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Near the Cramér−Rao Bound Precoding
Algorithms for OFDM Blind Channel Estimation

Francisco J. Simois, Juan José Murillo-Fuentes, Rafael Boloix-Tortosa and Luis Salamanca

Abstract—The authors present a blind channel estimation of
cyclic prefix (CP) OFDM systems with non-redundant precoding
based on second-order statistics. The study analyzes first the
mean square error for the estimation of the covariance matrix of
the received symbols. We prove that for high and medium signal-
to-noise ratios (SNRs) the estimation error in diagonal entries of
the covariance matrix exhibits a lower error than that of the off-
diagonal elements. This behavior holds for SNR values in digital
communication. Contrary to general belief, we prove that the
diagonal of this matrix can be used for channel estimation. Hence,
we develop a novel algorithm that utilizes this result. We also
develop a low complexity version that provides acceptable results
with reduced computational requirements. Finally, we analyze the
covariance matrix and propose another new algorithm with noise
suppression capabilities. Some experimental results for Rayleigh
channels are included to support these conclusions. Also, they
illustrate the better performance of the new methods compared
to previous proposals and to the Cramér−Rao bound.

Index Terms—Blind channel estimation, OFDM, non-
redundant precoding, cyclic prefix (CP), variance of the esti-
mation of a covariance matrix, Cramér−Rao bound (CRB).

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) has
received considerable interest in the last few years for its
advantages over frequency-selective fading channels in high-
rate data transmissions. These features have justified the
adoption of OFDM as the transmission technique for many
latest generation systems: digital audio and video broadcasting
(DAB, DVB), digital subscriber lines (xDSL) or wireless local
area networks (IEEE 802.11a, ETSI BRAN HIPERLAN/2).
In OFDM, blocks of symbols are transmitted in parallel
over several narrowband subchannels at different orthogonal
subcarriers. Prior to its transmission, each block is processed
by the inverse discrete Fourier transform (IDFT), and a cyclic
prefix (CP), i.e., a copy of the last part of the block, is
inserted. This procedure enables a very simple equalization
of frequency-selective finite impulse response (FIR) channels.

Coherent detection and adaptive loading in OFDM systems
require reliable channel state information. In general, the chan-
nel impulse response (CIR) is estimated by transmitting some
training sequence periodically, which decreases the spectral
efficiency. If we aim at avoiding this payload, we can resort
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to blind approaches. One of the most attractive and simplest
solutions is to use non-redundant precoding at the transmitter.
The result of this precoding stage is a new set of transmitted
symbols that are a mixture of the original ones. The received
signals are then multiplied point by point by the DFT of
the channel. At this juncture, one can rely on blind source
separation (BSS) techniques [1],[2], to recover the original
data from the mixtures. However, such techniques do not
require knowledge of the precoding matrix and are based on
high-order statistics (HOS).

Many approaches have been recently proposed to estimate
the CIR by using the covariance matrix of the outputs. This
matrix has a known structure introduced by the precoder that
can be exploited in the channel estimation. The authors in [3]
proposed the extraction of the CIR from only one column of
the covariance matrix. A similar work was proposed in [4]
where the channel is again estimated from a single column of
the crosscorrelation matrix of two consecutive received blocks;
then, a direct average is applied. Later, the limited accuracy
of these methods was overcome using more entries of the
matrix. The authors in [5] present a new method that obtains
the channel estimation from all the off-diagonal entries of
the covariance matrix. The method is generalized for MIMO-
OFDM systems in [6]. Also, the authors in [7] propose a
singular value decomposition (SVD), and in [8] an eigenvalue
decomposition of the whole covariance matrix to estimate the
channel. The computational complexity of these latter methods
can be reduced further by projecting the matrix into the time
domain, as shown in this paper. A common feature of all
these methods is that the diagonal entries of the matrix are
avoided. Even in the latter methods, based on the eigenvectors
of the matrix, the diagonal entries play a minor role for a large
number of subcarriers. It is general belief that the estimation
of the channel is more accurate if the diagonal entries of the
covariance matrix are avoided, as they are corrupted by the
unknown noise variance. This paper shows that this is not
true for practical signal-to-noise ratios (SNR).

We analyze the mean square error for the estimation of the
covariance matrix at the receiver to show that, for sufficiently
high SNRs, the diagonal entries exhibit lower errors than the
off-diagonal ones. Therefore, the estimation of the channel
can be enhanced by using just the diagonal entries of the
covariance matrix to estimate the absolute value of the DFT
of the channel. This is the starting point to develop a novel
algorithm for the blind estimation of the channel, called the
diagonal algorithm (DA), which performs better than the
previous ones with the same complexity. Also, a version that
shows good performance and reduced complexity, similar to
that of the one-column method in [3], is presented. We will
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refer to this algorithm as the simple diagonal algorithm (SDA).
In some scenarios, the estimation of the channel in high-

noise environment is of interest [9], [10], [11], where both the
DA and SDA provide poor estimation. We avoid this problem
by estimating the variance of the noise and subtracting it from
the diagonal of the covariance matrix prior to the estimation
of the channel with the DA or SDA. However, a quite accurate
estimation of the variance of the noise is needed to achieve the
same results of the DA and SDA at high SNR. The analysis
of the square error of the covariance matrix proves to be
useful, as discussed in this paper. Hence, we present a new
algorithm, the diagonal with noise removal algorithm (DNA),
which outperforms previous approaches in the literature, for
all SNRs. Furthermore, we use the Cramér−Rao bound (CRB)
to show that this method is close to the optimal estimation.

This paper is organized as follows. Section II presents the
system model of OFDM precoded transmissions. Section III
provides a general approach to the channel estimation. Section
IV thoroughly studies the mean square error of the estimation
of the covariance matrix. These errors are evaluated for some
standard scenarios in section V. In Section VI, we develop the
DA and SDA while the algorithm with noise removal capabil-
ity, the DNA, is described in Section VII. In Section VIII,
we describe the computational complexity of the proposed
methods and compare them to previous approaches. Section
IX presents various simulations to show the effectiveness of
our algorithms. Section X is devoted to conclusions. The paper
ends with some appendices.

The notations used in the paper are as follows. If A is a
matrix, Ar,q is its (r, q) entry. To denote a range of values
from r to q, r :q is used, e.g., Ar:q,k is a column vector, the
values r to q of the column k of A. A:,k is the kth column of
A. AT represents the transpose of A and AH its Hermitian.
tr (A) is the trace of A and diag (A) is a column vector with
the diagonal of A. ar is the r-th entry of vector a. diag (a)
is a diagonal matrix whose diagonal is vector a. ||a|| is the
L2 norm of vector a. a((r−q))m is the ((r− q) mod m+1)-th
entry of a. E{·} denotes statistical expectation. Finally, � and
� stand for the Hadamard (pointwise) product and division,
respectively.

II. NONREDUNDANT PRECODING FOR CP-OFDM

In a CP-OFDM system with precoding, the transmitter can
be described by the baseband discrete-time block equivalent
model depicted in Fig. 1. The symbols first enter an S/P
converter that arranges the symbols in an m×1 column vector
s(k). Then, this vector is multiplied by W, an m ×m non-
redundant precoding matrix. Later, we apply the inverse DFT
(IDFT) by multiplying by FH, the Hermitian of the m ×m
normalized FFT matrix, F, whose (r, q)th entry is

Fr,q =
1√
m

e−j2π(r−1)(q−1)/m, (1)

for 1 ≤ q, r ≤ m. After the IDFT and precoding stages,
the last l symbols are padded at the beginning to avoid the
interblock and the interchannel interferences. The symbols
in the blocks are serialized and sent sequentially through
the channel. Propagation is modeled as an FIR channel with

h(z) W 
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n :1 
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Fig. 1. Discrete-time block baseband equivalent model of precoded CP-
OFDM transmitter and channel.
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Fig. 2. Discrete-time block baseband equivalent model of CP-OFDM
receiver.

impulse response h = [h0 · · ·hl]T. It is assumed here that the
maximum channel order is l (i.e., hi = 0,∀i > l).

In Fig. 2, additive white Gaussian noise (AWGN) is added in
the channel. At the receiver side, a serial-to-parallel conversion
is performed to obtain the (m+ l)×1 vector r. Then, the first
l outputs are discarded so that a DFT can be applied later. The
received block of m symbols at instant k yields [5],

y(k) = F [0|I] r(k) = FHFHWs(k) + n(k), (2)

where n is a vector whose entries are AWGN with covariance
matrix σ2

nI, and H is the m × m circulant channel matrix
with its (r, q) entry given by h((r−q))m . The m× 1 vector h
is obtained by inserting m − l − 1 zeros at the end of h. At
this point, vector y is used to estimate the CIR.

The model in (2) can be written in a simple and direct form
as follows,

y(k) = H̃Ws(k) + n(k), (3)

where H̃ = FHFH = diag
(
h̃
)

is a diagonal m×m matrix
whose diagonal is the m-point DFT of the CIR,

h̃ =
√
mF:,1:l+1h. (4)

III. CHANNEL ESTIMATION

A. General Approach

The model in (3) matches that of a blind source separa-
tion (BSS) problem [2]. Matrix H̃ is diagonal, and W is
known. Hence, a simple decorrelation of the outputs ensures
separation and estimation of the diagonal of H̃, hereafter
denoted as ˆ̃

h. The channel estimation, up to a scale factor,
can be accomplished by computing ĥ = (F:,1:l+1)H

ˆ̃
h/
√
m.

This projection reduces the dimension from m to l + 1, the
number of unknowns, thereby reducing also the computational
complexity.

The covariance matrix of the outputs can be written as

Ry = E{y(k)yH(k)} = H̃WRsW
HH̃H + σ2

nI, (5)
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where Rs is the covariance matrix of the transmitted data. As
H̃ is diagonal, this matrix yields

Ry = WRsW
H � h̃h̃H + σ2

nI. (6)

In the following, we assume the transmitted data to be
uncorrelated, Rs = σ2

sI. For the sake of simplicity we define
P = WWH and C = H̃WWHH̃H. It follows that

Ry = σ2
sC + σ2

nI = σ2
sP� h̃h̃H + σ2

nI. (7)

Given N received samples, Y = [y(0)|y(1)|...|y(N − 1)],
we replace in (7) the covariance matrix by its estimation,
R̂y = YYH/N . The channel is usually estimated mainly,
or exclusively, by focusing on the off-diagonal entries of the
following relation,

ˆ̃
h

ˆ̃
hH =

1

σ2
s

R̂y �P− σ2
n

σ2
s

I�P, (8)

because diagonal elements are corrupted with the noise vari-
ance, [3], [5], [7], [8].

B. An MSE approach

An approach to solve (8) is to neglect the noise and find
the vector ˆ̃

h that better fits the equation

ˆ̃
h

ˆ̃
hH =

1

σ2
s

R̂y �P = B. (9)

Note that for a large number of carriers, (8) and (9) only differ
in a few equations, viz., the diagonal ones. Hence, using (9) we
approximate (8), not taking into account the error introduced
by the variance of the noise in the estimation of the covariance
matrix of the outputs.

The solution to (9) can be easily computed by minimizing
the Frobenius norm between B and ˆ̃

h
ˆ̃
hH. Note that this loss

function is the mean (averaged) value of the square errors
between corresponding entries of matrices B and ˆ̃

h
ˆ̃
hH. This

minimization has one unique solution, up to a phase mismatch,
given by the eigenvector associated to the largest eigenvalue
[7]. In [8], the authors use the power method to avoid extensive
computations in the decomposition. In the power method,
H̃ is estimated iteratively with a constrained learning law.
Although it reduces the computational complexity compared
to a standard eigendecomposition algorithm, it works on an
m-dimensional space and has linear convergence. We propose
to minimize the mean square error between matrices B and
h̃h̃H but project this error into the low-dimensional discrete
time domain:

L = min
ĥ

(
tr
(

(V − ĥHĥ) · (V − ĥHĥ)H
))

, (10)

where V = (F:,1:l+1)HBF:,1:l+1. To minimize it we estimate
the eigenvector of V with dominant eigenvalue by using the
shifted power method [12], [13], [14] as follows

ĥMSE ← ĥMSE + µVĥMSE, (11)

ĥMSE ← ĥMSE/‖ ĥMSE ‖. (12)

This algorithm is always stable regardless of the value of µ
and it converges exponentially with the rate 1+µρ2

1+µρ1
, where

ρ1 and ρ2 are the largest and the second largest eigenvalues
of V [13], [14]. While the eigendecomposition approach in
[8] estimates an m-dimensional vector, the proposed method
estimates a vector with dimension l + 1. Hence, we reduce
the computational complexity in the optimization stage from
order O(m2) to O((l+ 1)2), where m is usually much larger
than l + 1.

IV. ON THE ESTIMATION OF THE COVARIANCE MATRIX

As already discussed, we usually assume the covariance
matrix of the transmitted data in (7)-(8) to be the identity
matrix multiplied by σ2

s . However, in practice, the covariance
matrix of the outputs has to be estimated from N samples as
R̂y = YYH/N . Hence,

R̂y = H̃WR̂sW
HH̃H + H̃WR̂sn + R̂nsW

HH̃H + R̂n,
(13)

where R̂ab = ABH/N , for some matrices A and B. The
question that arises is whether the errors in the estimation of
diagonal entries of R̂y are larger than those in the estimation
of off-diagonal ones.

A. Variance of the estimation error

We propose to study the error in the estimation of the
covariance matrix in (13). The mean value of this estimator is

E{R̂y} = σ2
sC + σ2

nI. (14)

The expression

Σ = E{|R̂y − σ2
sC− δnσnI|2}, (15)

where the square operator is entrywise, is the variance of the
estimator for δn = 1. By setting δn = 0, (15) yields the mean
square error between the estimation of the covariance matrix
and its mean value in the absence of noise. The value of the
entries of (15) is given by

Σr,q = σ4
s(Cr,rCq,q −Θr,q)/N + σ2

sσ
2
n(Cr,r + Cq,q)/N

+ (1 + δrq)σ
4
n/N + δrq(1− δn)σ4

n. (16)

where δrq = 1 if r = q and 0 otherwise,

Θr,q = Φr,q|h̃r|2|h̃q|2, (17)

and, in turn,

Φr,q = (2− µs/σ4
s)

m−1∑
α=0

|Wr,α|2 |Wq,α|2, (18)

where µs = E{s4} is the fourth-order moment of the inputs.
This expression can be easily computed for diagonal and off-
diagonal entries, by setting δrq to 1 or 0, respectively. (See
Appendix A for some guidelines on the computation of (16).)
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B. Crosspoint

We denote the signal-to-noise ratio (SNR) by γ = σ2
s/σ

2
n.

In this paper, we prove that, at high SNRs, the diagonal entries
of the estimation of the covariance matrix exhibit a lower
estimation error. The crosspoint between the variance of the
error in diagonals and off-diagonal entries given by (16), as a
function of γ, can be easily computed as the solution to

σ2
s(σ2

sCr,r + σ2
n)(Cr,r −Cq,q)

− σ4
s(Θr,r −Θr,q) + (1 +N − δnN)σ4

n = 0. (19)

This yields the second-order equation

γ2 [(Θr,r −Θr,q)−Cr,r(Cr,r −Cq,q)]

− γ(Cr,r −Cq,q)− (1 +N − δnN) = 0. (20)

The term (2 − µs/σ
4
s) in (18) can be computed for any

modulation. In this paper, we focus on M -QAM modulations,
for which it can be proved that

(2− µs/σ4
s) =

3(M2 − 1)

5(M − 1)2
. (21)

C. Estimation for random channels

The earlier expressions can be extended for the more general
case of random channels by taking the statistical expectation
of (16). If we make use of the definition of C, it follows that

Σr,q = σ4
s(Pr,rPq,q − Φr,q)E{|h̃r|2|h̃q|2}/N

+ σ2
sσ

2
n(Pr,rE{|h̃r|2}+ Pq,qE{|h̃q|2})/N

+ (1 + δrq)σ
4
n/N + δrq(1− δn)σ4

n. (22)

Appendix B proves that this expression yields

Σr,q = σ4
s(Pr,rPq,q − Φr,q)

·

[
ẽ2
1 + |ẽ((r−q))m |

2 −
l∑

α=0

(
2σh

4
α − µhα

)]
/N

+ σ2
sσ

2
n(Pr,r + Pq,q)ẽ1/N

+ (1 + δrq)σ
4
n/N + δrq(1− δn)σ4

n, (23)

where

ẽ =
√
mF:,1:l+1e (24)

is the m-point DFT of the variances of the coefficients of
the CIR, e = [σ2

h0
, σ2
h1
, ..., σ2

hl
]T, σ2

hα
and µhα are the

variance and the fourth-order moment of the α-th channel tap,
respectively. Again, this expression can be easily computed
for diagonal and off-diagonal entries, by setting δrq to 1 or 0,
respectively. The crosspoint between them can be calculated
by solving the expectation of (20). Again, using the definitions
of C and Φ, (20) yields

γ2
[
(Pr,rPq,q − Φr,q) |h̃r|2|h̃q|2 +

(
Φr,r −P2

r,r

)
|h̃r|4

]
− γ

(
Pr,r|h̃r|2 −Pq,q|h̃q|2

)
− (1 +N −Nδn) = 0, (25)

and after computing its expectation,

γ2

[
(Pr,rPq,q − Φr,q)(ẽ

2
1 + |ẽ((r−q))m |

2)

−
(
P2
r,r − Φr,r

)
2ẽ2

1 −
(
Pr,rPq,q −P2

r,r + Φr,r − Φr,q
)

·
l∑

α=0

(
2σh

4
α − µhα

)]
− γ(Pr,r −Pq,q)ẽ1

− (1 +N −Nδn) = 0. (26)

V. ESTIMATION ERRORS IN SOME SCENARIOS

The previous section showed that the values Cr,r and Θr,q

depend on the channel and the precoding matrix. In the
following, we analyze some standard scenarios. As discussed
in Section III-A, noise is usually ignored in the estimation of
the channel. Hence, we set δn = 0 to estimate the mean square
error for the estimation of the covariance matrix.

A. AWGN channel and no precoding

Assume we transmit an M -QAM, the channel is AWGN,
in (5) we have no precoding, i.e. W = H̃ = C = I, and
the covariance matrix of the transmitted data is Rs = σ2

sI.
Then, at reception the covariance yields Ry = σ2

sI + σ2
nI.

We compute the mean square error of the estimation of the
covariance matrix of the outputs as Σ = E{|R̂s − σ2

sI|2}. In
this scenario, with the identity matrix as precoder, (17) yields

Θ(I)
r,r = 2− µs/σ4

s ,

Θ(I)
r,q = 0, r 6= q. (27)

and equation (16),

Σr,r = (σ2
s + σ2

n)2/N − σ4
sΘ(I)

r,r/N + σ4
n/N + σ4

n, (28)

Σr,q = (σ2
s + σ2

n)2/N, q 6= r. (29)

As the SNR increases, we have

lim
SNR→∞

Σr,r = (1−Θ(I)
r,r)σ

4
s/N, (30)

lim
SNR→∞

Σr,q = σ4
s/N, q 6= r. (31)

Hence, at suffciently high SNR, the difference between the
estimation error of the diagonal entries and the off-diagonal
ones is (2σ4

s −µs)/N . Besides, it follows that the quotient of
errors is

lim
SNR→∞

Σr,q
Σr,r

=
(

1−Θ(I)
r,r

)−1
. (32)

This ratio can be read as the achieved gain for large SNR
when the diagonal entries are used instead of the off-diagonal
ones for estimating a given parameter. For an M -QAM, the
quotient of errors can be easily computed by introducing (21)
into (32). For M = 4 the gain is infinite, and for M = 64 it
is 4.2 dB. The solution to (20) is the crosspoint between (28)
and (29). In this scenario, the linear term in (20) vanishes and
the solution is

γ =

√
5

3

(M − 1)2

M2 − 1
(1 +N). (33)
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Fig. 3. Mean square error for the estimation of the diagonal (�) and the off-
diagonal (∗) entries for the covariance matrix of the outputs for a memoryless
channel, no precoding, and a 4-QAM modulation (solid) and a 64-QAM
modulation (dot-dashed) for N = 100 samples.

The crosspoint in (33) yields 10.02 dB and 11.06 dB for
M = 4 and M = 64, respectively and N = 100. For a large
number of samples, e.g., N = 1000, we need an SNR > 16 dB
to have better estimations in the diagonal entries. For N = 10,
the threshold reduces to SNR > 6.3 dB. These crosspoints
are near the values of the SNR where the optimal detectors
provide useful bit error rates (BER), e.g. for a 4-QAM we
need SNR ≥ 8 dB to get BER≤ 10−3 in AWGN channels.

Fig. 3 displays the mean square error of the estimation of a
diagonal (�) and an off-diagonal (∗) entry of R̂y in (28)-(29).
The transmitted signals were randomly generated for a 4-QAM
(solid) and a 64-QAM (dot-dashed) along different signal-to-
noise ratios (SNR) for N = 100 samples (blocks). For an
SNR beyond the crosspoints, the error is lower in the diagonal
entries. For the 4-QAM, a constant modulus modulation, this
error approaches zero as the noise vanishes.

B. AWGN channel and Precoding

If we use a precoding matrix, the estimation of the cova-
riance of the received symbols is given by (13) with H̃ = I.
The errors in the estimation of an entry of Rs spread over
the entries of Ry. This effect depends on the structure of the
precoding matrix, as analyzed in this section. For large SNR,
we prove that for the precoding matrix proposed in [5] the
errors in the diagonal entries are lower than in the off-diagonal
ones.

In the precoding matrix, W, proposed in [5] by Gao and
Nallanathan, the diagonal entries of P = WWH are equal to
1 and the off-diagonal entries are p < 1. It can be easily
proved that Wr,r = w1 ∀r, and Wr,q = w2 ∀q 6= r, where
0 < w2 < w1 < 1. The k-th precoded signal is the k-th
input signal multiplied by w1 plus the sum of all the other
signals multiplied by w2. Values of p close to one yield a
good estimation of the channel and poor BER, while near-
zero values involve poor estimates of the channel [5].

We compute the mean square error of the estimation of the
covariance matrix of the outputs as Σ = E{|R̂y − σ2

sC|2}.
Assume the channel is AWGN. In this scenario, C = P and
Θ = Φ. For the precoding in [5], Φ in (18) yields

Φ(Gao)
r,r =(2σ4

s − µs)(w4
1 + (m− 1)w4

2)/σ4
s , (34)

Φ(Gao)
r,q =(2σ4

s − µs)(2w2
1w

2
2 + (m− 2)w4

2)/σ4
s , r 6= q,

(35)

and (16) simplifies to

Σr,r = (σ2
s + σ2

n)2/N − σ4
sΘ(Gao)

r,r /N + σ4
n/N + σ4

n, (36)

Σr,q = (σ2
s + σ2

n)2/N − σ4
sΘ(Gao)

r,q /N, q 6= r. (37)

It follows that, as the SNR increases, the gain obtained by the
diagonal entries can be computed as

lim
SNR→∞

Σr,q
Σr,r

=
1−Θ

(Gao)
r,q

1−Θ
(Gao)
r,r

. (38)

Hence, at sufficiently high SNR, the difference between es-
timation errors for the off-diagonal and the diagonal entries
is

(Θ(Gao)
r,r −Θ(Gao)

r,q )σ4
s/N =

3(M2 − 1)

5(M − 1)2
(w2

1 − w2
2)2σ4

s/N,

(39)
where the term on the right is the value particularized for an
M-QAM modulation. If 0.8 ≥ p ≥ 0.2, the gain in (38) is in
the range [0.9, 14.9] dB for M = 4 and [0.6, 6.5] dB for M =
64. As the SNR decreases, the difference between these errors
in (36)-(37) reduces, to cancel at some point. For SNR below
this crosspoint, the off-diagonal entries are better estimated.
The solution to (20) is this crosspoint. In this scenario, the
linear term in (20) vanishes, as Cr,r = Cq,q, and the solution
yields

γ =

√
5

3

(M − 1)2

M2 − 1

1 +N

(w2
1 − w2

2)2
, (40)

where we make use of (39).
Fig. 4 depicts the mean square error in the estimation of a

diagonal (�) entry and an off-diagonal (∗) entry of R̂y in (36)
and (37). The transmitted signals were randomly generated for
a 4-QAM (solid) and a 64-QAM (dot-dashed) along different
signal-to-noise ratios (SNR) for N = 100 samples (blocks).
The crosspoint in (40) yields 12.4 dB and 13.5 dB for M = 4
and M = 64, respectively, for the value p = 0.54 proposed
in [5]. For N = 10 and N = 1000, the crosspoints shift left
and right, respectively, 5 dB. These crosspoints are below the
values of the SNR where the optimal detectors provide useful
BER in fading channels.

C. Rayleigh channel and precoding

In [5], Pr,r = Pq,q = 1, and (23) yields

Σr,q = σ4
s(1− Φ(Gao)

r,q )

·

[
ẽ2
1 + |ẽ((r−q))m |

2 −
l∑

α=0

(
2σh

4
α − µhα

)]
/N

+ 2σ2
sσ

2
nẽ1/N + (1 + δrq)σ

4
n/N + δrqσ

4
n, (41)



6

−5 0 5 10 15

−22

−20

−18

−16

−14

−12

−10

SNR(dB)

M
S

E
 i
n

 C
o

v
a

ri
a

n
c
e

 E
s
ti
m

a
ti
o

n
 (

d
B

)

 

 

Off−diagonal, 4−QAM

Off−diagonal, 64−QAM

Diagonal, 4−QAM

Diagonal, 64−QAM

Fig. 4. Mean square error for the estimation error in the diagonal (�) and the
off-diagonal (∗) entries for the covariance matrix of outputs for an AWGN
channel and precoding, and a 4-QAM modulation (solid) and a 64-QAM
modulation (dot-dashed) for N = 100 samples.

where Φ(Gao) is given in (34)-(35). For channel taps with
Rayleigh-distributed envelope, µhr = 2σh

4
r , and (41) yields,

for diagonal and off-diagonal entries,

Σr,r = σ4
s(1− Φ(Gao)

r,r ) · 2ẽ2
1/N

+ 2σ2
sσ

2
nẽ1/N + 2σ4

n/N + σ4
n, (42)

Σr,q = σ4
s(1− Φ(Gao)

r,q ) ·
[
ẽ2
1 + |ẽ((r−q))m |

2
]
/N

+ 2σ2
sσ

2
nẽ1/N + σ4

n/N. (43)

Both errors are equal at the crosspoint given in (26), which
depends on the channel. In this scenario, it follows that

γ2
[
(1− Φ(Gao)

r,q )(ẽ2
1 + |ẽ((r−q))m |

2) − (1− Φ(Gao)
r,r )2ẽ2

1

]
− (1 +N) = 0. (44)

Fig. 5 includes the mean square error of the estimation of
a diagonal (�) entry and an off-diagonal (∗) entry of R̂y in
(42)-(43), with the precoding in [5] with p = 0.54. We model
the channel by randomly generating the coefficients of the
filter with a Rayleigh distribution, scaled with an exponential
power-delay profile for every path as in [15], [5],

σh
2
r = E{|hr|2} = exp(−r/10), r = 0, ...., l (45)

and the phase of each coefficient, ∠hr, is uniformly distributed
over [0, 2π). We include (42) and (43) for r = 1 and
q = 2 averaged over 1000 different and randomly generated
channels with l = 8. The transmitted signals were also
randomly obtained with a 4-QAM (solid) and a 64-QAM
(dot-dashed) along different signal-to-noise ratios (SNR), and
the covariance matrix was estimated with N = 100 samples
(blocks). We observe that the variances of the error in both
diagonal and off-diagonal entries are similar to those in the
previous subsection but with a vertical shift due to the average
over the Rayleigh channels. By solving (44) we have a similar
crosspoint, at 11.31 dB and 12.47 dB for 4-QAM and 64-
QAM, respectively, as observed in Fig. 5.
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Fig. 5. Mean square error for the estimation error in the diagonal (�) and
the off-diagonal (∗) entries for the covariance matrix of the outputs for a
fading channel and precoding, for a 4-QAM modulation (solid) and a 64-
QAM modulation (dot-dashed) for N = 100 samples averaged over 1000
Rayleigh channels.

VI. THE DIAGONAL OF THE COVARIANCE MATRIX IN THE
CIR ESTIMATION

A. The diagonal algorithm

Bearing the earlier results in mind, we conclude that the
diagonal of the covariance matrix is of major importance in
the estimation of the channel. Therefore, we estimate the CIR
with the following method, denoted by the diagonal algorithm
(DA). The diagonal of the covariance matrix provides the
square of the absolute values of the DFT of the channel, (see
(9)),

|ˆ̃hDA i| =
√

Bi,i . (46)

The angle may be estimated using a robust method such as
the earlier MSE approach,

∠ˆ̃
hDA = ∠

(√
mF:,1:l+1ĥMSE

)
. (47)

Finally, the channel can be estimated as ĥDA =

(F:,1:l+1)H
ˆ̃
hDA/

√
m. This method can be improved by sub-

tracting the noise variance, if any estimation is available, as
discussed later in this paper.

B. Simple Diagonal Algorithm

The previous diagonal approach showed a good perfor-
mance. However, its computational complexity can be reduced,
as the estimation of the angles with the MSE method involves
the whole covariance matrix. The angle of the DFT of the
channel can only be estimated with off-diagonal entries, but we
can use just one column of the covariance matrix to compute it.
The estimation is not as accurate as the one using the MSE or
the method by Gao and Nallathanan [5], but only m products
and divisions are needed in its computation. The estimation of
the absolute value of the DFT of the channel yields

|ˆ̃hSDA i| =
√

Bi,i . (48)
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The angle may be estimated by the simple one-column method
in [3]. If we use any column of B, e.g., the r-th, the angle
yields

∠ˆ̃
hSDA i = ∠

(
Bi,r/|ˆ̃hSDA r|

)
. (49)

Finally, the channel can be estimated as ĥSDA =

(F:,1:l+1)H
ˆ̃
hSDA/

√
m.

VII. NOISE REMOVAL

In the estimation of the covariance matrix of the outputs,
noise is present in the diagonal entries. This fact has motivated
other authors to estimate the absolute value of the DFT of
the channel by using off-diagonal entries [7], [8], [3], [5].
On the other hand, we have proved that the estimation of the
diagonal entries exhibits a lower square error for large and
medium SNR. As discussed in Section V, the SNR values for
which the diagonal entries are better estimated are usually the
values needed for useful BER. Hence, the proposed approaches
in Section VI achieve better results in this range of SNR,
as illustrated in the experimental section later in this paper.
However, we may aim at obtaining a better performance also in
high-noise scenarios [9], [10], [11]. To improve the estimation,
we propose removal of the noise from the diagonal of the
covariance matrix, by previously estimating it. Because the
variance of the noise is suppressed from the diagonal, we
expect to have a significant improvement in the estimation
error of the diagonal entries. Note that the performance of
this method can be easily analyzed by studying the variance
of the estimator instead of the mean square error, i.e., by
setting δn = 1 in (16) and (20). For example, for the AWGN
channel with precoding and a 4-QAM in Subsection V-B, the
crosspoint in (20) yields γ = w2

1 − w2
2 < 1, and we have a

better estimation of the diagonal entries for the whole useful
range of SNR.

The variance of the noise can be estimated from the diagonal
of the covariance matrix. With a proper estimation of the
channel, we may compute the product σ2

sWWH � h̃h̃H and
estimate the noise variance by subtracting it from R̂y for any
diagonal entry, e.g., the rth,

σ2
n ≈

(
R̂y − (σ2

sWWH)� ˆ̃
h

ˆ̃
hH
)
r,r
. (50)

As the entries of the estimated covariance matrix show errors,
this estimation could be improved by the whole set of diagonal
entries, e.g., averaging them. However, this yields poor results.
Some diagonal entries are badly estimated and distort the
computation of the noise. A poorly estimated entry, e.g. the r-
th, can be detected by checking its corresponding square error,
in (16). The square error of the estimation is highly dependent
on Cr,r. Therefore, we discard the estimations (50) with the
highest values of Cr,r. The algorithm, also called diagonal
noise removal algorithm (DNA), is explained as follows.

First, estimate the channel using, mainly or exclusively, the
off-diagonal entries of the estimation of the covariance matrix
of the outputs. The MSE approach in Section III-B, or the
Gao and Nallathanan algorithm [5] is a suitable method. By
avoiding the diagonal entries, we get a noise-free estimation

of the channel. Second, build a noise-free estimation of the
covariance matrix as follows

σ2
sC = σ2

sWWH � ˆ̃
h

ˆ̃
hH. (51)

Third, estimate the noise from every diagonal entry as

Ξ = diag
(
R̂y − σ2

sC
)
, (52)

where Ξ is a vector whose rth entry is the estimation of
the noise using the rth diagonal entry of R̂y. Next, find the
R entries Q = {q1, q2, ..., qr, ..., qR} of Ξ with the lowest
corresponding values of Cqr,qr . Fifth, estimate the variance
of the noise as

σ̂2
n = 1/R

∑
qr∈Q

Ξqr . (53)

Finally, obtain the estimate of the channel as:

|ˆ̃hDNA i| =

√√√√(B− σ̂2
n

σ2
s

I�P

)
i,i

. (54)

The angle may be estimated with any approach, e.g. the
method used in the first step to estimate C, the MSE,

∠ˆ̃
hDNA = ∠

(√
mF:,1:l+1ĥMSE

)
. (55)

The estimation of the CIR yields ĥDNA =

(F:,1:l+1)H
ˆ̃
hDNA/

√
m.

VIII. COMPUTATIONAL COMPLEXITY

Once we have computed (9), the order of the computational
complexity of the methods, in ascending order, is calculated as
follows. For the one-column method and the SDA just divide,
entry by entry, one m×1 vector by another. Also, a de-noising
stage (IFFT and FFT) of order O(m log(m)) is run, which
yields the computational complexity of these methods. The
MSE approach has a complexity O(m(l+ 1) logm) given by
the projection stage, V = (F:,1:l+1)HBF:,1:l+1. Note that the
updated rule, of O((l+1)2), is performed a few times. The DA
has the same complexity as the MSE, which is the method used
in this paper to estimate the phases. The power method by Seo
and Chung in [8] requires the multiplication of matrix B by
a vector several times; hence, it is of order O(m2). The DNA
first estimates the channel with some method, in this paper
we use the MSE. Then, any of the operations to estimate the
noise variance yields at most O(m2). Hence, the DNA has
O(m2). Finally, the method by Gao and Nallanathan gives
O(m2(l+1)), as described in [5]. Table I shows a comparison
of the computational complexity for all these approaches.

TABLE I
COMPUTATIONAL COMPLEXITY.

Method Complexity order
One-column O(m log(m))

SDA O(m log(m))
DA O(m(l + 1) logm)

DNA O(m2)
Gao and Nallanathan O(m2(l + 1))
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Fig. 6. Averaged NMSE for m = 64 subcarriers, a 4-QAM modulation,
N = 100, and Rayleigh channel with l+1 = 9 taps. The channel is estimated
using the SDA, the Gao and Nallanathan, the one-column, the MSE, the DA,
and the DNA methods.

IX. EXPERIMENTAL RESULTS

To compare the performance of the above-mentioned meth-
ods with other approaches, we use the normalized mean square
error (NMSE). As the channel can be estimated up to a
constant [16], the scalar ambiguity is solved by computing

αmin = min
α
||h̃− αˆ̃

h||2. (56)

Then, the NMSE is defined as

NMSE(
ˆ̃
h) =

1

t

t∑
i=1

||h̃− αˆ̃
h(i)||2

||h̃||2
, (57)

where ˆ̃
h(i) and h̃ are the estimations at run i and the true

DFT of the channel impulse response, respectively, and t is
the number of runs or estimations.

We compute a lower bound on the variance of estimators of
the channel taps. As, we are analyzing blind algorithms, we
resort to the stochastic Cramér−Rao bound (CRB) [17], [5]:∑

i

CRBh i ≤ NMSE(
ˆ̃
h), ∀ˆ̃

h. (58)

We examine the performance of the proposed methods
compared to other previous proposals. The scenario is similar
to that used in [5] and [8]. The block length is set to m = 64
according to the IEEE 802.11a standard. We simulate 5-tap
(l + 1 = 5) and 9-tap channels, a similar and a larger
value compared to those used in [5] and [3]. The precoding
matrix is the one proposed in [5] with p = 0.54. All results
are averaged over 1000 Monte Carlo runs. In every run the
channel, noise, and signals are generated randomly. The SNR
in the experiments is the ratio γ = σ2

s/σ
2
n. Because the channel

is normalized to have a unit norm, this value approximates
Es/N0 = σ2

y/σ
2
n, where only the precoding matrix introduces

some deviation. The MSE approach in (11) used in these
experiments is initialized with the one-column method in [3]
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Fig. 7. Averaged BER for a ZF equalizer for m = 64 subcarriers, a 4-
QAM, N = 100, and Rayleigh channel with l + 1 = 9 taps. The channel
is estimated using the SDA, the Gao and Nallanathan, the one-column, the
MSE, the DA, and the DNA methods.

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

N

N
M

S
E

 

 

SDA

Gao et al

Column

MSE

DA

DNA

CRB

Fig. 8. Averaged NMSE for m = 64 subcarriers, a 4-QAM, SNR = 25dB,
and Rayleigh channel with l + 1 = 9 taps. The channel is estimated using
the SDA, the Gao and Nallanathan, the one-column, the MSE, the DA, and
the DNA methods.

and is run for 20 iterations with µ = 0.01 in (12). Parameter
R of the DNA is set to 10% of the number of subcarriers.

Fig. 6 displays the NMSE along the signal-to-noise ratio
(SNR) for the one-column by Petropulu et al in [3] (◦), Gao
and Nallanathan in [5] (∗), the MSE in (11) (�), the simple
diagonal (SDA) (�) in (48)-(49), the diagonal (DA) (4) in
(46)-(47), and the diagonal noise removal (DNA) (O) in (54)-
(55) methods for N = 100 samples. The Cramér−Rao bound
is also included (dashed) as reference. The signal constellation
is 4-QAM. Fig. 7 shows the corresponding BER for the same
scenario and methods, by a zero forcing (ZF) equalizer with
the estimated channels. We also depict the BER for the ZF
equalizer with perfect knowledge of the channel as reference
(solid). For SNR ≥ 14 dB, the one-column method exhibits
the worst NMSE, the DA and DNA the lowest estimation
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error, and the other approaches have a similar performance. For
SNR ≤ 14 dB, the estimation error of the diagonal elements in
the covariance matrix is largely distorted by noise, as discussed
in Sections V-B, V-C and illustrated in Figs. 4 and 5, and the
one-column, DA and SDA exhibit a worse performance. The
DNA has the best NMSE along the whole range of SNR.
The 14-dB threshold depends on the precoding matrix and
the number of samples. For a number of samples in the range
[10, 1000] we have a maximum deviation of about 5 dB around
the previous 14-dB threshold. It is important to remark that,
as illustrated in Fig. 7, the BER for SNR ≤ 20 dB is the
same for all approaches, close to the BER estimated with the
true channel. Therefore, in digital communications scenarios,
as the one simulated here, good results in the estimation of the
channel at low SNR are not useful and simple and accurate
approaches such as the SDA are good estimators.

Fig. 8 depicts the NMSE and the CRB along the number of
samples or blocks, N , used in the estimation of the covariance
matrix for an SNR = 25 dB. The DA and DNA provide
good estimations for a low number of samples and a curve
near to that of the CRB. The other methods, including the
SDA, exhibit a similar performance for large enough numbers
of samples, except for the one-column approach. For a low
number of samples, the SDA is not as accurate as the MSE.
The information of all the off-diagonal elements is relevant to
better estimate the phase of channel.

It may be concluded that if the computational complexity
is to be reduced and the coherence time of the channel is not
too short, the SDA is a good option, as it provides the same
BER as the Gao and Nallanathan, and MSE methods with the
same low complexity as the one-column method. If the best
estimation is needed, or the coherence time is short, the DA
or DNA may to be used.

The experimental results in the previous example are similar
to the ones obtained for other constellations; only the BER
changes according to the characteristics of the modulation.
Fig. 9 also shows the results for the NMSE for a 64-QAM
and N = 100 samples. Fig. 4 proves that the crosspoint
between the curves for the error in the diagonal (�) and the
off-diagonal entries (◦) in a 64-QAM (dash-dotted) is similar
to the crosspoint of the 4-QAM (solid) curves. The crosspoints
of the DA and the MSE approach in Figs. 6 and 9 are also
similar. The DA and SDA present similar or better NMSE
than the other methods for SNR ≥ 15 dB. The DNA exhibits
a good performance, near to the Cramér−Rao bound, for all
SNR. Besides, as in Rayleigh channels the SNR needed for a
BER higher than 10−2 for 64-QAM is larger than this 15-dB
value (see Fig. 10) the DA is a good choice. We may resort
to the SDA when computationally limited.

X. CONCLUSIONS

This paper revisits the estimation of the CIR in OFDM
transmissions using non-redundant precoding and second-
order statistics. We prove that for large and medium SNR the
estimation of the diagonal entries of the covariance matrix of
the outputs exhibits lower errors than that of the estimation
of the off-diagonal ones. This result holds for typical SNR
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Fig. 9. Averaged NMSE for m = 64 subcarriers, a 64-QAM modulation,
N = 100, and Rayleigh channel with l+1 = 5 taps. The channel is estimated
using the SDA, the Gao and Nallanathan, the one-column, the MSE, the DA
and the DNA methods.
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Fig. 10. Averaged BER for a ZF equalizer for m = 64 subcarriers, a 64-
QAM modulation, N = 100, and Rayleigh channel with l+1 = 5 taps. The
channel is estimated using the SDA, the Gao and Nallanathan, the one-column,
the MSE, the DA and the DNA methods.

in fading channels. Accordingly, and contrary to previous
approaches, we propose a method that uses the diagonal
entries of the covariance matrix of the outputs to estimate
the absolute value of the DFT of the CIR. If the channel is
not fast time-variant, and we have adequate number of output
samples, the phases of the DFT of the CIR can be estimated by
resorting to the one-column method, thereby quite reducing the
computational complexity. We also analyze the mean square
error of the estimation matrix to derive a novel approach with
noise suppression capabilities. In Rayleigh channels, these
novel proposals exhibit a good performance, close to the CRB
for typical SNR values in digital communications, and are an
improvement to previous methods.
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XI. APPENDIX A

The variance or the mean square error of the estimator for an
entry (r, q) of the covariance matrix of the outputs is defined
as

Σr,q = E


∣∣∣∣∣ 1

N

N−1∑
k=0

yr(k)y∗q(k)− σ2
sCr,q − δrqδnσ2

n

∣∣∣∣∣
2
 .

(59)

Expanding the square error, it follows that

Σr,q =
1

N2

N−1∑
k=0

N−1∑
l=0

E
{
yr(k)y∗q(k)y∗r(l)yq(l)

}
− 1

N
(σ2
sCr,q + δrqδnσ

2
n)

N−1∑
l=0

E {y∗r(l)yq(l)}

− 1

N
(σ2
sC
∗
r,q + δrqδnσ

2
n)

N−1∑
k=0

E
{
yr(k)y∗q(k)

}
+ σ4

s |Cr,q|2

+ δrqδnσ
2
sσ

2
n(Cr,q + C∗r,q) + δ2rqδ

2
nσ

4
n. (60)

In addition,

E
{
yr(k)y∗q(k)y∗r(l)yq(l)

}
= E

{
yr(k)y∗q(k)

}
E {y∗r(l)yq(l)}

= Ry r,qR
∗
y r,q = |Ry r,q|2 , k 6= l (61)

and

E
{
yr(k)y∗q(k)y∗r(l)yq(l)

}
= E

{
|yr(k)|2 |yq(k)|2

}
, k = l.

(62)

Because the samples are i.i.d, Ry r,q = σ2
sCr,q+δrqσ

2
n and

δ2 = δ, expression (59) can be simplified to

Σr,q =
1

N
E
{
|yr|2 |yq|2

}
− 1

N
(σ2
sCr,q + δrqσ

2
n)

· (σ2
sC
∗
r,q + δrqσ

2
n) + δrq(1− δn)σ4

n, (63)

where

E
{
|yr|2 |yq|2

}
= σ4

s(Cr,rCq,q + |Cr,q|2 −Θr,q)

+ σ2
sσ

2
n(Cr,r + Cq,q + δrq(Cr,q + C∗r,q)) (64)

where we used the relation µn/σ4
n−3 = 0 between the fourth-

order moment, µn, and the standard deviation, σn, of Gaussian
noise. Introducing (64) into (63) yields (16).

XII. APPENDIX B

Equation (22) differs from (16) in the expectation of the
CIR: E{|h̃r|2} and E{|h̃r|2|h̃q|2}. The first one can be written
as

E{|h̃r|2} =

l∑
α

1
=0

l∑
α

2
=0

E{hα
1
h∗α

2
}e−j 2π

m r(α
1
−α

2
), (65)

where E{hα1h
∗
α2
}= E{|hα1 |2} = σh

2
α1

for α1=α2 and zero
otherwise, provided the taps of the CIR are zero mean and
independent. Hence,

E{|h̃r|2} =

l∑
α=0

σh
2
α = ẽ1, (66)

where ẽ is defined in (24). On the other hand,

E{|h̃r|2|h̃q|2} =
l∑

α
1
=0

l∑
α

2
=0

l∑
α

3
=0

l∑
α

4
=0

E{hα
1
h∗α2

hα
3
h∗α4
}e−j 2π

m [r(α
1
−α

2
)+q(α

3
−α

4
)]

= −
l∑

α=0

(
2σh

4
α − µhα

)
+

[
l∑

α=0

σh
2
α

]2
+

∣∣∣∣∣
l∑

α=0

σh
2
αe
−j 2π

m (r−q)

∣∣∣∣∣
2

(67)

Both expressions, (67) and (66), written as a function of ẽ and
introduced into (22), yield (23).
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