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Abstract— Writing and managing firewall ACLs are hard 

and error-prone tasks for a wide range of reasons. During 

these tasks, inconsistent rules can be introduced. An 

inconsistent firewall ACL implies in general a design error, 

and indicates that the firewall is accepting traffic that 

should be denied or vice versa. However, the administrator 

is who ultimately decides if an inconsistent rule is a fault or 

not. Although many algorithms to diagnose inconsistencies 

in firewall ACLs have been proposed, they have different 

drawbacks regarding many aspects of the consistency 

management problem, which can prevent their use in a wide 

range of real-life situations. The most important one is that 

they give complete and minimal results, but their 

algorithmic complexity is too high, making the problem 

intractable for even reasonably-sized ACLs. In this paper 

we present an analysis of the consistency diagnosis problem 

in firewall ACLs. Based on this analysis, we propose to split 

the process in several parts that can be solved sequentially: 

inconsistency detection and isolation, inconsistent rules 

identification, and inconsistency characterization. Our 

algorithms are the first which can solve the detection, 

isolation, and identification problems in quadratic time 

complexity, giving complete but not necessarily minimal 

results. A theoretical complexity analysis as well as 

experimental results with real ACLs is given.  

 

Index Terms— diagnosis, consistency, conflict, anomaly, 

firewall, acl, ruleset 

 

I.  INTRODUCTION 

Your goal is to simulate the usual appearance of papers 

in a Journal of the Academy Publisher. We are requesting 

that you follow these guidelines as closely as possible. 

A firewall is a network element that controls the 

traversal of packets across different network segments. It 

is a mechanism to enforce an Access Control Policy, 

represented as an Access Control List (ACL). Firewalls 

use obligation policies. Obligation policies can be 

represented as Event Condition Action Rules (ECA 

Rules) that must perform certain actions over a subject (in 

the firewall case, the subject is always traffic) when 

certain events occur. Thus, a layer 3 Firewall ACL is in 

general a list of linearly ordered (total order) 

condition/action rules. The condition part of a rule is a set 

of condition attributes or selectors. The condition set is 

typically composed of five elements, which correspond to 

five fields of a packet header [14]. Some of these 

selectors can be expressed as naturals, and others as both 

naturals and intervals of naturals. In firewalls, the process 

of matching TCP/IP packets against rules is called 

filtering. A rule matches a packet when the values of each 

field of the header of a packet are subsets or equal to the 

values of its corresponding rule selector. The action part 

of the rule represents the action that should be taken for a 

matching packet. In firewalls, two actions are possible: 

allow or deny a packet. A firewall ACL is commonly 

denominated a rule set.  

Writing ACLs is a time-consuming and error-prone 

task for several reasons [16]. One of the main ones is that 

networks have different access control requirements (or 

objectives) which must be translated by a network 

administrator into firewall ACLs. The gap between the 

high-level access control requirements and low-level 

ACLs is too wide. Low-level firewall languages are, in 

general, difficult to learn, use and understand, and are 

very different from each other in syntax and semantics. 

Although many high-level languages have been proposed 

in order to reduce design complexity and (thus design 

faults), node of them have been widely adopted by the 

industry for various reasons [2]. In addition, its use does 

not guarantee that the resulting ACL is fault-free, thus a 

method to diagnose design faults must be applied in order 

to correct them prior to ACL deployment. 

 

1 This paper is a revised and extended version of a paper published 

in SECRYPT 2008 [11]. 
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Furthermore, complexity of networks is constantly 

increasing, as changes in requirements, topology, etc. 

occur with higher frequency and density. According to 

Taylor [14], the number of rules in a firewall ACL 

usually ranges between a few ones and five thousand. For 

this reason, the management of firewall ACLs is also a 

very hard task. For example, changing from one firewall 

platform to another often means a complete rewrite of the 

ACL, and thus new faults can be introduced. In addition, 

ACL updates can also introduce new design faults [10]. 

One of the most important and frequent faults during 

ACL design and management are inconsistencies. A 

firewall ACL with inconsistent rules implies in general 

design faults, and indicates that the firewall is accepting 

traffic that should be denied or vice versa. This can result 

in severe problems such as unwanted accesses to services, 

denial of service, overflows, etc. ACL consistency is of 

extreme importance in several contexts, such as highly 

sensitive applications (e.g. health care). Thus, algorithms 

and tools to automatically isolate and characterize 

inconsistencies must be provided in order to give firewall 

administrator enough information to correct them and 

reduce the number of faults in firewall ACLs. 

Many algorithms to diagnose inconsistencies in 

firewall ACLs have been proposed, and in all of them is 

the firewall administrator who ultimately decides which 

rules have to be corrected. However, these algorithms 

have many drawbacks regarding different aspects of the 

consistency management problem. The most important 

one is that they pre-process the firewall ACL using 

different types of non-trivial decompositions in order to 

use more efficient abstract data types and techniques. 

However, the proposed decomposition techniques 

increase the number of rules in the ACL and have worst-

case exponential time and space complexity. As a 

consequence, results of these consistency management 

algorithms are given over the modified ACL, and have to 

be interpreted by the firewall administrator. Furthermore, 

their time and space complexity is very important, since 

these algorithms are being used in a new range of 

applications in resource-constrained devices in ubiquitous 

networks, such as ad-hoc network node real-time ACL 

updates [10], real-time IDS or IPS rule updates, etc. 

 

In this paper we propose to take a different approach in 

order to make the problem tractable for real-life, big rule 

sets. We propose to divide consistency diagnosis in three 

sequential steps (Fig. 1). This paper focuses in the first 

two parts of the process (detection and isolation, and 

identification). In this paper, we propose best case O(n) 

and worst case O(n
2
) time complexity order independent 

detection and isolation, and identification algorithms with 

the number of rules of the rule set, n. Algorithms are 

capable of handling full ranges in rule selectors without 

doing rule decorrelation, range to prefix conversion, or 

any other pre-process. Results are returned over the 

original unmodified ACL. The process does not cope 

with redundancies, as we consider redundancy diagnosis 

a different problem because redundancies do not change 

the ACL semantics, but only affect the performance of 

the matching algorithm, which is not the focus of this 

paper. 

This paper is structured as follows. In section II, we 

analyze the internals of the local consistency management 

problem in firewall rule sets and formalize it. In section 

III we propose the consistency-based diagnosis 

algorithms, give a theoretical complexity analysis and 

experimental results with real rule sets, which validate 

our proposal. In section IV we review related works 

comparing them to our proposal. Finally we give some 

concluding remarks in section V. 

II.  ANALYSIS OF THE CONSISTENCY PROBLEM 

To understand the problem, it is important to first 

review the inconsistencies characterized in the 

bibliography. A complete characterization that includes 

shadowing, generalization, correlation and redundancy 

has been given in [6]. Although all of these are 

inconsistencies, usually not all are considered to be 

design faults, as they can be used to cause desirable 

effects. Is the firewall administrator who ultimately 

decides which rules have to be corrected or removed. 

 
 

Figure 1. Consistency diagnosis process 
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Figure 2. Graphical representation of three inconsistencies 
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These inconsistencies except redundancy are graphically 

presented in Fig. 2. For the sake of simplicity, only pair 

wise inconsistencies with one selector are represented. 

An example of an ACL is presented in Table 1. 

In this paper, we propose to divide consistency 

management in three sequential steps (Fig. 1). At the first 

step, all rules that cause inconsistencies are detected and 

isolated, if any. Then, the set of rules that cause the 

detected inconsistencies should be identified. Their 

correction or removal guarantees that the resulting rule 

set is consistent. This set of identified rules must be as 

small as possible, in order to give useful results in rule 

sets with a high number of inconsistencies. These two 

steps are called Inconsistency Diagnosis. Finally, the 

identified inconsistent rules should be characterized 

among an established taxonomy of firewall rule set 

inconsistencies. This paper is focused in these two parts 

of the consistency diagnosis problem. The third and last 

problem, minimal inconsistency characterization, is 

combinatorial [12]. Furthermore, diagnosis is also rule-

order independent, contrarily to characterization. The 

main difference of this work with other ones is that other 

authors apply brute force algorithms to solve directly the 

characterization problem, with no previous diagnosis. 

This yields algorithms that cannot be applied to big rule 

sets. With the proposed approach, the same 

characterization algorithms can be applied to several 

smaller problems, rather than to the full rule set. 

However, the number of these smaller problems is not 

minimal with the heuristic algorithms proposed in this 

paper. In addition, heuristic characterization algorithms 

[12] can also be used to give approximate results in a 

reasonable time, even for really big rule sets (with more 

than 10000 rules). 

A.  1..1 and 1..n Consistency in Firewall Rule Sets 

First, it is needed to formalize a firewall rule set. 

• Let RS be a firewall rule set consisting of n rules, 

{ }
1
, ...

n
RS R R= . 

• Let 
5

, ,R H Action H=< > ∈ℕ  be a rule, where 

{ },Action allow deny=  is its action. 

• Let [ ],1 ,
j

R k j n k≤ ≤ ∈   

{ }, _ , _ , _ , _protocol src ip src prt dst ip dst prt  be a 

selector of a firewall rule Rj. 

• Let ‘<’ and ‘>’ be operators defined over the priority 

of the rules, where Rx < Ry implies that then Rx has 

more priority than Ry and its action is going to be 

taken first, and vice versa. 

 

Attending to Al-Shaer characterization, two rules (Rx, 

Ry) are correlated if they have a relation between all of its 

selectors, and have different actions. Fig. 2(c) represents 

a correlation inconsistency between two rules with one 

selector each. As the figure shows, the relation between 

the rules is not subset, nor superset, nor equal (rules R1 
and R3 of Table 1 are correlated). Fig. 2(a) represents a 

shadowing inconsistency between two rules. The relation 

is equality or subset of the shadowed rule, Ry, respect to 

the general rule, Rx, with Rx>Ry (R4 is shadowed by R3 in 

Table 1 example). Fig. 2(b) represents a generalization 

inconsistency between two rules, which is the inverse of 

shadowing respect to the priority of the rules. The 

relation is superset of the general rule respect to the other 

one (R2 is a generalization of R3 in Table 1 example). 

Since we are only interested in diagnosis and not in its 

characterization, let’s try to remove names and give a 

general case of inconsistency based on these 

inconsistency characterizations (except redundancy). In a 

closer look at shadowing and generalization 

inconsistencies in Fig. 2, it can be seen that, in reality, 

these two inconsistencies are the same one, and the only 

thing that differentiates them is the priority of the rules. 

Thus, if priority is ignored, these two inconsistencies are 

special cases of a correlation. That is, shadowing can be 

redefined as a correlation where all selectors of one rule 

(the shadowed one) are subsets or equal of the general 

rule. As generalization is the inverse with respect to the 

priority of shadowing, a generalization inconsistency can 

also be redefined as a correlation where of all selectors of 

a rule (the general one) are supersets of the other rule. So, 

the correlation inconsistency can be redefined as the 

superset of all inconsistencies, representing the most 

general case. For that reasons, it is possible to define rule 

inconsistency in only one priority independent case that 

TABLE 1: EXAMPLE OF A FIREWALL RULE SET 
 

Priority/ID Protocol Source IP Src Port Destination IP Dst Port Action 

R1 tcp 192.168.1.5/32 any *.*.*.*/0 80 deny 

R2 tcp 192.168.1.*/24 any *.*.*.*/0 80 allow 

R3 tcp *.*.*.*/0 any 172.0.1.10/32 80 allow 

R4 tcp 192.168.1.*/24 any 172.0.1.10/32 80 deny 

R5 tcp 192.168.1.60/32 any *.*.*.*/0 21 deny 

R6 tcp 192.168.1.*/24 any *.*.*.*/0 21 allow 

R7 tcp 192.168.1.*/24 any 172.0.1.10/32 21 allow 

R8 tcp *.*.*.*/0 any *.*.*.*/0 any deny 

R9 udp 192.168.1.*/24 any 172.0.1.10/32 53 allow 

R10 udp *.*.*.*/0 any 172.0.1.10/32 53 allow 

R11 udp 192.168.2.*/24 any 172.0.2.*/24 any allow 

R12 udp *.*.*.*/0 any *.*.*.*/0 any deny 
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recognizes all characterized inconsistencies (Axiom 

2.1.1). This is a key issue for the proposed diagnosis 

algorithms. 

  

Axiom 2.1.1. Rule inconsistency. Two rules 

,
i j
R R RS∈  are inconsistent if and only if the 

intersection of each of all of its selectors R[k] is not 

empty, and they have different actions, independently of 

their priorities. The inconsistency between two rules 

expresses the possibility of an undesirable effect in the 

semantics of the rule set. The inconsistency is considered 

to be a fault if an administrator identifies the behaviour of 

the executed ACL as being causing undesirable effects 

(or having errors). The semantics of the rule set changes 

if an inconsistent rule is corrected or removed. 

 

{ }

( , ) 1 1 ,

[ ] [ ] [ ] [ ]

, _ , _ , _ , _

, ,

i j i j

i j
Inconsistent R RS i n R RS j n j i

R k R k R Action R Action

k protocol src ip src prt dst ip dst prt

≤ ≤ ⇔ ∃ ∈ ≤ ≤ ≠ •

≠ ∅ ∧ ≠

∀ ∈

∩  

Inconsistency of one rule in a RS 

 

{ }

( , , ) 1 , ,

[ ] [ ] [ ] [ ]

, _ , _ , _ , _

,

i j i j

i j
Inconsistent R R RS i j n i j

R k R k R Action R Action

k protocol src ip src prt dst ip dst prt

≤ ≤ ≠ ⇔

≠ ∅ ∧ ≠

∀ ∈

∩  

Inconsistency between two rules in a RS 

 

Attending to Axiom 2.1.1, all cases represented in Fig. 

2 are of the same kind, and are called inconsistencies 

without any particular characterization. As it has been 

demonstrated in the proof, rule priorities are not required 

to detect inconsistencies.  

Axiom 2.1.1 can also be used for more than two rules, 

since the case of one to n rule inconsistency can be 

decomposed in several independent pair wise 

inconsistencies (Lemma 2.1.1). 

 

Lemma 2.1.1. Axiom 2.1.1 can be extended to capture 

inconsistencies between one and more than one rules  

(that is 1..n inconsistencies), because a 1..n inconsistency 

can always be decomposed in n 1..1 inconsistencies. 

Proof. Let us reason by contradiction. Suppose there is 

a 1..n inconsistency between a rule Rz and a set of rules 

R1..Rn, that is Inconsistent(Rz, R1..Rn, RS)=true. Suppose 

that this 1..n inconsistency cannot be decomposed in n 

1..1 inconsistencies. If that inconsistency exists, then the 

rules R1..Rn are consistent between them (they must have 

the same action, or in other case Rz could not be 

inconsistent with the whole set of rules). For that reason, 

all selectors of each rule of the R1..Rn set, must 

necessarily intersect with Rz selectors. Thus, Rz must 

necessarily be inconsistent with all of them in an 

independent manner. Note that if the rules in the R1..Rn 

set overlap or not between them is not important, since 

this could indicate a partial or total redundancy between 

one or more rules in the set. 

 

For example, all base situations are presented in Fig. 3, 

which is an extension to Fig. 2. This figure is a 

simplification to three inconsistent rules, but can easily be 

extended to more rules that can be composed in several 

ways. 

Fig. 3(a1) represents an inconsistency where the union 

of two independent rules (Rx, Ry) overlap with another 

one, Rz (Fig. 4(a) taken from [5] exemplifies this 

situation). As Rx is inconsistent with Rz, and Ry is also 

inconsistent with Rz, both in an independent manner, this 

situation can be decomposed in two independent 

inconsistencies. 

 Fig. 3(a2) presents a similar situation, where Rx 

overlaps with the union of (Ry, Rz). This situation is also 

decomposable in two independent inconsistencies: Rx 

Inconsistent with Ry, and Rx with Rz. Note that, in order 

to diagnose inconsistencies, the priority of the rules is not 

necessary. 

 

{ } { }
{ } { }
{ } { }

: [10 50]

: [40 90]

: [30 80]

Rx port allow

Ry port allow

Rz port deny

∈ − ⇒

∈ − ⇒

∈ − ⇒

 

(a) 

{ } { }
{ } { }
{ } { }

: [10 50]

: [40 90]

: [0 100]

Ry port allow

Rz port allow

Rx port deny

∈ − ⇒

∈ − ⇒

∈ − ⇒

 

(b) 

{ } { }
{ } { }
{ } { }

: [0 50]

: [60 100]

: [40 70]

Rx port deny

Rz port deny

Ry port allow

∈ − ⇒

∈ − ⇒

∈ − ⇒

 

(c) 
 

Figure 4.  Inconsistency examples 
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Figure 3. Graphical representation of inconsistencies 

between three rules 
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The situations presented in Fig. 3(b1) and Fig. 3(b2) 

are the inverse of the two previous ones respect to the 

action. Thus, the decomposition is analogous. This 

situation is exemplified in Fig. 4(b). Finally, Fig. 3(c) 

represents a relation with three overlapping rules (an 

example is in Fig. 4(c)). This situation can also be 

decomposed in two independent ones: Rx inconsistent 

with Ry, and Ry with Rz. 

At this point, we propose a formalization and an 

extension of the fault characterization provided by Al-

Shaer in order to recognize 1..n inconsistencies. The 

proposed fault characterization is also complete (as it is 

an extension of Al-Shaer work) based on the relationships 

that can be established between the selectors of rules: 

equality, subset and superset.  

 

• Shadow. A rule Ry is shadowed by another rule Rx, 
with Rx>Ry, if all of its selectors to or supersets of 

the selectors of Ry, and Rx and Ry have different 

actions.  

 

{ }

( )

[ ] [ ] [ ] [ ]

, _ , _ , _ , _

,
x y x y y

y x x y

R R RS R R Shadow R

k R k R k R Action R Action

k protocol src ip src prt dst ip dst prt

⊂

∃ ∈ > • ⇔

∀ • ∧ ≠

∈

•

 
Shadow 

 

{ }

( )

[ ] [ ] [ ] [ ]

, _ , _ , _ , _

,
x y x y y

y x x y

R R RS R R ExactShadow R

k R k R k R Action R Action

k protocol src ip src prt dst ip dst prt

=

∃ ∈ > • ⇔

∀ • ∧ ≠

∈

•

 
Exact shadow 

 
This definition can be extended to support a set of 

rules with the same action in Rx or Ry (but not in both). If 

Rx is a set of rules and Ry is a rule, then Ry is shadowed by 

Rx. Similarly, if Rx is a rule, and Ry is a set, then Ry are 

shadowed by Rx.  

 

• Generalization. It is the inverse of shadow respect to 
the priority. A rule Ry is a generalization of Rx, with 

Rx>Ry, if all of the selectors of Rx are subsets of the 

selectors of Ry, and both rules have different actions. 

Rx is usually considered an exception and not a fault. 

Again, sets can be formed. 

 

{ }

( )

[ ] [ ]

, _ , _ , _ , _

,
x y x y y

y x x y

R R RS R R Generalization R

k R R R Action R Action

k protocol src ip src prt dst ip dst prt

∃ ∈ > • ⇔

∀ • ⊃ ∧ ≠

∈

•

 
 

• Correlation. Two rules Rx and Ry are correlated if they 
have different actions, and selectors of Rx intersect 

with the corresponding selectors of Ry, but Rx and Ry 

do not have a shadow, exact shadow or 

generalization relation. Correlation is independent of 

rule priority. This definition can also be extended to 

sets of rules. 

 

{ }

( )

[ ] [ ] [ ] [ ]

( [ ] [ ]) ( [ ] [ ])

, _ , _ , _ , _

,
x y x y

x y x y

x y x y

R R RS Correlation R R

k R k R k R Action R Action

R k R k R k R k

k protocol src ip src prt dst ip dst prt

∃ ∈ • ⇔

∀ • ∧ ≠ ∧

¬ ⊆ ∧ ¬ ⊃

∈

∩

 
 

Note that inconsistencies that could be generated 

during rule set updates (removals, insertions, and 

modifications) is a topic not covered in this paper, but has 

been covered in another work [10]. 

III.  CONSISTENCY-BASED DIAGNOSIS OF RULE SETS 

The presented analysis has motivated the separation of 

characterization from diagnosis, and to solve the 

diagnosis problem as a first step for the optimal 

inconsistency characterization problem. As it is going to 

be shown, the result of the diagnosis process is the 

identification of a set of rules that cause the 

inconsistencies in the rule set and for each one, the set of 

the rules which they are inconsistent with. Each of these 

sets and their corresponding identified conflicting rule 

can be taken as input to the characterization part of the 

process, resulting in an effective computational 

complexity reduction (solving several small 

combinatorial problems is faster than solving a big one). 

However, as the proposed algorithm for the identification 

of inconsistent rules is not minimal, the application of an 

optimal characterization algorithm to its result may be 

senseless. In contrast, heuristic characterization 

algorithms [12] can be used, with a big improvement in 

computational complexity for  the full process. 

In this section, two algorithms which implement 

Axiom 2.1.1 and Lemma 2.1.1 and the diagnosis process 

explained in the previous section are presented. 

Algorithms are capable of handling ranges in all selectors 

without modifications to the input rule set.  

A.  Step 1. Detection and Isolation of Inconsistent Pairs 

of Rules 

The first step of the process detects the inconsistent 

rules of the rule set and returns an Inconsistency Graph 

(IG, Definition 3.1.1) representing their relations. Note 

that the detection and isolation process, like Axiom 2.1.1, 

is order independent. Also note that the presented 

algorithm is complete, as it implements Axiom 2.1.1 

(which is complete). 
 

Definition 3.1.1. Inconsistency Graph, IG. An IG is 

an undirected, cyclic and disconnected graph whose 

vertices are the inconsistent rules of the rule set, and 

whose edges are the inconsistency relations between the 

inconsistent rules. Note that |IG| is the number of 

inconsistent rules in RS, and ||IG|| corresponds to the 

number of inconsistencies pairs of rules in RS, or simply 

the number of inconsistencies in RS. 
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Algorithm 1 presented in Fig. 5 (implemented in 

Object Oriented paradigm and using abstract data types)  

exploits the order independence of the inconsistency 

axiom and only checks inconsistencies between rules 

with different actions, dividing the ACL in two lists, one 

with allow rules and the other with deny ones. The 

algorithm receives two rule sets. One of them consist of 

allow rules and the other of deny rules of the original rule 

set. This decomposition is trivial and runs in linear 

complexity with the number of rules in RS. The algorithm 

takes one of the rule sets and, for each rule, it checks if 

there is an inconsistency with other rules in the other one. 

As all inconsistencies can be decomposed in two by two 

relations, there is no need to check combinations of more 

than two rules. Each time the algorithm finds an 

inconsistency between a pair of rules, the two rules are 

added as vertices to the IG, with a non directed edge 

between them. The algorithm returns ends returning the 

IG. Since all possibilities have been checked, Algorithm 

1 returns the isolation of all possible inconsistent rules 

(i.e. it is complete). Fig. 6 presents the resulting IG of the 

Table 1 example. 

Time complexity of Algorithm 1 is bounded by the two 

nested loops (lines 7 and 9). Each rule in ruleSetAllow is 

tested for inconsistency against rules in ruleSetDeny. The 

worst case for the loop is reached when 

ruleSetAllow.size()= ruleSetDeny.size() (i.e. half rules 

allow and the other half deny), and the best case when 

ruleSetAllow.size()=n and ruleSetDeny.size()=1 or 

ruleSetAllow.size()=1 and ruleSetDeny.size()=n. Thus, 

the complexity of the improved isolation algorithm 

depends on the percentage of allow and deny rules over 

the total number of rules. 

However, there are other inner operations that should 

be analyzed in lines 11 to 14. The first one, in line 11, is 

inconsistency() which is composed of an iteration. This 

operation implements the inconsistency lemma. In typical 

firewall ACLs, k=5, and thus the iteration runs 5 times. 

Anyway, the iteration is bounded by the number of 

selectors, which is always a constant k. 

In addition, inside the iteration there is an intersection 

between each selector (lines 28 to 30). The typical 5 

selectors of firewall ACLs (Table 1) are integers or 

intervals of integers. Knowing if two ranges of integers 

intersect can be done in constant time with a trivial 

algorithm which compares the limits of the intervals. 

Knowing if two IP addresses intersect can also be easily 

done in constant time by comparing their network 

addresses and netmasks. Other operations of the inner 

loop (lines 12 to 14) are the graph-related ones. If the 

graph is based on hash tables, vertex and edge insertions 

run in constant time, except in some cases where 

rehashing could be necessary.  

For all these reasons, the complexity of the two nested 

loops is only affected by a constant factor in all cases, 

which depends on the number of selectors, k. Thus, worst 

case time complexity of the isolation algorithm is in 

O(n
2
), best case is in O(n), and  average case is in O(n·m) 

with the number of allow rules, n, and deny rules, m in 

the ACL. 

Algorithm 1. Inconsistency Detection and Isolation 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

Func detection(in List: ruleSetAllow, ruleSetDeny; 

out Graph: ig) 

Var 

    Rule ri, rj 

    Integer i, j 

Alg 

    for each j=1..ruleSetAllow.size() { 

        rj= ruleSetAllow.get(j) 

        for each i=1..ruleSetDeny.size() { 

            ri = ruleSetDeny.get(i) 

            if (inconsistency(ri, rj)) { 

                ig.addVertex(ri) 

                ig.addVertex(rj) 

                ig.addEdge(ri, rj) 

            } 

        } 

    } 

End Alg 

 

// Implements the Inconsistency Definition 

Func inconsistency(in Rule: rx, ry; out Boolean: b) 

Var 

    Integer i 

Alg 

    b = true 

    i = 1 

    while (i<=rx.selectors.size() AND b) 

        b = b AND intersection(rx.getSelector(i),  

                                               ry.getSelector(i)) 

        i=i+1 

    } 

End Alg 

 

Figure 5. Inconsistency detection algorithm 
 

 
 

Figure 6. Inconsistency graph 
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Space used by Algorithm 1 is the sum of the space 

needed to store the ACL, and the one needed for the 

graph. In best case the graph would have n vertices and n-

1 edges. In the worst case, there could be n-1 inconsistent 

rules and also n-1 edges per vertex. Note that the space 

needed to store an edge is fewer than the needed to store 

a vertex, since only a reference between vertices is 

needed. 

B.  Identification of Inconsistent Rules 

The second and last step of the diagnosis process 

identifies the set of rules that cause the inconsistencies 

from the isolated set of inconsistent pairs of rules (the 

result of the previous step) with a heuristic algorithm. 

Algorithm 2 (Fig. 7) was initially presented in [9]. It 

receives the IG as input and takes iteratively the vertex 

with the greatest number of adjacencies (lines 6 and 7), 

that is, the vertex with the greatest number of 

inconsistencies, v. Then, an independent cluster of 

inconsistent rules (ICIR, Definition 3.2.1) is created as a 

tree with v (the conflicting rule of the cluster) as its root, 

and its adjacents (the inconsistent rules) as leaves (lines 7 

to 11). The root of all ICIRs form the Diagnosis Set (DS, 

Definition 3.2.2), or the set of rules that must be removed 

to get a consistent rule set. Then, v and its edges are 

removed from the IG (line 13). If vertices with no edges 

are left in the IG, then these vertices are also removed 

(line 14), since they are consistent by definition (they are 

rules with no relations with others). As inconsistencies 

have been decomposed in pair wise relations, ICIRs are 

always formed by two levels. 

 

Definition 3.2.1. Independent Cluster of 

Inconsistent Rules, ICIR. An ICIR(root, CV) is a two 

level tree, rooted in the rule root and where CV is a set of 

rules (its leaves). It represents a cluster of mutually 

consistent rules, CV, which are at the same time 

inconsistent with their respective root. ICIR(root) is the 

rule which has the greatest number of inconsistencies 

with other rules of the same cluster. For that reason, the 

root of each ICIR is different, and all roots form a 

disjoint set of rules. Note that the action ICIR(root) is the 

contrary of the actions of all of its leaves in CV.  

 

( , )

( , )

, , ( , )

i i

i j i j

ICIR root CV

R CV Inconsistent root R

R R CV i j Inconsistent R R

⇔

∀ ∈ • ∧

∀ ∈ ≠ • ¬

 

 

Definition 3.2.2. Diagnosis Set, DS. This is the set of 

rules that cause the inconsistencies, and coincide with the 

root of all ICIRs. If these inconsistencies are removed 

from RS, RS becomes consistent. 
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 A graphical representation of a partial trace of 

Algorithm 2 over the previous IG is presented in Fig. 8. 

At the first iteration, R8 is selected because it has four 

inconsistencies (the greatest number of adjacent vertices). 

Then, it is removed and the first ICIR tree is formed with 

R8 as root, thus R8 is a conflicting rule and will be in DS. 

At the second iteration, R12 is selected because it has 

three inconsistencies (it is the vertex with the biggest 

number of adjacent vertices). Then it is removed and the 

second ICIR is formed. Vertices R9, R10 and R11 are also 

removed from the IG because they had no adjacent 

vertices. At the third iteration, there is a possibility of 

selecting R5, R1, R2, R3 and R4 as the next vertex. The 

selection of one or other is arbitrary. In this example, the 

algorithm selects R5, removes it from the IG with all its 

edges and forms the third ICIR. At the end of this 

iteration the IG is only composed of a cycle of four 

vertices: R1, R2, R3, and R4. The algorithm selects to 

remove R1 at the fourth iteration and R4 at the fifth and 

last one, removing the vertices and edges, and forming 

ICIR 4 and ICIR 5 respectively. Since no more vertices 

are left in the IG, the algorithm finishes with a diagnosis 

set with cardinality five, containing the rules DS={R8, 

R12, R5, R1, R4}. 

If the rules from the DS are removed from RS, RS 

becomes consistent.  

 

It has been noted in the explanation of the trace that at 

some time, the IG could have cycles. Cycles have a 

special property. In a cycle, the selection of a rule as the 

next to be processed is random, since all of them have the 

same number of adjacent vertices. Depending on the rule 

that is selected, the algorithm forms different ICIRs. In 

this example, R1 and then R4 have been selected but if for 

example, R2 and R3 were selected, different ICIRs would 

have been formed (Fig. 9). The final number of ICIRs 

formed is always the same in this special case, since the 

number of vertices and edges removed is the same with 

independency of the actual vertices removed from a 

cycle. Most important fact is that the two groups of ICIRs 

Algorithm 2. Inconsistent Rule Identification  

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

Func identification(in Graph:ig; out List of 

Tree:icirs) 

Var 

    Tree icir 

Alg 

    while (ig.hasVertices()) { 

        Vertex v = ig.getMaxAdjacencyVertex(); 

        List adj = ig.getAdjacents(v) 

        icir.createEmptyTree() 

        icir.setRoot(v) 

        icir.addChildren(adj) 

        icirs.add(icir) 

        ig.removeVertexWithEdges(v) 

        ig.removeNotConnectedVertices() 

    } 

End Alg 
 

Figure 7: Inconsistency identification algorithm 
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are equivalent, since the rules involved in the 

inconsistencies are the same, only its order has changed. 

This property of cycles is derived from the fact that all 

the rules in a cycle are correlated between themselves. 

For example, R1 appears in ICIR 4b and 5b, because R1 is 

correlated with both roots R2 and R3. Looking at ICIR 4a, 

the relations are ICIR4a={root=R1, R2, R3}, which is 

formed of that three rules. 

 

Time complexity of Algorithm 2 is bounded by the 

loop of line 5, which runs as many times as ICIRs are 

formed (it corresponds with the cardinality of the 

Diagnosis Set, |DS|). The worst case is reached, as in 

Algorithm 1, when 

ruleSetAllow.size()=ruleSetDeny.size()=n/2 (Fig. 10(b)), 

resulting in a |DS|=n/2. In this case, 

getMaxAdjacencyVertex() (line 7), a maximum calculus, 

runs in O(n) with the number of vertices of the graph (the 

number of inconsistencies). Operations of lines 8, 9, 10, 

11, and 12 run in constant time. 

removeVertexWithEdges() (line 13) runs in linear time 

with the cardinality of its adjacency list (n/2-1 in the 

worst case). Finally, removeUnconnectedVertices() (line 

14) is also linear with the number of vertices in the graph 

at each iteration, O(n). Thus, the resulting worst case time 

complexity of Algorithm 2 is in O(|DS|·(n+n/2-

1+n))=O(n/2·n)=O(n
2
). 

The best case is reached, as in Algorithm 1, when 

ruleSetAllow.size()=n and ruleSetDeny.size()=1 or vice 

versa (Fig. 10(a)). The IG only has one vertex, v, 

connected to all the other vertices. In this case, |DS|=1 

and the algorithm is in O(n). In an average case the 

algorithm is in O(|DS|·h), |DS|<<h (h is the number of 

inconsistencies). 

 
 

Figure 8. Partial trace of Algorithm 2 applied to the example IG 
 

Figure 9. Equivalent ICIRs from Fig. 8 It. 3 
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Algorithm 2 needs some space to store the ICIRs. Each 

ICIR needs space for its root and for the conflictive rules. 

But note that, as the algorithm is creating the ICIRs, the 

corresponding vertices and edges are removed from the 

IG, and thus at each iteration only the space to store the 

adjacency list of the removed vertex is necessary. 

Complexities are presented in Table 2. 

The result of the diagnosis process is the set of all 

ICIRs. As each ICIR represents a different independent 

inconsistency, exhaustive search optimal characterization 

algorithms can be applied to each one independently, 

reducing the effective computational complexity of the 

whole process. Furthermore, heuristic characterization 

algorithms can also be applied [12]. Also note that the 

presented proposal makes no assumptions about how 

selector ranges are expressed. This is important, because 

as the original rule set is directly used by algorithms, 

inconsistency results are given over it. 

 
TABLE 2: ISOLATION AND IDENTIFICATION TIME COMPLEXITIES 

 

Number of 

inserted rules 

Best 

case 

Average 

case 

Worst 

case 

Space 

Worst 

Detection and 

Isolation 
O(n) O(n·m) O(n2) 

n Rules· 

h Edges 

Identification O(n) 
O(|DS|·h), 

|DS|<<h 
O(h2) 

n Rules· 

h Edges 

Combined 

(Diagnosis) 
O(n) O(n·m) O(n2+h2) 

n Rules· 

h Edges 

 

C. Experimental Results 

In absence of standard rule sets for testing, the 

proposed heuristic process has been tested with real 

firewall rule sets (Tables 3 and 4). The first column 

represents the size of the rule set; the second one the 

percentage of deny rules over the rule set size; the third 

the cardinality of the Diagnosis Set, |DS|, (or the number 

of generated ICIRs); the fourth represents the average 

size of each ICIR (that is, the number of ICIRs divided by 

|DS|), or the average size of the characterization problems 

to be solved (how many rules are in them); the fifth the 

number of inconsistencies; from sixth to nineth the 

execution time of the isolation and identification parts of 

the process (trivial detection and isolation, proposed 

detection and isolation, identification, and the sum of the 

proposed isolation and identification). Results are 

provided in rule sets with and without wildcard rules 

(WR, deny all and allow all rules). 

The conducted performance analysis represents a wide 

spectrum of cases, with ACLs of sizes ranging from 50 to 

10600 rules, and percentages of allow and deny rules 

ranging from 2% to 65%. Recall that worst case is half 

rules allow and the other half deny. Also note that real 

ACLs have some important differences with synthetically 

generated ones. The most important one is the number of 

deny and allow rules: as real firewall ACLs are usually 

designed with deny all default policy, most rules are 

going to have allow actions. In ACLs designed with 

allow all policy, most rules would have deny actions. 

Also note that as the percentage of allow or deny rules 

decreases, the number of inconsistencies does necessarily 

not, because the number of inconsistencies depends on 

how many rules with different actions intersect. Tests 

have been run with and without WR, in order to know the 

impact these rules have in the complexity of the 

algorithms. However, WR provide no useful information 

to the diagnosis process, since they are inconsistent by 

definition with all rules with the contrary action. The 

result is that the worst case would not normally happen 

for the isolation algorithm in real firewall rule sets, but 

the dependence of the identification algorithm on the 

number of inconsistencies is completely arbitrary and 

thus cannot be predicted (however, note that leaving WR 

in the rule set results in a huge increase of inconsistencies 

because of the reasons stated above). Experiments were 

performed on a monothreaded Java implementation with 

Sun JDK 1.6.0 64-Bit Server VM, on an isolated HP 

Proliant 145G2 (AMD Opteron 275 2.2GHz, 2Gb RAM 

DDR400). Execution times are in milliseconds.  

The experimental efficiency comparison of the 

proposed algorithms with others reviewed is a very 

difficult task for two main reasons. In one hand, there are 

no standard rule sets to be used. In other hand different 

proposals cover different parts of the process (for 

example, Al-Shaer proposal covers the characterization 

part, García-Alfaro proposal the full process, and our 

proposal the diagnosis part). One of the most important 

contributions of the presented experimental analysis is the 

average reduction of the diagnosis characterization 

problem, which is in average |DS|*Average ICIR size. 

Another important contribution is the improvement in 

time of the detection and isolation part of the diagnosis 

process, over the trivial isolation algorithm. 

As Tables 3 and 4 and Fig. 11 show, execution time for 

the full diagnosis process is very reasonable, even in 

large rule sets. Note that rule set of sizes 238 and 450 are 

very near worst case. Rule set of size 10611 has not been 

represented to prevent image scale distortion, but note 

that even with a very high number of inconsistencies w/ 

WR (11866) execution time of the full process is 354ms. 

Take into account that a rule set of 10611 rules is a very 

big one [14].  Tables 3 and 4 and Fig. 11 present a lot of 

information. Note for example in Fig. 11(a) how little the 

performance of isolation between 2500 and 5000 rule set 

sizes differ, because they are very near the best case for 

isolationn (a real rule set could be in the 10-15% range of 

deny rules [14]). Also note that for the worst case of 

isolation (238 and 450 rules in the ACL), running time 

 
 

Figure 10. Identification best and worst cases 

 

706 JOURNAL OF NETWORKS, VOL. 4, NO. 8, OCTOBER 2009

© 2009 ACADEMY PUBLISHER



almost doubles. Take into account that results are 

basically the same with and without WR for the isolation 

algorithm, since the only difference between them is the 

number of removed WR rules, which ranges from two to 

ten in the tested rule sets. Since the size of the problem 

for the isolation algorithm is measured in hundred or 

thousand of rules, removing such a little number of them, 

implies a negligible performance impact. 

However, looking again at Tables 3 and 4 and Fig. 11, 

but for the identification algorithms, other important facts 

should also be explained. This time, complexity is 

bounded by |DS| and the number of inconsistencies. But 

note how the number of reported of inconsistencies varies 

depending on the removal or not of the WR. Now note 

how the performance of identification algorithm degrades 

when number of inconsistencies raise. In fact, leaving 

WR in the rule set, also implies an increase of the 

cardinality of the diagnosis set, |DS| and also of the 

average ICIR sizes. A WR implies that there would be an 

ICIR containing f-1 rules, where f is the number of rules 

with the contrary action of the WR. For example, in the 

rule set with size 10611, a WR with deny action will 

generate an ICIR with 10348 rules, raising the average 

size of the ICIRs. 

In addition, note how complexity is dominated by the 

isolation algorithm, which is the problem with the higher 

theoretic time complexity. The difference between 

leaving and removing WR does not have an important 

impact over the performance of the full process, also 

because this fact (WR does not affect very much the 

performance of the isolation algorithm). 

Other important thing worth noting is related with 

problem reduction. The average ICIR size in Tables 3 and 

4 represents the average number of children of each 

generated ICIR (the number of ICIRs is represented in 

|DS| column). That is, |DS| is the number of 

characterization problems to be optimally solved if 

optimal characterization algorithms are going to be used, 

TABLE 3. PERFORMANCE EVALUATION W/ WR 

ACL 
Size 

%Deny |DS| 
Average 

ICIR 
size 

Number of 
Inconsistencies 

Trivial 
Detection  

(ms) 

Detection  
(ms) 

Identification 
(ms) 

TOTAL 
w/ WR 
(ms) 

50 28.21 2 9 37 0.22 0.09 0.03 0.12 

144 30.91 2 54 108 1.34 0.62 0.06 0.68 

238 66.43 10 23 231 3.56 2.04 0.15 2.19 

450 34.73 10 42 422 13.22 5.61 0.27 5.88 

900 14.8 10 87 871 51.57 3.46 0.73 4.19 

2500 6.97 32 104 3349 387.86 55.01 3.98 58.99 

5000 1.98 6 822 4937 3160.09 64.33 7.90 72.23 

10611 2.05 39 301 11866 12046.67 332.85 21.57 354.42 
 

TABLE 4. PERFORMANCE EVALUATION W/O WR 

ACL 
Size 

%Deny |DS| 
Average 

ICIR 
size 

Number of 
Inconsistencies 

Trivial 
Detection  

(ms) 

Detection  
(ms) 

Identification 
(ms) 

TOTAL 
w/o WR 

(ms) 

46 24.32 0 - 0 0.13 0.07 0 0.07 

140 29.63 0 - 0 1.21 0.53 0 0.53 

228 68.89 8 12 96 3.07 1.88 0.04 1.92 

440 34.97 8 12 96 12.35 5.37 0.04 5.41 

889 14.71 8 12 96 49.58 12.53 0.04 12.57 

2490 6.91 30 34 1020 382.06 51.88 0.76 52.64 

4998 1.94 4 7 34 2231.33 60.84 0.02 60.86 

10601 2.03 37 36 1468 13308.45 310.23 0.85 311.11 
 

 

Figure 11(a). Running time w/o WR Figure 11(b). Running time w/ WR 

 

JOURNAL OF NETWORKS, VOL. 4, NO. 8, OCTOBER 2009 707

© 2009 ACADEMY PUBLISHER



and Average ICIR Size is their average size. Clearly, 

solving (optimally or not) such small number of small 

problems is faster than solving a big combinatorial one 

over the full problem size, n. 

Finally, Fig. 12 presents a comparison between the 

trivial isolation algorithm and the one presented in this 

paper. Note how the trivial algorithm scales quadratically 

with the number of rules. However, the complexity of the 

proposed algorithm depends on the percentage of allow 

and deny rules. As can be seen, there is a huge difference 

with real rule sets. 

 

 
 

Figure 12. Comparison between isolation algorithms 

 

In conclusion, the proposed detection and isolation 

algorithm represents a real improvement over the trivial 

one in real cases. In addition, due to the problem 

reduction due to the proposed consistency diagnosis 

process, exhaustive and optimal identification algorithms 

can be used over the diagnosis result (ICIRs). However 

note that when using heuristics for the diagnosis 

characterization, complexity would in general be 

dominated by the isolation algorithm. For that reason, we 

state that improvements in the isolation algorithm must 

be proposed in the future. It is also possible to use more 

complex heuristics if the final time fits performance 

requirements of the specific application of these 

algorithms. Due to its low computational complexity, the 

presented isolation algorithm can be used with very big 

rule sets or even in resource constrained devices [10] in 

real time. 

IV.  RELATED WORKS 

One of the closest works to ours is related with 

consistency detection and isolation in general network 

filters. In the most recent work, Baboescu et al. [2] 

provides algorithms to detect inconsistencies in router 

filters that are 40 times faster than O(n
2
) ones for the 

general case of k selectors per rule, where n is the number 

of rules in the ACL. Although its algorithmic complexity 

is not given, it improves other previous works of isolation 

algorithms [7], [4]. However, they pre-process the ACL 

and convert selector ranges to prefixes. However, the 

range to prefix conversion technique could need to split a 

range in several prefixes [13] and thus the final number 

of rules could increase over the original ACL. In [14], 

Taylor outlines that this kind of conversion could be 

inefficient, because transport layer specifications vary 

widely (for example it is possible to specify open port 

ranges, such as “all ports greater than 1023”. Taylor also 

calculated that, in the worst case, a range covering w-bit 

port numbers may require 2(w-1) prefixes, and that a 

single ACL including only two port ranges could require 

2(w-1)
2
 entries, or 900 entries (for 16-bit port numbers), 

raising the number of rules needed for the range to prefix 

conversion. Note that the range to prefix conversion is a 

very usual technique used in several matching algorithms. 

However, in diagnosis algorithms, this kind of techniques 

is not suitable. Thus, following Baboescu proposal, 

results are given over the pre-processed ACL, which is 

bigger and different that the original one. 

Other researchers apply brute force, combinatorial 

algorithms to optimally solve the combined diagnosis and 

characterization problems. One of the most important 

advances was made by Al-Shaer et al. [1], where authors 

define an inconsistency model for firewall ACLs with 5 

selectors. They give a combined algorithm to diagnose 

and characterize the inconsistencies between pairs of 

rules. In addition, they use rule decorrelation techniques 

[8] as a pre-process in order to decompose the ACL in a 

new, bigger, one with no overlapping rules. Results are 

given over the decorrelated ACL, which has the 

disadvantages commented for the Baboescu diagnosis 

algorithm. Although the proposed characterization 

algorithm proposed by Al-Shaer is polynomial, a 

decorrelation pre-process imposes a worst case 

exponential time and space complexity for the full 

process. In addition, their algorithms only characterize 

inconsistencies between pairs of rules, providing no 

composition as a later step to get a minimal 

characterization between more than two rules. 

A modification to their algorithms was provided by 

García-Alfaro et al. [5], where they integrate the 

decorrelation and characterization algorithms of Al-

Shaer, and generate a decorrelated and consistent rule set. 

Due to the use of the same decorrelation techniques, this 

proposal also has worst case exponential complexity. The 

resulting ACL is also bigger and different from the 

original one. However, García-Alfaro et al. provides a 

characterization technique with multiple rules. 

Ordered Binary Decision Diagrams (OBDDs) have 

been used in Fireman [15], where authors provide a 

diagnosis and characterization technique with multiple 

rules. A very important improvement over previous 

proposals is that they do not need to decorrelate the ACL, 

and thus, results are given over the original one. Note that 

the complexity of OBDD algorithms depends on the 

optimal ordering of its nodes, which is a NP-Complete 

problem [3]. This results in a worst case exponential time 

complexity with the number of rules, as other proposals. 

There are several differences in our work with respect 

to the reviewed ones. In one hand, we provided an 

analysis of the consistency diagnosis problem in rule sets, 

separating the problem in three parts: detection and 

isolation, identification, and characterization. This 

enabled us to identify the performance bottlenecks of the 

problem, to reduce the combinatorial part 
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(characterization) to several smaller problems, and to 

design heuristic polynomial diagnosis algorithms for 

them if needed. The proposed diagnosis algorithms have 

a theoretical best case O(n) and worst case O(n
2
) time 

complexity with the number of rules in the rule set, n. 

More precisely, the complexity of our algorithms depends 

on the percentage of allow and deny rules over the total 

number of them (in the case of the isolation algorithm), 

on the cardinality of the diagnosis set, and finally, and on 

the number of inconsistencies (in the case of the 

identification algorithm). Our process is capable of 

handling full ranges in all selectors, and does not need to 

decorrelate or do any range to prefix conversion to the 

ACL as a pre-process to the algorithms. We think that for 

a result to be useful for a user, it should be given over the 

original ACL. However, our proposal does not cope with 

redundancies, because we think that redundancies are not 

a consistency problem. 

V.  CONCLUSIONS 

We have deeply analyzed the consistency diagnosis 

problem in firewall ACLs, and decided to divide it in 

three sequential steps: detection and isolation, 

identification, and characterization. Detection and 

isolation plus identification is called diagnosis. All 

reviewed proposals deal with the full characterization 

problem with brute force algorithms, with yield unusable 

results (although optimal) for real-life, big rule sets.  

In this paper we take a different approach, proposing 

the design of different, specialized, algorithms for each 

part of the diagnosis problem. 

One of the main contributions has been a complete and 

abstract definition of inconsistency. Based on this 

definition, we revisited the consistency problem in 

firewall rule sets, demonstrating that all relations between 

more than two rules can be decomposed in pair wise 

relations. 

The other major contribution of this paper is the 

proposal of two quadratic algorithms that should be 

applied sequentially to get a diagnosis of the inconsistent 

rules in the rule set. The first one detects and isolates the 

inconsistent rules, and is complete. The second one 

identifies the set of rules that cause the detected 

inconsistencies, and is complete but not minimal. The 

diagnosis can then be taken as input to optimal 

characterization algorithms resulting in an effective 

computational complexity reduction (solving several 

small combinatorial problems is faster than solving one 

big one), or to heuristic ones. The full process has best 

case O(n) and worst case O(n
2
) time complexity with the 

number of rules in the rule set, n. An experimental 

performance evaluation with real rule sets of different 

sizes was also presented, showing that real rule sets are 

very near to the best case, and the effective problem 

reduction.  

However, our approach has some limitations that give 

us opportunities for improvement in future works. The 

most important one is that our process can diagnose 

inconsistent rules, but not redundant rules. Another 

direction to take in the future is the improvement of the 

isolation algorithm, since it dominates the complexity of 

the diagnosis process. 

B.  References 

Number citations consecutively in square brackets [1]. 

Punctuation follows the bracket [2]. Use “Ref. [3]” or 

“Reference [3]” at the beginning of a sentence:  

Give all authors’ names; use “et al.” if there are six 

authors or more. Papers that have not been published, 

even if they have been submitted for publication, should 

be cited as “unpublished” [4]. Papers that have been 

accepted for publication should be cited as “in press” [5]. 

In a paper title, capitalize the first word and all other 

words except for conjunctions, prepositions less than 

seven letters, and prepositional phrases. 

For papers published in translated journals, first give 

the English citation, then the original foreign-language 

citation [6]. 

E.  Equations 

Equations should be centered in the column. The 

paragraph description of the line containing the equation 

should be set for 6 points before and 6 points after. 

Number equations consecutively with equation numbers 

in parentheses flush with the right margin, as in (1). 

Italicize Roman symbols for quantities and variables, but 

not Greek symbols. Punctuate equations with commas or 

periods when they are part of a sentence, as in 

 cba =+ . (1) 

Symbols in your equation should be defined before the 

equation appears or immediately following. Use “(1),” 

not “Eq. (1)” or “equation (1),” except at the beginning of 

a sentence: “Equation (1) is ...” 
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