
Pullback permanence for non-autonomous partial differential

equations

J.A. Langa1 and A. Suarez1

1 Departamento de Ecuaciones Diferenciales y Análisis Numérico,
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Abstract

A system of differential equations is permanent if there exists a fixed bounded

set of positive states strictly bounded away from zero to which, from a time on, any

positive initial data enter and remain. However, this fact does not happen for a

differential equation with general non-autonomous terms. In this work we introduce

the concept of pullback permanence, defined as the existence of a time dependent set

of positive states to which all solutions enter and remain for suitable initial time. We

show this behaviour in the non-autonomous logistic equation ut −∆u = λu− b(t)u3,

with b(t) > 0, for all t ∈ R, limt→∞ b(t) = 0. Moreover, a bifurcation scenario for

the asymptotic behaviour of the equation is described in a neighbourhood of the first

eigenvalue of the Laplacian. We claim that pullback permanence can be a suitable

tool for the study of the asymptotic dynamics for general non-autonomous partial

differential equations.

Mathematics Subject Classification 2000: 35B05, 35B22, 35B41, 37L05.

Key words and phrases: Non-autonomous differential equations, pullback attractors,

comparision techniques, permanence.

1 Introduction

One of the main questions for a mathematical model from a natural phenomena is that on

the long-time behaviour of its solutions. In particular, of special interest for an ecological
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model is to predict the existence of strictly positive solutions for all future times. In

this sense, we can look for strictly positive globally attracting equilibria (or stationary

solutions) for the corresponding partial differential equation associated to the model. But

only in a restricted set of systems we can assure the existence of stationary solutions.

However, the concept of global attractor comes to put some light in the understanding of

the asymptotic behaviour of many dissipative systems (Hale [14], Temam [25]). Indeed, we

can infer uniform persistence or permanence (Cantrell et al. [4], [5]) of solutions from the

presence of a globally attracting positive set rather that a single attracting equilibrium. A

system is said to have uniform persistence (Butler et al. [3] ) if there exists a positive set

which is bounded away from zero and globally attracting for all positive solutions. Note

that this allows the systems to have a more complex dynamics, so that a wider set of

(more natural) situations can be considered. On the other hand, we lose some information

on the location and size of these new sets, so that any study on the structure of them

are really helpful. There exists a substantial literature on this subject for autonomous

differential equations (Hale and Waltman [15], Hess [17], Hutson and Schmitt [18]). The

system is said to be permanent if it is also dissipative, i.e., the orbits enter into a compact

set in a finite time. Afterwards, Cao and Gard [6] introduce the concept of practical

persistence, defined as uniform persistence together with some information on the location

of the positive attractor.

In this work we study problems on permanence of positive solutions for the following

non-autonomous logistic equation

ut −∆u = λu− b(t)u3,

with b(t) > 0, the interesting case being when we impose limt→+∞ b(t) = 0. Previous works

for non-autonomous equations focus on the periodic or bounded by periodic functions in

time cases (Cantrell and Cosner [4], Burton and Hutson [2], see also Nkashama [21] for the

finite dimensional case with bounded and strictly positive non-autonomous terms). We

treat a more general case, so that we allow the equation a very weak dissipation effect as

time goes to infinite, and so previous works in the literature are not valid for our purposes.

The situation can be summarized as follows: when the parameter λ < λ1, with λ1 the

first eigenvalue of the negative Laplacian, we get the existence of the zero solution as a

globally attracting set. However, a drastic change in the asymptotic behaviour happens as

the paramenter λ crosses the value λ1. We describe in some detail this bifurcation scenario

(Sections 3 and 4). Indeed, we firstly show that the equation leads to an order-preserving

system and the method of sub and super solutions (Pao [22], Hess [17]) can be adapted to

this case. Afterwards, we find a non bounded order interval depending on time in which
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all the asymptotic behaviour forward in time takes place (Section 4). That is, it does not

exist any bounded absorbing set for the problem, and so any result on permanence in the

sense of Cantrell and Cosner [4] can be expected.

However, very recently the theory of attractors for general non-autonomous differential

equations has been introduced (Cheban et al. [8], Kloeden and Schamalfuss [19]; see

also Crauel and Flandoli [12], Crauel et al. [13], for the same concept in a stochastic

framework). In this case, the semigroup becomes a process, that is, a two-time dependent

operator (Sell [24]), as the dependence of the initial times is so important as that on the

final times. When the non-autonomous terms are periodic or quasi-periodic, the same

concept of attractor in Temam [25] or Hale [14] can be used for these situations (Sell [24],

Chepyzhov and Vishik [10]). But important changes in the concept must be introduced

when we deal with general non-autonomous terms. Chepyzhov and Vishik [10] define

kernel and kernel sections. This last concept is similar to that defined in Cheban et al. [8]

as cocycle or pullback attractor. In our opinion, this is one of the right concepts to define

the attractor for a general non-autonomous differential equation, as some results on the

upper-semicontinuity of pullback attractors to the (autonomous) global attractor show

(Caraballo and Langa [7]). The attractor in this situation is a time-dependent family

of compact sets, invariant with respect to the cocycle and attracting from ‘−∞’ (see

Definition 4).

We apply the theory of pullback attractors to our non-autonomous logistic equation.

We also apply a result on the upper semicontinuity of this pullback attractor to the global

attractor for the autonomous equation. This reinforces the choice of working with the

pullback attractor to study the asymptotic behaviour of non-autonomous equations.

While forward in time we have not information on the stability of the equation when

λ > λ1, we describe a bifurcation scenario at the parameter value λ = λ1 from the pullback

procedure: the zero solution becomes unstable for λ > λ1 and there exists a transfer of

stability to the pullback attractor, which is a set strictly bigger than the zero solution, so

that a result on permanence follows. We think this is the sensible concept for permanence

for general non-autonomous partial differential equations (Definition 8). In Section 4.4

we are able to give more information on the structure of this pullback attractor and so

on the bifurcation phenomena. Indeed, by introducing the concepts of sub-trajectories,

super-trajectories and complete trajectories for non-autonomous systems in Section 3, as

generalization of the theory of sub and super-equilibria in the sense of Hess [17], Arnold

and Chueshov [1] and Chueshov [11], we describe the existence of a maximal complete

trajectory on the attractor with some stability properties. We give a general theorem
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which can be applied to more general situations.

Finally, some conclusions and possible generalizations are given in the final Section.

2 Non-automous attractors

In this section, we introduce the general framework in which the theory of attractors for

non-autonomous systems is going to be studied (see Cheban et al. [8] and Schmalfuss

[23]). In a first step, we define processes as two-time dependent operators related with the

solutions of non-autonomous differential equations. In this way, we are able to treat these

equations as dynamical systems. Secondly, we write the general definitions of invariance,

absorption and attraction and we finish with a general theorem on the existence of global

attractors for these kind of equations. Finally, we give the definition of permanence for

non-autonomous partial differential equations.

Let (X, d) be a complete metric space (with the metric d) with an order relation ‘≤’

and {S(t, s)}t≥s, t, s ∈ R be a family of mappings satisfying:

i) S(t, s)S(s, τ)u = S(t, τ)u, for all τ ≤ s ≤ t, u ∈ X,

ii) u 7→ S(t, τ)u is continuous in X.

This map is called a process. In general, we have to consider S(t, τ)u as the solution

of a non-autonomous equation at time t with initial condition u at time τ .

LetD be a non-empty set of parameterized families of non-empty bounded sets {D (t)}t∈R.

In particular, D (t) ≡ B ∈ D, where B ⊂ X is a bounded set. In what follows, we will

consider fixed this base of attraction D, so that the concepts of absorption and attraction

in our analysis are always referred to it.

For A,B ⊂ X define the Hausdorff semidistances as,

dist(A,B) = sup
a∈A

inf
b∈B

d(a, b) Dist(A,B) = inf
a∈A

inf
b∈B

d(a, b).

Definition 1 Given t0 ∈ R, we say that K(t0) ⊂ X is attracting at time t0 if for every

{D (t)} ∈ D we have that

lim
τ→−∞ dist(S(t0, τ)D (τ) ,K(t0)) = 0.

A family {K(t)}t∈R is attracting if K(t0) is attracting at time t0, for all t0 ∈ R.

The previous concept considers a fixed final time and moves the initial time to −∞.

Note that this does not mean that we are going backwards in time, but we consider the
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state of the system at time t0 starting at τ → −∞. This is called pullback attraction in

the literature (cf. [19], [23]).

Definition 2 Given t0 ∈ R, we say that B(t0) ⊂ X is absorbing at time t0 if for every

{D (t)} ∈ D there exists T = T (t,D) ∈ R such that

S(t0, τ)D (τ) ⊂ B(t0), for all τ ≤ T.

A family {B(t)}t∈R is absorbing if B(t0) is absorbing at time t0, for all t0 ∈ R.

Note that every absorbing set at time t0 is attracting.

Definition 3 Let {B(t)}t∈R be a family of subsets of X. This family is said to be invariant

with respect to the process S if

S(t, τ)B(τ) = B(t), for all (τ , t) ∈ R2, τ ≤ t.

Note that this property is a generalization of the classical property of invariance for

semigroups. However, in this case we have to define the invariance with respect to a family

of sets depending on a parameter.

We define the omega-limit set at time t0 of D ≡ {D (t)} ∈ D as

Λ(D, t0) = ∩s≤t0∪τ≤sS(t0, τ)D(τ).

From now on, we assume that there exists a family {K(t)}t∈R of compact absorbing sets,

that is, K(t) ⊂ X is non-empty, compact and absorbing for each t ∈ R. Note that, in this

case, Λ(D, t0) ⊂ K(t0), for all {D (t)} ∈ D, t0 ∈ R. As in the autonomous case, it is not

difficult to prove that under these conditions Λ(D, t0) is non-empty, compact and attracts

{D (t)} ∈ D at time t0. The proof is similar to that in Crauel et al. [13], where the set D
consists only of bounded sets.

Definition 4 The family of compact sets {A(t)}t∈R is said to be the global non-autonomous

(or pullback) attractor associated to the process S if it is invariant, attracting every

{D (t)} ∈ D (for all t0 ∈ R) and minimal in the sense that if {C(t)}t∈R is another family

of closed attracting sets, then A(t) ⊂ C(t) for all t ∈ R.

Remark 5 Chepyzhov and Vishik [9] define the concept of kernel sections for non-autonomous

dynamical systems which corresponds to our definition of global non-autonomous attractor

with {D(t)} ≡ B ⊂ X bounded.
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The general result on the existence of non-autonomous attractors is a generalization

of the abstract theory for autonomous dynamical systems (Temam [25], Hale [14]):

Theorem 6 (Crauel et al. [13], Schmalfuss [23]) Assume that there exists a family of

compact absorbing sets. Then, the family {A(t)}t∈R defined by

A(t) = ∪D∈DΛ(D, t)

is the global non-autonomous attractor.

Remark 7 All the general theory of non-autonomous attractors can be written in the

framework of cocycles (cf., among others, Cheban et al. [8], Crauel and Flandoli [12],

Kloeden and Schmalfuss [19], Schmalfuss [23]). We could have also followed this notation

here, but we think that, in this case, it is more clear to keep the explicit dependence on

time of the attractor, which in addition, allows us to compare more straightforward with

the concept of attractor in an autonomous framework.

From the concept of non-autonomous attractor, we can now give the following definition

of permanence, which will be suitable for non-autonomous partial differential equations.

Definition 8 We say that a system has the property of pullback permanence (or that it is

permanent in the pullback sense) if there exists a time-dependent family of sets U : R 7−→
X, satisfying

1. U(t) is absorbing every bounded set D ⊂ X (cf. Definition 2).

2. Dist(U(t), {0}) > 0 for all t ∈ R.

3 Order-preserving non-autonomous differential equations

We now introduce order-preserving systems and the concepts of sub, super and complete

trajectories as a generalization of sub, super and equilibria in Hess [17], and of sub, super

and equilibria in Arnold and Chueshov [1] in the stochastic case and Chueshov [11] in the

non-autonomous case under stronger conditions.

Definition 9 We say that the process {S(t, s) : X → X}t≥s is order-preserving if there

exists an order relation ‘≤’ in X such that, if u0 ≤ v0, then S(t, s)u0 ≤ S(t, s)v0, for all

t ≥ s.
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Definition 10 Let S be an order-preserving process. We call u (u) : R → X a sub-

trajectory (super-trajectory) of S if it satisfies

S(t, s)u(s) ≥ u(t), for all t ≥ s (S(t, s)u(s) ≤ u(t), for all t ≥ s ).

Definition 11 We call the continuous map v : R → X a complete trajectory if, for all

s ∈ R, we have

S(t, s)v(s) = v(t), for t ≥ s.

From a sub and super-trajectory (u, u) of a process such that u(t) ≤ u(t), for all

t ∈ R, we can define the “interval”

Iu
u (t) = {u ∈ X : u(t) ≤ u ≤ u(t)}.

Clearly, it is a closed forward invariant set, i.e. S(t, s)Iu
u (s) ⊂ Iu

u (t), for all t ≥ s.

The following result gives sufficient conditions for the existence of upper and lower

asymptotically stable complete trajectories, giving some information on the structure

of the non-autonomous attractor, adapting to our case the main results in Arnold and

Chueshov [1] and Chueshov [11]. Note that we slightly generalize the results in [11] as we

do not impose the set of parameters to be a compact set.

Suppose the pullback attractor attracts time-dependent families of sets in a base of

attraction D.

Theorem 12 Let S be an order-preserving process and A(t) its associated pullback at-

tractor. Let u, u be sub and super-trajectories such that u(t) ≤ u(t), for all t ∈ R, and

Iu
u (t) the corresponding associated interval, such that A(t) ⊂ Iu

u (t), for all t ∈ R and u,

u ∈ D. Suppose that there exists τ > 0 such that S(τ + s, s)Iu
u (s) is relatively compact, for

all s ∈ R. Then, there exist complete trajectories u∗(t), u∗(t) ∈ A(t) such that

i)

u(t) ≤ u∗(t) ≤ u∗(t) ≤ u(t), and A(t) ⊂ Iu∗
u∗ (t), for all t ∈ R.

ii) u∗ (u∗) is minimal (maximal) in the sense that it does not exist any complete trajectory

in the interval Iu∗
u (Iu

u∗).

iii) u∗(t) is globally asymptotically stable from below, that is, for all v ∈ D with u(t) ≤
v(t) ≤ u∗(t), for all t ∈ R, we have that

lim
s→+∞ d(S(t,−s)v(−s), u∗(t)) = 0.
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u∗(t) is globally asymptotically stable from above, that is, for all v ∈ D with u∗(t) ≤
v(t) ≤ u(t), for all t ∈ R, we have that

lim
s→+∞ d(S(t,−s)v(−s), u∗(t)) = 0.

Proof. Write an(t) = S(t,−nt0)u(−nt0), bn(t) = S(t,−nt0)u(−nt0). Then, we have

that

u(t) ≤ an(t) ≤ am(t) ≤ bm(t) ≤ bn(t) ≤ u(t), for all m > n. (1)

Indeed, an(t) = S(t,−nt0)u(−nt0) ≥ u(t), since u is a sub-trajectory. Moreover, for

s = σ + r, r > 0,

as(t) = S(t,−st0)u(−st0) = S(t,−(σ + r)t0)u(−(σ + r)t0)

= S(t,−σt0)S(−σt0,−(σ + r)t0)u(−(σ + r)t0) ≥ S(t,−σt0)u(−σt0) = aσ(t).

On the other hand, we have

an+1(t) = S(t,−(n + 1)t0)u(−(n + 1)t0)

= S(t, t− t0)S(t− t0,−(n + 1)t0)u(−(n + 1)t0) = S(t, t− t0)an+1(t− t0),

and so an+1(t) ∈ S(t, t − t0)Iu
u (t − t0), for all n ∈ N. Thus, from (1) and the relative

compactness of S(t, t− t0)Iu
u (t− t0), there exists the following limit

lim
n→+∞ an(t) $ u∗(t).

Clearly, u∗ : R→ X is a complete trajectory, as, by the continuity of the process S(t, s),

S(t, s)u∗(s) = S(t, s) lim
n→+∞S(s,−nt0)u(−nt0)

= lim
n→+∞S(t, s)S(s,−nt0)u(−nt0) = lim

n→+∞S(t,−nt0)u(−nt0) = u∗(t).

We now prove that u∗(t), u∗(t) ∈ A(t). Indeed,

dist(S(t, s)u∗(s),A(t)) ≤ d(S(t, s)u∗(s), S(t, s)u(s)) + dist(S(t, s)u(s),A(t)),

and this right hand of the inequality tends to zero when s → −∞. As S(t, s)u∗(s) = u∗(t),

for all s ∈ R, u∗(t) ∈ A(t).

Is is also straightforward that, for all u(t) ∈ A(t)

u(t) ≤ u∗(t) ≤ u(t) ≤ u∗(t) ≤ u(t),

by the definition of u∗ and u∗, the invariance of A(t) and the order in X.
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On the other hand, for any complete trajectory v(·) such that u(t) ≤ v(t) ≤ u∗(t), for

all t ∈ R, and by the order in the process,

u∗(t) = lim
n→+∞S(t,−nt0)u(−nt0) ≤ lim

n→+∞S(t,−nt0)v(−nt0) = v(t) ≤ u∗(t),

so that v(t) = u∗(t), for all t ∈ R. Note that this implies that u∗ and u∗ are uniquely

defined by the order in X.

Finally, for iii), let be v ∈ D with u(t) ≤ v(t) ≤ u∗(t), for all t ∈ R. Then, by the

attraction property of A(t)

u∗(t) = lim
s→+∞S(t,−s)u(−s) ≤ lim

s→+∞S(t,−s)v(−s) ≤ lim
s→+∞S(t,−s)u∗(−s) = u∗(t).

All these arguments also hold for u∗.

Note that the same conclusions can be got under weaker hypotheses:

Corollary 13 Let S be an order-preserving process and A(t) its associated pullback at-

tractor. Let u, u ∈ D be such that u(t) ≤ u(t), for all t ∈ R, and assume that

A(t) ⊂ Iu
u (t), ∀t ∈ R.

Then there exists two trajectories u∗(t), u∗(t) ∈ A(t) such that

i) u∗(t) ≤ u ≤ u∗(t), ∀t ∈ R and ∀u ∈ A(t).

ii) u∗ (u∗) is minimal (maximal) in the sense that it does not exist any complete trajectory

in the interval Iu∗
u (Iu

u∗).

iii) u∗(t) is globally asymptotically stable from below and u∗(t) is globally asymptotically

stable from above.

Proof. Since Iu
u (t) ⊂ D, the attractivity property of A(t) implies that

dist(S(t,−s)Iu
u (−s),A(t)) → 0, as s → +∞.

Now, the compactness of A(t) and the order relation in X imply that there exist u∗(t),

u∗(t) ∈ A(t) with

lim
s→+∞S(t,−s)u(−s) = u∗(t) and lim

s→+∞S(t,−s)u(−s) = u∗(t)

and the argument follows as in the previous theorem.
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4 Non-autonomous logistic equation

Let Ω be a bounded domain in RN , N ≥ 1, with smooth boundary ∂Ω. Consider the

following non-autonomous logistic equation




ut −∆u = λu− b(t)u3

u|∂Ω = 0

u(s) = u0,

(2)

with λ ∈ R and b ∈ Cν(R), ν ∈ (0, 1) verifying that there exists a positive constant B

such that

0 < b(t) ≤ B, for all t ∈ R. (Hb)

The next result provides us the existence, uniqueness and helpful estimates of the

solution of (2). Consider X = C0
0 (Ω) with norm |·|0 and its positive cone

V+ = {u ∈ X : u(x) ≥ 0, a.a. x ∈ Ω}.

For (2), we can define an order with respect to V+. That is, u0 ≤ v0 if v0 − u0 ∈ V+.

Given a regular domain D ⊂ RN , λD
1 and ϕD

1 stand for the principal eigenvalue and

the positive eigenfunction associated to −∆ under homogeneous Dirichlet condition, nor-

malized such that maxx∈D̄ ϕD
1 (x) = 1. We write λ1 = λΩ

1 and ϕ1 = ϕΩ
1 .

Theorem 14 Assume (Hb) and u0 ∈ V+, u0 6= 0. Then, there exists a unique solution

u(t) = u(t, s;u0) ∈ X of (2), which is strictly positive for t > s.

Proof. We use the sub-supersolution method, see for instance [22]. We take a domain

D such that Ω ⊂ D and consider the pair

(u, u) := (0, εeγ(t−s)ϕD
1 ),

where ε and γ are constants to be chosen. The pair (u, u) is a sub-supersolution of (2)

provided that

0 <
maxΩ u0

minΩ ϕD
1

≤ ε, (3)

and

0 ≤ γ + λD
1 − λ + b(t)ε2e2γ(t−s)(ϕD

1 )2. (4)
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Now, it is clear that (3) and (4) are satisfied if ε is large enough and

0 ≤ γ + λD
1 − λ (5)

This shows the existence of a nonnegative and nontrivial solution u of (2) such that

u ≤ u ≤ u. (6)

Now, the strong maximum principle implies that u is strictly positive for t > s.

This completes the existence part. The uniqueness follows by a standard way (Pao

[22], Chapter 2).

So, we can define the following flow in X, for t, s ∈ R, t ≥ s :

S(t, s) : X → X

S(t, s)u0 = u(t, s; u0),

with u(t, s; u0) the unique solution of (2). Furthermore, (2) can be written as the following

differential equation in X





du(t)
dt + Au = λu(t)− b(t)u3(t)

u|∂Ω = 0

u(s) = u0

(7)

with A = −∆, the linear operator A : D(A) → X associated to the Laplacian. Moreover,

it is clear that, by the maximum principle, S(t, s) is an order-preserving system.

Remark 15 Note that v : R→ X is a complete trajectory of problem (2) if

u(t, s; v(s)) = v(t) in X, for t ≥ s,

with u(t, s; v(s)) the unique solution of (2) with initial condition u(s) = v(s).

4.1 Asymptotic behaviour forward in time

We are interested in the study of qualitative properties in the asymptotic behaviour

of problem (2) when the parameter λ changes. The family of maps {S(t, s)}t≥s will allow

us to treat this problem from a dynamical system point of view.

If we fix the initial time s, and for λ < λ1, note that the asymptotic behaviour of (2)

is determined around the zero solution, that is, {0} is globally asymptotically stable. The

following result shows this fact as an easy consequence of Theorem 14.
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Corollary 16 Assume (Hb) and λ < λ1. Then,

|u(t, s; u0)|0 → 0 as t → +∞.

Proof. From the monotonicity and continuity of the principal eigenvalue with respect

to the domain, there exists a domain D ⊃ Ω such that λ < λD
1 < λ1. So, according to (5)

we can take γ < 0 in Theorem 14. So, by (6)

0 < u(t, s; u0) ≤ εeγ(t−s)ϕD
1 , (8)

whence the result follows.

Denote by Θ[λ,c] and Ψλ the unique positive solution respectively of




ut −∆u = λu− cu3

u|∂Ω = 0

u(s) = u0

(9)





ut −∆u = λu

u|∂Ω = 0

u(s) = u0

where c is a positive constant. Hence, by the maximum principle we get that

Θ[λ,B] ≤ u ≤ Ψλ for t ≥ s.

When λ > λ1, Ψλ goes to ∞ as t → +∞ and Θ[λ,B] goes to θ[λ,B], where θ[λ,B] is the

unique positive solution of
{
−∆u = λu−Bu3 in Ω

u = 0 on ∂Ω.
(10)

Hence, when λ > λ1 there exist V ∈ C(Ω) and t0(u0) ∈ R such that

0 < V (x) ≤ Θ[λ,B](t, s; u0) = Θ[λ,B](t− s, 0;u0) ≤ u(t, s; u0) for any t− s ≥ t0(u0),

(11)

so that a result on uniform persistence follows.

Remark 17 If there exists a positive constant A such that 0 < A ≤ b(t), then there exists

a positive funcion W ∈ C(Ω) such that

u(t, s, u0) ≤ W (x) for any t ≥ s.
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Indeed, in this case if we take

0 < M ≥ max{|u0|0 ,

√
λ

A
}, (12)

then (u, u) = (0,M) is a sub-supersolution of (2), whence the result follows. So, in this

case we have that the equation is permanent.

In summary, when λ > λ1 the behaviour of the positive solution of (2) changes dras-

tically. In particular, the system is not permanent. The next result shows this fact.

Lemma 18 Consider (2) with λ > λ1, u0 ∈ V+, u0 6= 0 and limt→+∞ b(t) = 0. Then, for

all M > 0 and t0 ∈ R, there exists t > t0 such that |u(t, s;u0)|0 > M.

Proof. We argue by contradiction. Assume that there exist a positive constant 0 <

K < +∞ and t0 ∈ R, such that for all t ≥ t0

|u(t, s; u0)|0 ≤ K. (13)

Since λ > λ1, we can take ε > 0 such that

λ > λ1 + εK2.

For this ε > 0, there exists t1 > 0 such that b(t) ≤ ε for t ≥ t1. We define

q(t) =
∫

Ω
u(t, s; u0)ϕ1(x)dx.

Multiplying the equation that satisfies u by ϕ1, integrating over Ω and using the Green’s

formula, we obtain

q′(t) = (λ− λ1 − εK2)q(t) +
∫

Ω
(εK2 − b(t)u2)u(t, s; u0)ϕ1(x)dx,

and so, by (13), we get for t ≥ max{t0, t1}

q′(t) ≥ (λ− λ1 − εK2)q(t) and q(s) > 0.

This is a contradiction with (13).

The preceding result implies that there does not exist any bounded absorbing set for

(2) in the sense of a bounded set B ⊂ X such that, for any D ⊂ X bounded, S(t, s)D ⊂ B,

for t big enough (Chepyzhov and Vishik [9], Temam [25]). Thus, at the parameter value

λ = λ1 it occurs a qualitative change of the asymptotic behaviour of the equation, as a

“dissapearance” of the dissipative effect in the equation. On the other hand, note that

13



the presence of the term -b(t)u3 is also causing some dissipativeness in the problem. It is

the possibility of being b(t) as close to zero as time goes to ∞ which causes so big change

in the asymptotic behaviour.

Recently, the theory of global attractors for general non-autonomous differential equa-

tions has been introduced (see Section 2). In the following section we apply this theory

to our problem. Some new qualitative properties in the asymptotic behaviour of (2) will

arise by using this theory. In particular, we will show a result on pullback permanence.

4.2 Existence of non-autonomous attractors for the logistic equation

4.2.1 Absorbing set in X

Consider the following non-autonomous differential equation
{

dy(y)
dt = λy(t)− b(t)y3(y)

y(s) = ys

whose solution satisfies

y2(t, s; ys) =
e2λt

e2λs

y2
s

+ 2
∫ t
s e2λτ b(τ)dτ

.

Now, given D ⊂ X bounded, i.e., supd∈D |d| ≤ M, for M > 0, and u0 ∈ D, the pair

(0, y(t, s; M)) is a sub-supersolution of (2) and so,

u(t, s; u0) ≤ y(t, s; M), for all t ≥ s.

Thus, there exists T (t) ∈ R such that

|u(t, s; u0)|0 ≤ r1(t) for s ≤ T (t) (14)

where

r2
1(t) =

e2λt

∫ t
−∞ e2λτ b(τ)dτ

.

Clearly, this means that the ball in X with radius r1(t), BX(0, r1(t)), is absorbing for the

process S(t, s).

4.2.2 Absorbing set in C1
0 (Ω̄)

In order to obtain a family of absorbing sets in C1
0 (Ω̄) we need the following result which

follows by [20], see also Lemma 3.1 in [5]. Here, for a Banach space Y, Y β will denote the

usual fractional power spaces with norm |·|β .
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Lemma 19 The operator A generates an analytic semigroup on Y = Ck
0 (Ω̄) for k = 0, 1.

Moreover, it holds

Y β ↪→ Ck+q
0 (Ω̄) for q = 0, 1 and 2β > q.

Given D ⊂ X bounded, i.e., supd∈D |d| ≤ M, for M > 0, take u0 ∈ D. We define

h(r, s) = λu(r, s; u0)− b(r)u3(r, s; u0) for r ≥ s.

Then, writing the equation from the variation of constants formula, we obtain

u(t, s; u0) = e−A(t−s)u0 +
∫ t

s
e−A(t−r)h(r, s)dr.

Hence, taking it between t− 1 and t, we get

u(t, s; u0) = e−Au(t− 1, s; u0) +
∫ t

t−1
e−A(t−r)h(r, s)dr.

Hence,

|u(t, s; u0)|β =
∣∣∣Aβu(t, s;u0)

∣∣∣
0
≤

∥∥∥Aβe−A
∥∥∥

op
|u(t− 1, s;u0)|0 +

sup
r∈[t−1,t]

|h(r, s)|0
∫ t

t−1

∥∥∥Aβe−A(t−r)
∥∥∥

op
dr.

Now, using the estimate
∥∥Aβe−A(t−r)

∥∥
op
≤ Cβ(t−r)−βe−δ(t−r) for some constants Cβ, δ >

0 (cf. Henry [16]) and (14), we obtain the existence of M(t) and T0(t) such that

|u(t, s;u0)|β ≤ M(t) for all s ≤ T0(t)

with β < 1− ε, and any ε ∈ (0, 1). Applying now Lemma 19 with q = 1 and β > 1/2, we

obtain

|u(t, s; u0)|C1 ≤ R1(D, t) for all s ≤ T0(t),

and then the ball in C1
0 (Ω̄), B(0, R1(t)) is absorbing in C1

0 (Ω̄).

We can repeat the argument taking now Y = C1
0 (Ω̄) and D a bounded set in Y. In this

case, using again Lemma 19, we obtain that

|u(t, s; u0)|C2 ≤ R2(D, t) for all s ≤ T1(t),

and hence, the existence of an absorbing set in C2
0 (Ω̄), and so compact in X.
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Remark 20 From (14) we conclude that the non-autonomous attractor A(t) attracts not

only the “pullback pseudotrajectories” ∪s≤tS(t, s)u0, but we have a stronger attraction

property: Consider the base of attraction

D = {v : R→ X continuous, such that, lim
s→−∞

e2λs

|v(s)|20
= 0}

Then, we have that, given v ∈ D,

lim
s→−∞ dist(S(t, s)v(s),A(t)) = 0. (15)

Indeed, we have that for s small enough

|u(t, s; v(s))|20 ≤
e2λt

e2λs

|v(s)|2s
+ 2

∫ t
s e2λτ b(τ)dτ

≤ r2
1(t).

Note that every map v, with v(t) ≡ v0, for all t, is in D.

4.3 Upper semicontinuity of non-autonomous attractors to the global

attractor

Let bσ be a family of functions satistying (Hb) and Sσ(t, s) be the non-autonomous dy-

namical system associated to

ut −∆u = λu− bσ(t)u3, lim
σ↘0

bσ(t) = α > 0 (16)

uniformly on bounded sets of t ∈ R, λ > λ1, defined as a small perturbation of the given

semigroup S0 associated to the autonomous equation

ut −∆u = λu− αu3. (17a)

Remark 21 Note that this holds, for example, for 0 < bσ(t) = αe−σ|t|.

The asymptotic behaviour of this autonomous logistic equation is very well known (cf.,

for example, Hale [14]). Indeed, it can be proved that (17) has a global attractor A, that

is, a compact invariant set (S0(t)A = A, for all t ≥ 0) attracting every bounded set in

X forward in time, i.e. limt→+∞ dist(S(t)D,A) = 0, for all D ⊂ X bounded. Moreover,

we can get some information about the structure of this set. Indeed, at the parameter

value λ = λ1 we find a pitchfork bifurcation, that is, it bifurcates from the zero solution a

globally asymptotically stationary solution u+ ∈ X, i.e. u+ satisfies

lim
t→+∞ |u(t; u0)− u+|0 = 0, for all u0 ∈ V+.
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Note that the asymptotic behaviour of (16) is rather different. However, we can apply

a result on the upper semicontinuity of attractors associated to (16) and (17). Indeed,

suppose, for all t > s,

lim
σ↘0

d(Sσ(t, s)u0, S0(t)u0) = 0 (h1)

uniformly on bounded sets of X.

On the other hand, suppose that there exist the pullback attractors Aσ(t) and A,

associated to Sσ and S0 respectively, such that Aσ(t) ⊂ Kσ(t), A ⊂ K, where Kσ(t) and

K are compact absorbing sets associated to the corresponding flows, and satisfying

lim
σ↘0

dist(Kσ(t),K) = 0, for every t ∈ R. (h2)

Then we have (Caraballo and Langa [7])

Theorem 22 Under the preceding assumptions (h1), (h2), it follows that, for all t ∈ R,

lim
σ↘0

dist(Aσ(t),A) = 0.

It remains to prove that conditions (h1) and (h2) are satisfied in our case. Indeed,

(h2) is a consequence of the expression for rσ
1 (t), with rσ

1 (t) the corresponding radius of

the absorbing ball associated to (2) with bσ(t). From (14),

lim
σ↘0

rσ
1 (t)2 = lim

σ↘0

e2λt

∫ t
−∞ e2λτ bσ(τ)dτ

= 2
λ

α
,

which is independent of t ∈ R, so that the same is true for Rσ
1 (t) and (h2) holds.

On the other hand, (h1) is the content of the following lemma

Lemma 23 Given uσ(t, s; u0), u(t;u0) solutions of (16) and (17) respectively with initial

data uσ(s) = u(s) = u0, it holds that, for all t > s,

lim
σ↘0

|uσ(t, s; u0)− u(t; u0)|0 = 0. (18)

Proof. Since limσ↘0 bσ(t) = α > 0, for σ sufficiently small, positive constants are

supersolutions of (16), see (12), and so

|uσ(t, s; u0)|0 ≤ M (independent of σ.) (19)
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If we call vσ(t, s; u0) = uσ(t, s; u0) − u(t; u0), and using the variation of constants

formula, we have

vσ(t, s; u0) =
∫ t

s
e−A(t−r)(λvσ(r, s; u0) + (α− bσ(r))u3

σ(r, s; u0) +

α(u3
σ(r, s;u0)− u3(r; u0)))dr.

Since
∥∥e−A(t−r)

∥∥
op
≤ e−δ(t−r) ≤ 1, we get

|vσ(t, s;u0)|0 ≤ λ

∫ t

s
|vσ(r, s;u0)|0 dr +

∫ t

s
|α− bσ(r)| sup

σ

∣∣u3
σ(r, s; u0)

∣∣
0
dr

+3α

∫ t

s
η2

σ(ξr) |vσ(r, s; u0)|0 dr.

Using now (19) and Gronwall’s lemma, we get (18).

4.4 Bifurcation scenario for positive solutions

In this section we describe the changes in the asymptotic behaviour of the equation as

the parameter value crosses λ1. For λ < λ1, note that the zero solution is globally asymp-

totically stable, in both the forward and the pullback sense. Indeed, from (8) we have

that

lim
t→+∞ |u(t, s; u0)|20 = lim

s→−∞ |u(t, s; u0)|20 = 0.

This means that, in this case, the non-autonomous attractor reduces to a fixed (not de-

pending on time) point, i.e. A(t) ≡ {0}, for all t ∈ R.

On the other hand, a nontrivial attractor exists for values of the parameter bigger than

λ1. In particular, we prove that the attractor is bigger than the zero solution, i.e. {0}
 A(t).

Proposition 24 Given u0 ∈ C1
0 (Ω̄) strictly positive, λ > λ1 and t ∈ R, there exists ε > 0

such that, for all s ≤ t

|S(t, s)u0|0 > ε.

Proof. Since λ > λ1 and u0 ∈ C1
0 (Ω̄) is strictly positive, it is not hard to prove that

u=εϕ1 is a subsolution of (2) provided that ε verifies

0 < ε ≤ min
x∈Ω̄

u0(x)
ϕ1(x)

and ε2B2 ≤ λ− λ1.

So, taking ε sufficiently small, we get

εϕ1 ≤ u(t, s; u0)

whence the result follows.
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Remark 25 Note that this implies that {0}  A(t). In fact, there exists a subset of A(t)

bounded away from zero “attracting” every u0 ∈ C1
0 (Ω̄) strictly positive.

4.4.1 On the structure of the pullback attractor

In this Section we apply the results of Section 3 (Corollary 13) to our equation (2).

We take (u(t), u(t)) = (0, r1(t)). Observe that r1(t) ∈ D, because

lim
s→−∞

e2λs

r2
1(s)

= 0.

Moreover, A(t) ⊂ Ir1
0 (t), by (14). So, applying Corollary 13, there exists a complete

trajectory u∗(·) in the pullback attractor. Since A(t) 6= {0}, we have that u∗(t) 6= {0}, for

all t ∈ R.

Remark 26 Note that u∗(·) ∈ A(·) is a very special complete trajectory. On the one

hand, it is a maximal trajectory, an upper bound on the pullback attractor in the positive

cone, that is, for all u(t) ∈ A(t)

u(t) ≤ u∗(t).

On the other hand, it is globally asymptotically stable from above (cf. Theorem 12).

Finally, we conclude

Theorem 27 Assume (Hb) and λ > λ1. Then, (2) is permanent in a pullback sense.

Proof. Given a bounded set D ⊂ X and u0 ∈ D, by (11) we have that

0 < V (x) ≤ u(t, s;u0) for any s ≤ T (t,D).

Thus, the permanence follows for

U(t) = {u ∈ X : V (x) ≤ u ≤ r1(t)}.
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5 Conclusions

We have studied permanence for a general non-autonomous logistic equation. We allow

the non-autonomous term to tend to zero, so that we have obtained some information

on the transfer of stability at the parameter value λ = λ1 from the zero solution to the

pullback attractor.

On the one hand, we have introduced in a general way the concepts of sub, super and

trajectories to get some information on the structure of the pullback attractor of order-

preserving systems, finding u∗(t) as a maximal complete trajectory in the attractor with

some properties of stability. We think that all this general framework could be appropi-

ate to study bifurcation phenomena and permanence for other non-autonomous partial

differential equations. But note that we do not have that u∗ it is globally asymptotically

stable, that is, for all u0 ∈ V+, lims→+∞ |S(t,−s)u0−u∗(t)|0 = 0. Observe that this being

true would lead to a pitchfork bifurcation scenario, just as in the autonomous case for the

logistic equation.

But, on the other hand, it should be possible to define and apply to particular non-

autonomous examples a general theory of stable and unstable manifolds, so that problems

on the structure of attractors can be completed as it is known in the autonomous case

(Hale [14]). Also the definition of different kinds of bifurcations has to be stated, as well

as the application of these ideas to systems of partial differential equations. But we think

that what it is done in this work put some light in these challenging problems, which we

think to follow studying in future.
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