detection and isolation, and

identification). In this paper, we propose best case O(n)

and worst case O(n
2
) time complexity order independent

detection and isolation, and identification algorithms with

the number of rules of the rule set, n. Algorithms are

capable of handling full ranges in rule selectors without

doing rule decorrelation, range to prefix conversion, or

any other pre-process. Results are returned over the

original unmodified ACL. The process does not cope

with redundancies, as we consider redundancy diagnosis

a different problem because redundancies do not change

the ACL semantics, but only affect the performance of

the matching algorithm, which is not the focus of this

paper.

This paper is structured as follows. In section II, we

analyze the internals of the local consistency management

problem in firewall rule sets and formalize it. In section

III we propose the consistency-based diagnosis

algorithms, give a theoretical complexity analysis and

experimental results with real rule sets, which validate

our proposal. In section IV we review related works

comparing them to our proposal. Finally we give some

concluding remarks in section V.

II. ANALYSIS OF THE CONSISTENCY PROBLEM

To understand the problem, it is important to first

review the inconsistencies characterized in the

bibliography. A complete characterization that includes

shadowing, generalization, correlation and redundancy

has been given in [6]. Although all of these are

inconsistencies, usually not all are considered to be

design faults, as they can be used to cause desirable

effects. Is the firewall administrator who ultimately

decides which rules have to be corrected or removed.

Figure 1. Consistency diagnosis process

Rx
action=deny

Ry
action=allow

(c) Correlation

Rx

Ry

(d) Consistency

Ry
action=deny

Rx
action=allow

Ry
action=deny

(a) Shadowing

Rx
action=allow

(b) Generalization

Figure 2. Graphical representation of three inconsistencies

JOURNAL OF NETWORKS, VOL. 4, NO. 8, OCTOBER 2009 699

© 2009 ACADEMY PUBLISHER

These inconsistencies except redundancy are graphically

presented in Fig. 2. For the sake of simplicity, only pair

wise inconsistencies with one selector are represented.

An example of an ACL is presented in Table 1.

In this paper, we propose to divide consistency

management in three sequential steps (Fig. 1). At the first

step, all rules that cause inconsistencies are detected and

isolated, if any. Then, the set of rules that cause the

detected inconsistencies should be identified. Their

correction or removal guarantees that the resulting rule

set is consistent. This set of identified rules must be as

small as possible, in order to give useful results in rule

sets with a high number of inconsistencies. These two

steps are called Inconsistency Diagnosis. Finally, the

identified inconsistent rules should be characterized

among an established taxonomy of firewall rule set

inconsistencies. This paper is focused in these two parts

of the consistency diagnosis problem. The third and last

problem, minimal inconsistency characterization, is

combinatorial [12]. Furthermore, diagnosis is also rule-

order independent, contrarily to characterization. The

main difference of this work with other ones is that other

authors apply brute force algorithms to solve directly the

characterization problem, with no previous diagnosis.

This yields algorithms that cannot be applied to big rule

sets. With the proposed approach, the same

characterization algorithms can be applied to several

smaller problems, rather than to the full rule set.

However, the number of these smaller problems is not

minimal with the heuristic algorithms proposed in this

paper. In addition, heuristic characterization algorithms

[12] can also be used to give approximate results in a

reasonable time, even for really big rule sets (with more

than 10000 rules).

A. 1..1 and 1..n Consistency in Firewall Rule Sets

First, it is needed to formalize a firewall rule set.

• Let RS be a firewall rule set consisting of n rules,

{ }
1
, ...

n
RS R R= .

• Let
5

, ,R H Action H=< > ∈ℕ be a rule, where

{ },Action allow deny= is its action.

• Let [],1 ,
j

R k j n k≤ ≤ ∈

{ }, _ , _ , _ , _protocol src ip src prt dst ip dst prt be a

selector of a firewall rule Rj.

• Let ‘<’ and ‘>’ be operators defined over the priority

of the rules, where Rx < Ry implies that then Rx has

more priority than Ry and its action is going to be

taken first, and vice versa.

Attending to Al-Shaer characterization, two rules (Rx,

Ry) are correlated if they have a relation between all of its

selectors, and have different actions. Fig. 2(c) represents

a correlation inconsistency between two rules with one

selector each. As the figure shows, the relation between

the rules is not subset, nor superset, nor equal (rules R1
and R3 of Table 1 are correlated). Fig. 2(a) represents a

shadowing inconsistency between two rules. The relation

is equality or subset of the shadowed rule, Ry, respect to

the general rule, Rx, with Rx>Ry (R4 is shadowed by R3 in

Table 1 example). Fig. 2(b) represents a generalization

inconsistency between two rules, which is the inverse of

shadowing respect to the priority of the rules. The

relation is superset of the general rule respect to the other

one (R2 is a generalization of R3 in Table 1 example).

Since we are only interested in diagnosis and not in its

characterization, let’s try to remove names and give a

general case of inconsistency based on these

inconsistency characterizations (except redundancy). In a

closer look at shadowing and generalization

inconsistencies in Fig. 2, it can be seen that, in reality,

these two inconsistencies are the same one, and the only

thing that differentiates them is the priority of the rules.

Thus, if priority is ignored, these two inconsistencies are

special cases of a correlation. That is, shadowing can be

redefined as a correlation where all selectors of one rule

(the shadowed one) are subsets or equal of the general

rule. As generalization is the inverse with respect to the

priority of shadowing, a generalization inconsistency can

also be redefined as a correlation where of all selectors of

a rule (the general one) are supersets of the other rule. So,

the correlation inconsistency can be redefined as the

superset of all inconsistencies, representing the most

general case. For that reasons, it is possible to define rule

inconsistency in only one priority independent case that

TABLE 1: EXAMPLE OF A FIREWALL RULE SET

Priority/ID Protocol Source IP Src Port Destination IP Dst Port Action

R1 tcp 192.168.1.5/32 any *.*.*.*/0 80 deny

R2 tcp 192.168.1.*/24 any *.*.*.*/0 80 allow

R3 tcp *.*.*.*/0 any 172.0.1.10/32 80 allow

R4 tcp 192.168.1.*/24 any 172.0.1.10/32 80 deny

R5 tcp 192.168.1.60/32 any *.*.*.*/0 21 deny

R6 tcp 192.168.1.*/24 any *.*.*.*/0 21 allow

R7 tcp 192.168.1.*/24 any 172.0.1.10/32 21 allow

R8 tcp *.*.*.*/0 any *.*.*.*/0 any deny

R9 udp 192.168.1.*/24 any 172.0.1.10/32 53 allow

R10 udp *.*.*.*/0 any 172.0.1.10/32 53 allow

R11 udp 192.168.2.*/24 any 172.0.2.*/24 any allow

R12 udp *.*.*.*/0 any *.*.*.*/0 any deny

700 JOURNAL OF NETWORKS, VOL. 4, NO. 8, OCTOBER 2009

© 2009 ACADEMY PUBLISHER

recognizes all characterized inconsistencies (Axiom

2.1.1). This is a key issue for the proposed diagnosis

algorithms.

Axiom 2.1.1. Rule inconsistency. Two rules

,
i j
R R RS∈ are inconsistent if and only if the

intersection of each of all of its selectors R[k] is not

empty, and they have different actions, independently of

their priorities. The inconsistency between two rules

expresses the possibility of an undesirable effect in the

semantics of the rule set. The inconsistency is considered

to be a fault if an administrator identifies the behaviour of

the executed ACL as being causing undesirable effects

(or having errors). The semantics of the rule set changes

if an inconsistent rule is corrected or removed.

{ }

(,) 1 1 ,

[] [] [] []

, _ , _ , _ , _

, ,

i j i j

i j
Inconsistent R RS i n R RS j n j i

R k R k R Action R Action

k protocol src ip src prt dst ip dst prt

≤ ≤ ⇔ ∃ ∈ ≤ ≤ ≠ •

≠ ∅ ∧ ≠

∀ ∈

∩

Inconsistency of one rule in a RS

{ }

(, ,) 1 , ,

[] [] [] []

, _ , _ , _ , _

,

i j i j

i j
Inconsistent R R RS i j n i j

R k R k R Action R Action

k protocol src ip src prt dst ip dst prt

≤ ≤ ≠ ⇔

≠ ∅ ∧ ≠

∀ ∈

∩

Inconsistency between two rules in a RS

Attending to Axiom 2.1.1, all cases represented in Fig.

2 are of the same kind, and are called inconsistencies

without any particular characterization. As it has been

demonstrated in the proof, rule priorities are not required

to detect inconsistencies.

Axiom 2.1.1 can also be used for more than two rules,

since the case of one to n rule inconsistency can be

decomposed in several independent pair wise

inconsistencies (Lemma 2.1.1).

Lemma 2.1.1. Axiom 2.1.1 can be extended to capture

inconsistencies between one and more than one rules

(that is 1..n inconsistencies), because a 1..n inconsistency

can always be decomposed in n 1..1 inconsistencies.

Proof. Let us reason by contradiction. Suppose there is

a 1..n inconsistency between a rule Rz and a set of rules

R1..Rn, that is Inconsistent(Rz, R1..Rn, RS)=true. Suppose

that this 1..n inconsistency cannot be decomposed in n

1..1 inconsistencies. If that inconsistency exists, then the

rules R1..Rn are consistent between them (they must have

the same action, or in other case Rz could not be

inconsistent with the whole set of rules). For that reason,

all selectors of each rule of the R1..Rn set, must

necessarily intersect with Rz selectors. Thus, Rz must

necessarily be inconsistent with all of them in an

independent manner. Note that if the rules in the R1..Rn

set overlap or not between them is not important, since

this could indicate a partial or total redundancy between

one or more rules in the set.

For example, all base situations are presented in Fig. 3,

which is an extension to Fig. 2. This figure is a

simplification to three inconsistent rules, but can easily be

extended to more rules that can be composed in several

ways.

Fig. 3(a1) represents an inconsistency where the union

of two independent rules (Rx, Ry) overlap with another

one, Rz (Fig. 4(a) taken from [5] exemplifies this

situation). As Rx is inconsistent with Rz, and Ry is also

inconsistent with Rz, both in an independent manner, this

situation can be decomposed in two independent

inconsistencies.

 Fig. 3(a2) presents a similar situation, where Rx

overlaps with the union of (Ry, Rz). This situation is also

decomposable in two independent inconsistencies: Rx

Inconsistent with Ry, and Rx with Rz. Note that, in order

to diagnose inconsistencies, the priority of the rules is not

necessary.

{ } { }
{ } { }
{ } { }

: [10 50]

: [40 90]

: [30 80]

Rx port allow

Ry port allow

Rz port deny

∈ − ⇒

∈ − ⇒

∈ − ⇒

(a)

{ } { }
{ } { }
{ } { }

: [10 50]

: [40 90]

: [0 100]

Ry port allow

Rz port allow

Rx port deny

∈ − ⇒

∈ − ⇒

∈ − ⇒

(b)

{ } { }
{ } { }
{ } { }

: [0 50]

: [60 100]

: [40 70]

Rx port deny

Rz port deny

Ry port allow

∈ − ⇒

∈ − ⇒

∈ − ⇒

(c)

Figure 4. Inconsistency examples

Rx
Action=deny

Rx
Action=allow

Ry
Action=allow

Rz
Action=deny

(a1)

Ry
Action=allow

Rz
Action=allow

Rx
Action=deny

(b1)

Ry
allow

Rz
allow

(a2) (b2)

Rz
Action=deny

Rx
allow

Ry
allow

Rx
Action=deny

(c)

Rz
Action=deny

Ry
Action=allow

Figure 3. Graphical representation of inconsistencies

between three rules

JOURNAL OF NETWORKS, VOL. 4, NO. 8, OCTOBER 2009 701

© 2009 ACADEMY PUBLISHER

The situations presented in Fig. 3(b1) and Fig. 3(b2)

are the inverse of the two previous ones respect to the

action. Thus, the decomposition is analogous. This

situation is exemplified in Fig. 4(b). Finally, Fig. 3(c)

represents a relation with three overlapping rules (an

example is in Fig. 4(c)). This situation can also be

decomposed in two independent ones: Rx inconsistent

with Ry, and Ry with Rz.

At this point, we propose a formalization and an

extension of the fault characterization provided by Al-

Shaer in order to recognize 1..n inconsistencies. The

proposed fault characterization is also complete (as it is

an extension of Al-Shaer work) based on the relationships

that can be established between the selectors of rules:

equality, subset and superset.

• Shadow. A rule Ry is shadowed by another rule Rx,
with Rx>Ry, if all of its selectors to or supersets of

the selectors of Ry, and Rx and Ry have different

actions.

{ }

()

[] [] [] []

, _ , _ , _ , _

,
x y x y y

y x x y

R R RS R R Shadow R

k R k R k R Action R Action

k protocol src ip src prt dst ip dst prt

⊂

∃ ∈ > • ⇔

∀ • ∧ ≠

∈

•

Shadow

{ }

()

[] [] [] []

, _ , _ , _ , _

,
x y x y y

y x x y

R R RS R R ExactShadow R

k R k R k R Action R Action

k protocol src ip src prt dst ip dst prt

=

∃ ∈ > • ⇔

∀ • ∧ ≠

∈

•

Exact shadow

This definition can be extended to support a set of

rules with the same action in Rx or Ry (but not in both). If

Rx is a set of rules and Ry is a rule, then Ry is shadowed by

Rx. Similarly, if Rx is a rule, and Ry is a set, then Ry are

shadowed by Rx.

• Generalization. It is the inverse of shadow respect to
the priority. A rule Ry is a generalization of Rx, with

Rx>Ry, if all of the selectors of Rx are subsets of the

selectors of Ry, and both rules have different actions.

Rx is usually considered an exception and not a fault.

Again, sets can be formed.

{ }

()

[] []

, _ , _ , _ , _

,
x y x y y

y x x y

R R RS R R Generalization R

k R R R Action R Action

k protocol src ip src prt dst ip dst prt

∃ ∈ > • ⇔

∀ • ⊃ ∧ ≠

∈

•

• Correlation. Two rules Rx and Ry are correlated if they
have different actions, and selectors of Rx intersect

with the corresponding selectors of Ry, but Rx and Ry

do not have a shadow, exact shadow or

generalization relation. Correlation is independent of

rule priority. This definition can also be extended to

sets of rules.

{ }

()

[] [] [] []

([] []) ([] [])

, _ , _ , _ , _

,
x y x y

x y x y

x y x y

R R RS Correlation R R

k R k R k R Action R Action

R k R k R k R k

k protocol src ip src prt dst ip dst prt

∃ ∈ • ⇔

∀ • ∧ ≠ ∧

¬ ⊆ ∧ ¬ ⊃

∈

∩

Note that inconsistencies that could be generated

during rule set updates (removals, insertions, and

modifications) is a topic not covered in this paper, but has

been covered in another work [10].

III. CONSISTENCY-BASED DIAGNOSIS OF RULE SETS

The presented analysis has motivated the separation of

characterization from diagnosis, and to solve the

diagnosis problem as a first step for the optimal

inconsistency characterization problem. As it is going to

be shown, the result of the diagnosis process is the

identification of a set of rules that cause the

inconsistencies in the rule set and for each one, the set of

the rules which they are inconsistent with. Each of these

sets and their corresponding identified conflicting rule

can be taken as input to the characterization part of the

process, resulting in an effective computational

complexity reduction (solving several small

combinatorial problems is faster than solving a big one).

However, as the proposed algorithm for the identification

of inconsistent rules is not minimal, the application of an

optimal characterization algorithm to its result may be

senseless. In contrast, heuristic characterization

algorithms [12] can be used, with a big improvement in

computational complexity for the full process.

In this section, two algorithms which implement

Axiom 2.1.1 and Lemma 2.1.1 and the diagnosis process

explained in the previous section are presented.

Algorithms are capable of handling ranges in all selectors

without modifications to the input rule set.

A. Step 1. Detection and Isolation of Inconsistent Pairs

of Rules

The first step of the process detects the inconsistent

rules of the rule set and returns an Inconsistency Graph

(IG, Definition 3.1.1) representing their relations. Note

that the detection and isolation process, like Axiom 2.1.1,

is order independent. Also note that the presented

algorithm is complete, as it implements Axiom 2.1.1

(which is complete).

Definition 3.1.1. Inconsistency Graph, IG. An IG is

an undirected, cyclic and disconnected graph whose

vertices are the inconsistent rules of the rule set, and

whose edges are the inconsistency relations between the

inconsistent rules. Note that |IG| is the number of

inconsistent rules in RS, and ||IG|| corresponds to the

number of inconsistencies pairs of rules in RS, or simply

the number of inconsistencies in RS.

702 JOURNAL OF NETWORKS, VOL. 4, NO. 8, OCTOBER 2009

© 2009 ACADEMY PUBLISHER

Algorithm 1 presented in Fig. 5 (implemented in

Object Oriented paradigm and using abstract data types)

exploits the order independence of the inconsistency

axiom and only checks inconsistencies between rules

with different actions, dividing the ACL in two lists, one

with allow rules and the other with deny ones. The

algorithm receives two rule sets. One of them consist of

allow rules and the other of deny rules of the original rule

set. This decomposition is trivial and runs in linear

complexity with the number of rules in RS. The algorithm

takes one of the rule sets and, for each rule, it checks if

there is an inconsistency with other rules in the other one.

As all inconsistencies can be decomposed in two by two

relations, there is no need to check combinations of more

than two rules. Each time the algorithm finds an

inconsistency between a pair of rules, the two rules are

added as vertices to the IG, with a non directed edge

between them. The algorithm returns ends returning the

IG. Since all possibilities have been checked, Algorithm

1 returns the isolation of all possible inconsistent rules

(i.e. it is complete). Fig. 6 presents the resulting IG of the

Table 1 example.

Time complexity of Algorithm 1 is bounded by the two

nested loops (lines 7 and 9). Each rule in ruleSetAllow is

tested for inconsistency against rules in ruleSetDeny. The

worst case for the loop is reached when

ruleSetAllow.size()= ruleSetDeny.size() (i.e. half rules

allow and the other half deny), and the best case when

ruleSetAllow.size()=n and ruleSetDeny.size()=1 or

ruleSetAllow.size()=1 and ruleSetDeny.size()=n. Thus,

the complexity of the improved isolation algorithm

depends on the percentage of allow and deny rules over

the total number of rules.

However, there are other inner operations that should

be analyzed in lines 11 to 14. The first one, in line 11, is

inconsistency() which is composed of an iteration. This

operation implements the inconsistency lemma. In typical

firewall ACLs, k=5, and thus the iteration runs 5 times.

Anyway, the iteration is bounded by the number of

selectors, which is always a constant k.

In addition, inside the iteration there is an intersection

between each selector (lines 28 to 30). The typical 5

selectors of firewall ACLs (Table 1) are integers or

intervals of integers. Knowing if two ranges of integers

intersect can be done in constant time with a trivial

algorithm which compares the limits of the intervals.

Knowing if two IP addresses intersect can also be easily

done in constant time by comparing their network

addresses and netmasks. Other operations of the inner

loop (lines 12 to 14) are the graph-related ones. If the

graph is based on hash tables, vertex and edge insertions

run in constant time, except in some cases where

rehashing could be necessary.

For all these reasons, the complexity of the two nested

loops is only affected by a constant factor in all cases,

which depends on the number of selectors, k. Thus, worst

case time complexity of the isolation algorithm is in

O(n
2
), best case is in O(n), and average case is in O(n·m)

with the number of allow rules, n, and deny rules, m in

the ACL.

Algorithm 1. Inconsistency Detection and Isolation

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Func detection(in List: ruleSetAllow, ruleSetDeny;

out Graph: ig)

Var

 Rule ri, rj

 Integer i, j

Alg

 for each j=1..ruleSetAllow.size() {

 rj= ruleSetAllow.get(j)

 for each i=1..ruleSetDeny.size() {

 ri = ruleSetDeny.get(i)

 if (inconsistency(ri, rj)) {

 ig.addVertex(ri)

 ig.addVertex(rj)

 ig.addEdge(ri, rj)

 }

 }

 }

End Alg

// Implements the Inconsistency Definition

Func inconsistency(in Rule: rx, ry; out Boolean: b)

Var

 Integer i

Alg

 b = true

 i = 1

 while (i<=rx.selectors.size() AND b)

 b = b AND intersection(rx.getSelector(i),

 ry.getSelector(i))

 i=i+1

 }

End Alg

Figure 5. Inconsistency detection algorithm

Figure 6. Inconsistency graph

JOURNAL OF NETWORKS, VOL. 4, NO. 8, OCTOBER 2009 703

© 2009 ACADEMY PUBLISHER

Space used by Algorithm 1 is the sum of the space

needed to store the ACL, and the one needed for the

graph. In best case the graph would have n vertices and n-

1 edges. In the worst case, there could be n-1 inconsistent

rules and also n-1 edges per vertex. Note that the space

needed to store an edge is fewer than the needed to store

a vertex, since only a reference between vertices is

needed.

B. Identification of Inconsistent Rules

The second and last step of the diagnosis process

identifies the set of rules that cause the inconsistencies

from the isolated set of inconsistent pairs of rules (the

result of the previous step) with a heuristic algorithm.

Algorithm 2 (Fig. 7) was initially presented in [9]. It

receives the IG as input and takes iteratively the vertex

with the greatest number of adjacencies (lines 6 and 7),

that is, the vertex with the greatest number of

inconsistencies, v. Then, an independent cluster of

inconsistent rules (ICIR, Definition 3.2.1) is created as a

tree with v (the conflicting rule of the cluster) as its root,

and its adjacents (the inconsistent rules) as leaves (lines 7

to 11). The root of all ICIRs form the Diagnosis Set (DS,

Definition 3.2.2), or the set of rules that must be removed

to get a consistent rule set. Then, v and its edges are

removed from the IG (line 13). If vertices with no edges

are left in the IG, then these vertices are also removed

(line 14), since they are consistent by definition (they are

rules with no relations with others). As inconsistencies

have been decomposed in pair wise relations, ICIRs are

always formed by two levels.

Definition 3.2.1. Independent Cluster of

Inconsistent Rules, ICIR. An ICIR(root, CV) is a two

level tree, rooted in the rule root and where CV is a set of

rules (its leaves). It represents a cluster of mutually

consistent rules, CV, which are at the same time

inconsistent with their respective root. ICIR(root) is the

rule which has the greatest number of inconsistencies

with other rules of the same cluster. For that reason, the

root of each ICIR is different, and all roots form a

disjoint set of rules. Note that the action ICIR(root) is the

contrary of the actions of all of its leaves in CV.

(,)

(,)

, , (,)

i i

i j i j

ICIR root CV

R CV Inconsistent root R

R R CV i j Inconsistent R R

⇔

∀ ∈ • ∧

∀ ∈ ≠ • ¬

Definition 3.2.2. Diagnosis Set, DS. This is the set of

rules that cause the inconsistencies, and coincide with the

root of all ICIRs. If these inconsistencies are removed

from RS, RS becomes consistent.

{ }

{ }

1

1

, ...,

(), ..., ()

 - is consistent

Let

be the set of all ICIR of a given , then

m

m

ICIR ICIR

DS ICIR root ICIR root

RS DS

ICIRS

RS

=

=

•

 A graphical representation of a partial trace of

Algorithm 2 over the previous IG is presented in Fig. 8.

At the first iteration, R8 is selected because it has four

inconsistencies (the greatest number of adjacent vertices).

Then, it is removed and the first ICIR tree is formed with

R8 as root, thus R8 is a conflicting rule and will be in DS.

At the second iteration, R12 is selected because it has

three inconsistencies (it is the vertex with the biggest

number of adjacent vertices). Then it is removed and the

second ICIR is formed. Vertices R9, R10 and R11 are also

removed from the IG because they had no adjacent

vertices. At the third iteration, there is a possibility of

selecting R5, R1, R2, R3 and R4 as the next vertex. The

selection of one or other is arbitrary. In this example, the

algorithm selects R5, removes it from the IG with all its

edges and forms the third ICIR. At the end of this

iteration the IG is only composed of a cycle of four

vertices: R1, R2, R3, and R4. The algorithm selects to

remove R1 at the fourth iteration and R4 at the fifth and

last one, removing the vertices and edges, and forming

ICIR 4 and ICIR 5 respectively. Since no more vertices

are left in the IG, the algorithm finishes with a diagnosis

set with cardinality five, containing the rules DS={R8,

R12, R5, R1, R4}.

If the rules from the DS are removed from RS, RS

becomes consistent.

It has been noted in the explanation of the trace that at

some time, the IG could have cycles. Cycles have a

special property. In a cycle, the selection of a rule as the

next to be processed is random, since all of them have the

same number of adjacent vertices. Depending on the rule

that is selected, the algorithm forms different ICIRs. In

this example, R1 and then R4 have been selected but if for

example, R2 and R3 were selected, different ICIRs would

have been formed (Fig. 9). The final number of ICIRs

formed is always the same in this special case, since the

number of vertices and edges removed is the same with

independency of the actual vertices removed from a

cycle. Most important fact is that the two groups of ICIRs

Algorithm 2. Inconsistent Rule Identification

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

Func identification(in Graph:ig; out List of

Tree:icirs)

Var

 Tree icir

Alg

 while (ig.hasVertices()) {

 Vertex v = ig.getMaxAdjacencyVertex();

 List adj = ig.getAdjacents(v)

 icir.createEmptyTree()

 icir.setRoot(v)

 icir.addChildren(adj)

 icirs.add(icir)

 ig.removeVertexWithEdges(v)

 ig.removeNotConnectedVertices()

 }

End Alg

Figure 7: Inconsistency identification algorithm

704 JOURNAL OF NETWORKS, VOL. 4, NO. 8, OCTOBER 2009

© 2009 ACADEMY PUBLISHER

are equivalent, since the rules involved in the

inconsistencies are the same, only its order has changed.

This property of cycles is derived from the fact that all

the rules in a cycle are correlated between themselves.

For example, R1 appears in ICIR 4b and 5b, because R1 is

correlated with both roots R2 and R3. Looking at ICIR 4a,

the relations are ICIR4a={root=R1, R2, R3}, which is

formed of that three rules.

Time complexity of Algorithm 2 is bounded by the

loop of line 5, which runs as many times as ICIRs are

formed (it corresponds with the cardinality of the

Diagnosis Set, |DS|). The worst case is reached, as in

Algorithm 1, when

ruleSetAllow.size()=ruleSetDeny.size()=n/2 (Fig. 10(b)),

resulting in a |DS|=n/2. In this case,

getMaxAdjacencyVertex() (line 7), a maximum calculus,

runs in O(n) with the number of vertices of the graph (the

number of inconsistencies). Operations of lines 8, 9, 10,

11, and 12 run in constant time.

removeVertexWithEdges() (line 13) runs in linear time

with the cardinality of its adjacency list (n/2-1 in the

worst case). Finally, removeUnconnectedVertices() (line

14) is also linear with the number of vertices in the graph

at each iteration, O(n). Thus, the resulting worst case time

complexity of Algorithm 2 is in O(|DS|·(n+n/2-

1+n))=O(n/2·n)=O(n
2
).

The best case is reached, as in Algorithm 1, when

ruleSetAllow.size()=n and ruleSetDeny.size()=1 or vice

versa (Fig. 10(a)). The IG only has one vertex, v,

connected to all the other vertices. In this case, |DS|=1

and the algorithm is in O(n). In an average case the

algorithm is in O(|DS|·h), |DS|<<h (h is the number of

inconsistencies).

Figure 8. Partial trace of Algorithm 2 applied to the example IG

Figure 9. Equivalent ICIRs from Fig. 8 It. 3

JOURNAL OF NETWORKS, VOL. 4, NO. 8, OCTOBER 2009 705

© 2009 ACADEMY PUBLISHER

Algorithm 2 needs some space to store the ICIRs. Each

ICIR needs space for its root and for the conflictive rules.

But note that, as the algorithm is creating the ICIRs, the

corresponding vertices and edges are removed from the

IG, and thus at each iteration only the space to store the

adjacency list of the removed vertex is necessary.

Complexities are presented in Table 2.

The result of the diagnosis process is the set of all

ICIRs. As each ICIR represents a different independent

inconsistency, exhaustive search optimal characterization

algorithms can be applied to each one independently,

reducing the effective computational complexity of the

whole process. Furthermore, heuristic characterization

algorithms can also be applied [12]. Also note that the

presented proposal makes no assumptions about how

selector ranges are expressed. This is important, because

as the original rule set is directly used by algorithms,

inconsistency results are given over it.

TABLE 2: ISOLATION AND IDENTIFICATION TIME COMPLEXITIES

Number of

inserted rules

Best

case

Average

case

Worst

case

Space

Worst

Detection and

Isolation
O(n) O(n·m) O(n2)

n Rules·

h Edges

Identification O(n)
O(|DS|·h),

|DS|<<h
O(h2)

n Rules·

h Edges

Combined

(Diagnosis)
O(n) O(n·m) O(n2+h2)

n Rules·

h Edges

C. Experimental Results

In absence of standard rule sets for testing, the

proposed heuristic process has been tested with real

firewall rule sets (Tables 3 and 4). The first column

represents the size of the rule set; the second one the

percentage of deny rules over the rule set size; the third

the cardinality of the Diagnosis Set, |DS|, (or the number

of generated ICIRs); the fourth represents the average

size of each ICIR (that is, the number of ICIRs divided by

|DS|), or the average size of the characterization problems

to be solved (how many rules are in them); the fifth the

number of inconsistencies; from sixth to nineth the

execution time of the isolation and identification parts of

the process (trivial detection and isolation, proposed

detection and isolation, identification, and the sum of the

proposed isolation and identification). Results are

provided in rule sets with and without wildcard rules

(WR, deny all and allow all rules).

The conducted performance analysis represents a wide

spectrum of cases, with ACLs of sizes ranging from 50 to

10600 rules, and percentages of allow and deny rules

ranging from 2% to 65%. Recall that worst case is half

rules allow and the other half deny. Also note that real

ACLs have some important differences with synthetically

generated ones. The most important one is the number of

deny and allow rules: as real firewall ACLs are usually

designed with deny all default policy, most rules are

going to have allow actions. In ACLs designed with

allow all policy, most rules would have deny actions.

Also note that as the percentage of allow or deny rules

decreases, the number of inconsistencies does necessarily

not, because the number of inconsistencies depends on

how many rules with different actions intersect. Tests

have been run with and without WR, in order to know the

impact these rules have in the complexity of the

algorithms. However, WR provide no useful information

to the diagnosis process, since they are inconsistent by

definition with all rules with the contrary action. The

result is that the worst case would not normally happen

for the isolation algorithm in real firewall rule sets, but

the dependence of the identification algorithm on the

number of inconsistencies is completely arbitrary and

thus cannot be predicted (however, note that leaving WR

in the rule set results in a huge increase of inconsistencies

because of the reasons stated above). Experiments were

performed on a monothreaded Java implementation with

Sun JDK 1.6.0 64-Bit Server VM, on an isolated HP

Proliant 145G2 (AMD Opteron 275 2.2GHz, 2Gb RAM

DDR400). Execution times are in milliseconds.

The experimental efficiency comparison of the

proposed algorithms with others reviewed is a very

difficult task for two main reasons. In one hand, there are

no standard rule sets to be used. In other hand different

proposals cover different parts of the process (for

example, Al-Shaer proposal covers the characterization

part, García-Alfaro proposal the full process, and our

proposal the diagnosis part). One of the most important

contributions of the presented experimental analysis is the

average reduction of the diagnosis characterization

problem, which is in average |DS|*Average ICIR size.

Another important contribution is the improvement in

time of the detection and isolation part of the diagnosis

process, over the trivial isolation algorithm.

As Tables 3 and 4 and Fig. 11 show, execution time for

the full diagnosis process is very reasonable, even in

large rule sets. Note that rule set of sizes 238 and 450 are

very near worst case. Rule set of size 10611 has not been

represented to prevent image scale distortion, but note

that even with a very high number of inconsistencies w/

WR (11866) execution time of the full process is 354ms.

Take into account that a rule set of 10611 rules is a very

big one [14]. Tables 3 and 4 and Fig. 11 present a lot of

information. Note for example in Fig. 11(a) how little the

performance of isolation between 2500 and 5000 rule set

sizes differ, because they are very near the best case for

isolationn (a real rule set could be in the 10-15% range of

deny rules [14]). Also note that for the worst case of

isolation (238 and 450 rules in the ACL), running time

Figure 10. Identification best and worst cases

706 JOURNAL OF NETWORKS, VOL. 4, NO. 8, OCTOBER 2009

© 2009 ACADEMY PUBLISHER

almost doubles. Take into account that results are

basically the same with and without WR for the isolation

algorithm, since the only difference between them is the

number of removed WR rules, which ranges from two to

ten in the tested rule sets. Since the size of the problem

for the isolation algorithm is measured in hundred or

thousand of rules, removing such a little number of them,

implies a negligible performance impact.

However, looking again at Tables 3 and 4 and Fig. 11,

but for the identification algorithms, other important facts

should also be explained. This time, complexity is

bounded by |DS| and the number of inconsistencies. But

note how the number of reported of inconsistencies varies

depending on the removal or not of the WR. Now note

how the performance of identification algorithm degrades

when number of inconsistencies raise. In fact, leaving

WR in the rule set, also implies an increase of the

cardinality of the diagnosis set, |DS| and also of the

average ICIR sizes. A WR implies that there would be an

ICIR containing f-1 rules, where f is the number of rules

with the contrary action of the WR. For example, in the

rule set with size 10611, a WR with deny action will

generate an ICIR with 10348 rules, raising the average

size of the ICIRs.

In addition, note how complexity is dominated by the

isolation algorithm, which is the problem with the higher

theoretic time complexity. The difference between

leaving and removing WR does not have an important

impact over the performance of the full process, also

because this fact (WR does not affect very much the

performance of the isolation algorithm).

Other important thing worth noting is related with

problem reduction. The average ICIR size in Tables 3 and

4 represents the average number of children of each

generated ICIR (the number of ICIRs is represented in

|DS| column). That is, |DS| is the number of

characterization problems to be optimally solved if

optimal characterization algorithms are going to be used,

TABLE 3. PERFORMANCE EVALUATION W/ WR

ACL
Size

%Deny |DS|
Average

ICIR
size

Number of
Inconsistencies

Trivial
Detection

(ms)

Detection
(ms)

Identification
(ms)

TOTAL
w/ WR
(ms)

50 28.21 2 9 37 0.22 0.09 0.03 0.12

144 30.91 2 54 108 1.34 0.62 0.06 0.68

238 66.43 10 23 231 3.56 2.04 0.15 2.19

450 34.73 10 42 422 13.22 5.61 0.27 5.88

900 14.8 10 87 871 51.57 3.46 0.73 4.19

2500 6.97 32 104 3349 387.86 55.01 3.98 58.99

5000 1.98 6 822 4937 3160.09 64.33 7.90 72.23

10611 2.05 39 301 11866 12046.67 332.85 21.57 354.42

TABLE 4. PERFORMANCE EVALUATION W/O WR

ACL
Size

%Deny |DS|
Average

ICIR
size

Number of
Inconsistencies

Trivial
Detection

(ms)

Detection
(ms)

Identification
(ms)

TOTAL
w/o WR

(ms)

46 24.32 0 - 0 0.13 0.07 0 0.07

140 29.63 0 - 0 1.21 0.53 0 0.53

228 68.89 8 12 96 3.07 1.88 0.04 1.92

440 34.97 8 12 96 12.35 5.37 0.04 5.41

889 14.71 8 12 96 49.58 12.53 0.04 12.57

2490 6.91 30 34 1020 382.06 51.88 0.76 52.64

4998 1.94 4 7 34 2231.33 60.84 0.02 60.86

10601 2.03 37 36 1468 13308.45 310.23 0.85 311.11

Figure 11(a). Running time w/o WR Figure 11(b). Running time w/ WR

JOURNAL OF NETWORKS, VOL. 4, NO. 8, OCTOBER 2009 707

© 2009 ACADEMY PUBLISHER

and Average ICIR Size is their average size. Clearly,

solving (optimally or not) such small number of small

problems is faster than solving a big combinatorial one

over the full problem size, n.

Finally, Fig. 12 presents a comparison between the

trivial isolation algorithm and the one presented in this

paper. Note how the trivial algorithm scales quadratically

with the number of rules. However, the complexity of the

proposed algorithm depends on the percentage of allow

and deny rules. As can be seen, there is a huge difference

with real rule sets.

Figure 12. Comparison between isolation algorithms

In conclusion, the proposed detection and isolation

algorithm represents a real improvement over the trivial

one in real cases. In addition, due to the problem

reduction due to the proposed consistency diagnosis

process, exhaustive and optimal identification algorithms

can be used over the diagnosis result (ICIRs). However

note that when using heuristics for the diagnosis

characterization, complexity would in general be

dominated by the isolation algorithm. For that reason, we

state that improvements in the isolation algorithm must

be proposed in the future. It is also possible to use more

complex heuristics if the final time fits performance

requirements of the specific application of these

algorithms. Due to its low computational complexity, the

presented isolation algorithm can be used with very big

rule sets or even in resource constrained devices [10] in

real time.

IV. RELATED WORKS

One of the closest works to ours is related with

consistency detection and isolation in general network

filters. In the most recent work, Baboescu et al. [2]

provides algorithms to detect inconsistencies in router

filters that are 40 times faster than O(n
2
) ones for the

general case of k selectors per rule, where n is the number

of rules in the ACL. Although its algorithmic complexity

is not given, it improves other previous works of isolation

algorithms [7], [4]. However, they pre-process the ACL

and convert selector ranges to prefixes. However, the

range to prefix conversion technique could need to split a

range in several prefixes [13] and thus the final number

of rules could increase over the original ACL. In [14],

Taylor outlines that this kind of conversion could be

inefficient, because transport layer specifications vary

widely (for example it is possible to specify open port

ranges, such as “all ports greater than 1023”. Taylor also

calculated that, in the worst case, a range covering w-bit

port numbers may require 2(w-1) prefixes, and that a

single ACL including only two port ranges could require

2(w-1)
2
 entries, or 900 entries (for 16-bit port numbers),

raising the number of rules needed for the range to prefix

conversion. Note that the range to prefix conversion is a

very usual technique used in several matching algorithms.

However, in diagnosis algorithms, this kind of techniques

is not suitable. Thus, following Baboescu proposal,

results are given over the pre-processed ACL, which is

bigger and different that the original one.

Other researchers apply brute force, combinatorial

algorithms to optimally solve the combined diagnosis and

characterization problems. One of the most important

advances was made by Al-Shaer et al. [1], where authors

define an inconsistency model for firewall ACLs with 5

selectors. They give a combined algorithm to diagnose

and characterize the inconsistencies between pairs of

rules. In addition, they use rule decorrelation techniques

[8] as a pre-process in order to decompose the ACL in a

new, bigger, one with no overlapping rules. Results are

given over the decorrelated ACL, which has the

disadvantages commented for the Baboescu diagnosis

algorithm. Although the proposed characterization

algorithm proposed by Al-Shaer is polynomial, a

decorrelation pre-process imposes a worst case

exponential time and space complexity for the full

process. In addition, their algorithms only characterize

inconsistencies between pairs of rules, providing no

composition as a later step to get a minimal

characterization between more than two rules.

A modification to their algorithms was provided by

García-Alfaro et al. [5], where they integrate the

decorrelation and characterization algorithms of Al-

Shaer, and generate a decorrelated and consistent rule set.

Due to the use of the same decorrelation techniques, this

proposal also has worst case exponential complexity. The

resulting ACL is also bigger and different from the

original one. However, García-Alfaro et al. provides a

characterization technique with multiple rules.

Ordered Binary Decision Diagrams (OBDDs) have

been used in Fireman [15], where authors provide a

diagnosis and characterization technique with multiple

rules. A very important improvement over previous

proposals is that they do not need to decorrelate the ACL,

and thus, results are given over the original one. Note that

the complexity of OBDD algorithms depends on the

optimal ordering of its nodes, which is a NP-Complete

problem [3]. This results in a worst case exponential time

complexity with the number of rules, as other proposals.

There are several differences in our work with respect

to the reviewed ones. In one hand, we provided an

analysis of the consistency diagnosis problem in rule sets,

separating the problem in three parts: detection and

isolation, identification, and characterization. This

enabled us to identify the performance bottlenecks of the

problem, to reduce the combinatorial part

708 JOURNAL OF NETWORKS, VOL. 4, NO. 8, OCTOBER 2009

© 2009 ACADEMY PUBLISHER

(characterization) to several smaller problems, and to

design heuristic polynomial diagnosis algorithms for

them if needed. The proposed diagnosis algorithms have

a theoretical best case O(n) and worst case O(n
2
) time

complexity with the number of rules in the rule set, n.

More precisely, the complexity of our algorithms depends

on the percentage of allow and deny rules over the total

number of them (in the case of the isolation algorithm),

on the cardinality of the diagnosis set, and finally, and on

the number of inconsistencies (in the case of the

identification algorithm). Our process is capable of

handling full ranges in all selectors, and does not need to

decorrelate or do any range to prefix conversion to the

ACL as a pre-process to the algorithms. We think that for

a result to be useful for a user, it should be given over the

original ACL. However, our proposal does not cope with

redundancies, because we think that redundancies are not

a consistency problem.

V. CONCLUSIONS

We have deeply analyzed the consistency diagnosis

problem in firewall ACLs, and decided to divide it in

three sequential steps: detection and isolation,

identification, and characterization. Detection and

isolation plus identification is called diagnosis. All

reviewed proposals deal with the full characterization

problem with brute force algorithms, with yield unusable

results (although optimal) for real-life, big rule sets.

In this paper we take a different approach, proposing

the design of different, specialized, algorithms for each

part of the diagnosis problem.

One of the main contributions has been a complete and

abstract definition of inconsistency. Based on this

definition, we revisited the consistency problem in

firewall rule sets, demonstrating that all relations between

more than two rules can be decomposed in pair wise

relations.

The other major contribution of this paper is the

proposal of two quadratic algorithms that should be

applied sequentially to get a diagnosis of the inconsistent

rules in the rule set. The first one detects and isolates the

inconsistent rules, and is complete. The second one

identifies the set of rules that cause the detected

inconsistencies, and is complete but not minimal. The

diagnosis can then be taken as input to optimal

characterization algorithms resulting in an effective

computational complexity reduction (solving several

small combinatorial problems is faster than solving one

big one), or to heuristic ones. The full process has best

case O(n) and worst case O(n
2
) time complexity with the

number of rules in the rule set, n. An experimental

performance evaluation with real rule sets of different

sizes was also presented, showing that real rule sets are

very near to the best case, and the effective problem

reduction.

However, our approach has some limitations that give

us opportunities for improvement in future works. The

most important one is that our process can diagnose

inconsistent rules, but not redundant rules. Another

direction to take in the future is the improvement of the

isolation algorithm, since it dominates the complexity of

the diagnosis process.

B. References

Number citations consecutively in square brackets [1].

Punctuation follows the bracket [2]. Use “Ref. [3]” or

“Reference [3]” at the beginning of a sentence:

Give all authors’ names; use “et al.” if there are six

authors or more. Papers that have not been published,

even if they have been submitted for publication, should

be cited as “unpublished” [4]. Papers that have been

accepted for publication should be cited as “in press” [5].

In a paper title, capitalize the first word and all other

words except for conjunctions, prepositions less than

seven letters, and prepositional phrases.

For papers published in translated journals, first give

the English citation, then the original foreign-language

citation [6].

E. Equations

Equations should be centered in the column. The

paragraph description of the line containing the equation

should be set for 6 points before and 6 points after.

Number equations consecutively with equation numbers

in parentheses flush with the right margin, as in (1).

Italicize Roman symbols for quantities and variables, but

not Greek symbols. Punctuate equations with commas or

periods when they are part of a sentence, as in

 cba =+ . (1)

Symbols in your equation should be defined before the

equation appears or immediately following. Use “(1),”

not “Eq. (1)” or “equation (1),” except at the beginning of

a sentence: “Equation (1) is ...”

ACKNOWLEDGMENT

This work has been partially funded by Spanish

Ministry of Science and Education project under grant

DPI2006-15476-C02-01, and by FEDER (under ERDF

Program). Many thanks to Pablo Neira Ayuso for

providing us with real rule sets for testing, and to the

anonymous reviewers for their useful comments.

REFERENCES

[1] Al-Shaer, E., Hamed, H. Modeling and Management of

Firewall Policies". IEEE eTransactions on Network and

Service Management (eTNSM) Vol.1, No.1, 2004.

[2] Baboescu, F., Varguese, G. “Fast and Scalable Conflict

Detection for Packet Classifiers.” Elsevier Computers

Networks (42-6) (2003) 717-735.

[3] Bollig, B., Wegener, I. “Improving the Variable Ordering

of OBDDs is NP-Complete”. IEEE Transactions on

Computers, Vol.45 No.9, September 1996.

[4] Eppstein, D., Muthukrishnan, S. “Internet Packet Filter

Management and Rectangle Geometry.” Proceedings of the

Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA), January 2001.

[5] García-Alfaro, J., Boulahia-Cuppens, N., Cuppens, F.

Complete Analysis of Configuration Rules to Guarantee

Reliable Network Security Policies, Springer-Verlag

JOURNAL OF NETWORKS, VOL. 4, NO. 8, OCTOBER 2009 709

© 2009 ACADEMY PUBLISHER

International Journal of Information Security, Vol.7, No.2,

2008.

[6] Hamed, H., Al-Shaer, E. "Taxonomy of Conflicts in

Network Security Policies." IEEE Communications

Magazine Vol.44, No.3, 2006.

[7] Hari, B., Suri, S., Parulkar, G. “Detecting and Resolving

Packet Filter Conflicts.” Proceedings of IEEE INFOCOM,

March 2000.

[8] Luis, S., Condell, M. "Security policy protocol." IETF

Internet Draft IPSPSPP-01, 2002.

[9] Pozo, S., Ceballos, R., Gasca, R.M. “Fast Algorithms for

Consistency-Based Diagnosis of Firewalls Rule Sets.”

International Conference on Availability, Reliability and

Security (ARES), Barcelona, Spain. IEEE Computer

Society Press, March 2008.

[10] Pozo, S., Ceballos, R., Gasca, R.M. "Fast Algorithms for

Local Inconsistency Detection in Firewall ACL Updates".

1st International Workshop on Dependability and Security

in Complex and Critical Information Systems (DEPEND).

Cap Esterel, France. IEEE Computer Society Press, 2008.

[11] Pozo, S., Ceballos, R., Gasca, R.M. "A Heuristic

Polynomial Algorithm for Local Inconsistecy Diagnosis in

Firewall Rule Sets". 3rd International Conference on

Security and Cryptography (SECRYPT). Porto, Portugal.

IEEE Computer Society Press, 2008.

[12] Pozo, S., Ceballos, R., Gasca, R.M. "Polynomial Heuristic

Algorithms for Inconsistency Characterization in Firewall

Rule Sets". 2nd International Conference on Emerging

Security Information, Systems and Technologies

(SECURWARE). Cap Esterel, France. IEEE Computer

Society Press, 2008.

[13] Srinivasan, V., Varguese, G, Suri, S., Waldvogel, M. “Fast

and Scalable Layer Four Switching.” Proceedings of the

ACM SIGCOMM conference on Applications,

Technologies, Architectures and Protocols for Computer

Communication, Vancouver, British Columbia, Canada,

ACM Press, 1998.

[14] Taylor, David E. Survey and taxonomy of packet

classification techniques. ACM Computing Surveys, Vol.

37, No. 3, 2005. Pages 238 – 275.

[15] Yuan, L., Mai, J., Su, Z., Chen, H., Chuah,, C. Mohapatra,

P. FIREMAN: A Toolkit for FIREwall Modelling and

ANalysis. IEEE Symposium on Security and Privacy

(S&P’06). Oakland, CA, USA. May 2006.

[16] Wool, A. A quantitative study of firewall configuration

errors. IEEE Computer Journal, Vol.37, No.6, pp. 62-67,

2004.

[17] iter's Handbook. Mill Valley, CA: University Science,

1989.

S. Pozo holds an MSc in Computer Engineering from the

University of Seville, in Spain, where he is a full-time Lecturer

with the Computer Languages and Systems Department. He is

currently a PhD candidate. He is part of the QUIVIR Research

Group. His main research interests are computer and network

dependability issues, models for security, and model-based

diagnosis. More precisely, he is focused in firewall ACL

languages and models, consistency/redundancy/conformance

diagnosis in firewall ACLs, and the application of Model-Based

Engineering paradigm to IT Security. He is also reviewer of

computer security conferences and journals.

Rafael Ceballos holds an MSc in Computer Engineering

from the University of Seville, in Spain, where he is a full-time

Lecturer with the Computer Languages and Systems

Department. He is currently a PhD candidate. He is part of the

QUIVIR Research Group. His main research interests are

software diagnosis, automatic debugging, constraint

programming, design by contract, model-based diagnosis,

testing, and IT security. More precisely, he is focused in

diagnosing software using contracts, and in model-based

diagnosis.

Rafael M. Gasca holds a PhD in Computer Science from the

University of Seville, where he is a full-time Professor with the

Computer Languages and Systems Department since 1991. He

is the head of the QUIVIR Research Group, where has been the

advisor of several fundamental research projects as well as

applied RD projects in cooperation with the industry. His main

research interests are information security, model-based

diagnosis, semi-qualitative reasoning, constraint programming,

and constraint databases. He is also reviewer and organizer of

artificial intelligence and model-based diagnosis conferences

and journals. Finally, he provides advising in information

security to private companies.

710 JOURNAL OF NETWORKS, VOL. 4, NO. 8, OCTOBER 2009

© 2009 ACADEMY PUBLISHER

