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Abstract

The use of multiphase drives has gained importance in recent times due to some advantages that they provide over
conventional three-phase ones. High performance stator current control can be achieved by means of direct command
of voltage source inverter. In this context finite-state model predictive control is a very flexible strategy that has been
recently proposed and analyzed. Nevertheless, its implementation must solve the problem of estimating rotor quantities,
being the conventional solution a simple backtracking procedure. In this respect, observers appear as an attractive
alternative. However, while they have been used with FOC, sensorless drives and for fault detection, they have not been
used yet for predictive control of drives as a way to provide rotor values estimates. In this paper the authors propose
to incorporate a full-order rotor current observer in a finite-state model predictive controller of a five-phase induction
machine. Pole placement design based on Butterworth filters is used. The new estimation scheme and the standard
procedure are compared. By means of experimental tests, the differences between both approaches and the benefits of
including a rotor observer are illustrated and verified.

Keywords: Multiphase drives, predictive control, finite-state controller, observer, pole placement.

1. Introduction

In the last decade, research on multiphase electrical
machines area has increased due to some specific ad-
vantages that they present over the conventional three-
phase machines: less current harmonic content, higher
overall system reliability, better power distribution per
phase and better fault tolerance (Levi, 2008; Levi et al.,
2007). Among these machines, asymmetrical six-phase
and five-phase induction machines (IM) with sinusoidally
distributed stator windings are the most analyzed and pro-
posed in recent works.

Current control strategies in multiphase drives are usu-
ally based on a multidimensional extension of common
three-phase current controllers, dealing with the difficul-
ties of large harmonic current, unbalanced currents and
machine asymmetries (Che et al., 2014; Jones et al., 2009;
Yepes et al., 2015). However, these difficulties can be eas-
ily overcome eliminating the PWM and commanding the
voltage source inverter (VSI) directly by means of model-
based predictive control (MPC). Although MPC is a well-
established control technique for electrical systems (Chai
et al., 2013; Holtz and Stadtfeld, 1983; Lopez et al., 2015;
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Wang et al., 2014), its application to multiphase IM has
increased well after the publication of Levi (2008). Partic-
ularly, a new MPC configuration was proposed in Holmes
and Martin (1996) in order to eliminate the classical PWM
method, giving birth to a control structure that was later
named as finite-state MPC (FSMPC) used in multi-phase
IM for the first time in Arahal et al. (2009). Since the
number of available converter switching states is a finite
set, this control structure is also known as finite control
set MPC (Choi and Lee, 2015; Rodriguez et al., 2013; Xie
et al., 2015). Whatever the denomination, the fast con-
trol derived from direct command of the VSI combined
with robustness and fault tolerant features that character-
ize multiphase drives have been analyzed in a number of
recent papers (Arashloo et al., 2015; Guzman et al., 2016;
Lim et al., 2014; Martinez et al., 2015; Riveros et al., 2013).

A problem encountered in the implementation of
FSMPC is the estimation of non-measurable state compo-
nents; for instance rotor quantities for which sensors are
not available. A good knowledge of such quantities is of-
ten required in order to provide high performance control.
Concerning this, observer theory (Luenberger, 1971) is a
well known discipline that provides a framework for un-
derstanding and designing estimation schemes and it has
been used in electrical systems such as IM drives. Basi-
cally, observers used in IM machines can take two forms,
a full-order one that permits estimation of stator and ro-
tor components from measurements of stator voltages, sta-
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  Initiate the cost funcion J to Inf (Jo)
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       Produce an estimation of stator current at time k+2: îs(k+2)

       Evaluate J

       If J < Jo, then Jo = J and uopt = uj

  End for

  Apply uopt the next sampling period

Figure 1: General scheme of the FSMPC method applied to a symmetrical five-phase IM drive (left), and control algorithm (right).

tor currents and speed (Jansen and Lorenz, 1994), and a
reduced-order form which provides just the rotor compo-
nents estimation using only measurements of stator cur-
rents and speed.

Most proposals of observers for IM have been made
with field oriented control (FOC) method and related ones
(El Fadili et al., 2014), even though FOC has been found
in practice to be satisfactorily robust and effective without
complex flux estimation structures. By contrast, FSMPC
is highly sensitive to prediction errors (Arahal et al., 2013)
that are caused by parameter mismatch among other rea-
sons (Bogado et al., 2013). In Alireza Davari et al. (2012)
sliding mode full-order and reduced-order observers are
applied for flux and speed estimation for predictive torque
control of IM. A robust model predictive current controller
with a disturbance observer is also presented in Xia et al.
(2012), where a Luenberger observer is constructed for pa-
rameter mismatch and model uncertainty which affects the
performance of the MPC. The gains of the disturbance ob-
server are also determined using a root-locus analysis, and
the stability of the disturbance observer is analyzed when
there are errors in the inductor filter parameter. In Mer-
abet et al. (2006), a nonlinear predictive control law with
a disturbance observer is applied to track speed and flux
profiles in an IM, considering the robustness to parame-
ters variations and the disturbance rejection. This is in
contrast to most applications of FSMPC to electrical sys-
tems, where observers are not used as such. Instead non-
measurable quantities, disturbances and parametric and
non-parametric uncertainties are lumped into one single
term of the predictive model. This term is then updated
using a simple procedure and the update is held until the
next sampling period (Arahal et al., 2009).

In this paper a rotor current observer is included in the
conventional FSMPC structure. The advantages of this
new estimation scheme over the original one are analyzed
and experimentally illustrated. For this purpose, a five-
phase IM drive is used as a case study. However, the con-
trol method can be extended to any n-phase IM drive. Two
observers, full-order and reduced-order, are studied. The
observer design is tackled using pole placement methodol-
ogy based on Butterworth filters. The rest of the paper is
organized as follows. The general principles of the FSMPC

technique and its application to the considered case study
system are presented in the next section, where the stan-
dard rotor quantities estimation is reviewed and analyzed.
The rotor current observers, full-order and reduced-order,
are presented in Section 3 together with the design pro-
cedure. Experimental results comparing the different es-
timation methods are shown and discussed in Section 4.
The paper ends with the conclusion section.

2. Finite-state model predictive control in five-
phase IM drives

The FSMPC application to stator current control in a
five-phase drive is schematically illustrated in Fig. 1. The
objective of the controller is to track the reference stator
currents represented by i∗s. For this purpose, a discrete
model of the physical system is used to predict the future
behavior of the output variables îs. The prediction is com-
puted making use of measured values of the rotor speed ωr

and the stator phase currents is and tentative value of the
control vector uj (the VSI gating signal). The most ade-
quate control action uopt is selected by minimizing a cost
function J by means of exhaustive search over all possible
control signal values. The optimum gating signal is applied
to the VSI during the next sampling period. Finally, this
process is repeated every sampling period. More details
can be found in Arahal et al. (2009).

2.1. IM drive model

A symmetrical five-phase induction machine with dis-
tributed windings equally displaced ϑ = 2π/5 and fed by
a five-phase two-level VSI is used for testing the proposed
method. An approximate scheme of the five-phase IM is
shown in Fig. 2, where the gating signals of the VSI are
represented by (Ka, . . . ,Ke) and their complementary val-
ues (K̄a, . . . , K̄e).

The drive modeling process is made using some standard
assumptions: uniform air gap, symmetrical distributed
windings, sinusoidal MMF distribution, and negligible core
losses and magnetic saturation. The sinusoidal MMF dis-
tribution is a well-known assumption in conventional and
multiphase induction machines’ modelling, provided that
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a distributed-winding induction machine is used, as it is
discussed in Barrero and Duran (2016); Duran and Barrero
(2016); Levi et al. (2007). Then, from the five-phase ma-
chine equations in phase variables and following the vector
space decomposition (VSD) approach the machine model-
ing can be represented in two orthogonal subspaces (Levi
et al., 2007). One of them, the α−β subspace, is involved
in the fundamental flux and the torque production, rep-
resenting the fundamental supply component plus supply
harmonics of the order 10n± 1 with n = 0, 1, 2, 3, .... The
other, the x− y subspace, is related to the losses and rep-
resents supply harmonics of the order 10n ± 3. Addition-
ally, a zero sequence harmonic component of the order 5n
with n = 1, 2, 3, ... is projected in the z-axis, but it is not
considered because the neutral point is isolated and conse-
quently zero sequence currents cannot flow. Selecting the
α − β and x − y stator currents and the α − β rotor cur-
rents as state variables x = (isα, isβ , isx, isy, irα, irβ)

T ,
the drive equations can be cast in the form

ẋ(t) = A(ωr(t))x(t) +Bv(t)

y(t) = Cx(t) (1)

The input signals are the applied stator voltages v =
(vsα, vsβ , vsx, vsy)

T , the output signals are the stator cur-
rents y = (isα, isβ , isx, isy)

T and the matrices A and B
depend on the rotor electric speed ωr and the following
machine parameters, stator and rotor resistances Rs and
Rr, stator and rotor inductances Ls and Lr, stator leakage
inductance Lls and mutual inductance M .

A(ωr) =
−as2 am4(ωr) 0 0 ar4 al4(ωr)

−am4(ωr) −as2 0 0 −al4(ωr) ar4
0 0 −as3 0 0 0
0 0 0 −as3 0 0
as4 −am5(ωr) 0 0 −ar5 −al5(ωr)

am5(ωr) as4 0 0 al5(ωr) −ar5

 (2)

B =


c2 0 0 0
0 c2 0 0
0 0 c3 0
0 0 0 c3

−c4 0 0 0
0 −c4 0 0

 (3)

The above matrices coefficients are given by c1 = LsLr−
M2, c2 = Lr/c1, c3 = 1/Lls, c4 = M/c1, c5 = Lsc1, as2 =
Rsc2, as3 = Rsc3, as4 = Rsc4, ar4 = Rrc4, ar5 = Rrc5,
al4(ωr) = Lrc4ωr, al5(ωr) = Lrc5ωr, am4(ωr) = Mc4ωr

and am5(ωr) = Mc5ωr.
The predictive model must also include the VSI dy-

namic, since it forms part of the IM drive. An ideal in-
verter converts gating signals into stator voltages that can
be projected to α− β − x− y axes and gathered in a row
vector computed as v = (vsα, vsβ , vsx, vsy) = VdcuTM ,

isb

isa

isd

ise

isc

vsc

vsd vsa

vse

vsb

Vdc

Ka Kb Kc Kd Ke

Ka Kb Kc Kd Ke

Figure 2: Five-phase IM drive schematic diagram.
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Figure 3: Space vector diagrams in the α− β and x− y subspaces.

where Vdc is the DC-link voltage, u is a row vector con-
taining the gating signals, T is the connectivity matrix
that takes into account how the VSI gating signals are dis-
tributed and M is a coordinate transformation matrix ac-
counting for the spatial distribution of the machine wind-
ings:

T =
1

5


4 −1 −1 −1 −1

−1 4 −1 −1 −1
−1 −1 4 −1 −1
−1 −1 −1 4 −1
−1 −1 −1 −1 4

 (4)

M =
2

5


1 cosϑ cos 2ϑ cos 3ϑ cos 4ϑ
0 sinϑ sin 2ϑ sin 3ϑ sin 4ϑ
1 cos 2ϑ cos 4ϑ cosϑ cos 3ϑ
0 sin 2ϑ sin 4ϑ sinϑ sin 3ϑ

1/2 1/2 1/2 1/2 1/2

 (5)

In the case of a 5-legged inverter, the gating signals vec-
tor is defined as u = (Ka, Kb, ..., Ke) where Kj is the j-th
gating signal. Since each gating signal can be either active
Kj = 1 or inactive Kj = 0, there exist 25 possible control
choices and voltage vectors. Fig. 3 shows all possible volt-
age vectors where each one is identified using the decimal
number corresponding to the binary code of the switching
state.

Eqs. (1)-(3) together with the inverter model define the
final drive model as a nonlinear set of equations. These
equations must be discretized in order to be used for the
predictive controller. A forward Euler method is usually
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used, leading to the following expression that constitutes
the predictive model:

x̂(k + 1|k) = x(k) + Ts (A(ωr(k))x(k) +Bv(k)) (6)

denoted by Ts the sampling time, k the current sample
time and x̂(k + 1|k) the one-step ahead prediction of the
system state computed at current time k. Notice that
matrix A depends on the instantaneous value of the rotor
electric speed, thus the predictive model is a time-variant
linear system. However, the mechanical speed dynamics
are slower than the electrical dynamics, so constant speed
within a sampling period can usually be assumed.

2.2. State estimation

The predictive model (6) presented in the previous sec-
tion cannot be used as such in a typical configuration in
which rotor currents are not measured. This difficulty
is conventionally overcome lumping all non-measurable
terms into one factor, constituting a new variable that is
estimated using past values of the measured variables. The
estimated term is then projected into the future and used
in the predictive model, being updated every sampling pe-
riod. In the present case, it is necessary to split the state
vector into a measurable part x1 = (isα, isβ , isx, isy)

T and
an unmeasurable part x2 = (irα, irβ)

T . Thus, the predic-
tion is obtained by simulating for a sampling period the
evolution of the measurable part as

x̂1(k + 1|k) = Rx1(k) + Sv(k) + Ĝ(k|k) (7)

where

R = (I +A11Ts) (8)

S = B1Ts (9)

and term Ĝ(k|k) is an estimation of the contribution of
x2(k) to x1(k + 1). It is usually obtained by holding its
previous value Ĝ(k − 1) computed at time k as

Ĝ(k − 1|k) = x1(k)−Rx1(k − 1)− Sv(k − 1) (10)

The computation of the control signal takes a signifi-
cant amount of time, being comparable with the sampling
time. Consequently, it is desirable to wait until the next
sampling time to release the computed control signal (more
details in Arahal et al. (2009)). Taking this into account,
a second-step ahead prediction has to be computed, being
the current prediction at time k+2 obtained at time k as

x̂1(k + 2|k) = Rx1(k + 1|k) + Sv(k) + Ĝ(k|k) (11)

In stator current control in multiphase IM, the cost func-
tion should incorporate the predicted deviations from cur-
rent references in the α − β and x − y subspaces in the
following way:

J = ∥êαβ∥2 + λxy∥êxy∥2 (12)

where ê is the second-step ahead predicted error ê =
i∗s(k+ 2)− îs(k+ 2|k) and λxy is a tuning parameter that
allows more emphasis on α− β or x− y subspaces. More
complicated cost functions can be devised in order to in-
clude other aspects to be optimized, such as harmonic con-
tent and VSI losses.

2.3. Analysis of the simple update and hold method

To the best of our knowledge, the backtracking proce-
dure introduced in the previous section has not been ana-
lyzed in the literature yet, and thus the following study is
novel and relevant as most proposed FSMPC applications
rely on said procedure.

As already stated, the usual way to cope with unmea-
surable quantities in FSMPC is to lump them into one
term that is estimated in a simple manner. The term is
designated as G and used in the first-step ahead prediction
as

x̂1(k + 1|k) = Rx1
m(k) + Sv(k) + Ĝ(k|k) (13)

Ideally the term G(k − 1) could be computed at time k
by means of

G(k − 1) = x1(k)−Rx1(k − 1)− Sv(k − 1) (14)

but, due to measurement errors ε, the actual estimation is

Ĝ(k − 1|k) = x1
m(k)−Rx1

m(k − 1)− Sv(k − 1) (15)

where x1
m(k) is the measured vector of stator quantities,

linked to the real values through

x1
m(k) = x1(k) + ε(k) (16)

Making use of the state-space equations the estimation
can be written as

Ĝ(k−1|k) = ε(k)−Rε(k)(k−1)+A12Tsx
2(k−1) (17)

From this equality it is inferred that the estimation of
rotor quantities done in this way is corrupted by the mea-
surement error. The error of the first step ahead prediction
is defined as

e1p(k + 1)
.
= x1(k + 1)− x̂1(k + 1|k) (18)

and can be computed from previous expressions as

e1p(k + 1) = Rx1(k) + Sv(k) +G(k)−

−
(
Rx1

m(k) + Sv(k) + Ĝ(k − 1|k)
)

(19)

It is easy to show that the above equation yields the fol-
lowing expression for the one-step ahead prediction error

e1p(k + 1) = −(I +R)ε(k) +Rε(k)(k − 1) +

+A12Ts

(
x2(k)− x2(k − 1)

)
(20)

From (20) one can derive that the prediction error aris-
ing from this scheme does not filter measurement errors.
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On average, the prediction error due to this factor will
exhibit the same statistical properties as ε. Assuming un-
correlated error measurement with a distribution with zero
mean and σ2 variance, the contribution to e1p variance is
precisely σ2. However the instantaneous contribution can
be large, for instance if ε(k) = −ε(k − 1) = n then −(I +
R)ε(k)+Rε(k)(k−1) = (I+2R)n = (3I+2A11Ts)n ≈ 3n.
Consequently, a small amount of noise can produce large
deviations in the estimation of the state. This has a pro-
found impact on the performance of the current control
because a wrong voltage vector would be selected produc-
ing a disturbance that should be canceled at later sampling
times. In Arahal et al. (2013) it is shown that current to-
tal harmonic distortion (THD) is greatly influenced by this
phenomenon.

Regarding rotor quantities, it is interesting to see that
the contribution to the prediction error is filtered through
the system dynamic via the term A12Ts. For larger sam-
pling frequencies the effect is smaller, which is part of the
reason why most applications uses a high value of fs. Also
from the above expression one can see that it is the change
in rotor quantities that induces prediction error. In sinu-
soidal steady state the rotor quantities are expected to
evolve, for the most part, at the fundamental frequency
fe. Again, if a large fs/fe is used then the changes from
one sampling period to the next would be small (ceteris
paribus), allowing the standard simple estimation scheme
to provide acceptable results. A problem might arise dur-
ing transients where changes can be more pronounced, or
in situations where harmonics are noticeable and fast vari-
ations in rotor quantities appear. This is potentially dan-
gerous as harmonics can be triggered by erroneous predic-
tions as indicated in the previous paragraph.

q1

q2

u1

u2

u3

uj

u4

k
k+1

Figure 4: Illustration of conventional and observer-based predictions.
Red lines with circle marks (solid) represent the real trajectory after
applying a certain voltage vector. Blue lines with triangle marks are
predicted trajectories using the simple rotor quantities estimation
and green lines with square marks are predicted trajectories using
an observer.

Fig. 4 illustrates the effect of using the simple esti-
mation procedure for rotor quantities. The graph is a
state-space or phase-portrait diagram, where the q1 and
q2 axis symbolize the state components. The state at time
k (shown as a dot in the middle) can evolve with time,
providing different values at k+1 depending on the choice
of the control action u(k). The standard simple estima-
tion method provides predictions (blue lines) with an error
given by (20). It will be shown later that observers can
provide more adequate predictions (green lines).

The correctness of the predictions plays a crucial role
in FSMPC because control actions are based on them.
Note that the large number of available voltage vectors in
multiphase VSI and the particularity of the cost function
provides a scenario in which mildly incorrect predictions
result in the choice of different optimal voltages. This will
be illustrated in the experimental results section.

3. Rotor current observer design and implementa-
tion

In Fig. 5 the conventional FSMPC technique is pre-
sented including an optional observer to estimate the rotor
quantities. The rotor current estimation îr is calculated
by the observer using the measured rotor speed ωr and
stator phase currents is for every sampling time, allow-
ing the complete state-space model (1) to be employed for
predictive purposes.

The observer order is defined by the number of system
state variables employed in its construction. In the fol-
lowing sections, the design and implementation of two ob-
server configurations with different orders are presented:
full-order observer and reduced-order observer.

3.1. Full-order rotor current observer

The basic observer configuration permits an estimation
of all system states x̂(t) from the system model, plus a
correction term which is proportional to the estimate error

ˆ̇x(t) = Ax̂(t) +Bv(t)− L (Cx̂(t)− y(t)) (21)

From observer theory, it is known that the closed loop
poles of the observer defined in (21) are determined by the
observer gain L, also called Luenberger gain matrix. The
observer error dynamic equation can be simplified to

ė(t) = ˆ̇x− ẋ = (A− LC) e(t) (22)

and the convergence towards zero is determined by the
choice of the observer gain. The separation principle al-
lows the choice of such matrix to be decoupled from the
controller design.

3.2. Reduced-order rotor current observer

The stator current’s estimation obtained from the full-
order observer leads to a redundancy, since they are al-
ready available by direct measurement. This redundancy

5
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Figure 5: General scheme of the FSMPC with rotor current observer method applied to a symmetrical five-phase IM drive (left), and control
algorithm (right).

can be eliminated by constructing an observer of lower di-
mension that might be useful for reducing the computation
time.

A reduced-order observer for ir can be derived using
Gopinath’s method (Gopinath, 1971). For the case of
study, the system’s state is divided in two parts, the mea-
surable one x1 = (isα, isβ)

⊤ and the unmeasurable one
x2 = (irα, irβ)

⊤. Matrices A and B are accordingly di-
vided so that

ẋ1(t) = A11x
1(t) +A12x

2(t) +B1v(t)

ẋ2(t) = A21x
1(t) +A22x

2(t) +B2v(t) (23)

The estimation for the unmeasurable part is computed
in the following way

x̂2(t) = z(t) + Lx1(t) (24)

where the z(t) dynamic is dictated by

ż(t) = (A22 − LA12) z(t) + (A22 − LA12)Lx
1(t)

+ (A21 − LA11)x
1(t) + (B2 − LB1) v(t) (25)

Finally, the reduced-order estimator error is now

ė(t) = ˆ̇x2 − ẋ2 = (A22 − LA12) e(t) (26)

This observer configuration reduces the computational
load required to estimate all state variables when the full-
order observer is employed.

3.3. Observer design with Butterworth pole placement

A correct observer design should consider the effect of
gain matrix L in all terms of the error dynamic to pro-
vide a tradeoff between fast convergence and disturbance
sensitivity. Observer theory suggests ad hoc modifications
of the estimator that often yield faster convergence with-
out endangering stability (Verghese and Sanders, 1988).
Additionally, the poles of classical observers for IM are
placed proportionally to the IM poles, which produce high
imaginary parts at high speed and deteriorate the system
stability. In Zhang and Yang (2014) it is suggested the
imaginary part be equal to that of the IM poles and the

real part be shifted to the left in the complex plane com-
pared to the original poles. However, this leads to compli-
cated expressions of observer gains. The authors propose
a very simple constant gain matrix to improve the stability
of the observer.

The design of both full-order and reduced-order ob-
servers implies the selection of the most adequate eigenval-
ues of (A− LC) and (A22 − LA12), respectively. As they
determine the speed at which the estimation error decays,
it is logical to make the real parts of those eigenvalues as
negative as possible. But this logic does not work well
when modeling errors need to be considered. In this re-
gard, research has shown that in order for the observer to
be robust against modeling errors, as well as causing the
estimation error to decay rapidly, a different approach is
required.

It is also of importance that the observer has well-
damped dynamics. Good damping of a system implies that
the poles are located some distance away from the origin
in order to speed-up the convergence and with imaginary
parts no larger than the real parts. The latter is desirable
in order to avoid oscillatory behavior. With poor damp-
ing, there is also a risk for instability if the observer is
implemented using forward Euler discretization (Verghese
and Sanders, 1988).

Finally, if the original system has z1 stable zeros, then z1
of the observer’s eigenvalues should keep those positions.
The remaining eigenvalues of the observer may be placed
into the left-half plane, but at locations that are equidis-
tant from the origin in what is known as the Butterworth
configuration. Therefore, a Butterworth polynomial is the
equation employed to calculate the eigenvalues. This poly-
nomial represents the denominator of a low-pass filter in
the area of signal processing. The step response of such
filters has a slight overshoot, with good damping. Conse-
quently, it is desirable to place the poles of the observer in
the locations given by the roots of a proper Butterworth
polynomial in order to obtain good damping and rising
times with respect to the error dynamic.

The full-order observer needs a sixth order Butterworth
filter to evaluate its poles. However, the model of the
system presents two real poles for the case of study. A
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Figure 6: (a) Variation of LFO coefficients vs fe. (b) Variation of
LRO coefficients vs fe for some values of TB .

more proper solution consists of placing four of the ob-
server poles using a fourth order filter and shifting the
original two real poles to the left in order to speed up the
observer error dynamic. The characteristic polynomial of
a fourth order Butterworth filter is

B4(s) = T 4
Bs

4+2.6131T 3
Bs

3+3.4142T 2
Bs

2+2.6131TBs+1

(27)

where parameter TB is used to define the speed of the
response, with such speed inversely proportional to TB .
On the other hand, a second order Butterworth filter is

necessary to determine the poles of the proposed reduced-
order observer. The filter characteristic polynomial is now

B2(s) = T 2
Bs

2 +
√
2TBs+ 1 (28)

Once the desired closed loop observer poles are com-
puted using (27) and (28), Luenberger matrix coefficients
are derived using the Kautsky-Nichols algorithm (Kautsky
et al., 1985), resulting in the following Luenberger ma-
trices LFO and LRO for the full-order and reduced-order
observers, respectively:

LFO =


g1a g2a 0 0
−g2b g1b 0 0
0 0 g5 0
0 0 0 g5
g3a −g4a 0 0
g4b g3b 0 0

 (29)
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Figure 7: Prediction error dependence on parameter TB used to tune
(a) the full-order observer and (b) the reduced-order observer.

LRO =

(
g1 −g2
g2 g1

)
(30)

Now, as the coefficients of A and A22 are dependent on
ωr, it is necessary to solve the pole placement problem
for the current value of ωr on-line. In order to avoid the
required computing load, it is convenient to derive expres-
sions for the elements of the gain matrices as a function of
ωr; or to use a pre-computed set of coefficients and interpo-
late. In the latter case, the resulting observer is equivalent
to a gain scheduled system and its performance depends
on the schedule resolution as well as on the accuracy of
the measured values of ωr.

Fig. 6a shows the variation of LFO coefficients with
the electrical frequency fe. Coefficient g5 has not been
represented because its value is constant for all frequen-
cies and TB . Coefficients’ values are almost equal in pairs
throughout the frequency range. For that reason, they
have been depicted as equal for clarity of representation.
Also, the evolution of these parameters can be approxi-
mated by simple equations that permit the computation of
a new gain matrix on-line, avoiding the Kautsky-Nichols
algorithm. However, these coefficients vary with TB , so
different equations have to be defined.

On the other hand, the LRO gain matrix coefficients
are shown in Fig. 6b for different frequencies and for
TB1 = 0.0025 s, TB2 = 0.0014 s, and TB3 = 0.001 s. It
can be seen that the variation in the coefficients’ values
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is smooth, allowing one to rely on interpolation if a suffi-
ciently high number of discrete samples is given, validating
this interpolation for all TB .

To complete the observer design, an adequate value of
TB must to be chosen. Fig. 7 shows the variation of the
prediction error with TB for both full-order and reduced-
order observers. It can be seen in both cases that there
is an optimum value of TB that minimizes the error. The
errors have been obtained via extensive simulation using a
model of the IM with a FSMPC that makes use of the ob-
server. In the real machine the minimum is obtained for a
slightly different value that will be used in the experiments
shown in the next section.

3.4. Analysis of the robustness of the observer

Changes in real parameters might cause the observer to
use an inaccurate model. In the following a new derivation
of the state estimation error is made taking into account
this possibility. In the general case, the complete system
model has the form

ẋ = Ax+Bu+Dd

y = Cx+Hd (31)

If perfect knowledge of the parameters cannot be
achieved then the observer model uses a different set of
matrices

ˆ̇x = Aox̂+Bou+K (Cox̂− y) (32)

where x is the state vector of the system; u is the mea-
surable, or otherwise known, inputs to the systems; d is
the unmeasurable term representing external disturbances
acting on the system (in most cases structural and para-
metric uncertainty are lumped into this term); y is the
measurable output vector; A, B, C, D, H are matrices
containing the coefficients of the state space representa-
tion; Ao, Bo, Co are matrices containing the coefficients of
the state space representation used by the observer; and
K is the observer gain or Luenberger gain matrix. In this
particular case Co = C as there is no uncertainty about
which state variable is considered the output.

The state estimation error, defined as ξ = x̂ − x, is a
dynamical variable that evolves from an initial condition
given by the choice of x(0). In most cases found in the
literature, a good agreement is supposed between observer
and system models and thus the error dynamics equation is
simplified to (22). However, if the effect of parameter un-
certainty is considered then the estimation error dynamics
are given by

ξ̇ = (Ao +KCo) x̂− (A+KC)x+ (Bo −B)u−
(D +KH) d (33)

By algebraic manipulation and after some renaming of
terms, the above equation can be written as

ξ̇ = Poξ − (A−Ao)x+Qu− Zd (34)

where Po = Ao + KCo, Q = Bo − B and Z = D + KH.
Lumping the last three terms into one variable W =
− (A−Ao)x+Qu− Zd one gets

ξ̇ = Poξ +W (35)

Note that the state estimation error converges to zero
thanks to the appropriate choice of K because the term
W is bounded (as follows from the fact that x, u and d
are bounded signals). This convergence of the estimated
state to the real value ensures that the effect of parameter
uncertainty appears only in the prediction phase, where
matrices Ao and Bo are used again. This is in contrast
with standard FSMPC where both the state estimation
and the resulting predictions are subject to inaccuracies
arising from parametric uncertainty.

4. Experimental results for the case of study

A laboratory experimental setup (depicted in Fig. 8)
has been designed to compare the performance of FSMPC
with different rotor quantities estimation procedures. The
main component is a 30-slot five-phase induction machine
with three pairs of poles, whose parameters have been ob-
tained experimentally using assumptions and methods de-
scribed in Yepes et al. (2012) and Riveros et al. (2012)
and are summarized in Table 1. Notice that the leakage
inductance in x−y plane is considered equal to the leakage
inductance in α − β plane, since the five-phase induction
machine is single-layer (Hadiouche et al., 2004). The IM
is fed by means of two SKS21F three-phase inverters from
Semikron, which are connected to a DC-link voltage of
300V using an independent DC power supply. The control
algorithm is deployed in a TM320F28335 DSP placed on
a MSK28335 Technosoft board. A variable load can be
introduced in the system thanks to a DC motor attached
directly to the shaft of the induction machine. Finally,
for the purpose of measuring the mechanical rotor speed a
GHM510296R/2500 digital encoder is used together with
the enhanced quadrature encoder pulse (eQEP) peripheral
of the DSP.

Several experiments have been carried out to provide
data for comparison of three controllers: FSMPC employ-
ing the conventional backtracking procedure, FSMPC with
a reduced-order rotor current observer or RLO from now

Table 1: Electrical and mechanical parameters of the five-phase IM

Parameter Value

Stator resistance Rs(Ω) 19.45

Rotor resistance Rr(Ω) 6.77

Stator leakage inductance Lls(mH) 100.7

Rotor leakage inductance Llr(mH) 38.6

Mutual inductance M(mH) 656.5

Mechanical nominal speed ωn(rpm) 1000

Power P (kW) 1

Pairs of poles p 3
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on, and FSMPC with full-order rotor current observer or
FLO. The steady-state response of the machine, which op-
erates in torque mode, has been analyzed in each exper-
iment for different stator current references i∗s defined by
a frequency fe and an amplitude Aref . This allows the
characterization of the stator current control under dif-
ferent operation points and the comparison of the three
controllers in a high range of operating conditions.

All tests are realized using a sampling frequency of
fs = 15 kHz (sampling time Ts = 66.67µs), a cost func-
tion tuning parameter of λxy = 0.1 and a load torque of
58% of the nominal one. The observers are implemented
using the Butterworth pole placement method previously
introduced with TB = 1/1000 s for the full-order observer
and TB = 1/1300 s for the reduced-order observer. These
are experimental values close to the theoretical ones found
in Fig. 7, but they produce better results.

The experimental results and conditions are depicted in
Table 2. The type of controller used in each experiment
can be seen in the first column. The two following columns
indicate the electrical frequency and amplitude of the sta-
tor current reference. The next three columns detail the
root-mean-squared (RMS) error in the current tracking
for the α component eRMS

α and for the x− y components
eRMS
xy , and the RMS error of the two-step ahead prediction

in the α current component êRMS
α . These quantities are

 

a b d ec
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Current 
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DC MOTOR
DRIVE DC MOTOR 5-PHASE IM

CONTROL BOARD
POWER ELECTRONIC 

CONVERTERS VSI

Switching 
Signal

Phase Currents

a

b

DC-LINK
Main Switch

Vdc

Speed Encoder ωm

Figure 8: Experimental test rig diagram showing two conventional
three-phase VSIs (upper right), the electronic control board (center
middle), the DC motor drive (left side), and the IM machine and the
DC motor (bottom right).

computed as follows:

eRMS
α =

√∑N
j=1(isα(j)− i∗sα(j))

2

N
(36)

eRMS
xy =

√∑N
j=1(isx(j)

2 + isy(j)2)

N
(37)

êRMS
α =

√∑N
j=1(̂isα(j + 2)− isα(j + 2))2

N
(38)

The last two columns in Table 2 present the total
harmonic distortion THD and the number of switching
changes per cycle Nc for each test. The first one is calcu-
lated as the average value of the total harmonic distortion
in the α and β components of the stator current

THDαβ =

√∫∞
0

(isαβ(t)− isαβ1(t))2dt∫∞
0

(isαβ1(t))2dt
(39)

where isαβ1 is the fundamental component in the α and
β axes of the measured current. The Nc parameter is ob-
tained as the average value of the number of switch changes
per cycle (SCPC).

It can be easily stated from the results that the use of
a rotor observer improves the performance of the current
controlled system, considerably reducing the tracking er-
rors and the others considered figures of merit. What is
more, this improvement is higher when the full-order ob-
server is employed. To support the results shown in Table
2, the experimental results for one of the operation points

Table 2: Experimental results for different controllers and references

Ctrl. eRMS
α eRMS

xy êRMS
α THD Nc

(x10−2) (x10−2) (x10−2) (%) (SCPC)

fe = 19 Hz, Aref = 1.47 A

FSMPC 10.71 17.74 14.38 10.15 141.03
RLO 8.93 13.36 10.30 10.36 115.11
FLO 7.32 8.85 7.80 8.56 112.45

fe = 24 Hz, Aref = 1.50 A

FSMPC 10.96 17.75 14.25 8.69 96.97
RLO 8.36 13.09 10.17 7.95 83.23
FLO 7.12 8.41 8.34 6.46 72.06

fe = 29 Hz, Aref = 1.62 A

FSMPC 10.91 18.44 15.07 7.09 68.10
RLO 7.84 14.34 10.31 6.96 56.87
FLO 6.61 8.28 8.93 5.22 51.25

fe = 34 Hz, Aref = 1.56 A

FSMPC 11.23 18.89 15.41 7.24 50.56
RLO 7.82 15.38 10.42 6.63 39.20
FLO 6.12 8.27 9.27 5.10 39.03

fe = 39 Hz, Aref = 1.60 A

FSMPC 12.12 21.76 16.02 6.39 35.30
RLO 7.82 18.17 10.68 5.70 25.83
FLO 6.10 12.74 10.40 4.46 23.24
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Figure 9: Experimental results obtained from the test rig for Aref = 1.62 A and fe = 29 Hz when it is applied the controller (a) FSMPC, (b)
RLO and (c) FLO. Some graphics show the α − β stator currents (upper ones), x − y stator currents (middle plots) and the same currents
represented in circular trajectories (bottom draws).

are also presented in Fig. 9. The α − β − x − y current
response of the system when Aref = 1.62 A and fe = 29
Hz is presented for the three considered controllers. It
can be noted that using an observer produces a current
response that better fits the reference than the conven-
tional FSMPC method. Moreover, the current tracking is
smoother for the full-order observer, as the ripple of the
current signals is lower than in the reduced-order case.
This is confirmed by the obtained RMS current tracking
error values detailed in Table 2. For instance, the RMS er-
ror in the α current component is reduced by 28.12% and
39.36% for fe = 29 Hz using RLO and FLO respectively.
Similarly, the results for other operating points show that
the reduction in eRMS

α is higher for the full-order observer,
with improvements of 31.60%, 35.04%, 45.46% and 49.63%
for 19 Hz, 24 Hz, 34 Hz and 39 Hz respectively. Since α−β
currents are directly related to the electromechanical en-
ergy conversion, the improved current tracking in the α−β
plane reduces the torque ripple and enhances the dynamic

performance. Also notice that the RMS current track-
ing error in the x − y subspace is significantly reduced.
The full-order observer achieves better eRMS

xy values for all
frequencies than the reduced-order one, obtaining an im-
provement in this figure of merit up to 56%. This is an in-
teresting benefit of using observers because the lower RMS
values of the x − y currents do not affect the torque pro-
duction (in distributed-winding machines), but it favours
efficiency by reducing the IM copper losses.

The significant difference between both observers is
principally due to the more accurate estimation of rotor
currents that the full-order one produces, as evidenced by
the prediction RMS error in the α current component val-
ues shown in Table 2. Although both observers improve
this error with respect to the FSMPC, the FLO achieves
a reduction that ranges from 35.04% to 45.72% with de-
creasing frequency, while the reduction with RLO ranges
from 28.36% to 33.32% with increasing frequency.

Similarly, it can be stated from the results that the
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switching changes per cycle Nc and the harmonic content
THD are reduced when FSMPC is applied together with
an observer, with the FLO control being the best option.
Notice that the maximum improvement in Nc and THD
is 26.81% and 10.85% for the reduced-order observer, and
34.15% and 30.27% for the full-order one. It is remarkable
that the current tracking improvement obtained with the
inclusion of observers is achieved with lower VSI switching
frequency (i.e. lower values of Nc), which in turn implies
that the VSI losses are also reduced.

From the computational cost perspective, one of the
main drawbacks for the implementation of FSMPC in in-
dustry applications, the required computational load for
implementing the rotor observer is negligible. The total
computational cost of the control algorithm without rotor
observer is estimated as about 32.4µs, while the incorpo-
ration of the reduced-order observer or the full-order one
implies a total computational cost of 35.3µs and 35.7µs,
respectively, with a sampling time of 67µs. It is important
to indicate that both observers have similar computational
costs, though the full-order one produces remarkable re-
sults in all aspects.

5. Conclusion

The area of model predictive control for multiphase elec-
trical drives has experienced a substantial growth in the
last years. Particularly, FSMPC strategy has been pre-
sented in the literature applied to the dual three-phase
and five-phase drives. On the other hand, observers have
been principally used in relation to IFOC, sensorless drives
and for fault detection but, to the best of our knowledge,
they have not been yet used together with FSMPC tech-
niques. In this work, authors have proposed a current con-
trol scheme based on the FSMPC method incorporating a
rotor current observer. The new estimation scheme has
been assessed for a five-phase IM and has been demon-
strated that it is possible to enhance the predictions in-
cluding an observer without a considerable penalty in the
computational burden of the controller. The experimental
results show that, although the simple update and hold
scheme used by most MPC practitioners in electrical ap-
plications produces acceptable results, the observer clearly
outperforms the classic approach, presenting some advan-
tages such as better current tracking performance, less har-
monic content and less VSI gating commutations. Conse-
quently, the use of observers together with MPC strategies
generates torque with lower ripple and improves the over-
all efficiency by reducing both the copper and VSI losses.
Moreover, two different observer structures have been de-
signed and experimentally tested, a full-order observer and
a reduced-order observer. It has been stated that the full-
order one constitutes the best solution reducing the ripple
in the currents trajectories, specially in the x−y subspace,
with a similar computational cost.

The proposed current control method can be applied to
any n-phase induction machine, or even to conventional

three-phase ones, just adjusting the predictive model and
the observer equations to the new system. Consequently,
these results encourage future research towards establish-
ing the observer as a tool of choice for FSMPC to improve
the behaviour in high-performance electrical drives.
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