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Five-Phase Induction Motor Rotor Current Observer
for Finite Control Set Model Predictive Control of

Stator Current
Cristina Martı́n, Manuel R. Arahal,Member, IEEE, Federico Barrero,Senior Member, IEEE, and Mario J. Durán

Abstract—Model predictive control (MPC) has recently been
applied to induction motor (IM) drives in a configuration kno wn
as finite control set MPC (FCS-MPC). Its implementation must
solve the problem of estimating rotor quantities, a task that is
usually done using a simple backtracking procedure. On the
other hand, observers have been used with field-oriented control
(FOC), sensorless drives and for fault detection but they have
not been used yet for finite control set predictive current control
of drives. This paper shows the benefits of incorporating a rotor
current observer in a finite control set model predictive controller
for the stator current of a five-phase drive. The observer design
methodology employed in this work uses pole placement based
on Butterworth filter design. The new estimation scheme is
compared with the standard one in which nonmeasurable state
components and other variables are lumped into one term
that is updated. The differences between both approaches are
experimentally analyzed and verified.

Index Terms—Finite control set, observers, pole placement,
predictive control.

I. I NTRODUCTION

M ODEL predictive control (MPC) is a well established
technique for process control that has been applied to

electrical systems [1], later referred to as finite state MPC
(FSMPC) in [2] and also finite control set MPC (FCS-MPC) in
[3]. An up-to-date review of MPC applied to power electronics
can be found in [4].

One implementation aspect, common to most MPC appli-
cations, is the estimation of nonmeasurable state components.
These are typically rotor variables for which sensors are usu-
ally not attached. Controllers often need a good knowledge of
such quantities in order to provide the best performance, being
FCS-MPC a clear example. In this regard, observer theory [5]
is a well-established discipline that provides a frameworkfor
understanding and designing estimation schemes for induction
motor (IM) drives and other electrical systems. Its use in
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IM control takes either a full-order or reduced-order form.
While the full-order observer makes it possible to estimate
stator current and rotor components from measurements of
stator voltages, stator currents, and speed [6], the reduced-
order observer allows the rotor components estimation using
only measurements of stator currents and speed.

Most proposals of observers for IM use the field-oriented
control (FOC) scheme and related ones. However, FOC has
been found in practice to be satisfactorily robust and effective
without complex flux estimation methods. Otherwise, FCS-
MPC is highly sensitive to prediction errors that can arise
from parameter mismatch among other causes. In [7], sliding
mode full-order and reduced-order observers are applied for
flux and speed estimation for predictive torque control of IM.
A robust model predictive current controller with a disturbance
observer is also presented in [8], where a Luenberger observer
is constructed for parameter mismatch and model uncertainty
which affect the performance of the MPC. The gains of
the disturbance observer are also determined using a root-
locus analysis, and the stability of the disturbance observer is
analyzed when there are errors in the inductor filter parameter.
In [9], a nonlinear predictive control law with a disturbance
observer is applied to track speed and flux profiles in an IM,
considering the robustness to parameters’ variations and the
disturbance rejection. This is in contrast to most applications
of FCS-MPC to electrical systems, where observers are not
used as such. Instead nonmeasurable quantities, disturbances
and parametric and nonparametric uncertainties are lumped
into one single term of the predictive model. This term is then
updated using a simple procedure and the update is hold until
the next sampling period [2].

In this paper the benefits of incorporating a rotor current
observer in a stator current FCS-MPC-based controller of a
five-phase drive are analyzed. Research on multiphase and in
five-phase IM has exploded in recent times [10]–[12], where
fast control FCS-MPC-based techniques have been combined
with the inherent robustness and fault tolerant characteristics
of multiphase drives [13], [14].

This contribution analyzes the advantages of the proposed
control scheme first using the state-space equations of the
IM and later illustrating them by experimental tests. The
observer design methodology employed in this paper uses
pole placement based on Butterworth filter design. The new
rotor quantities’ estimation scheme is compared with the
standard one used in FCS-MPC. The differences between both
approaches are analyzed and verified with simulations and
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Fig. 1. Schematic diagram of the five-phase IM drive.

experiments.
This paper is organized as follows. The symmetrical five-

phase IM with voltage source inverter (VSI) supply used in
this work is analyzed in Section II. The general principles of
the FCS-MPC technique and its application to the considered
system are presented in Section III. The rotor current observer
is introduced in Section IV, where its design is explained and
simulation results are also included to illustrate the benefits
of the observer. Later, experimental results are shown and
discussed in Section V, where the conventional FCS-MPC
using an update and hold technique and the FCS-MPC using
the Cayley-Hamilton theorem are compared with the proposed
FCS-MPC methods with rotor current observer. The paper
ends with conclusion section.

II. F IVE-PHASE IM D RIVE MODELING

The IM drive used for testing is mainly composed of a
symmetrical five-phase IM with distributed windings equally
displacedϑ = 2π/5 and a five-phase two-level VSI. The
components of the drive are schematically shown in Fig.
1 where the gating signals of the VSI are represented by
(Ka, . . . ,Ke).

The five-phase IM is modeled considering the standard
assumptions: uniform air gap, symmetrical distributed wind-
ings, sinusoidal magnetomotive force (MMF) distribution and
negligible core losses, and magnetic saturation. Then, follow-
ing the vector space decomposition approach [15], the IM
modeling is represented in two orthogonal subspaces. One
of them is involved in the fundamental flux and the torque
production (α − β subspace, representing the fundamental
supply component plus supply harmonics of the order10n±1
with n = 0, 1, 2, 3, ...). The other is related with the losses
(x − y subspace, representing supply harmonics of the order
10n ± 3 with n = 0, 1, 2, 3, ...). A zero sequence harmonic
component (5n with n = 1, 2, 3, ...) is projected in thez-axis,
but it is not considered because the neutral point is isolated.
Selecting theα − β andx − y stator currents and theα − β
rotor currents as state variablesx1 = isα, x2 = isβ , x3 = isx,
x4 = isy, x5 = irα andx6 = irβ, the drive equations can be
cast in the form
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Fig. 2. Space vector diagrams in theα− β andx− y subspaces.

ẋ1 = −Rsc2x1 + c4(Mωrx2 +Rrx5 + Lrωrx6) + c2v1
(1)

ẋ2 = −Rsc2x2 + c4(−Mωrx1 − Lrωrx5 +Rrx6) + c2v2
(2)

ẋ3 = −Rsc3x3 + c3v3 (3)

ẋ4 = −Rsc3x4 + c3v4 (4)

ẋ5 = Rsc4x1 + c5(−Mωrx2 −Rrx5 − Lrωrx6)− c4v1
(5)

ẋ6 = Rsc4x2 + c5(Mωrx1 + Lrωrx5 −Rrx6)− c4v2 (6)

with coefficients given by

c1 = LsLr −M2, c2 =
Lr

c1
, c3 =

1

Lls

(7)

c4 =
M

c1
, c5 =

Ls

c1
(8)

and being the input signals the applied stator voltagesv1 =
vsα, v2 = vsβ , v3 = vsx and v4 = vsy. The equations also
include the rotor electrical speedωr and the following machine
parameters, stator and rotor resistancesRs andRr, stator and
rotor inductancesLs andLr, stator leakage inductanceLls,
and mutual inductanceM .

The drive includes not only the electrical machine but also
the power electronics of the VSI. And ideal inverter converts
gating signals into stator voltages that can be projected to
α − β − x − y axes and gathered in a row vector computed
asv = (vsα, vsβ , vsx, vsy) = VdcuTM , whereVdc is the dc-
link voltage,u is a row vector containing the gating signals,
T is the connectivity matrix that takes into account how the
VSI gating signals are distributed, andM is a coordinate
transformation matrix accounting for the spatial distribution
of the machine windings. In the case of a five-leg inverter, the
gating signals vector is defined byu = (Ka, Kb, ..., Ke) were
Kj is the jth gating signal. Each gating signal can be either
activeKj = 1 or inactiveKj = 0, yielding25 possible control
choices and voltage vectors (see Fig. 2) at each sampling
period.

Combining the above mathematical expressions a nonlinear
set of equations arises, that can be written in the state-space
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Fig. 3. FCS-MPC technique applied to a symmetrical five-phase IM drive.

form and constitutes the final drive model

Ẋ(t) = AX(t) +Bv(t) (9)

A =

















−as2 am4 0 0 ar4 al4
−am4 −as2 0 0 −al4 ar4
0 0 −as3 0 0 0
0 0 0 −as3 0 0
as4 −am5 0 0 −ar5−al5
am5 as4 0 0 al5 −ar5

















(10)

B =

















c2 0 0 0
0 c2 0 0
0 0 c3 0
0 0 0 c3

−c4 0 0 0
0 −c4 0 0

















(11)

with state vectorX(t) = (x1, ..., x6)
T and input vectorv(t) =

(v1, ..., v4)
T . The coefficients of matrixA are defined asas2 =

Rsc2, as3 = Rsc3, as4 = Rsc4, ar4 = Rrc4, ar5 = Rrc5,
al4 = Lrc4ωr, al5 = Lrc5ωr, am4 = Mc4ωr, and am5 =
Mc5ωr.

III. F INITE CONTROL SET MODEL PREDICTIVE CURRENT

CONTROL FORDRIVES

The FCS-MPC technique has been proposed in the literature
for current control in VSI drives. The technique is illustrated
by the diagram shown in Fig. 3. The objective of the controller
is to track reference stator currents given byi∗s. For this
purpose, it uses a discrete model of the drive to predict the
future behavior of the output variablesîs. Then, an optimizer
selects the most adequate gating signaluo to minimize a cost
functionJ . The optimization is done by exhaustive search over
all possible control signal values. For each one, the predictive
model is computed using the measured rotor speedωr and
stator phase currentsis to obtain the predicted values of the
currentŝis. Then, the cost function value is calculated and the
voltage vector that minimizes the cost function is selectedand
applied to the VSI during the next sampling period.

The proposed FCS-MPC controller is based on [16], where
a discretization technique derived from the Cayley-Hamilton
equation is employed to obtain the predictive model. For
simplicity, and to provide a comparison with more standard
techniques, a forward Euler discretization method is also

presented. It is well known that this can affect the prediction
and control errors [17]. Taking this into account, the obtained
predictive model from (9)-(11) yields

X̂(k + 1|k) = X(k) + Ts (AX(k) +Bv(k)) (12)

Notice that matrixA depends on the instantaneous value
of the rotor electrical speed, being the predictive model a
time-variant linear system. However, the mechanical dynamic
is slower than the electrical one, so constant speed within a
sampling period can be assumed. Consequently, matrixA must
be updated every sampling time using the measuredωr and
its value is held throughout the current sampling period.

The actual implementation of the FCS-MPC requires the
second-step ahead prediction to be computed. This necessity
arises from the fact that the computation of the control signal
does take a significant amount of time which is comparable
with the sampling time. In this situation, it is best to wait until
the next sampling time to release the computed control signals
(see [2] for details).

The final element in the FCS-MPC scheme is the cost
function to be optimized. In current control, the most important
figure of merit is the tracking error in predicted stator currents.
For that reason, the usual cost function uses the predicted
deviations from current references in theα − β and x − y
subspaces as

J = ‖êαβ‖2 + λxy‖êxy‖2 (13)

whereê is the second-step ahead predicted error computed as
ê = i∗s(k + 2) − îs(k + 2|k) and λxy is a tuning parameter
between0 and1 that allows to put more emphasis onα−β or
x− y subspaces. Note that a future reference value is needed,
which is typically obtained from outer speed/torque loops in
variable speed drives applications. However, this paper deals
with current control and, for this reason, the reference is set
as an input. Also, this reference is assumed to be constant in
the d− q reference frame and for sufficiently small sampling
times, as it is indicated in [18], i.e.i∗sdq(k+2) ≈ i∗sdq(k+1) ≈
i∗sdq(k).

During the optimization process, both the cost function and
the predictive model must be computed32 times at each
sampling period to guarantee optimality, since there are32
possible voltage vectors for the five-phase half-bridge VSI
used to drive the IM. A reduced set of voltage vectors can
be, however, selected to speed up the optimization process and
reduce the computational cost. In [10], a good analysis on this
issue is realized, concluding that the selection ofλxy mainly
depends on the number of voltage vectors to be considered.

A. Rotor Quantities

The predictive model of (12) cannot be used in the normal
operation case where rotor currents are not measured. This
difficulty is usually overcome lumping all nonmeasurable
terms in one factor that is later tracked and updated. As
a consequence, the rotor current-related term constitutesa
new variable that can be estimated using past values of
the measured variables. The estimated term is projected into
the future and used in the predictive model. For the case
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of study, this is achieved splitting the state vector into a
measurable partX1 = (x1, x2, x3, x4)

T and an unmeasurable
part X2 = (x5, x6)

T . The prediction is then obtained by
simulating for a sample period the evolution of the measurable
part as

X̂1(k + 1|k) = RX1(k) + Sv(k) + Ĝ(k|k) (14)

where

R = (I +A11Ts)

S = B1Ts (15)

and termĜ(k|k) is an estimation of the contribution ofX2(k)
to X1(k+1). The usual estimation is obtained by holding the
previous valueĜ(k − 1) computed at timek as

Ĝ(k − 1|k) = X1(k)−RX1(k − 1)− Sv(k − 1) (16)

To the best of our knowledge, this backtracking procedure
has not been analyzed in the literature yet, and thus, the
following study is novel and relevant as most proposed FCS-
MPC applications rely on said procedure.

B. Analysis of the Simple Update Method

The usual way to cope with unmeasurable (i.e., rotor)
quantities in FCS-MPC is to lump them into one term that
is estimated in a simple manner. The term is designated asG
and used in the first-step ahead prediction as

X̂1(k + 1|k) = RX1

m(k) + Sv(k) + Ĝ(k) (17)

Ideally, the termG(k− 1) could be computed at timek by
means of

G(k − 1) = X1(k)−RX1(k − 1)− Sv(k − 1) (18)

but, due to measurement errorsε, the actual estimation is

Ĝ(k − 1|k) = X1

m(k)−RX1

m(k − 1)− Sv(k − 1) (19)

where X1
m(k) is the measured vector of stator quantities,

linked to the real values through

X1

m(k) = X1(k) + ε(k) (20)

Making use of the state-space equations, the estimation can
be written as

Ĝ(k− 1|k) = ε(k)−Rε(k)(k− 1)+A12TsX
2(k− 1) (21)

From this equality, it is inferred that the estimation of rotor
quantities done in this way is corrupted by the measurement
error. The error of the first-step ahead prediction is definedas

e1p(k + 1)
.
= X1(k + 1)− X̂1(k + 1|k) (22)

and can be computed from previous expressions as

e1p(k + 1) = RX1(k) + Sv(k) +G(k) −
−
(

RX1

m(k) + Sv(k) + Ĝ(k − 1|k)
)

(23)

It is easy to show that the above equation yields the
following expression for the one-step ahead prediction error:

e1p(k + 1) = −(I +R)ε(k) +Rε(k)(k − 1) +

+A12Ts

(

X2(k)−X2(k − 1)
)

(24)
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Fig. 4. Numerical example illustrating the simple method toestimate term
G. The curve marked with circles isisα, the real (simulated)α current
without measurement noise. The curve marked with asteriskscorresponds
to an estimation usingX̂1(k + 1|k) = RX1

m(k) + Sv(k), i.e., without
any correction for rotor quantities. The curve marked with triangles is the
same estimation adding the simple update correction forG given by (18),
considering noise. This corresponds to the usual estimation used in FCS-
MPC. The noise values are shown as filled circles and gather around their
zero mean. The negative effect over the prediction is quite apparent.

From (24) one can derive that the prediction error arising
from this scheme does not filter measurement errors. On
average the prediction error due to this factor will exhibit
the same statistical properties asε. Assuming uncorrelated
error measurement with a distribution with zero mean and
σ2 variance, the contribution toe1p variance is preciselyσ2.
The instantaneous contribution can be large; for instance,if
ε(k) = −ε(k− 1) = n, then−(I +R)ε(k)+Rε(k)(k− 1) =
(I + 2R)n = (3I + 2A11Ts)n ≈ 3n. A particular case has
been simulated and illustrated in Fig. 4, where some noise
in the stator current measurement has been included in the
prediction process (shown as filled circles). It can be seen that
a small amount of noise can produce larger deviations in the
estimation of the stator current if the classical update andhold
method is used.

Regarding rotor quantities, it is important to highlight that
the contribution to the prediction error is filtered throughthe
system dynamic via the termA12Ts. For larger sampling
frequencies, the effect is smaller, which is part of the reasons
why most applications uses a high value offs. Also from the
above expression, one can see that it is the change in rotor
quantities what induces prediction error. In sinusoidal steady
state, the rotor quantities are expected to evolve for the most
part at the fundamental frequencyfe. Again, if a largefs/fe
is used, then the changes from one sampling period to the
next would be small (ceteris paribus), allowing this simple
estimation scheme to work. A problem might arise during
transients where changes can be more pronounced.

IV. ROTOR CURRENT OBSERVERDESIGN,
IMPLEMENTATION, AND VALIDATION BY SIMULATION

The FCS-MPC method can be modified to include an
observer that estimates the nonmeasurable state components of
the system. As depicted in Fig. 3, the rotor current estimation
îr is calculated by the observer using the measured rotor speed
ωr and stator phase currentsis every sampling time. This
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estimation allows to use the complete state-space model (9)
for predictive purposes.

It is well know from observer theory that the closed-loop
poles of the observer

ˆ̇x(t) = Ax̂(t) +Bv(t) − L (Cx̂(t)− y(t)) (25)

are determined by the observer gainL also called Luenberger
gain matrix. The error dynamic equation is simplified to

ė(t) = (A− LC) e(t)− (G− LH)d(t) (26)

and the convergence toward zero is determined by the choice
of the observer gain. The separation principle allows the choice
of such matrix to be decoupled from the controller design.

In order to reduce the computational load required to pro-
vide estimates of all state variables of the system, a reduced-
order observed can be built considering only a part of the state
vector.

A. Reduced Order Rotor Current Observer

A reduced-order observer forir can be derived using
Gopinath’s method. The state is divided in two parts, the
measurable one (x1) and the unmeasurable part (x2). In the
present case,x1 = (x1, x2)

⊤ andx2 = (x5, x6)
⊤. MatricesA

andB are accordingly divided so that

ẋ1(t) = A11x
1(t) +A12x

2(t) +B1v(t)

ẋ2(t) = A21x
1(t) +A22x

2(t) +B2v(t) (27)

The estimation for the unmeasurable part is

x̂2(t) = z(t) + Lx1(t) (28)

whose dynamic is dictated by

ż(t) = (A22 − LA12) z(t) + (A22 − LA12)Lx
1(t) +

+ (A21 − LA11) x
1(t) + (B2 − LB1) v(t) (29)

B. Observer Design with Butterworth Pole Placement

A correct observer design should take into account the effect
of the observer gain in all terms of the error dynamic to
provide a tradeoff between fast convergence and disturbance
sensitivity. Ad hoc modifications of estimators suggested by
observer theory often yield faster convergence without endan-
gering stability [19]. In [20], it is noted that, ‘In classical
observer for IM drives, the poles of observer are designed tobe
proportional to the poles of IM which produces high imaginary
part at high speed and is harmful to the system stability. To
address this issue, it is suggested to shift the real part of
observer poles to the left in the complex plane compared to
the poles of IM, and the imaginary part of observer poles are
not changed’. However, this leads to complicated expressions
of observer gains. The authors propose a very simple constant
gain matrix to improve the observer’s stability.

For above reduced-order observer, the design implies the
selection of the most adequate eigenvalues of(A22 − LA12).
As they determine the speed at which the estimation error
decays, it is logical to make the real parts of those eigenvalues
as negative as possible. That will force the error to decay very

rapidly. However, there is a problem with this logic when there
are modeling errors to be considered. In actual applications,
the values in the model matrices may not be known exactly.
Research has shown that in order for the observer to be robust
against modeling errors, as well as causing the estimation error
to decay rapidly, a different approach is required.

It is of importance that the observer has well-damped
dynamic. Good damping of a system implies that the poles are
located in some distance away from the origin to speed up the
convergence and with imaginary parts no larger than the real
parts. The latter is desirable to avoid oscillatory behavior. With
poor damping, there is also a risk for instability if the observer
is implemented using forward Euler discretization [19].

If the original system hasz1 stable zeros, thenz1 of the
observer’s eigenvalues should be placed at the values of those
stable zeros. The remaining eigenvalues of the observer may
be placed well into the left-half plane, but at locations that
are equidistant from the origin in what is known as the
Butterworth configuration. The characteristic equation from
which the eigenvalues are calculated is then a Butterworth
polynomial. They are a common way to specify the denomi-
nator of a low-pass filter in the area of signal processing. The
step response of such filters has a slight overshoot, with good
damping. The parameterTB is used to define the speed of the
response, being such speed inversely proportional toTB.

A second-order Butterworth filter has the characteristic
polynomial

B(s) = T 2

Bs
2 +

√
2TBs+ 1 (30)

By placing the poles of the observer in the location given
by the roots ofB(s), the error dynamic has some desired
characteristics with respect to damping and rise times. It is
easy to see that the poles of the filter are located at

p = − 1

TB

√
2
± j

1

TB

√
2

(31)

providing an adequate damping factor ofζ = 1√
2
. The

Luenberger gain matrix has the usual form

L =

(

g1 −g2
g2 g1

)

(32)

where coefficientsgi are derived using the Kautsky-Nichols
algorithm [21] to match the desired closed-loop observer
poles. Now, as the coefficients ofA22 are dependent ofωr,
it is necessary to solve the pole placement problem for the
current value ofωr. In order to avoid the computing load
imposed by computing the coefficients online, it is convenient
to derive expressions for the elements of the gain matrixL as
a function ofωr or to use a precomputed set of coefficients
and interpolate. In the latter case, the resulting observeris
equivalent to a gain-scheduled system and its performance
depends on the schedule resolution as well as the accuracy
of the measured values ofωr.

Fig. 5 shows the variation of theL coefficients withfe for
TB1 = 0.0025 (s), TB2 = 0.0014 (s), andTB3 = 0.001 (s).
It can be seen that the variation in the coefficients’ values is
smooth, allowing one to rely on interpolation if a sufficiently
high number of discrete samples are given.
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Fig. 6 shows the variation of the prediction error with
parameterTB. The errors have been obtained via extensive
simulation using a model of the IM with a FCS-MPC that
makes use of the observer. It can be seen that there is a global
minimum atTB = 0.001 (s).

C. Simulation Results

Before showing the experimental results, the effectiveness
of the proposed rotor current observer has been tested with
simulations. A MATLAB simulation environment has been
created for the VSI-fed symmetrical five-phase IM with dis-
tributed windings and the electrical parameters shown in
Table II. Then, the conventional FCS-MPC controller and
the proposed FCS-MPC controller with rotor current observer
have been compared. All simulations have been carried out
using a sampling time ofTs = 67µs and a stator current
referencei∗s defined by the electrical frequencyfe = 30
Hz and the amplitudeAref = 1.20 A. The observer has
been designed using the Butterworth pole placement method
commented before, with an optimumTB value of 0.001 (s).
Both predictive controllers use the32 available voltage vectors
in the optimization process. Finally, different weightingfactors
for the x − y plane are introduced in the cost function (13)
to investigate the impact of this parameter on the system
performance.

Table I summarizes the obtained results, where the con-
trollers are compared for eachλxy value on the basis of the

TABLE I
SIMULATION RESULTS FORfe = 30 HZ AND Aref = 1.20 A USING

DIFFERENTλxy VALUES

λxy Controller eRMS
α êRMS

α eRMS
xy THDp

(x10−2) (x10−2) (x10−2) (%)

0.1
FCS-MPC 1.91 1.39 8.09 9.52

FCS-MPC + OBS 1.33 1.38 7.55 9.06

0.5
FCS-MPC 2.52 1.38 4.82 6.05

FCS-MPC + OBS 1.82 1.37 3.74 4.98

1
FCS-MPC 5.02 1.37 3.45 5.08

FCS-MPC + OBS 2.90 1.36 2.83 4.49

root-mean-squared (RMS) error in the current tracking for the
α component (eRMS

α ) and for thex − y plane (eRMS
xy ), the

RMS error in the two-step ahead prediction for theα current
component (̂eRMS

α ), and the total harmonic distortion in the
phase currents (THDp). These figures of merit are computed
as follows:

eRMS

α =

√

∑N
j=1

(isα(j)− i∗sα(j))
2

N
(33)

eRMS

xy =
1

2





√

∑N

j=1
i2sx(j)

N
+

√

∑N

j=1
i2sy(j)

N



 (34)

êRMS

α =

√

∑N
j=1

(̂isα(j + 2)− isα(j + 2))2

N
(35)

THDp =
1

5

e
∑

j=a

√

∫∞
0

(isj(t)− isj1(t))2dt
∫∞
0

(isj1(t))2dt
(36)

where isj1 is the fundamental component of the considered
current. THDp is obtained as the average value of the THD
of all stator phase currents.

The use of the rotor current observer clearly improves the
system performance in bothα − β and x − y subspaces for
all consideredλxy values. This is confirmed by the reduction
in the current tracking errorseRMS

α and eRMS
xy (see Table

I) when the observer is included in the conventional FCS-
MPC controller. The achieved reduction reaches42% for eRMS

α

and 22% for eRMS
xy . Sinceα − β components are in relation

with the electromechanical energy conversion, the improved
current tracking in this plane reduces the torque ripple and
enhances the dynamic performance. Additionally, the lower
RMS error value in thex−y plane improves the efficiency of
the machine, diminishing copper losses. The harmonic content
is also reduced using the rotor current observer, as evidences
the lower THDp values and, consequently, stator phase current
ripples. Regarding prediction errors, the FCS-MPC with rotor
current observer generates lowerêRMS

α values, as it is shown in
Table I. These preliminary results are expected from observer
theory [19] and must be confirmed through experimentation,
where effects like measurement errors, electrical and mecha-
nical noises or detuning of the IM modeling, among others,
appear.

Notice that the use of differentλxy factors generates
different control criteria and can restrict the use of voltage
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Fig. 7. Experimental apparatus diagram showing two conventional three-
phase VSIs (upper right), the electronic control board (center middle), the dc
motor drive (left side), the IM machine, and the dc motor (bottom right).

vectors, as it is stated in [10]. In this regard, Table I shows
that the largerλxy is, the lowereRMS

xy error is obtained for
both controllers, although the RMS error in theα − β plane
increases. In what follows, a lowλxy value will be mainly used
to improve the torque production in the multiphase drive.

V. EXPERIMENTAL RESULTS

A laboratory experimental setup has been used for testing
the proposed FCS-MPC with rotor current observer. A graphic
diagram of the test rig is shown in Fig. 7. The principal
element is a 30-slot symmetrical five-phase induction machine
with distributed windings and three pairs of poles. The IM
parameters are summarized in Table II and have been ex-
perimentally obtained using the methods described in [22]
and [23]. Two SKS21F three-phase inverters from Semikron
have been connected to a dc-link voltage of 300 V using
an independent dc power supply. The control algorithm is
deployed in a TM320F28335 digital signal processor (DSP)
placed on a MSK28335 Technosoft board. A dc motor is used
to introduce a variable load in the system. Finally, the rotor
mechanical speed is measured using a GHM510296R/2500
digital encoder and the enhanced quadrature encoder pulse
(eQEP) peripheral of the DSP.

Different tests have been carried out using four current con-
trol methods for comparison purposes: FCS-MPC technique
without observer and employing the simple update and hold
method for estimating the termG, where the effect of varying
rotor quantities and perturbations are lumped (C1a in what
follows), or using the Cayley-Hamilton theorem (C1b from

TABLE II
ELECTRICAL AND NOMINAL PARAMETERS OF THEFIVE-PHASE IM

Parameter Value

Stator resistance Rs (Ω) 19.45

Rotor resistance Rr (Ω) 6.77

Stator leakage inductance Lls (mH) 100.7

Rotor leakage inductance Llr (mH) 38.6

Mutual inductance M (mH) 656.5

Stator rated current In(A) 2.5

Nominal speed ωn (rpm) 1000

Power P (kW) 1

Pairs of poles p 3

TABLE III
EXPERIMENTAL RESULTS FORDIFFERENTSTATOR CURRENT

REFERENCES

fe, Aref Ctrl eRMS
α êRMS

α eRMS
xy THDαβ THDp Nc

(Hz, A) (x10−2) (x10−2) (x10−2) (%) (%) (SCPC)

29, 1.62
C1a 10.9 15.1 13.0 7.09 13.4 68.1
C1b 8.59 11.1 11.7 7.05 12.4 53.1
C2 10.1 12.8 9.95 6.73 10.9 59.2
C3 7.84 10.3 10.1 6.96 11.1 56.9

34, 1.56
C1a 11.2 15.4 13.3 7.24 13.6 50.6
C1b 8.97 11.4 11.3 6.95 12.3 38.2
C2 9.17 13.2 9.83 6.22 10.8 41.9
C3 7.82 10.4 10.9 6.63 11.7 39.2

39, 1.60
C1a 12.1 16.0 15.4 6.39 14.4 35.3
C1b 8.62 11.0 12.9 6.30 12.9 24.3
C2 9.58 14.8 11.8 5.74 11.7 27.9
C3 7.82 10.7 12.8 5.70 12.8 25.8

TABLE IV
OBTAINED IMPROVEMENTUSING C3 OVER C1A AND C1B CONTROLLERS

fe, Aref Ctrl eRMS
α êRMS

α eRMS
xy THDαβ THDp Nc

(Hz, A) Improvement percentage (%)

29, 1.62
C1a 28.1 31.6 22.4 1.92 16.7 16.5
C1b 8.70 7.00 13.6 1.34 10.2 −7.14

34, 1.56
C1a 30.4 32.4 18.2 8.36 14.5 22.5
C1b 12.9 8.44 4.15 4.53 4.92 −2.70

39, 1.60
C1a 35.5 33.3 16.5 10.9 11.4 26.8
C1b 9.32 2.73 0.30 9.63 1.17 −6.50

now on); FCS-MPC with a rotor current observer used in
the calculation of prediction at(k + 1) time (C2); and FCS-
MPC with a rotor current observer used in the calculation of
predictions at(k + 1) and (k + 2) times (C3). Notice that
C1a controller is the one described in Section III and C1b
controller is based on the predictive current control presented
in [16] but using the cost function defined in (13). Also notice
that both C2 and C3 controllers are introduced in the context
of stator current control of IM drives and can be extended to
anyn-phase induction machine (including the three-phase one)
provided that the machine has distributed windings and the
torque/flux production is purely related to theα−β subspace.
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Fig. 8. Experimental results obtained forAref = 1.62 A and fe = 29 Hz when it is applied the (a) C1a, (b) C1b, (c) C2, and (d) C3 controller. Upper
plots show the stator phase currentsisa, isb, isc, isd, and ise, while α andx stator currents (isα and isx) are depicted in the lower drawings.
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Fig. 9. Experimental results obtained forAref = 1.56 A and fe = 34
Hz when it is applied the (a) C1a and (b) C3 controller. Theα andx stator
currents (isα and isx) are shown.

All experiments are realized using a sampling time of
Ts = 66.67µs and considering the32 available voltage vectors,
while the observer is designed using the Butterworth pole
placement method (31) withTB = 1/1300 (s), which is an
optimum value obtained from the theoretical one (see Fig. 6)
and through experimentation. The steady-state response ofthe
system has been tested for different stator current references,
where a58% of the nominal load torque is applied and a
λxy = 0.1 weighting factor is used to favor the control of
theα−β plane. Table III summarizes the conditions for each
test and the obtained results. The first two columns indicate
the electrical frequencyfe and amplitudeAref of the stator
current referencei∗s, and the applied controller (C1a, C1b, C2
and C3). The next three columns detail: the RMS error in the
current tracking for theα component (eRMS

α ) and for thex−y
components (eRMS

xy ), as well as the RMS error of the two-step
ahead prediction in theα current component (̂eRMS

α ). These
quantities are computed using (33)-(35), respectively. The last
three columns in Table III present the THD in theα−β plane
(THDαβ), THDp and the number of switching changes per
cycle (Nc). The Nc value is obtained as the average value
(over the VSI phases) of the number of switch changes per
cycle (SCPC), while the THDαβ value is calculated similarly
to (36) as follows:

THDαβ =
1

2

∑

j=α, β

√

∫∞
0

(isj(t)− isj1(t))2dt
∫∞
0

(isj1(t))2dt
(37)

Additionally, Table IV presents the benefits of using a
rotor current observer in all figures of merit. Some of these
experimental tests are graphically included to illustratethe
obtained results. Fig. 8 shows the evolution of stator phase
currents, andα andx stator currents using C1a, C1b, C2 and
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Fig. 10. Experimental results obtained forAref = 1.60 A and fe = 39
Hz when it is applied the (a) C1a and (b) C3 controller. Theα andx stator
currents (isα and isx) are shown.

TABLE V
EXPERIMENTAL RESULTSUSING DIFFERENTλxy VALUES FORfe = 29

HZ AND Aref = 2.03 A

λxy Ctrl eRMS
α êRMS

α eRMS
xy THDαβ THDp Nc

(x10−2) (x10−2) (x10−2) (%) (%) (SCPC)

0.1
C1a 11.8 16.3 12.4 5.28 9.83 54.3
C1b 8.90 12.1 11.7 5.25 9.33 40.0
C2 9.89 15.0 9.99 4.86 8.35 46.8
C3 8.49 11.9 10.5 5.24 8.85 44.7

0.5
C1a 12.3 16.3 8.23 5.28 7.89 57.7
C1b 9.18 12.1 8.49 5.34 7.92 42.2
C2 10.1 15.0 7.58 4.92 7.18 49.9
C3 8.91 11.2 7.27 5.14 7.10 47.9

1
C1a 15.3 16.5 7.82 5.64 8.15 61.1
C1b 9.83 11.6 8.11 5.08 7.70 42.6
C2 10.6 15.1 6.85 5.13 7.02 52.5
C3 9.30 11.6 7.05 5.30 7.16 50.1

C3 controllers in an operation point defined byfe = 29 Hz
andAref = 1.62 A. For clarity reasons,β andy stator currents
have been omitted since they show similar curves. Similarly,
Figs. 9 and 10 present theα andx stator currents for C1a and
C3 controllers, when the electrical frequency is set to34 and
39 Hz, respectively. In this case, C1b and C2 controllers have
not been included for simplicity reasons.

It can be stated from the obtained results that theα current
tracking erroreRMS

α is reduced when a rotor current observer is
included in the conventional FCS-MPC instead of the standard
backtracking procedure (C1a). Additionally, this reduction is
higher when the observer is applied not only to the first
prediction but also to the first and second predictions (C3),
obtaining anα-tracking improvement of up to 35.5% for the
considered operation points. This is stated in Fig. 8, where
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Fig. 11. Current trajectories in theα− β andx− y subspaces with a current reference defined byfe = 29 Hz andAref = 2.03 A. The C3 controller is
used with (a)λxy = 0.1, (b) λxy = 0.5, and (c)λxy = 1.

the measuredα current (isα) fits better to the reference when
C2 and C3 controllers are used, being C3 the best case. Note
that the current tracking reduction in theα − β plane results
in a lower torque ripple and, consequently, a reduction of
harmonic content and losses. Also note that thisα-tracking
improvement is larger with increasing frequency (see [24]),
and that the use of an exact discretization technique (Cayley-
Hamilton theorem C1b) can reduce the benefits of applying a
rotor current observer if the estimated parameters agree with
the real ones.

Moreover, the use of the rotor current observer allows to
reduce considerably the RMS current tracking error in thex−y
subspace compared with the standard C1a controller, as it is
seen in Figs. 8-10. In this issue, C2 controller has the best
performance with a maximum improvement percentage in the
particular figure of merit of26%. This is an interesting benefit
in multiphase machines with distributed windings, wherex−y
components are not involved in the generation of electrical
torque.

The main reason to use the rotor current observer in the
conventional FCS-MPC is to produce more accurate predic-
tions of the stator currents. Tables III and IV demonstrate this
issue, where the prediction errorêRMS

α is reduced when C2 and
C3 controllers are applied to the system. Again, C3 controller
offers the best result with an improvement percentage of up
to 33.3%. Similar conclusions can be obtained for the SCPC
Nc. The use of the observer reduces up to26.8% this figure of
merit when the C3 controller is applied. It is remarkable the
obtained improvement in the stator current tracking comparing
with C1a when the rotor current observer is used, and this
with lower VSI switching frequency. Regarding the harmonic
content, its value is lower if the rotor current observer is used,
being C2 the best controller in this particular figure of merit,
reducing the THDαβ and THDp values10.2% and 20.6%,
respectively.

As mentioned before, the use of an exact discretization
technique in the predictive model, C1b controller, improves
the control performance compared with more extended C1a
controllers (as it is claimed in [17]). Nevertheless, the obtained
improvement using C3 remains the best, as it is shown in Table

TABLE VI
EXPERIMENTAL RESULTSUSING DIFFERENTTL VALUES FORfe = 29 HZ

TL Ctrl eRMS
α êRMS

α eRMS
xy THDαβ THDp Nc

(%) (x10−2) (x10−2) (x10−2) (%) (%) (SCPC)

39
C1a 10.4 14.6 13.2 11.3 20.4 86.4
C1b 8.70 10.9 11.5 10.7 18.3 68.1
C2 9.01 11.2 9.29 10.4 15.8 75.5
C3 8.29 9.83 9.05 10.7 15.7 69.5

58
C1a 10.9 15.1 13.0 7.09 13.4 68.1
C1b 8.59 11.1 11.7 7.05 12.4 53.1
C2 10.1 12.8 9.95 6.73 10.9 59.2
C3 7.84 10.3 10.1 6.96 11.1 56.9

78
C1a 11.8 16.3 12.4 5.28 9.83 54.3
C1b 8.90 12.1 11.7 5.25 9.33 40.0
C2 9.89 15.0 9.99 4.86 8.35 46.8
C3 8.49 11.9 10.5 5.24 8.85 44.7

III and IV, and all considered figures of merit are reduced,
except the SCPC.

Different experimental tests were also carried out, using
the weighting factorλxy values of0.1, 0.5 and1, and using
a load torque equivalent to the78% of the nominal one.
The frequency and amplitude of stator current reference were
configured to befe = 29 Hz and Aref = 2.03 A, while
the rest of the applied experiment’s conditions were the same
that those used to obtain Table III. The obtained results
confirm previous ones and are summarized in Table V for
each controller and figure of merit. It can be concluded that
C3 method offers the best performance in terms ofα − β
current tracking and prediction, although C2 technique shows
better performance in thex−y current tracking and harmonic
distortion.

Results in Table V also conclude thatα current tracking
error (eRMS

α ) increases with the weighting factor (λxy) in
all the analyzed controllers, being lower this figure of merit
for the C3 control technique. Furthermore, thex − y current
tracking error (eRMS

xy ) is reduced whenλxy increases, while
the prediction error (̂eRMS

α ) remains practically constant for
all values ofλxy. Fig. 11 depicts the polar trajectories of the
stator currents in theα−β andx−y planes for the considered



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

−3

−2

−1

0

1

2

d−
q 

C
ur

re
nt

s 
(A

)

 

 

i
sq i*

sq
i
sd i*

sd

−2

−1

0

1

2

3

α 
an

d 
x 

C
ur

re
nt

s 
(A

)

 

 
i
sα i*

sα
i
sx

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−600

−300

0

300

600

Time (s)

S
pe

ed
 (

rp
m

)

 

 
ω

m

Fig. 12. Transient response using the C3 controller with stator current referencesi∗
sd

= 0.57 A and i∗sq = 0(0, 0.1s), 1.6(0.1, 0.6s), −1.6(0.6, 1.3s),
1.6(1.3, 1.7s) and0(1.7, 2s). From top to bottom:d− q stator currentsisd and isq , and their referencesi∗

sd
and i∗sq ; α andx stator currentsisα andisx,

with the imposed referencei∗sα; and mechanical speedωm.

values ofλxy. Only the obtained results using C3 controller
are plotted because similar curves are found using C1a, C1b
and C2. It can be appreciated thatx−y currents decrease when
λxy value increases. On the contrary,α−β current trajectories
perform worse when the weighting factor is increased.

Afterwards, some tests have been carried out varying the
load torque in the multiphase drive. The experiments have been
realized using a weighting factorλxy = 0.1 and an electrical
frequencyfe = 29 Hz. Table VI resumes the obtained results
for three different load toque values (TL of 39%, 58%, and
78% of the nominal one), and all considered controllers.
With respect to the current tracking and prediction errors,
the obtained results and conclusions remain practically the
same for all load torque values. However, a reduction in the
switching frequency and THD values is observed when the
stator current and the load torque also increase.

Finally, a dynamic test is carried out using the C3 controller
to validate the transient performance of the proposed FCS-
MPC technique with a rotor current observer (similar results
are obtained with C2). The dc machine does not produce load
torque during the proposed test. Aλxy value of0.1 is used, the
observer is designed with the same poles than during steady-
state tests, and a total of six observer matrices are evaluated
offline to take into account different rotor speeds. Thed stator
current reference (i∗sd) is set to0.57 A and theq stator current
reference (i∗sq) varies in the following way:0 A from 0 to
0.1 s, 1.6 A from 0.1 to 0.6 s, −1.6 A from 0.6 to 1.3 s,
1.6 A from 1.3 to 1.7 s, and0 A from 1.7 to 2 s. Fig. 12
summarizes the obtained results. The measuredd − q stator
currents (isd and isq) fit their references well, and the step
response of theq current is fast. The trajectories of theα and
x currents (isα and isx) are also shown. It can be stated that

the tracking performance is good even if a sudden reference
change appears, displaying a rise time of about0.002 s. The
lower plot draws the mechanical speedωm of the drive during
the test, showing a quasi-linear response with the applied
reference torque (the outer speed control loop is not used in
this experiment).

Notice that from the computational cost perspective, one of
the main drawbacks for the implementation of FCS-MPC in
industry applications, the addition of the rotor current observer
produces a negligible increment in the computational load.The
total computational cost of the control algorithm with rotor
current observers (C2 and C3 controllers) is estimated in35µs
while it is of 32µs for C1a, being67µs the sampling time.

VI. CONCLUSION

Observers have been normally used in relation to several
controllers: FOC, sensorless drives, and for fault detection but
not, to the best of our knowledge, to estimate rotor currents
in FCS-MPC techniques. In this paper, it has been shown that
it is possible to incorporate a rotor current observer to the
FCS-MPC to enhance the predictions, without a considerable
penalty in the computational burden of the implemented
controller. The obtained simulation and experimental results
show that, although the simple estimate and hold scheme used
by most MPC practitioners in electrical applications or the
more complex MPC technique that uses the Cayley-Hamilton
theorem produce acceptable results, the observer outperforms
the classic approach presenting some advantages such as better
current tracking performance, less harmonic content, and less
VSI gating commutations. These advantages result in lower
torque ripple and in higher efficiency (lower copper losses and
commutations of power switches), encouraging future research
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in the field where the proposed observer-based FCS-MPC can
be extended to conventional andn-phase induction machines,
just adjusting the predictive model and the observer equations
to the new system.
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