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Abstract: Industrial activity concerned with the profitability and safety of 

investments can be supported and promoted by research through the creation of new 

mathematical modelling approaches, and the quantification and mitigation of 

uncertainties. In recent years there has been increasing interest in the adoption of 

probabilistic approaches to assess sources of uncertainty in solar energy systems to 

estimate their feasibility, considering yield estimates, investments, operation and 

maintenance costs, and solar resource. In this context, the synthetic solar irradiance 

data set approach emerges as a promising tool to emulate the variability inherent to 

the solar resource in confident designs and feasibility analyses of these systems. 

Chapter 5 deals with the requirements of the industry with respect to synthetic solar 

data, and how such requirements are currently addressed during the main stages of 

development of solar projects. We recap methods for benchmarking the success of 

generated synthetic irradiance, reviewing statistical indicators for that purpose. We 

discuss and compare the use of single annual and multiple synthetic annual data sets 

of solar irradiance in the first stages of solar projects, and present their uses in a case 

study application in a Concentrating Solar Power (CSP) plant with a similar 

configuration to a well-known operational Parabolic Trough (PT) plant located in 

Spain. 
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1  Introduction 

 

At this stage in the book, the reader should be familiar with general principles of 

solar energy modelling, the objectives of synthetic generation of solar irradiance, 

and many of the current methods of generating them and validating them. The aim 

of this chapter is to give a brief overview of the historical evolution of synthetic 

generation, as well as its current concepts and industrial applications by using a case 

study and addressing the evaluation of a Concentrating Solar Power (CSP) plant 

energy yield. The reader will learn about the practical implementation of 

synthetically generated solar irradiance series, from series validation, to the 

advantages and strengths this scheme provides. 

Flat-priced electricity feed-in-tariff, a set of payments for the electricity fed into 

the power grid produced by renewable energy, became a popular policy and was 

adopted by many countries. In this way, Small-scale developers (as home-owners) 

as well as medium to large-scale companies were encouraged to deploy renewable 

energies for the security of their investment's return [1]. Notwithstanding, even if 

feed-in-tariff has shown to be an effective policy mechanism [2], its application may 

lead to drawbacks in the promotion of renewable energies by means of digression 

rates, the period in which this policy is carried out, tariff prices, or the financial 

burdens facing by electricity consumers that in some cases are imposed by feed-in-

tariff [3,4].  

 

For example, Spain became a leader in solar energy in the first decade of the 21st 

century due to an attractive feed-in-tariff, growing very rapidly but unsustainably; 

subsidies were drastically reduced by the Spanish government due to the 2008 

financial crisis (from 3.1 GW installed in 2008 to only 500 MW per year). Spain, as 

well as other European countries, moved from a feed-in-tariff frame to an auction 

system in line with the Commission’s recommendations between 2014 and 2016. In 

this scenario, for current projects with variable prices, understanding the temporal 

distribution and variabilities of solar irradiation may be critical for its viability, due 

to the sensitivity of electricity systems to climate and weather variability [5]. The 
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variability of both renewable energies production and demand leads to periods in 

which the demand is not met (positive residual load), as well as periods with 

renewable surplus generation (negative residual load) [6], that hinder the sought 

goal of balancing supply and demand over high (less than seconds), medium 

(minutes to days) and low (month to years) time scales. 

 

Different stages of a project’s development require varying degrees of detail in 

the description of the variability of the resource. For example, for site selection, it 

would be enough to assess the temporal variability of the electricity production 

throughout the year, as well as during typical daily cycles, in order to compare 

potential yields among alternative sites. Nonetheless, once a specific site has been 

determined to be feasible for a solar power project, more precise and detailed solar 

irradiance data sets are required for its techno-economic optimization, which should 

take into account utility tariff structures, plant initial investments, incentives, 

financial structures, and annual costs from the achievement of proper plant 

operations (operation and maintenance costs).  For this optimization, it is useful to 

calculate a full multi-year cash flow with some economic metrics, such as the 

Levelized Electricity Cost (‘LEC’) (also known as or the Levelized Cost Of 

Electricity, or ‘LCOE’) [7]. The LEC can be defined as the value that would have 

to be assigned to every unit of energy produced by a power plant throughout a 

determined period in order to equal the total costs incurred during this period as 

expressed in currency. 

 

In this regard, characterizing the available solar resource of a region or at a 

specific location is key for energy policy decisions, engineering designs, and 

considerations of deploying solar energy systems. At this point, it is worth 

mentioning the ‘Climate Normals’ [8], as a representation of the long term values 

of solar irradiation and meteorological variables, defined with the intention of 

allowing comparison among observations from around the world. Initially, a 30-

year period of reference was established as representative of the long term (mainly 

because, when the recommendation was first made, 30 years of good quality 

measurements were available for summarization), even if currently 15-year or 10-

year periods are used at several meteorological institutes for calculating Climate 

Normals. The most used periods for Climate Normals are 1901-1930, 1931-1960 

and 1961-1990. The strict definition of the time spans used for climate normals 

enables them to be used as references to which current data can be compared. 
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Unfortunately,  average values provides an incomplete description of the climate, 

and they do not meet the needs of engineering design, which requires a deeper 

description on frequency distribution and statistical behavior, such as the variability 

at different time scales, extreme values, or the frequency of extended periods when 

a value is above a threshold. In addition, for renewable energy projects, it is worth 

highlighting the interdependency of meteorological variables. Even if solar 

radiation is primarily driven by astronomical and geographical parameters, it 

influences the atmospheric temperature, which in turn controls wind dynamics and 

cloud formation, which finally affects solar radiation [5]. The co-variability of solar 

radiation, wind velocity and temperature, has a twofold implication: they rule the 

balance between solar, wind-power and energy demand [9], and also affect the 

electricity generation technologies themselves. For example, wind induces heliostat 

tracking errors, the deformation of parabolic trough collector structures affects their 

optical performance [10], and temperature (as well as cooling effect of wind) affects 

the photovoltaic modules performance [11]. 

 

Solar irradiance modeling provides a metric of the power availability from the 

sun over a given time period, which is required in a wide range of applications, 

including assessments of a location in the planning phase of a solar energy system, 

forecasting the power that is available for solar energy plants to compete in 

electricity markets, estimating the energy demands of a property, assessing crop 

yields, providing ultraviolet exposure data for public health interests, and, 

importantly, in estimating the grid impacts from increasing penetrations of PV into 

an electricity network [12]. Among the different uses of solar irradiance modelling 

forecasting, elaborations of historic data sets, and synthetic generation merit special 

attention.  

 

Forecasting allows us to predict future solar irradiance based on given conditions 

as framework and typically ranges from a few minutes to several days ahead ([13–

16]). Historical data sets allow a long-term assessment of the solar resource; they 

are typically used for statistical information for projections into the future [17,18]. 

‘Synthetic generation’ is a term that denotes bringing together a variety of models 

to generate statistically accurate time series when real data sets are unavailable, to 

fill in gaps in data sets, or to increase the temporal resolution of a data set [12]. 

 

Unlike the solar position, which is entirely regular, solar irradiance is influenced 

mostly by cloud cover, which, though determinable in principle, eludes modelling 

to the extent that it is effectively stochastic [19]). The degree of intermittency of 
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solar irradiance depends mainly upon the temporal scale with which it is observed 

[20]. ‘Ramping events’ (that is, steep transients) occur in inverse proportion to the 

durations of time used for scaling (Lave, et al. 2012). These events are caused by 

clouds, which affect solar irradiance on time scales measured in mere minutes. It is 

noteworthy that atmospheric aerosols also influence solar irradiance’s variability, 

but their effects are relevant only on time scales of several hours [21]. 

 

A few years ago, the solar industry recognized that the hourly time frequency 

(typically used) was not sufficient to simulate transient processes in power plants, 

which may have some influence on energy yields, and a higher time resolution was 

recommended for due diligence [22]. In this way, simulations model at higher 

frequencies than 1h provided realistic estimates of electrical production, especially 

when they coincide with partial cloud cover [23]. This led to the adaptation of the 

Heliosat scheme to use of 15 min solar irradiance time series derived from Meteosat 

Second Generation (MSG) satellite [24], as well as to the development of 

methodologies for increasing the temporal resolution of solar radiation series [25–

28]. 

 

The impact of these potentially challenging transient effects occurring at a high 

frequency must be taken into account in CSP technology evaluation studies through 

dynamic models for which high temporal resolution solar irradiance (global for 

conventional PV, DNI for concentrating systems) data are required as input [29]. As 

an example, changes in the production of CSP plants caused by transient cloud 

effects can exceed 50% of the generation potential in the absence of clouds over 2 

to 5 min [30]. Rapid changes in solar irradiance affect the integration of solar power 

in the energy mix, as the power output’s variability impacts the power systems’ 

reserve requirements, net load variability, regulation requirements, and the 

operations of other generators [31]. To illustrate this, Fig. 1 (bottom) shows the 

estimated production of a parabolic trough plant of 50 MW nominal power, and 7.5 

full-load thermal storage system equivalent hours when running simulations with a 

one-minute observed DNI data (left), and their average hourly values (right). It can 

be observed that the cloud transients are markedly smoothed when integrating the 

one-minute data to an hourly resolution, which implies an overestimation of the 

power produced. The daily gross power produced at one-minute resolution is 392 

MWh while at hourly resolution is 455 MWh, meaning a difference of more than 

15 percent because of the input data time resolution.  
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Fig. 1 DNI (top) and estimated gross production (bottom) of a 50 MW nominal power parabolic 

trough plant at one-minute (left) and 1h (right) temporal resolutions on 15th June, 2016. 

 

 

Instead of using a limited number of yearly data sets for simulation, the use of 

Monte Carlo methodologies to generate an unlimited number of yearly series is 

proposed by Nielsen, et al. [32]. This methodology allows the solar resource 

assessment - and thus the energy output calculation - to be performed in a similar 

way as that which is currently used for estimating other essential variables in 

economic assessments of solar power plants. The generation of hundreds of such 

plausible meteorological years has been demonstrated by Fernández-Peruchena, et 

al. [33] and Meybodi, et al. [34]. Other authors found issues with the Monte Carlo 

approach and suggest the Latin hypercube sampling method [35,36]. 

 

Section 2 of this chapter outlines industrial applications of synthetic solar 

irradiance time series such as CSP yield and building energy performance 

assessments, as well as a brief historical overview on the solar resource, starting 

from the proposal of initial assessment products (consisting on specific days or a 

single meteorological year) to their evolution to synthetic solar irradiance time 

series (consisting on synthetically generated meteorological years at a high 

frequency).. In Section 3, a case study of the application of synthetically generated 

meteorological years is shown through the estimates of the energy yields of a CSP 

plant compared. Section 4 constitutes the Summary and Conclusions, which are 

followed by our acknowledgements. 
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2 Industrial applications of synthetic time series 

 

This section briefly outlines a historical perspective of solar resource assessments, 

from initial proposals based upon short representative periods to their evolution up 

to the proposal of the generation of synthetic years, as well as discusses some key 

industrial applications of synthetic solar irradiance time series. 

 

To design and simulate solar energy collection systems, a first approach relies 

on the definition of its performance and economics under normal operating 

conditions, from which the optimization of the system is sought (taking into account 

conditions related to the costs of the technology and technical specifications, among 

other conditions). Since the operation of solar energy systems is variable, time series 

of solar irradiance and meteorological variables were suggested for representing 

normal operating conditions in systems simulation. From the pioneering work of 

Benseman and Cook proposing one of the first meteorological data sets for 

simulations [37] based exclusively on solar radiation, a number of procedures have 

been developed. Some of them are based on the definition of ‘representative’ days, 

or on periods of less than one year, i.e., ‘short reference years’, or SRY [38–40], but 

most of them rely on the use of an entire year [41–43] through the concatenation of 

twelve real months from available historical databases, or, less often, the selection 

of a most representative year [44]. Among these methods,  the Test Reference Year 

(TRY) [45] and, specially, the Typical Meteorological Year (TMY) stood out in its 

wide application [46]. 

 

The TRY methodology takes into account GHI, ambient temperature and daily 

maximum ambient temperatures for the selection of the most twelve representative 

months (from January to December), based on the proximity of their mean values 

and standard deviations to corresponding long term values. TRY becomes  Design 

Reference Year (DRY) when adding some new variables (such as five-minute DNI 

values), and forecast information [47]. TMY methodology takes into account GHI, 

maximums, averages, minimum air temperatures and levels of relative humidity, 

and maximum wind speeds, and computes the weighted sum of the Finkelstein-

Schäfer (FS) statistic [48] to select five candidate months between January and  

December, which are ranked according to the closeness of a given month to its 
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actual long-term mean and median. TMY reproduces meteorological natural daily 

and seasonal variations and represents a year of typical climatic conditions for a 

given location. Even though the TMY was originally designed to meet requirements 

for building heating and cooling load calculations, it has been also widely used by 

solar-energy project developers as inputs for energy yield simulation of solar energy 

conversion system (such as System Advisor Model, PVSYST, or PVWatts), 

designing and sizing, as well as for comparing the expected performance of a 

proposed solar power plant at alternative sites. From its initial conception, applied 

to twenty-six sites in the United States, the next TMY version (TMY2) was carried 

out to respond to the demand for more locations (239 sites, for the period between 

1961 and1990) [49], and subsequently refined and extended to 1,020 sites (TMY3, 

representative of the period 1991-2005) [50]. 

 

Over the years, modifications of TMYs have been proposed by several 

researchers [32], though it should be noted that the initial procedure has not been 

substantially modified. From a methodological point of view, the main differences 

presented in these methodologies are related to the variables required to build the 

final meteorological series, their weighting factors, the source of data (measured 

and/or modelled), or the application of different criteria in the final selection of the 

month from the candidate months [51]. Among these, it is  worth mentioning data 

sets designed for evaluations of specific solar conversion technologies, as is the case 

of typical global year (TGY) and the typical direct year (TDY) for photovoltaics 

and concentrating solar power, respectively [52], as well as the typical solar year 

(TSY) [53], oriented to the bankability analysis of solar energy projects. However, 

some inconsistencies in TMY weather files have been noted which are attributed to 

the methods applied to their elaboration and/or the length of historical data used in 

constructing the files [54]. 

 

Despite its widespread use, TMY has raised many questions in recent years, and 

its suitability for solar projects is under debate. One of the main limitations of this 

approach stems from the fact that a single “representative” year actually 

corresponds to a “frozen state”, where the system description stands unchanged for 

different project horizons. This has implications in the techno-economic description 

of a solar based project. As investments in solar projects grow, the need for risk 

mitigation through more accurate descriptions and designs also grows. In particular, 
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in order to evaluate the likelihood of achieving the economic return of the 

investment and the associated risk of capital-intensive energy projects (such as CSP 

ones), the assessment of the CAPEX (the facility investment cost) and the OPEX 

(Operating Expenditures during the facility lifetime) are often required [55]. These 

techno-economic parameters take into account both system performances and 

economic factors for estimating costs and revenues over the lifetime of a project. It 

is worth mentioning that the lifetime of solar energy systems can have a long 

duration, from design to construction and commissioning, as well as operations and 

the final decommissioning. Typical timespans are 25-30 years for PV and CSP solar 

plants, and from 10 to 50 years for distributed energy resource projects [56]. 

Traditionally, CAPEX and OPEX have been described with a deterministic scheme: 

 

 The plant yield obtained by the energy model is calculated by means of a TMY, 

which corresponds to a single point that is representative of long-term conditions. 

 Input data to feed the financial model (the rate of inflation, weighted average 

capital costs, etc.) are point values, which allow to estimate financial 

performance parameters of the investment project (such as LEC). 

 

As a consequence, for solar project plants, a given set of inputs used to feed the 

models always yields the same set of output values. Furthermore, the analysis of 

uncertainty and risk for solar projects’ success is being increasingly recognized 

[32,57], especially for capital intensive ones [58]. It is worth mentioning that 

uncertainties can be divided into aleatory uncertainty (random), and epistemic 

uncertainty (limited knowledge):  

 

 Aleatory uncertainty is due to natural variation of the system under investigation 

[59], and is treated in a probabilistic framework. It is also known as variable, 

irreducible, stochastic, or type A uncertainty. 

 Epistemic uncertainty stems from a lack of knowledge, and may be specified in 

a probabilistic or non-probabilistic way, including second-order probability, 

interval, evidence theory, and fuzzy sets [60,61]. It is also known as state of 

knowledge, reducible, subjective, or type B uncertainty. 

 

Within this deterministic scheme, a project’s risk is evaluated through a 

sensitivity analysis carried out by varying the different parameters that compose 
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both the CAPEX and OPEX of an investment, which are related to the technical 

design and operating parameters of the project and ultimately affects system 

performance. These parameters are variable within a range depending on their 

uncertainties, from which the effects of the outputs of the financial model are 

analyzed [62].  

 

Unfortunately, this traditional sensitivity analysis is not appropriate for risk 

assessments, as it lacks an explicit probabilistic measure of risk exposure. 

Confidence and uncertainty associated with the results are unknown (i.e., it doesn’t 

contain an explicit quantification of the likelihoods of the different scenarios that 

might happen, stated in Type A uncertainties [63]). Consequently, there is a need to 

provide a probabilistic description for profitability assessments and annual 

paybacks. In addition to the most probable scenario provided by TMY annual series, 

information related to the project annual payback in a bad year is usually required 

by the developers and lenders [64]. 

 

Because of these reasons, TMY, though extensively used for feasibility studies 

of solar projects, is not well-suited to assess associated risks in the design, 

construction, and operation of solar projects regarding their natural variations. In 

particular, as a TMY represents typical rather than extreme conditions, it is not 

suitable for detailed designs of solar energy systems that have to handle worst-case 

conditions at a given location.  

 

To address these uncertainties in the solar resource in a TMY scheme, the 

currently most-common approach relies on the use of time series representing an 

adverse scenario, corresponding to a year where the annual solar irradiation is 

expected to be exceeded by a high percentage of the years during the power plant’s 

lifetime, which is usually called PoEXX (Probability of Excedance of XX%) or 

simply PXX  [62]. In solar energy projects the solar resource assessment is 

frequently based both on the mean (PoE50) and extreme (PoE90, PoE99) years. 

Likewise, other probabilities of exceedance (e.g., PoE75) of the annual energy 

output are also required by promoters. The annual probability of exceedance is the 

probability that a given annual cumulative value of solar irradiance will be exceeded 

in any year. Given a random variable X with continuous and monotonic probability 

density function 𝑓(𝑥), a  quantile function 𝑄𝑓, assigns to each probability p attained 
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by f, the value x, for which 𝑃𝑟(𝑋 ≤ 𝑥) = 𝑝. The quantile function can be represented 

as follows: 

 

𝑄(𝑝) = 𝐹−1(𝑝) = inf  {𝑥; 𝐹(𝑥) ≥ 𝑝} , 0 < 𝑝 < 1. 

 

Quantiles are points in a distribution that relate to the rank order of values in a 

given distribution, where the percentiles (P) are the description of quantiles relative 

to 100. In this way, the 90th percentile is 90% of the way up an ascending list of 

sorted values of a sample, and the 50th percentile (or median) is halfway up this rank 

order. 

 

The probability of exceedance is complementary to the percentile. For example, 

a PoE75 corresponds to a P25. In Figure 2 we present a Weibull distribution for 

fifteen annual DNI values for the city of Seville, Spain, with PoE50 and PoE75 

annual values. 

 

Fig 2. Weibull distribution for fifteen annual DNI values for the city of Seville, Spain 

 

 

 

It has, however, been demonstrated that annual solar irradiation values are not 

uniquely related to net energy yield of solar plants, which implies that it is not 

sufficient to provide only the PoE90 DNI value. A PoE90 meteorological year is 
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required to simulate the plant’s energy output from a meteorological series [64,65]. 

In recent years, different methodologies have been proposed, both for generating 

PoE90 annual series [66,67], and for any PoEXX annual series [53,65]. Even if most 

of these proposals have a methodological path similar to a TMY methodology 

(based upon a selection of months in a given year), no consensus has been 

established either on the generation of these series, or on a selection of monthly 

irradiation values. Nonetheless, it is noteworthy that  there exist standardized 

procedures at national level [68]. 

 

Aside from the aforementioned techniques, a paradigm shift exists that proposes 

the adoption of probabilistic approaches to model the variability and uncertainties 

inherent to solar energy systems. This paradigm is motivated by the increasing 

importance of technical and economic evaluations of solar harnessing systems for 

industry and research, and it relies on the fact that the reliability of results depends 

upon assumptions about parameters. For example, a reduction of evaluations of 

solar energy systems to a single, deterministic figure (e.g., levelized cost of 

electricity (LCOE) for solar power plants) may lead to inaccurate results [69].  

 

Probabilistic approaches can more accurately assess systems and scenarios, and, 

consequently, achieve more sound estimates of the economic feasibility of a given 

solar energy system [33,35,64,69,70]. Within this scheme, the economic feasibility 

addresses the variability of the solar resource, the cost of key investment and 

operation and maintenance elements, and the uncertainty associated with the 

performance and costs models [10]. This scheme relies upon probabilistic tools that, 

through uncertainty analyses, are able to describe the impacts of system 

uncertainties upon simulated performance metrics.  

 

Such probabilistic methods assess the likelihoods of the simulated metric’s 

probability of  lying above or below a particular value, or within a specific range 

[35], and facilitate the evaluation of systems and scenarios through the assessment 

of the system performance and the main factors affecting it [69]. As an example, 

the Hybrid Optimization of Multiple Energy Resources (more commonly referred 

to by its acronym, ‘HOMER’) Pro software provides a multi-year module” that is 

designed to model distributed generation and microgrids [71]. This module allows 

modelling the changes that can occur over the course of a project as a function of 
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degradation in the performance of some components, demand changes, fluctuations 

of operational costs, etc. These changes are expressed in terms of yearly 

percentages, or, alternatively, by year-to-year series of multipliers matched to 

forecasts  [72]: 

 

 Grid price. The impact of utility price escalation during a project’s lifetime is a 

key factor for accurately modeling and comparing the financial benefits of 

different distributed energy investments. 

 PV degradation. The long-term performance of solar modules is externally 

influenced by temperature, snow, dust, precipitation, and humidity. At the array 

level, it is worth mentioning, also, module mismatches and shading effects. All 

of these factors result in different mechanisms of degradation that lead to stress 

during a PV system’s lifetime. 

 Battery degradation. This occurs from both charge-discharge cycles (calendar 

life), and cyclic charging and discharging (cycle life) [73]. Assessing these 

mechanisms is essential for envisaging the battery lifetime during system 

operations. 

 Diesel price fluctuations. Significant variations in diesel prices may occur from 

different factors. Such fluctuations have drawn attention to the utilization of 

renewable energy sources towards the stabilization of  overall energy prices [74]. 

 Load growth. During projects’ lifetimes, both load demand increments and 

decrements may occur, and their effects on system performances must be 

considered. 

 

The methods for the synthetic generation of PMYs usually rely on the use of the 

whole available series provided by satellite images or numerical weather prediction 

models, typically more than 10 years. By using the original series, the system design 

can take into account the observed variability of the solar resource at the site, 

assuming that future trends may be characterized by past trends. However, this 

approach is limited to the number of years available in the database, whereas the 

PMY synthetic generation model emerges as a promising tool that enables the 

stochastic simulation of solar harnessing systems that consider the uncertainty and 

variability inherent to the solar resource.  
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Synthetically generated solar irradiance series are designed to ensure that the full 

range of possible conditions are evaluated [75], based on the analysis of solar 

irradiance at different temporal scales [27,70,76–80]. The annual series 

synthetically generated with this purpose have been defined as Plausible 

Meteorological Year (PMY), as opposed to the TMY. Specifically, PMYs are 

defined as a high-frequency yearly series of GHI, DNI and other relevant 

meteorological variables (temperature, relative humidity, wind speed), which are 

consistent with corresponding monthly and annual series at a site, thus preserving 

natural variability characteristics [33].  

 

Within the PMY scheme, input parameters related to solar energy systems and 

performance and economics parameters should be treated as probability 

distributions, not as specific values, that honor the inherent uncertainty in many of 

the system features and processes [36]. A solar project development requires 

simulation to assess technical risks and optimize plant layout. The simulation from 

a sufficiently large number of PMYs ensures the detailed probabilistic description 

of the system performance, and thus provides additional and valuable information 

for the project finance phase, leading to a better estimation and understanding of the 

uncertainty and potentially lowering the financing costs.   

 

The development of PMYs was initially oriented to CSP projects, but the concept 

is applicable to other projects based on renewable energy technologies, especially 

for large solar energy installations. One of the most crucial phases of these projects 

is, undoubtedly, project finance. In this phase, a prognosis of expected energy 

yields, and corresponding economic incomes of the plant, is a necessary step. This 

requires not only the use of accurate simulation software, but also a reliable 

estimation of the solar resource in the location where the plant will be built, since 

solar resource assessment is one of the main contributors to the uncertainty of the 

energy yield assessment. In project finance, the interest rate depends significantly 

on the financial risk of a project and, therefore, limiting or correctly assessing the 

uncertainty of the solar resource and energy yield estimations is a direct means of 

lowering project finance costs.  

 

At the same time, the appropriateness of using a TMY in assessing building 

energy performance has long been discussed, primarily since they don’t provide 
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enough information on plausible weather conditions as well as their probabilities 

[81]. As a consequence, the energy consumption assessed through TMY data does 

not necessarily represent the average values calculated on the historical 

meteorological years that it represents, as demonstrated by Hong, et al., [82] through 

the comparison of weather impacts using thirty years of historical data against TMY 

files in different types of office buildings with different design efficiencies in all 

ASHRAE climate zones. The following methods are currently used to take into 

account variations of historical weather data in building energy analyses as TMY 

alternatives: 

 

 To use several data types (typical, cold and hot weather) so that weather 

variations are included in the analyses [83]. 

 To use all recent weather data to assess long-term weather variations according 

to their likelihood [84]. This approach has been used to investigate the impacts 

of weather variability and uncertainties on sizing HVAC (Heating, Ventilation, 

and Air Conditioning) systems [85]. 

 To generate synthetic weather conditions. A stochastic model based on a Vector 

Auto-Regressive process based on a historical weather data set was proposed for 

this purpose [57]. 

 

In this context, building energy assessment through PMYs provides new insights 

in the so-called forward uncertainty analysis (also called uncertainty propagation): 

the probabilistic modeling approach through PMYs ensures that a wide spectrum of 

potentially demanding conditions are evaluated, facilitating for example the 

quantification of the energy use or carbon emissions using building energy models 

with input variations [86]. Key benefits in this area stem from the fact that (in 

addition to meteorological conditions) the factors influencing energy use in 

buildings such as occupant behavior or thermal properties of building envelope are 

inherently uncertain [87,88]. Other benefits of this approach include the accurate 

evaluation of predictions performance, concept specific design guidance, testing the 

robustness of the design under variations in operational scenarios, and ultimately 

sizing systems according to realistic load variations over the buildings lifetime 

(instead of applying a generic safety factor). In this case, the system parameters can 

be perturbed assuming a certain distribution and used for sampling, and different 

densely occupied scenarios can be defined as discrete sets, weighted-based on 
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likelihood of occurrence and sampled [89]. Finally, it is worth mentioning efforts 

in evaluating the impact of climate change in buildings, as well as the subsequent 

adaptation of buildings to new scenarios [90,91]. 

 

3 Case study: Long-term yield assessment for a CSP plant in Spain 

 

The assessment of the long-term energy yield of medium and large size solar energy 

plants is required from the earliest stages of solar energy projects. While in the pre-

feasibility stage, such assessments can be based on the average monthly or yearly 

values of the relevant variable (GHI for PV, DNI for CSP), more detailed 

information is required in later project phases. Ideally, this information would 

consist of a time series of hourly or often sub-hourly values of solar radiation and 

other meteorological variables measured at the project’s location over the course of 

multiple years. Unfortunately, there are few locations where such information is 

already available. In this case, a common practice is to use synthetic series, such as 

the TMY, PoEXX and PMY series as described in Section 2. 

 

Current practice is to use a TMY for long-term yield estimations in feasibility 

analyses, complementing them with one or two PoE series (PoE75, PoE90, PoE99) 

for a financial risk analysis. While the TMY ideally represents the average solar 

resource during a project’s lifetime, the PoE series corresponds to unfavorable 

scenarios in terms of the extant solar resource and, consequently, for the project’s 

energy yields and economic returns. Both TMY and PoE series may be derived from 

any available ground measurements, or from modelled data. 

 

A recent approach is to use a large number of PMYs, which are synthetically 

generated yearly series that are consistent with the observed statistical 

characteristics of the solar resource at the project location, allowing for a stochastic 

assessment of the energy yield. This is usually referred to as a ‘multiyear approach’. 

In this Section, we exemplify and compare both TMY and PMY approaches by 

applying them to the long-term yield assessment of a hypothetical CSP plant located 

in Sevilla, Spain. 

The radiometric variable of interest for CSP systems is the direct normal 

irradiance, or DNI. Thus, the solar resource information consists of:  
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 Fifteen years of one-minute values of DNI;  

 three single-year hourly series (TMY, PoE90, PoE99) constructed from the data, 

and  

 100 years of synthetically generated annual time series of hourly DNI, as 

determined by the statistical characteristics of the measured DNI data.  

 

The characteristics of the CSP plant used for this example are similar to those of 

Andasol 3 [92], a commercial CSP plant with a relatively large thermal energy 

storage (7.5 hours of full-load capacity) located in the south of Spain. The main 

characteristics of the modelled plant are summarised in Table 1.  

Table 1 Main characteristics of the Andasol 3 solar plant [92] 

 

Net output at design (MWe) 50 

Collector EuroTrough ET150 

Receiver Schott PTR70 2008 

Number of loops (4 collectors per loop) 156 

Solar field aperture area (m2) 510,120 

Heat Transfer Fluid Therminol VP-1 

Design loop/receiver inlet/ outlet temperature (ºC) 293/391 

Thermal Energy Storage capacity (full-load equivalent 

hours) 

7.5 

 

3.1 Observation data sets 

 

We have used one-minute average values of DNI recorded during fifteen 

consecutive years (2002–2016) in Seville, Spain. The measurements were taken 

with a sampling frequency of 0.2 Hz. A first-class Eppley NIP pyrheliometer 

mounted on a sun tracker Kipp & Zonen 2AP measures the DNI. The devices are 

located at the meteorological station of the Group of Thermodynamics and 

Renewable Energy (GTER) at the University of Seville. The geographical 

coordinates of the station are shown in Table 2. 

The quality and integrity of the data is essential to guarantee reliability and 

trustworthiness of the yield estimates. In the case of measured data, the quality of 

the sensors and data acquisition system, the maintenance procedures of the 
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measurement station and the quality control procedures, including, if necessary, the 

gap filling techniques used, should be properly documented. An incorrectly 

maintained station or lack of care in data processing may result in unreliable data 

that, in turn, will lead to incorrect yield estimates.  

Thus, the GTER station is subject to a maintenance and calibration procedure in 

accordance with the recommendations of the instruments’ manufacturers, including 

periodical calibrations of the solar radiation sensors. In addition, a quality control 

procedure is systematically applied to the data. This procedure is based on the 

recommendations of Baseline Solar Radiation Network (BSRN) [93], 

complemented with the detection of missing or incorrect data (gaps) and the 

application of gap-filling techniques to complete the series, if necessary. For the 

interested reader, a complete description of these procedures can be found in [94]. 

This specific data is not publically available at time of writing. Discussion 

surrounding measurement instrument uncertainty was covered in Chapter 4. 

Table 2 Geographical coordinates of the GTER station, climate of Seville and period of 

measurements used for this analysis. 

 

Classes Latitude (°N) Longitude (°W) Altitude (m) Climate Period 

Seville 37.4 6.0 12 Mediterranean 2002-2016 

 

3.2 Solar resource characterization by means of single-year 

synthetic data sets 

 

Simulation tools used for the yield assessment of solar plants typically require a 

single annual set of meteorological data representative of long term average 

conditions, defined as a typical meteorological year (TMY) [46]. Accordingly, their 

results represent expected average yield values.  

 

There are several methods for generating TMYs based on long-term series of solar 

radiation and other meteorological variables. Current methods usually rely on the 

use of time series that typically provide 10-20 years of good quality ground 

measurements or satellite-derived data at hourly or sub-hourly resolutions. 

Although ground measurements from a station at the project site or from a nearby 

location are preferred, there are very few locations where such information is 



Determining success of generated synthetic irradiance: Case study 2

0 

 

[Type here] 

 

available. In this case, solar radiation site-adapted estimates from satellite images 

can be used [95,96]. The procedure commonly consists of the following steps: 

 

 Calculating the monthly cumulative values for all months included in the time 

series. 

 For each month of the year, select the most representative month of the series 

from any of the years. The selection criteria depend on the application, and 

differs by method. The simplest methods are based on the selection of the month 

with the cumulative value of the relevant variable (DNI for CSP, GHI for PV) 

closest to the average for that month. Other, more sophisticated methods assign 

different weights to each variable to calculate a statistical indicator whose value 

is used as a criterion. 

 Once the representative months for each month of a year have been selected, the 

data sets corresponding to the selected months are concatenated. The procedure 

might allow for changes or substitutions to produce monthly target values (see, 

for example [97]). 

 

In our case study, we use fifteen years of one-minute measurements. The TMY 

has been constructed by the UNE 206011:2014 procedure [68]. In Figure 4, we 

present monthly observed values in a box plot with the TMY.  

 

Fig 4. Box plot of the observed monthly values with TMY for Seville, Spain. Each box indicates 

the values comprised of the 25th (P25) through the 75th (P75) percentiles. Red horizontal lines 

indicate medians, and black horizontal lines represent the extreme observed values. 
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We observe that the monthly cumulative values of the TMY (the blue dots) are 

close to the median (the horizontal red lines). The monthly distribution has an 

inverted V-shape, where the maximum is found in July, and the minimum in winter. 

It is noteworthy that Seville has a Mediterranean climate, with higher variability 

from January to May (as shown by the extension of their ranges), and that TMY is 

specific to location. 

 

The statistical characterization of the solar resource and their uncertainties play 

significant roles in financing solar power projects. Financial entities and their 

shareholders need to know the uncertainty levels of yield estimates to evaluate risks 

associated with their investments. The uncertainty in solar resource assessments 

impacts the uncertainty of the yield estimates. This uncertainty has two main 

sources, the uncertainty of the data, and the uncertainty associated with the 

variability of the solar resource, which is not captured by single-year TMYs. 

 

The uncertainty of the data depends on the quality of the sensors and their 

maintenance for ground measurements derived series. In the case of satellite-

derived data, it depends on the model and the site adaptation procedures used, being 

location-dependent and having a higher uncertainty than measured data. 

 

The uncertainty associated with variability can be defined by the inter-annual 

variability of solar radiation. A common practice to cope with uncertainty 
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associated with the variability is to evaluate the project’s energy yield using as input 

single-year time series corresponding to unfavorable scenarios in years with a high 

probability of exceedance (PoE). The yield estimates obtained for these years are 

used by investors and lenders to assess a project's ability to manage risks and to 

meet their return requirements [65].  

High PoE series that are used to model these scenarios are generally calculated 

alongside TMYs (which usually correspond to the PoE50) in feasibility assessments 

of solar projects. The procedures proposed by the UNE 206013:2017 standard [97] 

to build PoE series for CSP projects consist of the following steps: 

 

 Calculating which distribution function is best suited to the observed annual 

values and obtaining the annual values that correspond to the required PoEs from 

the distribution. Annual GHI values are assumed to follow normal distributions, 

while annual DNIs tend to follow Weibull distributions [18]. 

 Estimating monthly values of the required PoEs. A common practice is to 

calculate the difference between the annual value of the corresponding PoE and 

the TMY, and then to distribute this difference to each month proportionally to 

the standard deviations of the monthly series [53]. 

 Constructing the PoE series by concatenating daily observed sets to match their 

corresponding estimated PoE monthly values. 

 

The TMY and the PoE monthly distributions for Seville usually present an 

inverted V-shape, with relatively smooth and progressive changes from one month 

to the next, taking monthly values between the minimum and the maximum ones 

available in the long-term time series (typically fifteen or twenty years), as they are 

selected to represent the most probable annual data set corresponding to that specific 

PoE at annual scale. For that reason, they do not include extreme monthly values 

that might occur and that may not be present in long-term databases. In Figure 5 we 

present the monthly values and the TMY observed in Seville, Spain, over fifteen 

years in a box plot, with the TMY, the PoE 90 and the PoE 99. 

 

Fig 5. Box plot of observed monthly DNI values with calculated TMY, PoE90 and PoE99 in 

Seville, Spain. 
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While the TMY and PoE99 monthly DNI values show a characteristic inverted 

V-shape, this is not common for observed values. In fact, most annual sets include 

monthly values that are lower or higher than those of synthetic series. The shape of 

the monthly distribution of annual sets is usually more complex than that of the 

PoEXX series that is illustrated in Figure 6, which presents the monthly values 

observed in 2015 with the TMY and the PoE99. We also present the PoE of each 

monthly value within its monthly observed data set. The annual DNI in 2015 was 

slightly greater than the TMY corresponding value (2160 vs. 2088 kWh/m2), but 

there are four monthly values above the PoE25, and another four below the PoE75. 

In addition, the August and October values are lower than those of the PoE99 series. 

 

Fig 6. Monthly distribution of DNI for TMY and PoE99, with monthly values for 2015, which has 

an annual cumulative value that is similar to that of the TMY. The blue text boxes beside the 

markers of the year indicate the value of the probability of exceeding the observed monthly value. 
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3.3 Solar resource characterization by means of multiple annual 

synthetic sets 

 

The characterization of the solar resource by means of single-year series such as 

TMY or PoE50 involves a loss of the information contained in the original time 

series. Nowadays, advances in computer technology and modelling of solar energy 

systems allow us to make use of the whole original time series to simulate the 

performance of a solar energy plant and analyze the results with minimal effort. But 

even the original time series, unless they comprise a very large number of years, 

may not be able to represent potential solar resource scenarios and changes (for 

example, those associated with climate change) that might occur during a project’s 

lifetime.  

The research community is currently addressing this issue, and several 

approaches have already been tested and presented in the literature, such as the 

multiyear approach proposed by Nielsen, et al. [19]. The synthetic generation of 

time series of solar radiation and other (possibly coupled) meteorological 

parameters, presented in Section 2 of this chapter, constitutes a valuable tool for this 

purpose. 

In a recent paper, Larrañeta, et al. [38] presented a promising globally applicable 

method for the synthetic generation of multiple annual solar radiation time series in 
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high resolution (one-minute). The application of the method requires ten to fifteen 

annual time series of hourly DNI and GHI values that can be retrieved from satellite-

based or reanalysis irradiance databases for most of the locations on earth [98], and 

generates 100 annual sets (Plausible Meteorological Years, or PMYs) of one-minute 

coupled GHI and DNI time series. It consists of the concatenation of three steps of 

generating synthetic values. In the first step, a bootstrapping technique is used to 

generate synthetic monthly values from cumulative distribution functions (CDFs) 

of the observed monthly values. Then, the synthetically generated monthly values 

are combined to produce 100 synthetic years, each consisting of twelve synthetic 

monthly values (one per month of the year). Although the bootstrapping technique 

ensures that synthetic monthly values of solar radiation lower or greater than the 

values present in the input time series are never generated, the annual solar radiation 

values of the synthetic years can be greater or lesser than corresponding annual 

values from the input series. The last two steps consist of the generation of synthetic 

daily and one-minute values for each month of the synthetic sets, using the synthetic 

generation techniques presented earlier. 

This method extends the range of potential scenarios with respect to the observed 

ones, ensuring that the statistical characteristics observed in the input series are 

maintained. The resulting synthetic data sets can be used for feasibility assessments 

of solar projects to help engineers assess solar radiation variability and its impact 

on solar energy systems.  

In the case that we present here, we use the same fifteen years of one-minute 

DNI data measured in Seville described in Section 4.1 to generate 100 synthetic 

years of one-minute DNI values. In Figure 7 we present the box plots of the 

observed annual DNI values and the synthetically generated annual DNI values. 

 

Fig 7. Box plot of fifteen annual values and 100 synthetically generated annual values.  
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In Figure 7 we observe that the range of annual values is wider for the synthetic 

data set. The minimum and maximum annual DNI values of the observed data set 

are 1938 kWh/m2 and 2229 kWh/m2, respectively; the synthetic data sets have a 

minimum of 1792 kWh/m2 and a maximum of 2345 kWh/m2. There are nine 

synthetic years with values that are out of the range of the observed values, which 

represent scenarios statistically compatible with the observed data, but not present 

in the observed data set. This is the critical purpose for PMY. The data suggests that 

all PMY are entirely plausible, yet the observation data did not have the opportunity 

to measure such a year, hence, relying on these 15 years could miss those 1 in 100 

events, or in this case, 9 in 100.  

 

3.4 Performance evaluation of the Andasol 3 solar plant using 

single synthetic and multiple synthetic sets as inputs on an 

annual and monthly basis 

 

The performance evaluation of a solar plant consists of the assessing different 

scenarios determined by several time series of solar radiation, which is the main 

input for the solar energy systems. In performance evaluations of CSP plants, a 

common approach is to estimate the gross production from the solar plant using 

different solar radiation data sets as input, whether observed or synthetic. The gross 
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production is the power delivered by the generating unit before subtracting self-

consumption power. In this section we evaluate the performance of Andasol 3 solar 

plant on an annual and monthly basis in the scenarios defined by the simple 

synthetic data sets (TMY, PoE90 and PoE99) and the multiple synthetic PMY 

approach. 

The evaluation of the gross generation values obtained from simulating the CSP 

plant with the observed and synthetic simple and multiple sets as inputs is presented 

in this Section.  

The multiple synthetic sets methodology, or multiyear approach (see Section 3.3) 

lead to the generation of 100 synthetic annual sets corresponding to different levels 

of annual solar radiation, from very low to very high, leading to what we call in the 

next figures, plausible meteorological years or PMYs. 

Figure 8 shows the annual gross production in a scatter plot versus the annual 

DNI. We present the annual gross production obtained from running simulations 

using the observed data sets (red triangles), the PMYs (empty blue circles), and the 

single synthetic data set, TMY (blue dot), PoE90 (yellow dot) and PoE99 (green 

dot). We present the annual DNI and gross production numerical values of the 

TMY, PoE90 and PoE99 in the plot. We also present the least-squares fit on a dotted 

black line. 

 

Fig 8.  Scatter plot of the gross production versus the annual DNI for simulations of Andasol 3 

performance evaluation using observed and synthetic sets as inputs. Observed sets are presented 

with red triangles, PMY sets with empty blue dots, the TMY with a blue dot, the PoE90 with a 

yellow dot and the PoE99 with a green dot. We also present the least-squares fit with a dotted 

black line.  
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Note that the single synthetic annual sets represent the expected performance of 

the solar plant in three characteristic scenarios: an average production (TMY with 

a blue dot), a bad case (PoE90 with a yellow dot) and the worst case (PoE99 with a 

green dot). The observed sets (red triangles) are mostly distributed along average 

annual values (2050-2150 kWh/m2-year), and only few of them represent extreme 

cases. The worst observed value is similar to the estimated PoE90. This might be 

explained in that the observed sample represents a period of fourteen years (see 

table 2), in which extreme years might not have appeared. 

There is an almost linear relation between the annual solar radiation and the 

annual gross production of the Andasol 3 solar plant, but if we focus on the PMYs 

(empty blue dots), there is an uncertainty related to the impact of the monthly 

distribution of the solar radiation. For an annual DNI value near the average (DNI 

≈ 2100 ± 20 kWh/m2-year), we obtain a range of gross production values between 

178-185 GWH-year. From these results, we could estimate an uncertainty value in 

the expected gross production for a single solar radiation annual set related to the 

monthly and daily variability of the solar radiation.  

In Figure 9 we present the estimated annual gross production of Andasol 3 versus 

the annual DNI of the PMY series in a box plot figure. Each box contains ten annual 

sets with similar annual cumulative DNI values. For instance, the box representing 

the PoE10 corresponds to the annual gross production obtained when performing 

simulations using ten DNI annual sets from PoE06 annual set to PoE15 annual set. 
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In Figure 9, we also present the TMY (blue dot), the single synthetic PoE90 (yellow 

dot), the single synthetic PoE99 (green dot), and the numerical value of the PoE20, 

PoE50 and PoE80 of DNI with a dashed blue line. This way we can visualize the 

range of gross production values that we can obtain by running simulations with 

solar data sets with similar annual cumulative values, but with different monthly 

and daily distributions.  

 

Fig 9. Box plots of annual gross power as a function of annual DNI synthetic sets. Each box 

contains ten annual sets with similar annual cumulative DNI values. The PoE20, PoE50, and 

PoE80 values are numerically presented and diagrammed with a dashed blue line. The gross 

production obtained using the single synthetic solar radiation sets as input for the simulations is 

also presented in colored dots. A blue dot represents the TMY, a yellow dot represents the PoE90, 

and a green dot represents the PoE99. 

 

 

 

The single synthetic sets, TMY, PoE90 and PoE99 presented in blue, yellow and 

green dots, respectively, accurately represent the expected performance of the plant 

under average, bad and worst-case scenarios. The TMY overlaps the red line of the 

PoE50 box, and the PoE90 single synthetic set overlaps at the minimum values of 

the PoE90 box. The PoE99 can be evaluated in Figure 9, but from Figure 8 we 

observe that it follows the linear relation that is obtained from a least-square fit.   

At this point we would like to direct the reader’s attention to the relevance of the 

reproduction of the variability of the solar radiation in the synthetic generation of 
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solar data sets, as it has a remarkable impact on the estimation of the production of 

solar plants.  In Figure 10 we present the gross production monthly distribution of 

the single synthetic sets TMY (blue line), PoE90 (yellow line), and PoE99 (green 

line) with the gross production of the PMYs presented in a box plot. 

 

Fig 10. Box plot of the gross production of A3 obtained using the PMY synthetic 100 annual data 

sets (box plot) with the gross production obtained using the single synthetic sets TMY (blue line), 

PoE90 (yellow line) and PoE99 (green line) data sets as input.  

 

 

 

In Figure 10 we can observe the similarity between the production of the single 

annual set approach and the median value of the multiyear approach (red line of 

each box) for most of the cases. Note that for the northern summer months (June, 

July and August), the TMY is closer to the upper bound of the box that represents 

the PoE25 of the synthetic PMYs. In the case of extreme years, PoE90 and PoE99, 

we can see a significant overestimation of the power production in comparison to 

the multiyear approach, especially during the northern spring and autumn months 

of March, April, May, September and October. The single year approach for the 

extreme cases provides average bad case scenarios, while with the multiyear 

approach, the observed worst monthly cases are included. This issue becomes 

especially relevant in those months with a high variability such, such as those 

mentioned before.   
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It is noteworthy that the PoE99 represents the worst-case scenario in terms of 

annual cumulative DNI, but it is not necessarily the worst-case in terms of monthly 

production values. In fact, in most months, the single synthetic PoE99 gross 

production value is greater than the minimum monthly gross production value that 

is obtained with the PMY approach.  

 

 

3.5 Performance evaluation of the Andasol 3 solar plant using 

single synthetic and multiple synthetic sets as inputs on daily 

and hourly scales 

 

The performance evaluation of solar plants is generally addressed across various 

temporal resolutions. In Section 3.4, we evaluated the performance of Andasol 3 

over annual and monthly resolutions, but it is also interesting to evaluate the 

performance at daily and higher available resolutions (perhaps at scales of one 

minute or one hour). 

 

 Most of the statistical quantifiers used to evaluate the success of synthetic 

irradiance production are calculated from data at these time resolutions. These 

quantifiers are useful for finding similarities between observed and synthetic sets, 

but in some cases, synthetic sets are not expected to match observed sets, but instead 

to represent different scenarios, such as averages or extremes. In this case, a visual 

assessment to evaluate the success of synthetic time series is recommended. In this 

Section, we calculate cumulative distribution functions (CDFs) of synthetic sets 

over observed sets at daily and hourly resolutions. The cumulative distribution 

function is the probability that a random variable is less than or equal to a certain 

value. For more information about validating synthetic data sets, refer to Chapter 4. 

 

In the case of feasibility assessments of solar projects using single (TMY, PoE90, 

PoE99) or multiple (PMYs) annual sets, a visual inspection of the CDFs of observed 

and synthetic sets is recommended to inspect similarities between the data sets in 

terms of solar radiation and/or gross production. In Figure 11 we represent the CDF 

of the synthetic single and multiple solar radiation data sets with the CDFs of the 

observed solar radiation data sets at a daily resolution at Andasol 3’s location. The 
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observed data sets are presented with red lines, the PMYs are presented with light 

blue lines, the TMY is presented with a blue line, the single synthetic PoE90 is 

presented with a yellow line, and, finally, the PoE99 is presented with a green line. 

This color code applies to Figures 11 through14 below. 

 

Fig 11. CDFs of observed (red lines) and synthetic DNI data sets at daily resolution for Andasol 

3. Light blue lines represent PMYs, blue lines represent TMY, yellow lines represent the single 

synthetic PoE90, and a green line represents the single synthetic PoE99. 

 

 

 

Visualizing the CDFs of solar data set, we can extract quite a lot of information. 

The Y-axis ranges from 0 to 1, while the X-axis ranges from the minimum to the 

maximum daily value. The 0 of the Y-axis correlates to the minimum value of the 

X-axis. The 1 of the Y-axis correlates to the maximum daily value. The shape of the 

CDF provides information about the distribution of the data set. For instance, if we 

trace a vertical straight line from the X-axis’ value of 5.0 kWh/m2-day, we find CDF 

values that range from 0.25 to 0.5, meaning that for the clearest annual set, the 

probability that a daily value is lower than or equal to 5.0 kWh/m2-day is 25%, and 

that for the worst case annual set, the probability that a daily value is lower than or 

equal to 5.0 kWh/m2-day is 50%. These values are identified in the PMYs and the 

simple synthetic PoE99, respectively. In light of this analysis, the CDF profiles that 

tilt towards the bottom of the Y-axis represent data sets with relatively higher levels 
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of solar radiation. On the other hand, the CDF profiles that tilt towards the upper 

portion of the Y-axis represent data sets with lower levels of solar radiation.  

As shown in Figure 11, the TMY presents an average CDF with respect to the 

CDFs of the observed data sets, since it is located in the middle of the space 

occupied by the CDFs of the observed sets. The PMY CDFs present a greater range 

of scenarios than the observed sets, including bad and worst-case scenario CDFs 

similar to the single synthetic (PoE90 and PoE99) annual sets.  

Figure 12 shows the CDF of the synthetic single and multiple solar radiation data 

sets with the CDFs of the observed solar radiation data sets at the daily resolution 

for the location of Andasol 3. 

 

Fig 12. CDFs of the observed (red lines) and synthetic DNI data sets at an hourly resolution for 

Andasol 3. The PMYs are presented with light blue lines, the TMY is presented with a blue line, 

the single synthetic PoE90 is presented with a yellow line and the single synthetic PoE99 is 

presented with a green line. 

 

 

 

At one-hourly resolution, we observe that the PMYs expand the observed 

scenarios by covering a wider portion of the plot, but do not present any annual set 

that reaches the low values observed in the CDF of the single synthetic set PoE99 

which clearly defines the worst-case scenario as represented by the uppermost CDF 

profile. This trend can also be observed at the daily resolution in Figure 11. We also 
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observe that, at the hourly time resolution, the CDF of the single synthetic PoE90 is 

very similar to the CDF of the TMY since both of them are mostly overlapped. 

The CDFs of the solar radiation data sets are generally evaluated because it is 

assumed that the distribution of the data set has a great impact in the production of 

the solar plants especially in those that use the direct component of the solar 

radiation such as the CSP plants. We obtain gross production estimations of Andasol 

3 solar plant at the hourly resolution, thus we can plot the CDFs in terms of gross 

production and address the performance assessment in these terms and compare the 

CDFs of gross production to the CDFs of solar radiation. In Figure 13 we present 

the CDFs of the daily gross production obtained when running simulations using 

the observed and synthetic data sets. 

 

Fig 13. CDFs of the observed (red lines) and synthetic gross production data sets at a daily 

resolution for Andasol 3. The PMYs are presented with light blue lines, the TMY is presented with 

a blue line, the single synthetic PoE90 is presented with a yellow line and the single synthetic 

PoE99 is presented with a green line. 

 

 

 

In Figure 13 we observe tendencies that are similar to those of Figure 11, but 

with slight differences. We can assume that what we find in the CDFs of daily solar 

radiation data sets can be extrapolated to CDFs of daily gross production. We find 

that the TMY still presents an average CDF in relation to the CDFs of the observed 

data sets. The PMY CDFs still present a greater range of scenarios than the observed 
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sets including bad and worst-case scenario CDFs similar to the single synthetic 

(PoE90 and PoE99) annual sets. The single synthetic PoE99 still properly represents 

the worst-case scenario but, this time, in terms of gross production, the PoE99 and 

the PoE90 single synthetic data sets are almost overlapped. There is no great 

differences between the CDFs of both data sets.  

In Figure 14 we present the CDFs of the hourly gross production obtained from 

simulations with observed and synthetic data sets. 

 

Fig 14. CDFs of the observed (red lines) and synthetic gross production data sets at an hourly 

resolution for Andasol 3. The PMYs are presented with light blue lines, the TMY is presented with 

a blue line, the single synthetic PoE90 is presented with a yellow line and the single synthetic 

PoE99 is presented with a green line. 

 

 

 

In Figure 14 we observe that the hourly gross production CDFs of the single 

synthetic PoE90 and PoE99 sets present slight differences. The CDFs of PMYs 

(light blue lines) cover the bottom part of Figure 14, which suggests a slight 

tendency to overestimate the hourly production. While there is a general similarity 

between the daily solar radiation and gross production CDFs, (Figure 11 and Figure 

13, respectively), the CDF profiles of solar radiation and gross production at the 

hourly resolution (Figure 12 and Figure 14) do not coincide. This might be 

explained by a dampening effect from the thermal storage system in the gross 

production of the solar plant. If we focus on the CDF gross production profiles at 
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an hourly resolution, and if we trace a vertical line from the gross production value 

of the X-axis at 50MW, we find that most of the CDFs’ values range from 0.45 to 

0.55, which means that plant works below the nominal power in around 50% of the 

occurrences. Thus, the plant functions near its nominal power in the other 50% of 

occurrences. Functioning near nominal power is the general aim of all the thermal 

conversion systems. Due to the intermittency of solar radiation, CSP systems find 

difficulties in working continuously near nominal power. Thermal storage system 

capacity and the over dimensioning of the solar field (see table 1) dampens the 

impact of the cloud transients and allows the plant to work near the nominal power 

for more time. 

 

4  Summary and Conclusions 

 

In this chapter, we covered topics around synthetic irradiance generation for 

industrial and commercial application purposes, particularly with DNI generation 

for CSP plants. We carried out a case study for a CSP solar plant that is located in 

the city of Seville in the south of Spain. We aimed to explain the possibilities and 

uses of synthetic irradiance in industrial application with a focus upon the 

requirements in the characterization of the solar radiation potential from the industry 

stakeholder’s point of view, explaining common approaches for the synthetic data 

generation for industrial applications.  

Temporal-only time series of solar irradiance measurements are widely used to 

assess the expected performances of solar energy collection systems over the course 

of such systems’ lifetimes and on the grid impact analysis and urban DG planning. 

It is also worth noting a growing interest in other areas such as building energy 

consumption reduction. Solar industry stakeholders, that is, developers, financers, 

researchers, operators, etc., require long solar time series that are not usually 

available from local observations at sites of interest. Synthetic solar irradiance is, in 

many cases, actually used to meet this need showing particular usefulness in the 

present and significant potential in the near and long future. 

 

We presented a case study that assessed the solar yield of Andasol 3, a parabolic 

trough solar plant that is located in the southern Spanish city of Seville. We have 

performed a feasibility assessment through a common approach by calculating 
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single synthetic annual sets that respectively represent average, bad and worst-case 

scenarios (TMY, PoE90 and PoE99) as well as a novel approach based upon the 

generation of plausible meteorological years (PMYs). The assessment was 

performed in terms of both solar radiation and produced power. The results showed 

that a single-year approach provided a suitable description of typical and worst-case 

scenarios, however, these simpler approaches did not reproduce the solar radiation’s 

inherent intra-annual variability, which is particularly relevant in some applications 

such as concentrated solar energy systems or hybrid systems with a base load 

minimum requirement. The PMY approach reproduced the solar resource 

variability at both short-term and long-term scales and provided a range of 

possibilities that were suitable and facilitating of a more comprehensive 

performance assessment of solar energy systems. 

The PMY approach exhibits  a promising usefulness in the future of solar energy 

harnessing systems. The next chapter expands upon future outlooks in the field of 

synthetic solar irradiance. 
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