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Abstract—The use of on-line rotor current estimators
with predictive current controllers has been very recently
stated in five-phase induction motor drives, where the
closed-loop performance of the system is improved using
sub-optimal estimators based on Kalman filters. In this
work, the interest of using optimization methods in the
definition of the Kalman filter, like the covariance technique,
is analyzed. Obtained system performances using optimal
and sub-optimal rotor current estimators are experimentally
compared.

Index Terms—Kalman filter, multiphase drives, optimal
covariance estimation, predictive current control.

I. INTRODUCTION

THE interest in model predictive control like an alternative
in power converters and drives to field oriented or direct

torque controllers has been growing up in the last decade [1].
In the multiphase drives’ research field the predictive current
control (PCC) technique represents the most popular case
study [2]. PCC uses a state-space representation of the drive to
optimize the control action. The estimation of non-measurable
state components, typically rotor currents, is a complex
problem that has been recently solved using different methods
for the on-line estimation of the rotor variables [3, 4]. These
studies illustrate the benefits in using rotor current observers
like Kalman filters (KF), although sub-optimal techniques
were applied during the necessary tuning process of these
observers.
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In this paper, a rotor current observer based on KF
is included in the conventional PCC technique, being a
remarkable contribution of the work the optimal design of the
KF by means of a robust covariance estimation method. In [4]
the KF gains are tuned based on trial and error strategies,
using some prior expert knowledge or hypothesis about the
noise. The proposed method is based on the estimation of
true covariances in the control system, which has not been
previously tested in the multiphase electrical drives’ field. A
five-phase induction machine (IM) is used as a case example,
but the obtained results can be extrapolated to different
electrical machines.

II. PREDICTIVE CURRENT CONTROL WITH OPTIMAL
ROTOR CURRENT ESTIMATION

A five-phase IM drive with distributed windings equally
displaced # = 2⇡/5 and powered by a five-phase two-level
voltage source inverter (VSI) is used. A block diagram of
the conventional PCC technique detailed in [2] is shown
in Fig. 1(a) together with a schematic representation of the
five-phase IM drive. This PCC controller utilizes a discrete
model of the system, named predictive model, to predict (at
time k) the future values (time k + 1) of the machine’s
stator currents, bi

s

(k + 1|k), for each possible stator voltage,
u(k). Thus, the predictive model relies on the knowledge of
some variables such as the measured stator currents i

s

(k) and
electrical speed !

r

(k), as it is shown in the following equation:

bi(k + 1|k) = A i(k) + B u(k) (1)

where i = (i
↵s

, i

�s

, i

xs

, i

ys

, i

↵r

, i

�r

), u = (u
↵s

, u

�s

, u

xs

, u

ys

),
and A and B are matrices that depend on the electrical
parameters of the machine and the sampling time T

s

. Matrix
A also depends on the actual value of !

r

(k), and it must
be calculated every sampling time. A detailed explanation
of the machine model is not included here for the sake of
conciseness and can be found in [3]. It is worth stating that,
according to the well-known vector space decomposition
approach [4], the electromechanical energy conversion
variables are mapped into the ↵� � subspace, meanwhile the
current components in the x � y subspace in the analyzed
electrical machine are related to harmonic losses.

In conventional PCC the computation of the control signal
takes a significant amount of time which is comparable with
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(a) (b)

Fig. 1. Schematic diagram of the five-phase IM drive and blok diagram of (a) the conventional PCC technique applied in [2] for the regulation of
five-phase IM drives, and (b) the proposed PCC technique that uses a KF-based optimum rotor current estimator.

T

s

, so a second-step ahead prediction of the stator currents
bi
s

(k+2|k) is required [3]. In the existing literature this term is
obtained iteratively using the predictive model. Regarding the
rotor quantities that appear in (1), most research works rely on
aggregating all unmeasurable quantities into one term that is
tracked, although the use of estimators for rotor quantities has
been recently proposed in [4], at the expense of a remarkable
increment of the computational cost of the implemented
controller (by 36 % of the total). Once the second-step ahead
prediction is obtained, an optimization process is applied every
sampling period, where a cost function J is calculated for all
32 (25) possible stator voltages to obtain a desired reference
trajectory i⇤

s

(k). The voltage vector that minimizes the cost
function is selected and applied to the system during the next
sampling period. The cost function can be defined in different
ways, although the deviation between reference and predicted
stator currents is normally used as follows:

J(k + 2|k) =k be
↵�

k2 +�

xy

k be
xy

k2 (2)

being be the second-step ahead predicted error computed as
be = i⇤

s

(k + 2)�bi
s

(k + 2|k), and �

xy

a tuning parameter that
allows to put more emphasis on ↵�� or x�y subspaces [1, 5].

A. Influence of Rotor Current in Prediction

As commented before, the predictive model given by (1)
cannot be used for producing predictions if rotor currents
are not measurable (as it is the normal case) unless some
estimation of rotor currents is provided. PCC methods have
overcome this problem by aggregating all non-measurable
terms in one factor that is later tracked and updated (G).
For this purpose, the stator current vector is divided into a
measurable part, i

s

= (i
↵s

, i

�s

, i

xs

, i

ys

), and a non-measured
part, i

r

= (i
↵r

, i

�r

), and the predictive model takes the
following form:

bi
s

(k + 1|k) = Ā i
s

(k) + B̄ u(k) + bG(k|k) (3)

with appropriate Ā and B̄ matrices obtained from (1) using
elemental algebra. The bG(k|k) term is approximated holding
its previous value bG(k � 1|k) computed at time k, using past
values of measured variables:

bG(k � 1|k) = i
s

(k)� Ā i
s

(k � 1)� B̄ u(k � 1) (4)

B. Rotor Current Estimator Based on Kalman Filter

Instead of using the tracking and updating technique
proposed in conventional PCC methods, a KF is used in [4]
as it is shown in Fig. 1(b), where the b

Q

⇢

and b
R

⌫

estimators
block were not taken into account. The rotor currents (bi

r

)
are estimated every sampling time using the measured rotor
speed !

r

, stator phase currents i
s

and stator phase voltages u.
Considering uncorrelated processes and zero-mean Gaussian
measurement noises, the machine’s model (1) can be written
as follows:

bi(k + 1|k) = A i(k) + B u(k) + H ⇢(k)

i
s

(k) = C i(k) + ⌫(k)
(5)

being ⇢(k) the disturbance vector (process noise), ⌫(k) the
measurement noise, and H the noise weight matrix.

Dividing the current vector in two parts, i
↵�s

= (i
↵s

, i

�s

)
and i

↵�r

= (i
↵r

, i

�r

), the dynamic of the reduced-order rotor
current estimator can be defined in the following way:

bi
↵�r

(k + 1|k) = (A22 � K(k) A12)bi↵�r(k)
+ K(k)bi

↵�s

(k + 1|k)
+ (A21 � K(k) A11) i

↵�s

(k)

+ (B2 � K(k) B1) u
↵�

(k)

(6)
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where K(k) represents the KF gain matrix and
u
↵�

= (u
↵s

, u

�s

). This estimation of rotor currents can
now be used to produce the second-step ahead prediction for
the stator current as:
bi
↵�s

(k + 2|k) =A11
bi
↵�s

(k + 1|k) + A12
bi
↵�r

(k + 1|k)
+ B1u

↵�

(k + 1)
(7)

The KF gain matrix is calculated at each sampling time
in a recursive manner using an estimation of two covariance
matrices of the noises called b

Q

⇢

and b
R

⌫

. These covariances
are defined as the expected values of the disturbance and
the measurement noise as Q

⇢

= cov(⇢) = E{⇢ · ⇢T } and
R

⌫

= cov(⌫) = E{⌫ · ⌫T }, being the KF gain matrix obtained
using the following steps:

�(k) = '(k)�'(k) ·CT (C ·'(k) ·CT + b
R

⌫

)�1 ·C ·'(k) (8)

K(k) = �(k) · CT b
R

�1
⌫

(9)

'(k + 1) = A �(k) · AT + H b
Q

⇢

· HT (10)

This completes the required relations for the state
estimation, where the minimum estimation errors depends on
K(k) and it is guaranteed if the estimated noise covariances
and the initial condition of the state covariance ('(0)) are
known. Notice that the interest of using KF in the context
of the stator current prediction and PCC is presented in [4],
where the KF was hardly tuned using initial values, but
the obtained experimental results encouraged future research
towards establishing the KF as a tool of choice for the
definition of predictive controllers in electrical drives.

C. Proposed optimization procedure

The KF optimal implementation is difficult due to the
lack of information about the noises. The use of an optimal
estimation using KF requires the estimation of b

Q

⇢

and b
R

⌫

,
which can be done through Bayesian, maximum likelihood,
covariance matching or correlation techniques. Bayesian
and maximum likelihood are complex and require much
data. Covariance matching uses the residuals of the state
estimation problem, but it provides biased estimates of the
true covariances, resulting in a non optimal KF tuning. In [6]
the Autocovariance Least Squares method (ALS) is proposed
to provide unbiased estimates with the lowest variance,
guaranteeing optimal KF tuning. The ALS method is done
off-line based on data gathered from closed-loop operation.
The positive semi-definiteness of the covariance estimation
is guaranteed by adding constraints to the ALS problem.
Note that without this method, and given the current level
of sophistication of the predictive control methods, the use of
KF is incomplete, following the Bellman optimality principle.
Furthermore, the KF algorithm computational cost is the same
whereas the system performance improves.

The initial estimation of disturbance covariances ( bQ
⇢0 and

b
R

⌫0) can be obtained from the residuals of the estimator
using (11) and (12), as it is stated in [7]. Then, by solving
the optimization problem (13) the estimated covariances ( bQ

⇢

and b
R

⌫

) are obtained. The first term in (13) is the residues
norm, the second term is the constraint penalization term, the

Fig. 2. ALS flow chart considering initial covariances (Q
⇢0 and R

nu0)
and number of data points (N

d

).

Fig. 3. Proposed PCC algorithm in a flow chart diagram.

term | · | denotes the determinant of the matrix, A and b
b are

defined in [6] as Eqs. (11) and (12), respectively, and µ is the
barrier parameter for the semi-definite constraint (Q

⇢

� 0 and
R

⌫

� 0). By using a Newton-based optimization procedure,
the covariances are obtained after a predefined number of
iterations (n) or when the results converge as shown in Fig. 2.
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Fig. 4. Scheme of the experimental test rig.

b
Q

⇢0 =cov{bi(k + 1|k)� Abi(k|k � 1)

� B u(k)� H ⇢(k|k � 1)}
(11)

b
R

⌫0 = cov{i
s

(k)� C i(k|k � 1) I ⇢(k|k � 1)} (12)

min
Q⇢

R⌫

����A


(Q

⇢

)
s

(R
⌫

)
s

�
�b
b

����
2

2

� µ log

����
Q

⇢

0
0 R

⌫

���� (13)

Note that b
Q

⇢

and b
R

⌫

are constant values during the
proposed PCC algorithm. To make things clearer, a flow chart
of the proposed PCC control algorithm is presented in Fig. 3.

In general, tuning parameters of the predictive controllers
is not easy as many studies focusing on this area have
shown [5, 8]. Although the use of KF improves the modeling
of complex electrical systems and consequently the better
performance of the PCC controller, the optimal parameters
of the filter was still a problem to be solved, and the
proposed method covers this part of the problem by an optimal
estimation of b

Q

⇢

and b
R

⌫

. The contribution of this paper
analyzes the obtained improvement when this optimal rotor
current estimator is applied.

III. EXPERIMENTAL RESULTS

To validate the proposed control method, an experimental
evaluation has been conducted. A diagram of the test rig is
shown in Fig. 4. The principal element is a three pairs of
poles five-phase IM whose nominal parameters have been
experimentally determined as R

s

= 19.45 ⌦, R
r

= 6.77 ⌦,
L

ls

= 100.7 mH, L
lr

= 38.06 mH, M = 656.5 mH, !
n

=
1, 000 rpm and P

n

= 1 kW. Two 2-level three-phase power
converters from Semikron (SKS22F) are used to drive the
five-phase IM, where the DC-link voltage is set to 300 V
using a DC power supply system. The control system is based
on a MSK28335 board and a TMS320F28335 DSP, being the
rotor mechanical measured using a GHM510296R/2500 digital
encoder and the eQEP peripheral of the DSP. A DC motor is
also used to introduce a variable load torque in the system.

Different tests were carried out to validate the current
controller performance using the conventional PCC method
(C1), the PCC method with KF detailed in [4] (C2) and
the PCC with the proposed optimum-KF (C3). A sampling

TABLE I
EXPERIMENTAL RESULTS AT DIFFERENT OPERATING POINTS

! [rpm] Figures of merit C1 C2 C3

400
MSEi⇤

↵s

0.1068 0.0972 0.0954

MSEbi⇤
↵s

0.1468 0.1390 0.1382
MSEi⇤

xs

0.1217 0.1199 0.1176
THD(%) 14.15 13.29 13.47

500
MSEi⇤

↵s

0.1075 0.0950 0.0907

MSEbi⇤
↵s

0.1411 0.1343 0.1267
MSEi⇤

xs

0.1284 0.1051 0.0963
THD(%) 16.86 15.07 14.07

550
MSEi⇤

↵s

0.1227 0.1044 0.0879

MSEbi⇤
↵s

0.1526 0.1363 0.1247
MSEi⇤

xs

0.1408 0.1354 0.1260
THD(%) 16.08 14.63 13.18

600
MSEi⇤

↵s

0.1177 0.0924 0.0860

MSEbi⇤
↵s

0.1469 0.1318 0.1234
MSEi⇤

xs

0.1435 0.1355 0.1203
THD(%) 16.42 12.50 12.96

700
MSEi⇤

↵s

0.1266 0.0875 0.0835

MSEbi⇤
↵s

0.1579 0.1300 0.1285
MSEi⇤

xs

0.1524 0.1433 0.1430
THD(%) 17.34 14.81 14.70

frequency of 15 kHz and half of the nominal load are
considered, as well as the cost function defined in (2) with
�

xy

= 0.1 (the torque and flux production are promoted
by the controller over the harmonic losses). Four figures of
merit are used to compare the efficiency of the different
rotor current estimators in terms of control performance and
prediction accuracy. These are mean squared values of the
current control error in ↵ and x axis, defined in (14), the
model prediction error in ↵ axis (15), and a total harmonic
distortion measurement (THD) of the stator phase (15).

MSEi⇤(↵,x)s =

vuut
P

N

j=1

⇣
i(↵,x)s(j)� i

⇤
(↵,x)s(j)

⌘2

N

(14)

MSEbi
↵s

=

vuut
P

N

j=1

⇣
i

↵s

(j)�b
i

↵s

(j)
⌘2

N

(15)
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(a) (b) (c)

Fig. 5. Experimental comparison of obtained stator currents in ↵ and x axis using (a) C1, (b) C2 and (c) C3 techniques at 550 rpm and half nominal
torque load.

THDbi
s

=

s
MSEbi2

↵�s

+MSEbi2
xys

i

↵s peak

/2
(16)

Table I and Fig. 5 summarize the obtained results in
steady-state operation, where it is quantified the obtained
improvement when the proposed rotor current estimator is
used. It is observed that all mean squared values are improved
(lower values) if the proposed optimum KF rotor current
estimator (C3) is used. For instance, the obtained MSEi⇤

↵s

value at 550 rpm using C3 is reduced in 28.36 % and
15.80 % when it is compared with those obtained using C1
and C2, respectively. Similarly, the obtained MSEbi

↵s

value
at 600 rpm is also reduced in 16.00 % and 6.37 % when
C3 is employed instead of C1 and C2, respectively. Note
that similar results are obtained at different operating points.
Fig. 5 details the performance of the system using C1, C2
and C3 at 550 rpm, where the current tracking characteristics
in ↵ and x axis are plotted, showing that the closed-loop
performance of the system using C3 technique offers better
tracking characteristics than others. Regarding the harmonic
content of the stator current, the obtained value is lower
if the rotor current estimator is used, being C3 the best
in most cases.

The dynamic performance using the C3 method is finally
analyzed, and the obtained results are shown in Fig. 5. The
q stator current reference (i⇤

qs

) is varied according to a step
profile, while the d stator current reference is set to a constant
value (i⇤

ds

=0.57 A); see Fig. 5 (upper plot). The measured
stator currents in synchronous (d and q axis, upper plot of
Fig. 5) and stationary (↵ � � � x � y axis, middle plot of
Fig. 5) frames follow the impressed references, which confirms
that the proposed controller works well at different mechanical
speed and during transient states. Note that the outer speed
controller is not used in the test and the mechanical speed is
not regulated, hence it varies as it is shown in the lower plot of
Fig. 5. It is also worth mentioning that a sampling frequency
of 15 kHz (sampling time of about 67 µs) is used, which still
enables the implementation of the KF-based rotor estimator in
the C2 and C3 controllers. Note also that the proposed ALS
method does not affect the computational cost (the proposed

Fig. 6. Transient response using the C3 controller. From top to bottom:
d� q stator currents i

ds

and i

qs

, and their references i

⇤
ds

and i

⇤
qs

; ↵ and
x currents i

↵s

and i

xs

, with the imposed reference i

⇤
↵s

, and mechanical
speed !

m

.

optimization procedure is performed off-line, prior to starting
the normal operation of the multiphase drive).

IV. CONCLUSION

This work addresses the application of KF in the design of
rotor current observers when PCC methods are used in IM
drives. In particular, a procedure for the design of an optimal
KF is presented. Experimental results in a five-phase IM drive
show the interest of the proposed procedure, which improves
stator current prediction and tracking, comparing with other
conventional or KF-based PCC methods. Notice that all the
obtained conclusions for a particular case example based on
five phase IM can be extended to different multiphase and
conventional IM.
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