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Abstract In the pioneer work of Savage and Hutter [ 7] the first depth-averaged 
model for granular landslides was proposed written in local coordinates over a ref-
erence plane. From then, there has been proposed a hugh amount of variations, 
corrections and generalizations. In particular, for their impact in real applications, 
we mention the work developed in [ 1] to include the topography curvature effects 
and the new friction law proposed in [ 6] to better reproduce the spread of the gran-
ular mass through a velocity dependent friction coefficient. In [ 3] a correction of 
the friction law has been proposed in order to improve the motion/stop criterion in 
terms of the repose angle of the material. This correction have any influence for 
uniform flows, nevertheless, it plays an important role in case of a free surface not 
parallel to the reference plane. In this work we show two new applications of this 
model to relevant situations. In the first one we show the influence of the correction 
on the spread area of the avalanche over variable topography. In the second one a 
comparison with experimental data of a submarine avalanche is presented. 
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1 Introduction and Notation 

In this work we study the motion/stop criteria of depth-averaged models for aerial 
and submarine avalanches. We consider as a base the Savage-Hutter’s model, which 
can be written in the following form: 

.

⎧
⎪⎪⎨

⎪⎪⎩

∂t H + cos θ∂X (HU ) = 0,

∂t (HU ) + cos θ∂X (HU 2 + g H 2

2 cos θ) =
−gH cos θ∂X (b̂ cos θ) − g sgn(U )H cos θμ,

(1) 

where the unknowns are. H , the thickness of the avalanche measured perpendicularly 
to a reference plane with slope .tan θ (see Fig. 1) and . U , the averaged velocity tan-
gential to the reference plane. . g is the constant of gravity and . μ is the coefficient of 
the friction law.. μ can be defined as a constant value, for the case of a Coulomb law, 
.μ = μC = tan δ0, being .δ0 the angle of repose of the material. Another possibility 
is to consider a more complex law, as for example the Pouliquen’s law proposed in 
[ 6]. In this case, the friction coefficient depends on the velocity and thickness of the 
flow through the Froude number.Fr . Finally,. b̂ describes the topography, taking into 
account the reference plane, it is described in what follows and defined by (4). 

In model (1) local coordinates type are considered over an inclined plane. Denoting 
by .x = (x, z) the Cartesian coordinates, we define the reference plane determined 
by a fixed point .(x̄, z̄) and the slope .tan θ . For every point .P in the granular layer, 
we introduce the coordinates .X = (X, Z), .X being the abscissa of the orthogonal 
projection of .P onto the reference plane and .Z being the distance from .P to the 
reference plane (see Fig. 1). The relation between the Cartesian coordinates . x and 
the . X coordinates is 

.x = (X − Z sin θ, b(X) + Z cos θ), (2) 

where .b(X) is the level of the reference plane: 

.b(X) = z̄ + tan θ(X − x̄). (3) 

The fixed topography measured perpendicularly to the reference plane is defined by 
.b̃(X). In order to describe the interfaces in a more suitable way, we also introduce 
the distance . b̂ defined by 

.b̂(X)cos θ = b(X) + b̃(X)cos θ, (4) 

that is,.b̂(X)cos θ designs the vertical distance (with sign) of the bottom to the abscissa 
axis (see Fig. 1). 

A generalization of model (1) taking into account curvature terms of the topog-
raphy is presented in [ 1]. In the present work we only consider the model written
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Fig. 1 Left: Cartesian and local coordinates notation. Right: Sketch of the domain and notation 

in previous introduced local coordinate system from a reference plane. We refer the 
reader to the reference [ 3] for its generalization to the case of general topography. 

For the case of submarine avalanches a complete extension of the Savage-Hutter 
model for this case is introduced in [ 4]. Here we consider a simplification of this 
model, consisting of considering the system (1) with a reduced gravity instead, that 
is, . g is replaced with .g(1 − ρ f /ρg), for  .ρ f , ρg being the density of the fluid and 
granular material, respectively. 

2 Proposed Correction 

In depth-averaged models, the interaction between the granular material and the 
bottom surface is considered through a term depending on a friction coefficient . μ
multiplied by the normal stress .gH cos θ . For instance, for the Coulomb friction 
law, .μ = tan δ0, .δ0 being the angle of repose of the material. Thus, if the granular 
layer is initially at rest and .z = η(x) defines the avalanche free surface, the equality 
.|∂xη| = μ marks the inflection between motion or stillness of the avalanche. In local 
coordinates, that inflection should be taken into account in the modeling of the friction 
law. If the momentum equation of system (1) is rewritten as follows 

.∂t (HU ) + cos θ∂X (HU 2) = −gH cos θ
(
∂X (b̂ + H) cos θ + sgn(U )μ

)
, (5) 

a glance to the right hand side member reveals that the inflection between the motion 
or stillness of the avalanche is related now to the equality .|∂X (b̂ + H) cos θ | = μ. 

The following basic example explains the problem with the globally friction law 
used in the literature. Figure 2 illustrates an avalanche on a leaning plane (for sim-
plicity, we take.b̃ = 0). Consider two points.X1 and.X2 on the abscissa axis as in the 
figure, and let .xi = Xi − H(Xi ) sin θ , .i = 1, 2. Note that the slope of the blue line
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Fig. 2 A basic example showing the problem with the globally friction coefficient 

is different to the slope of the free surface of the avalanche (red line), so 

. 
(b̂(X2) + H(X2)) cos θ − (b̂(X1) + H(X1)) cos θ

X2 − X1
/= η(x2) − η(x1)

x2 − x1
.

Hence,.∂X (b̂ + H) cos θ /= ∂xη in general, although we have the equality for uniform 
flows. This suggests that the statement of the coefficient of friction law. μ should be 
adapted if the model is written in local coordinates in order to reflect effectively the 
inflection between motion or stillness of the avalanche. Now then, from the relation 
between Cartesian and local coordinates given by .x = X − (b̃(X) + H(X)) sin θ , 
we have 

.∂X (b̂(X) + H(X)) cos θ = J ∂x (η(x)), (6) 

where .J is the Jacobian of the change of variables related to the local coordinates: 

. J = 1 − ∂X (b̃(X) + H(X)) sin θ.

This leads us to propose the following correction of the friction coefficient, 

. μJ = Jμ;

that is, we propose to replace. μ with.μJ in the friction term coefficient in model (1). 
Note that .μJ = μ when.H is constant as, for example, in the case of uniform flows. 
From now on, model (1) will be referred as local-JCF (respectively, local) when. μJ
(respectively, . μ) is the friction coefficient.
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Here we presented the main lines of this friction correction. A complete deduction 
has been developed in [ 3], firstly taking into account the definition of the friction 
term in the depth-averaged procedure, and secondly, as a second order correction of 
the bed pressure. 

3 Numerical Tests 

In this section two tests are presented, the first one is a qualitative test that compare 
three models. In the second one a comparison with experimental data for a submarine 
avalanche is presented. The three models are denoted as follows: the first one is 
named Cartesian model, for which the heigh is measured in the vertical direction, 
obtained by setting .θ = 0. Local and Local-JCF correspond to the models where 
the height is measured perpendicularly to the reference bottom, without or with the 
proposed correction, respectively. For the numerical test a finite volume method 
with a hydrostatic reconstruction is considered, by applying an apparent bottom 
topography to discretize the friction term (see [ 2]). Note that the same numerical 
scheme can be considered for the case with the proposed correction, by replacing . μ

by .μJ . 

3.1 Test 1: Comparison of the Three Models for a Variable 
Topography 

This test explores the evolution of the avalanche, firstly, over a smooth bottom and, 
subsequently, by adding a bump. A comparison of the results of the three models are 
presented in what follows. No curvature for the bottom is considered; the angle . θ of 
the reference plane has been set to .20◦ when local coordinates are used. 

The domain is.x ∈ [−7, 2] discretized with.3600 points. Let us consider a bottom 
defined as 

. zb(x) = 3

2
arctan(x)

and the initial condition for the granular free surface is 

. η(x) = max

(

−1

2

)

x − 3

2

)4

+ 3

2
arctan

)
3

2

)

, zb(x)

)

(see Fig. 3). In Fig. 4 right we show the comparison of the solution at rest obtained for 
the three models when setting the repose friction angle.δ0 = 30◦. The model written 
in local coordinates without the proposed correction predicts a shorter runout than 
the other two models, that gives quite similar solutions with some differences in the
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Fig. 3 Test 1: Initial condition. Reference plane, landslide free surface and bottom 

Fig. 4 Test 1: Comparison between the models Cartesian, Local and Local-JCF. Left: .t = 0.3 s. 
Right: solution at rest 

rear part of the avalanche. Nevertheless, an opposed behavior is found during the 
flow of the avalanche in the first stages (see Fig. 4 left related to time .t = 0.3 s). At 
this moment, contrary to the final state, the faster solution is given by the Cartesian 
model, while the solutions corresponding to Local and Local-JCF also keep quite 
similar and remain backward. 

Although the solution at rest predicted by the Cartesian model is quite similar to 
the Local-JCF one, the evolution of the corresponding avalanches at the first stages 
reveals different behaviors through the most sloping part of the bottom (Fig. 4). To 
further explore this situation, we have repeated the test by including a bump in the 
bottom in order to show how the direction of the velocity of the profile of the landslide 
(related to the angle of reference plane) affects the predictions. So, consider now the 
new bottom defined by (see Fig. 5)
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Fig. 5 Test 1 (bottom with bump): Initial condition. Reference plane, landslide free surface and 
bottom 

Fig. 6 Test 1 (bottom with bump): Solution at rest. The prediction of the Cartesian model exceeded 
the bump, but Local and Local-JCF have not 

. zb(x) = max

(
3

2
arctan(x),−3

)

x + 4

5

)2

+ 1

5

)

.

Figure 6 shows the comparison of the solution at rest for the three models. Notice 
that the avalanches modeled using Local and Local-JCF stop when they achieve the 
bump. On the contrary the avalanche Cartesian model is able to pass over it. Its is 
due to the fact that the unknown of this model is the horizontal velocity and assumes 
a small vertical velocity, instead of a small velocity perpendicular to the bottom, as in 
Local models.We can also observe the mass resting after the bump around.x = −4.5. 
That is, it predicts an erroneous spread of the avalanche.
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3.2 Test 2: Comparison with Experimental Data 
for Submarine Avalanches 

In this test we apply the correction of the friction coefficient to a submarine avalanche 
model and we show the comparison of the numerical results with experimental data. 
We focus on the evolution of the granular layer, so system (1) is adopted by con-
sidering the reduced gravity instead, .g, = (1 − r)g, where . r is the density ratio, 
.r = ρ f

ρb
< 1 for .ρb the bulk density of the mixture granular/fluid mass. 

The laboratory experiments have been performed by Viroulet [ 9] and also pre-
sented in [ 5]. The experiment consists of a release of a granular mass confined behind 
a removable gate in the upper part of a plane with slope . α (see Fig. 7 for the sketch 
and notation). The granular material is made of glass beads of diameter .ds = 4 mm 
and density .ρg = 2500 kg/m. 

3. A thin layer of these beads are sticked all along the 
bottom surface. The reservoir is filled with 2 kg of those beads after being compacted 
to a compaction index of .ϕ = 0.6. Notice that we use the bulk density to calculate 
the density ratio. r , that is,.ρb = ϕρg + (1 − ϕ)ρ f with.ρ f = 1000 kg/m. 

3, what gives 
.r = 0.5263. 

The tank is 2.20 m long, 0.20 m large and 0.40 m high. Two experiments have 
been carried out for two different slopes, .α = 35◦ (Case A) and .α = 45◦ (Case B). 
The initial level water is placed at the same depth .hw0 for both cases. The initial 
height of the granular layer is denoted by .hs0 that is maximum at point .x0 (given by 
the location of the lifting gate). In Table 1, we specify these data of the experimental 
tests. In our case, a longitudinal section is considered to perform the 1D simulation 
and we take the slope of the reference plane equal to the inclination . α in each case. 

The results have been obtained by using 400 points for the discretization of the 
domain .[0, 2.20 m], then .Δx = 0.0055 m and a CFL condition of 0.5. 

In Figs. 8 and 9, we show the final results for all studied options together with 
the experimental data when the granular layer stops. The curves for experiments are 

Fig. 7 Test 2. Sketch of the experiment and notation 

Table 1 Experiment parameters for Test 2 

Case . α (. ◦) .hw0 (m) .hs0 (m) .x0 (m) 

A 35 0.28 0.2448 0.2071 

B 45 0.28 0.271 0.145
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Fig. 8 Test 2: Comparison 
with experimental data, 
plane slope of. 35◦

Fig. 9 Test 2: Comparison 
with experimental data, 
plane slope of. 45◦

obtained from digital images and kindly provided by Poulain [ 5]. As in Test 1, the 
Local solution goes further than the other computations followed by Cartesian and 
Local-JCF solutions. Looking first at the Case A (Fig. 8), we can see that even the 
Cartesian option gives a good result of the runout, the local-JFC solution improves 
it in both, front and rear part of the granular mass. Notice that the apparent loss 
of mass is due to the 1D approximation of the real problem. In Case B (Fig. 9) the
Local solution is very far from the experimental data, but also Cartesian and local-
JFC are not so close, unless in the front part. Nevertheless we observe the same 
relative behavior, obtaining an improved approximation of local-JFC coordinates 
mainly in the rear position, where part of the mass is retained on the inclined plane 
at stationary state. In order to improve this result it would be necessary to consider 
the model taking into account curvature effects. In [ 3] it has been shown the crucial 
effects of curvature terms in comparison with experimental data for the case of aereal 
avalanches.
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Conclusions 

A correction of the friction coefficient for models written in local coordinates pro-
posed in [ 3] has been applied to two numerical tests. As we have shown in the 
numerical results, its influence cannot be predicted a priori with respect to a classical 
definition of the friction term because it depends on the gradient of the free surface. 
In the two numerical tests, we have shown that the correction has a great influence on 
the runout and the evolution of the avalanche. Moreover, it improves the results for 
the submarine avalanches in comparison with experimental data. A generalization 
of this correction for 2D models can be found in [ 3]. 
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