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Abstract

In this paper, we describe a new method to classify complex filiform Lie algebras
based on the concept of isomorphism between Lie algebras. This method, which has the
advantage of being applied to any dimension, gives the families of algebras in each
dimension in an explicit way. In order to apply, only the corresponding structure the-
orem of complex filiform Lie algebras in each dimension is needed. As a consequence of
our study, we also predict that the increase (in terms of quotiens) in the number of
algebras families when passing from even dimension to odd dimension tends to 1
whereas it grows in a no finite way if passing from odd dimension to immediate even
dimension. © 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

Classifying Lie algebras is actually an open problem, which has been treated
by several authors by using different methods. In fact, only the classifications of
solvable, nilpotent and filiform complex Lie algebras of dimension n, with
n<5, n<7 and n <12, respectively, are known.
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Dealing with the problem of classifying complex filiform Lie algebras only,
which is the aim of our study, the first author who defined the filiform Lie
algebras was M. Vergne, in her thesis in 1966, which was later published in [10].
She firstly classified these algebras in the cases of low dimensions and she also
showed that they are a subset of the nilpotent Lie algebras (in fact, the most
structured subset of nilpotent Lie algebras).

In 1988, Goze and Ancochea [1], through the introduction of a new in-
variant which they call the characteristic sequence, obtained the classification of
these algebras in dimension 8. This classification was later corrected by the
same authors [2] and independently same time, by Seeley [9]. Later, Echarte
and Gdémez [6] classified using this method filiform Lie algebras of dimension 9.

Echarte and two of the authors of this paper classified in 1996 these algebras
in dimension 10 by the introduction of another invariant, which they call the
pair (i,h) [4].

Recently, Gémez et al. [7] by the method of the elementary changes of basis
gave a correct classification of complex filiform Lie algebras of dimension n
with n < 11.

Finally, at the end of 1997, the last classification of complex filiform Lie
algebras known until now appeared. The authors of this paper [5] classified
complex filiform Lie algebras of dimension 12 by using this method which we
explain in this paper, based on the concept of isomorphism between Lie alge-
bras. However, this list, in which 496 families of these algebras appeared, had
some errors which were checked by Gomez et al. [7]. The authors thank them
for their constructive suggestions in the application of this method.

It is convenient to note that by classifying a set, we mean to find a certain
property of it which let us define an equivalence relation among its elements.
The equivalence relation which we will use to classify complex filiform Lie
algebras will be isomorphic. So, we will explicitly compute a representative of
each class of complex filiform Lie algebras in each dimension. However, this
process requires hard and complicated calculations, which are impossible
without the use of a computer. In our case, most of the calculations needed
were made by using the Mathematica program, although another symbolic
computation program could be used.

2. Definitions and notations

In this paper, all the Lie algebras which appear will be considered over the
complex field C.

Let g = (C", u) be a Lie algebra of dimension #n, with u the associated law.
We consider the lower central series of g defined by C'g = g, C'g = u(g, C''g).
The Lie algebra g is filiform if dime C'g = n — i for 2 <i< n. If x € g we denote
by ad(x) the adjoint mapping associated to x (i.e., the map y—pu(x,y)).
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Let g be a filiform Lie algebra of dimension n. Then there exists a basis
% ={ey,...,e,} of gsuch thate, € g\ Cg, the matrix of ad(e;) with respect to
% has a Jordan block of order n — 1 and C'g is the vector space generated by
{es, ..., e, -1} with 2<i<n — 1. Such a basis is called an adapted basis.

Sometimes, for the sake of simplicity, we will use [x, y] instead of u(x,y) for
the Lie bracket in a Lie algebra.

Let g and g’ be two Lie algebras. A map @ : g'+—g is said to be a honio-
morphism between Lie algebras if & is a linear application such that
@ [X,Y]—[PX), (Y)] VX,Y € g'. In the case of being @ a bijection, it is
called isomorphism.

3. A new method for classifying filiform Lie algebras

In order to classify complex filiform Lie algebras of any dimension, we use
the structure theorem of these algebras. So, let g be a complex filiform Lie
algebra of dimension »n with an adapted basis {e),...,e,}. Then, [e|,e;] = e;_1,
3 <h < n. A structure theorem for g consists of giving explicitly the rest of the
non-null brackets. These brackets are expressed as function of some structure
constants a;;. These constants, which define the law of the algebra, are related
themselves by polynomial relations coming from the Jacobi identities. These
theorems are already known for dimension 7, with n < 14 (see [3.,4,8], for in-
stance).

To make this idea more understandable, we now present, for the sake of
example, the structure theorem corresponding to the case of the dimension 8.

If g = (C%, ) is a filiform Lie algebra, then there exists an adapted basis
B =A{er,es,...,e3} of g such that

[el,eh] = €5_1 (3 <h < 8),
64,67] = ay7€2,
€s,€6 —day7€2,
ey, eg| = ag7e; + ayges,
= as7€;,

)

6,€7] = ds7€3 + Ag7€2,
= ages + (ass + 2as7)eq + (ass + agr)es + agses,
[67, es] = aseg + (ass + 2as7)es + (ass + aer)es + agses + arges,
where the rest of the brackets are null and the coefficients as;,aqs, ..., a73 € C
verify the following equation: as;(2ass + Sas;) = 0.

From now on, we say that a complex filiform Lie algebra g, with basis
{e1,ea,...,es}, verifying the above condition, has the law u(aq;,ass,as, ass,
ae7, ags, azg ), where the constants define the law p of this algebra.

[
[
[
[@57 €7
[
[
[es,

| =
| =
| =
es, eg} = aq7€4 + (043 + a57)e3 + asges,
| =
es] =
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As it can be seen in this example, the subindexes of these structure constants
have been denoted according to the first bracket in which they appear. In order
to decide which is the first bracket, we have set a certain order relation < in the
set of the subindexes pairs (7, j) with i < j. This order is defined by

L)<k )=li+j<k+1V (i+j=k+INi<k).

In dimension n, the first bracket we consider is [es,e,] = as,e2 and we also
use < to order the constants in the law of the algebra.

The main idea to classify these algebras is defining two Lie algebras and
demanding them to be isomorphic. In this way, we get the necessary conditions
for both to be isomorphic. In fact, sufficient conditions are deduced when we
classify each particular case, due to the isomorphisms between them. We ob-
tain the classification required from the different possibilities of some of the last
conditions not to be verified, that is, after grouping all the complex filiform Lie
algebras of each dimension in isomorphic classes.

So, first of all, we consider two bases over a same vector space verifying the
thesis of the structure theorem of each dimension. Secondly, we set the exis-
tence of an isomorphism which maps the basis of the second algebra in the
basis of the first algebra. According to the definition of the isomorphism and to
these theorems, we will get some restrictions, from which we can deduce the
different families of algebras.

In short, we give the following steps:

Step 1. Let g and g’ be two complex filiform Lie algebras of dimension #,
with bases {uy,...,u,} and {vy,...,v,}, respectively. From now on we denote
the coeflicients defining their laws by a;; and aj;.

Let consider the isomorphism @ : g — g, this is, the bases change given by

n

n
v = E Sili,  Up = E rild;
i=1

i=1

and by the property of filiformity of the algebra.
Step 2. By straightforward computations in the previous step, we can deduce
the following general expression:

vy = $1(517 — Su71) (51 — Suttan )" ua,

where a4,_; is the coefficient of u, , in the bracket [u,_;,u,]. In fact, it can be
easily proved that ay,; =0 if n is odd, whereas a4, is the first structure
constant with respect to the order previously defined, if n is even.

Then, as v, belongs to a basis, necessarily v, # 0 and thus, we have s, # 0,
517, — spr1 7 0 and sy — s,a4,-1 # 0.

Step 3. Now, to make next the computations easier, by using again the
property of filiformity, we have 0 = [v3,v,] = —r1(s17 — s,71)(s1 — s,,a4,,,,1)"74
uy. Then, by taking into consideration the previous step, we have r, = 0. So,
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v = > Sl Uy = > o, ;. We also deduce, in this step, the following con-
ditions between the elements of the law of the algebra: s; #0, r, # 0 and
S1 — SpQ4.n—1 # 0.

Step 4. As the bases change @ is an isomorphism between Lie algebras, then
[@(vr), (v;)] — P([vr,v1]) =0 Vk,I=1,...,n. We obtain some vector equa-
tions by using these last expressions.

Step 5. It is easy to prove in each dimension that we do not lose any piece of
information although we operate with second components only. So, from now
on, we will take into consideration these components only.

Step 6. In this step, we already have new equations from the previous vector
equations (which we denote ¢;; = 0) and the equations consisting on P, =0
(these last ones are the restrictions coming from the Jacobi identities in the
corresponding structure theorem). So, we have a set of equations involving the
coefficients which appear in the laws of each algebra and the coefficients »; and
s; from the isomorphisms. Now, we wish to solve the equation system con-
stituted by the P, = 0. It obliges us to distinguish several cases (for example, 16
of them are considered in dimension 12). By using the first ¢;; = 0 we can easily
prove that each case corresponds to families of algebras which are non-iso-
morphic to the ones of other cases.

Step 7. Finally, we wish that, in all of the cases of the previous step, the
equations c; = 0 give specific values (that is, constants) for the coefficients of
the law or of the isomorphisms or, in other case, relations between them.

In this way, for instance, if we find an expression like the following:
a; = s1ay, we would distinguish two non-isomorphic cases: a; =0 =} and
a1 # 0 # a; (where a; and @) represent any coefficient a;; or a;; of the laws of g
and g', respectively).

In this method, we use the following particular kind of sets to describe
algebras having the same starting point in our method, in a non-redundant
way and by using a unique family:

- 2
Cu(d) = {d +re:r>0, ¢ € {0,—“)} and we denote C,(0) = C,,.
m

Now, we will explain something more about these sets. The set C,, has been
already used in earlier classifications to solve some situations as the following.

As we described in the general explanation, it is sometimes convenient to
distinguish two cases depending on @, = 0 or not. We now consider the second
case. Then, let us suppose that we find an expression like a, — s{'a) = 0. Then,
if we consider an isomorphism with s; =1/ (a’z)l/ " any algebra of the family
which we are considering is isomorphic to one with a, = 1. So, from then on,
we study the subfamily with a, = 1. Then, we must suppose a, = 1 = d} and we
must also suppose that s; is a mth root of the unit. We can do it because this
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last condition will be verified for any isomorphism between algebras belonging
to that subfamily.

If, when continuing the study of this same case, an equation of the kind
as — s1ay = 0 appears, we would have to distinguish two new cases:

e a; =0 =4} and s, is a mth root of the unit.

® a; = s1a; # 0. In this case, the sector C,, is sufficient to represent in a unique
way all possible values of a; of the algebras of that family, as a convenient
value of s; relates both a3 and o} by one isomorphism.

So, from then on, we suppose a3 = a; € C,, and s5; = 1.

Something similar occurs with the set C,,(d). There is no need for using these
kinds of sets in dimensions less than 12, but it appears on some occasions for
greater dimensions.

For instance, let us suppose that we are using some expressions of the kind
Aday + Ba, + C = 0, where 4, B, C are expressions depending on 7, (with 71, a
square root of the unit), such that: if , = 1, it is deduced that a4 = @ and if
ri; =—1,then ay +a, =d € C.

That is, it occurs that either a4 = a} or d/2 is the middle point of a4 and a in
the complex plane. Then, any possible value of a4 in an algebra of the family
which we are studying can be represented by one and only one element be-
longing to the set C,(d/2).

In this way, by applying our method we have obtained the classification of
complex filiform Lie algebras of dimension n with n < 12 and we have observed
that our results coincide with the ones previously obtained by other authors for
dimension <11, although they were reached by using different methods. So, we
note that there is only a finite number of complex filiform Lie algebras of di-
mension 6 pairwise non-isomorphic. In dimension 7 a no finite family of complex
filiform Lie algebras appears for the first time. In dimension 8 some families have
parameters not belonging to C, but either to C, or to another subset of C defined
by an easy algebraic restriction. In dimension 9 our method groups the algebras
by using two two-parameter families and in the case of dimension 10, nine three-
parameter families and the use of the set C; is needed. New difficulties appear
when applying our method to dimension 11. In this way, we find four- and five-
parameter families of algebras. We also find the appearance of some parameters
belonging to C, and others appearing as solutions of third-grade equations. Fi-
nally, in dimension 12, the greatest dimension in which our method has been
applied, we found the sets Cs, C,(d) and C5(d). Some equations with grades up to
6 containing parameters of exponent 4 were also used.

With respect to the number of families obtained in each dimension when
classifying complex filiform Lie algebras, we have observed that this number (1
family of algebras in dimension 4, 2 in dimension 5, 5in 6, 8 in 7, 22 in §, 34 in
9, ...)allows us to predict that the increase (in terms of quotiens) in the number
of algebras families when passing from even dimension to odd dimension
(2/1,8/5,34/22,...) is going to tend to 1 whereas it could grow in a no finite
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way if passing from odd dimension to immediate even dimension (5/2,
22/8,104/34,...).

This conjecture allows us to suppose that the classification of complex fili-
form Lie algebras of dimension 13 is not going to be very complicated with
respect to that already obtained in dimension 12, whereas to get the classifi-
cation in dimension 14 must result in more difficult and it must present quite a
great complexity, not only in computations but in the number of families of
algebras finally obtained.
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