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Abstract 11 

This article presents and evaluates the performance of a simplified model to generate 10-min 12 

global horizontal synthetic solar radiation data that would correspond to the measurements of 13 

a calibrated photovoltaic monocrystalline cell. The model, which only requires global horizontal 14 

solar radiation data measured with a thermopile pyranometer as input, is based on the 15 

characterization of the relation between the data measured with a thermopile pyranometer and 16 

a calibrated cell as a function of the sky condition and the solar elevation. We have used an 17 

extensive solar radiation database for the location of Seville (Spain) for the training of the model 18 

that has been tested in Seville and Lancaster (USA), showing satisfactory results and suggesting 19 

a global applicability with no local adaptation or calibration requirement.  20 

The model shows the best results for high levels of solar radiation and solar elevations and 21 

decreases its performance on days with high levels of diffuse irradiation and for very low solar 22 

elevation angles. We obtain a daily RMSD between measured and synthetic data of 1.9% in 23 

Seville and 5.2% in Lancaster. The frequency distribution of the synthetic datasets shows a KSI 24 

of 3.7 W/m2 in Seville and 8.6 W/m2 in Lancaster. We also evaluate the ramp rates of measured 25 

and synthetic sets through the KSI of the measured and synthetic ramp rates sets, obtaining 0.11 26 

W/m2۰min in Seville and 0.20 W/m2۰min in Lancaster.  27 

Keywords 28 

Photovoltaic yield, calibrated solar cell, pyranometer.  29 

1 Introduction  30 

 31 
Photovoltaic (PV) modules have a practically identical spectral response, time, temperature 32 

coefficient and angular response to a calibrated solar cell of the same technology and 33 

encapsulation. For this reason, if radiation measurements are obtained by means of a calibrated 34 

photovoltaic cell of the same technology and encapsulation as the photovoltaic modules of the 35 

installation, most of the uncertainties in the determination of the electrical production of the 36 
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photovoltaic installation are already included. Meydbray et al., [1-2] compare the use of solar 37 

reference cell and thermopile for PV applications, and point out that solar reference cells are 38 

especially useful for precise characterization of the PV performance, allowing a better detection 39 

of changes in PV system performance with time and shorter time assessment of the PV operating 40 

efficiency. Table 1 summarises the comparison of the use of solar reference cell and thermopile 41 

pyranometers for PV applications proposed by Meydbray et al [2]. 42 

Table 1. Cell-pyranometer comparison made by Meydbray et al [2] for PV applications. 43 

 Reference Cell 
Thermopile 
pyranometer 

Spectral Response 
 Can be made to closely 
match solar panel 

Broadband response 
needs to be corrected 

Angle of incidence 
 Can be made to closely 
match solar panel 

Response to all angles 

Temperature response 
Temperature response 
is similar to PV system 

Are designed to 
minimize sensitivity to 
temperature. Not 
corrected for 
temperature 

Time response 
< milliseconds; 
matched to PV 
response 

Up to 30 seconds, can 
be problematic for 
measuring PV 
performance 

Other issues  

Emission to cold sky 
and transients in 
ambient temperature 
affects output 

International standards  IEC 60904 
 ISO 9847, ISO 9845, 
ISO 9846 

 44 

For PV applications, Dunn et al., [3] analysed the expanded uncertainties in the measurements 45 

of the irradiance made in the plane of array throughout the course of a representative day with 46 

a thermopile pyranometer and a PV reference device. They conclude that during most of the 47 

day, uncertainties are in the order of ± 5% for a pyranometer, and ±2.4% for a calibrated cell, 48 

both stated with 95% confidence intervals. So calibrated cells provide superior irradiance 49 

measurements for PV power plant monitoring applications. Haeberlin et al., [4] compare the use 50 

of a pyranometer and a calibrated silicon solar cell and reach similar conclusions: it is preferable 51 

to use a calibrated Si-cell (of the same type as the cells in the PV array) as a reference device of 52 

the irradiance measurements for PV plant monitoring than a pyranometer. 53 

The PV module performance is generally evaluated by manufacturers under standard test 54 

conditions (STC), which refer to 25°C module temperature, 1000 W/m2 of incident solar 55 

irradiance on the PV module plane with 1.5 solar spectrum air mass (AM) as reference spectrum 56 

(IEC 60904-3, 2016) [5]. Nevertheless, in real conditions the PV module temperature, solar 57 

irradiance with incident angle and solar spectrum differ from STC.  58 
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Incident solar global irradiance that reaches the PV module is affected by the distribution of its 59 

solar spectrum. This solar spectrum depends on cloud cover, AM, precipitable water (PW) and 60 

aerosol optical depth (AOD) [6]. The short-circuit current is the main parameter affected by the 61 

distribution of the solar spectrum, but in some technologiesefficiency, maximum power and fill 62 

factor are also influenced. Polo et al, [7] analyse the use of reference modules as irradiance 63 

sensor for monitoring and modelling rooftop PV systems for different PV technologies with 64 

different spectral responses. If such affection is neglected and only the broadband irradiance is 65 

used for PV-module performance modelling, then errors of up to 10% can be introduced in 66 

extreme conditions [8]. 67 

Therefore, a spectral correction shall be used in order to adjust the incident solar irradiance and, 68 

hence, improve the PV module performance modelling [9]. This spectral correction depends on 69 

the PV module technology. Polo et al., [10] give the spectral factor for seven photovoltaic 70 

technologies and 124 sites. They found that the annual spectral factor for crystalline silicon 71 

technologies is rather homogenous worldwide with maxima spectral losses and gains of ≈3% 72 

and ≈1%, respectively. On the contrary, the spectral factor for thin film devices displays a higher 73 

spatial variability. Nuñez et al., [11] proposed a spectral matching ratio for multijunction cells 74 

within a concentrating photovoltaic module. The Sandia Array Performance Model applies a 75 

fourth-order polynomial correction based on AM [12]. M. Lee et al., [13] included in their model 76 

the influence of AM and PW in a similar function. Theristis et al., [14] developed a model 77 

including AM, PW and AOD to improve concentrating photovoltaic system performance 78 

modelling. Another option is to use direct measurements of spectral radiation, but the use of 79 

spectroradiometers is not yet widespread and an adequate validation is required [15]. 80 

Moreover, in many cases the PV module structure does not have two-axis tracking. 81 

Consequently, the incident solar global irradiance that reaches the PV module is affected by the 82 

solar angle of incidence (AOI). Angular losses in PV modules can introduce differences in the 83 

short circuit current under STC of up to 3.5% under global normal irradiance conditions with 84 

horizontal orientation compared with a device without losses due to angular effects [16]. King 85 

et al., [17] suggest the use of a 5th order polynomial function to represent the angular optical 86 

losses on the short circuit current. Martin et al., [18] formulated similar functions. Instead, given 87 

the importance of these effects on the performance of the photovoltaic module, manufacturers 88 

test their PV modules according to IEC standard 61853-2:2016 [19] where the effect of the angle 89 

of incidence and the spectral responsivity on the output power of the photovoltaic module is 90 

measured. The most used software for the design of photovoltaic installations has implemented 91 

a model to take into account the angular losses. PVsyst software [20] has implemented the 92 

model developed by Souka and Safat and adopted by the American Society of Heating, 93 

Refrigeration, and Air Conditioning (ASHRAE) [17]. Plag F et al., [21] related the spectral and 94 

angular effect showing that the spectral effect depends on the incident angle too. 95 

An alternative to these methods to link the silicon photovoltaic calibrated cell measurement 96 

with the measurements made by a thermopile pyranometer are specific simplified models to 97 

relate the global solar radiation measured by both devices. J. J. Michalsky et al., [22] propose a 98 

table of correction factors depending on the clearness index and the brightness index. It requires 99 

the knowledge of diffuse and direct radiation from the site. King & Myers [23] correct the 100 

response of the PV device as a function of the solar spectrum, AOI and temperature. This 101 
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corrected response allows us to obtain an improvement in the estimation of the total irradiance. 102 

The method also requires diffuse and direct data among the calculation of functions related to 103 

the absolute air mass, the AOI and a temperature coefficient. The main drawback in the 104 

implementation of the described methods is the requirement of rarely available measurements 105 

such as AOD, PW, diffuse and direct irradiance for the location under study. 106 

The purpose of this work is the development of a simplified model for estimating the solar global 107 

radiation that a calibrated monocrystalline silicon cell would measure using only thermopile 108 

pyranometer measurements as input. This model could be used as a correction factor that would 109 

allow us to characterize the PV module performance from thermopile pyranometer radiation 110 

data. 111 

Simplicity is the main advantage of this model because it depends only on the global irradiation 112 

data measured by a thermopile pyranometer avoiding the need to use more complex variables 113 

which are generally more difficult to obtain. The model has been developed for one location 114 

(Seville) and tested in the same location (Seville) and a different one (Lancaster) without any 115 

local adaptation showing satisfactory results. 116 

The paper is presented as follows: Section 2 presents the database used for the training and 117 

testing of the model. In Section 3 we explain step by step the development of the model. In 118 

Section 4 we perform the result analysis of the model in two locations. Conclusions are then 119 

made in Section 5. 120 

2 Meteorological database 121 

In this work, an extensive database is used for training the method proposed (Table 2). This 122 

database is composed of 10-min averages values of GHI recorded during 42 consecutive months 123 

from July 2012 to December 2015 for the location of Seville (Spain). The measurements were 124 

taken with a sampling and storage time resolution of 5 s. A secondary standard pyranometer 125 

Kipp & Zonen CMP21 and an Atersa calibrated monocrystalline silicon PV cell measured the GHI. 126 

The devices used for the design and testing of the methodology are located at the 127 

meteorological station of the Group of Thermodynamics and Renewable Energy of the 128 

University of Seville and have been periodically calibrated, according to the recommendations 129 

from the instrument manufacturers. Data used in this work have been subjected to quality-130 

control procedures [24] following the BSRN recommendations [25]. Only 1% of the data has 131 

been filled for the entire database. Data recorded at sun altitude lower than 2º have not been 132 

used in this study. 133 

Table 2. Location selected for the method training. 134 

  
Latitude 

(°N) 
Longitude 

(°W) 
Altitude (m) 

Köppen-Geiger 
Climate 

Period 

Seville 37.4 6.0 12 Csa 2012-2015 

 135 

In addition, the model has been tested in two locations. We use data for one entire year for the 136 

location of Seville and for the location of Lancaster, USA (Table 3). GHI data from Lancaster were 137 

measured with a secondary standard pyranometer Kipp & Zonen CMP21 and an Atersa 138 

calibrated monocrystalline silicon PV cell, and has been subjected to quality control procedures 139 
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[24] following the BSRN recommendations [25]. According to the Köppen-Geiger climate 140 

classification system [26], Seville’s climate is classified as Mediterranean with hot summers and 141 

Lancaster’s climate is classified as Mediterranean with mild summers. When performing the 142 

quality control procedure of Lancaster database, we identify a period of 12 consecutive days 143 

with irregularities in the measurements in October. This period is not computed in the 144 

performance evaluation of the algorithm. 145 

We use 10-min averaged data because high-quality data for the testing of the method was 146 

available in that time step, but the method can be used in any time resolution greater than 1-147 

min.  148 

Table 3. Location selected for testing the method. 149 

  
Latitude 

(°N) 
Longitude 

(°W) 
Altitude (m) 

Köppen-Geiger 
Climate 

Period 

Seville 37.4 6.0 12 Csa 2016 

Lancaster 34.6 118.3 812 Csb 2016 

 150 

3 Methodology 151 

In this section we describe the methodology implemented for the synthetic generation of 152 

reference PV cell solar radiation data (𝐺𝑐𝑒𝑙𝑙
𝑠𝑦𝑛𝑡ℎ

) from pyranometer measurements (𝐺𝑝𝑦𝑟). The 153 

model has been developed for 10-min time resolution and its only input is the 𝐺𝑝𝑦𝑟. The rest of 154 

the used parameters are theoretically estimated from the geographic position of the location 155 

under study (latitude and longitude) and the record time of the measurements. The method can 156 

be described in a sequence of 5 steps. 157 

3.1 Step 1: Data clustering 158 

In the first step, we cluster the data from pyranometer and PV cell measurements as a function 159 

of the clearness index 𝑘𝑡 and the solar elevation, 𝛼. To characterize the type of day, other indices 160 

such as the Perez clearness index (ε), Perraudeau's brightness (𝐼𝑁), sky ratio index (𝑆𝑅) [27] or 161 

illuminance fluctuation frequency index [28] could be used, but they require the knowledge of 162 

more variables such as diffuse and/or beam normal irradiance. Previous approaches have shown 163 

that using only one radiometric variable, different sky conditions can be identified [29]. We 164 

propose to cluster the data into 9 groups in terms of the clearness index, dividing the datasets 165 

into intervals of 0.1 from 0 to 0.8. Values greater than 0.8 have been clustered into the same 166 

group. For the solar elevation we chose 7 groups dividing the dataset into intervals of 5° from 167 

20° to 40° and intervals of 10° from 40° to 60°. Data for solar elevations lower than 20° are 168 

clustered in the same group as well as data for solar elevations greater than 60°. We group the 169 

solar data into a total of 63 clusters.  170 

3.2 Step 2: First regression  171 

In the second step, we use a least squares procedure to perform a linear regression fit to the 172 

cloud point obtained, when comparing the solar radiation values measured with the 173 

pyranometer (𝐺𝑝𝑦𝑟) with the solar radiation values measured with the calibrated solar cell 174 

(𝐺𝑐𝑒𝑙𝑙
𝑚𝑒𝑎𝑠), obtaining a function dependant on the solar elevation (α) and sky condition defined by 175 
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the clearness index (𝑘𝑡). See equation 1. In figure 1 we present an example of the cloud points 176 

and the linear fit for the cluster interval corresponding to solar elevations lower than 30° and 177 

greater than 25°, and clearness index lower than 0.6 and greater than 0.5. In table 4 we present 178 

the first regression coefficient 𝑅𝐶 (α, kt) obtained for each cluster from the training dataset. 179 

𝑅𝐶(α, 𝑘𝑡) =  
𝐺𝑐𝑒𝑙𝑙

𝑚𝑒𝑎𝑠

𝐺𝑝𝑦𝑟
⁄                    (1) 180 

We can relate the first regression coefficient (RC) to the spectral and angular losses related to 181 

the measurements of solar radiation with silicon monocrystalline cells in comparison to solar 182 

radiation data measured with a pyranometer, since those losses show a strong dependency on 183 

the solar elevation and sky condition.  184 

 185 
 186 
Figure 1. Cloud points and first linear regression fit for solar elevations between 25° and 30° and 187 

clearness indexes between 0.5 and 0.6 for the location of Seville.  188 

Table 4. First regression coefficient (RC) for each cluster for the location of Seville. We shade the 189 
result for the data exposed in figure 1.  190 

1st Regression 
coefficient  

RC(α, kt) 

α < 
25° 

25° ≤ α < 
30° 

30° ≤ α < 
35° 

35° ≤ α < 
40° 

40° ≤ α < 
50° 

50° ≤ α < 
60° 

α ≥ 60° 

kt ≤ 0.1 1.050 1.052 1.065 1.059 1.062 1.058 1.049 

0.1 < kt ≤ 0.2 1.000 1.008 1.017 1.022 1.022 1.025 1.016 

0.2 < kt ≤ 0.3 0.966 0.976 0.981 0.981 0.987 0.990 0.984 

0.3 < kt ≤ 0.4 0.938 0.957 0.961 0.967 0.967 0.970 0.970 

0.4 < kt ≤ 0.5 0.891 0.944 0.950 0.954 0.960 0.963 0.964 

0.5 < kt ≤ 0.6 0.854 0.930 0.944 0.951 0.956 0.960 0.960 

0.6 < kt ≤ 0.7 0.854 0.921 0.936 0.946 0.953 0.958 0.959 

0.7 < kt ≤ 0.8 0.862 0.925 0.939 0.949 0.956 0.960 0.960 

kt > 0.8 0.882 0.932 0.944 0.950 0.954 0.956 0.955 

 191 
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In figure 2 we present the first regression coefficient (RC) for all the sky conditions as a function 192 

of the solar elevation selected intervals (a) and the first regression coefficient (RC) vs the solar 193 

elevations as a function of the sky condition (b) 194 

195 

  196 

Figure 2. First regression coefficient (RC) versus all the selected intervals of solar elevations as a 197 

function of the clearness indexes (a) for the location of Seville. First regression coefficient (RC) 198 

versus the clearness indexes for all the selected intervals of solar elevations as a function of all 199 

the selected intervals of solar elevations (b) for the location of Seville. 200 

From table 4 and figure 2, we can observe that the first regression coefficient (RC) shows a 201 

different tendency for solar elevations lower than 25° and clearness indexes greater than 0.4. 202 

For 𝑘𝑡 values lower than 0.4 and solar elevations lower than 25°, we can observe in both figures 203 

a, and b, that RC shows a change in its performance with respect to the rest of the 𝑘𝑡 and α 204 

values.  205 

This can be explained by the greater impact of the refraction effects for low solar elevations of 206 

the solar radiation on the PV reference cell in comparison to the pyranometer. Reference cell 207 

errors are particularly large at sunset and sunrise (up to 50 W/m2) according to the Hukseflux 208 

Thermal Sensors report [30]. The greater the clearness index, the greater the direct component 209 

amount on the total global radiation which in turn is strongly affected by the refraction effects 210 

due to low solar elevations and horizon distortions. Moreover, the PV reference cells present a 211 

greater angular dependence.  212 
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3.3 Step 3: Second regression  213 

In the third step, we run again a least squares procedure but in this case we perform a second 214 

order polynomic fit of the first regression coefficient (RC) as a function of the clearness index 215 

(𝑘𝑡). The calculation is performed separately for each solar elevation selected interval following 216 

equation 2. From this step, we obtain the three functions (𝑏(α), 𝑐(α), 𝑑(α)) dependant on the 217 

solar elevation. In figure 3 we represent the polynomial fit of the first regression coefficient (RC) 218 

as a function of the clearness index (𝑘𝑡) for each solar elevation interval. 219 

𝑅𝐶(α, 𝑘𝑡) = 𝑏(α) · 𝑘𝑡
2 + 𝑐(α) · 𝑘𝑡 + 𝑑(α)                             (2) 220 

  221 

222 
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 224 

Figure 3. Polynomial fit of the first regression coefficient (RC) as a function of the clearness index 225 

(𝑘𝑡) for each solar elevation interval for the location of Seville 226 

The coefficient of determination ranges between 0.974 and 0.995 in the solar elevation selected 227 

intervals showing a high accuracy on the fit. In table 5 we present the functions obtained 228 

applying equation 2 for each solar elevation interval 229 

Table 5. Second regression coefficients, (𝑏(α), 𝑐(α), 𝑑(α)) for each solar elevation interval for 230 
the location of Seville. 231 

α (°) b(α) c(α) d(α) 

< 25 0.466 -0.698 1.123 

25 - 30 0.317 -0.461 1.091 

30 - 35 0.350 -0.488 1.104 

35 - 40 0.316 -0.440 1.095 

40 - 50 0.312 -0.431 1.096 

50 - 60 0.287 -0.399 1.091 

> 60 0.248 -0.348 1.075 

 232 

3.4 Step 4: Third regression  233 

In this step, we run again a least squares procedure to perform a linear regression fit, but in this 234 

case we fit the second regression coefficients, (𝑏(α), 𝑐(α), 𝑑(α)) obtained in step 3 (Table 5) as 235 

a function of the solar elevation defined intervals following equations 3-5.  236 

𝑏(α) = 𝑏1 ∙ 𝛼 + 𝑏2                    (3) 237 

𝑐(α) = 𝑐1 ∙ 𝛼 + 𝑐2                            (4) 238 

𝑑(α) = 𝑑1 ∙ 𝛼 + 𝑑2                    (5) 239 

We run the third regression fit only for solar elevations greater than 25°. In figure 3 we present 240 

the third regression linear fit of the second regression coefficients, (𝑏(α), 𝑐(α), 𝑑(α)) obtained 241 

in step 3 as a function of the solar elevation (greater than 25°). 242 
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 243 

Figure 4. Linear fit of the second regression coefficients (𝑏(α), 𝑐(α), 𝑑(α)) as a function of the 244 

solar elevation for the location of Seville. 245 

 246 
3.5 Step 5: Hyperbolic tangent fit  247 

When substituting (𝑏(α), 𝑐(α), 𝑑(α)) from equation 3-5 into equation 2 separating calculations 248 

for solar elevations lower and greater than 25°, we obtain equations 6 and 7 respectively.  249 

𝑅𝐶 = 0.466 · 𝑘𝑡
2 − 0.698 · 𝑘𝑡 + 1.123                                                   𝑖𝑓 𝛼 < 25°              (6) 250 

RC = (−0.0024 · 𝛼 +  0.3996) · 𝑘𝑡
2 + (0.0036 · 𝛼 −  0.5713) · 𝑘𝑡 + (−0.0005 · 𝛼 +251 

 1.1137)                                                                                                            𝑖𝑓 𝛼 ≥ 25°                          (7) 252 

The model could be used from its corresponding equation (6 -7) according to the solar elevation, 253 

but it would lead to a discontinuity at the solar elevation α=25º. We use the hyperbolic tangent 254 

function to join equations 6 -7 in a simple equation (see equation 8) obtaining thus a continuous 255 

function.  256 

𝑅𝐶(𝛼, 𝑘𝑡) = (0.5 · {(0.466 · 𝑘𝑡
2 − 0.698 · 𝑘𝑡 + 1.123) · (1 − 𝑡𝑎𝑛ℎ(𝛽 · (𝛼 − 25))) +257 

((−0.0024 · 𝛼 +  0.3996) · 𝑘𝑡
2 + (0.0036 · 𝛼 −  0.5713) · 𝑘𝑡 + (−0.0005 · 𝛼 +  1.1137) ) ·258 

(1 + 𝑡𝑎𝑛ℎ(𝛽 · (𝛼 − 25)))})                              (8) 259 

β is a parameter that modifies the connection between equations 6 and 7. For a high β value, 260 

the connection is more abrupt. For a low β value, the connection is smoother, but the data for 261 

solar elevations different to 25º change significantly. We select a β=0.18 by minimizing the 262 

deviations between the reference PV cell measured and synthetic solar radiation sets from the 263 

Seville training database. Any value between 0.1 and 0.2 can be applied and no significant 264 

variation would be obtained. We recommend using β=0.18 for any location where the model 265 

may be applied. 266 

By substituting equation 8 in equation 1 we can obtain the synthetic reference PV cell solar 267 

radiation data 𝐺𝑐𝑒𝑙𝑙
𝑠𝑦𝑛𝑡ℎ

 from thermopile pyranometer measurements 𝐺𝑝𝑦𝑟 following equation 9 268 
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𝐺𝑐𝑒𝑙𝑙
𝑠𝑦𝑛𝑡ℎ

= (0.5 · {(0.466 · 𝑘𝑡
2 − 0.698 · 𝑘𝑡 + 1.123) · (1 − 𝑡𝑎𝑛ℎ(0.18 · (𝛼 − 25))) +269 

((−0.0024 · 𝛼 +  0.3996) · 𝑘𝑡
2 + (0.0036 · 𝛼 −  0.5713) · 𝑘𝑡 + (−0.0005 · 𝛼 +  1.1137) ) ·270 

(1 + 𝑡𝑎𝑛ℎ(0.18 · (𝛼 − 25)))}) · 𝐺𝑝𝑦𝑟                   (9) 271 

4 Results and discussion 272 

To assess the performance of the model, we evaluate the mean, distribution and autocorrelation 273 

of the synthetically generated time series 𝐺𝑐𝑒𝑙𝑙
𝑠𝑦𝑛𝑡ℎ

 obtained from pyranometer measurements 274 

𝐺𝑝𝑦𝑟  in comparison to the data measured with the reference cell 𝐺𝑐𝑒𝑙𝑙
𝑚𝑒𝑎𝑠 in each of the test 275 

datasets (Table 3). 276 

In figure 5 we represent the pyranometer measured solar radiation in continuous orange, the 277 

reference PV cell measured solar radiation in discontinuous blue and the synthetic solar 278 

radiation in dotted green, of four selected days throughout the year in different sky conditions 279 

for the location of Seville on the figures on the left. We also present the deviation between the 280 

pyranometer (𝐸𝑟𝑟𝑜𝑟𝑝𝑦𝑟) and the PV calibrated cell measurements in continuous red and the 281 

deviation between the measured and synthetic calibrated cell data in dotted green on the right 282 

(𝐸𝑟𝑟𝑜𝑟𝑐𝑒𝑙𝑙
𝑠𝑦𝑛𝑡ℎ

). The deviations are calculated following equations 10 and 11. 283 

𝐸𝑟𝑟𝑜𝑟𝑝𝑦𝑟 = 100 · (
𝐺𝑝𝑦𝑟 − 𝐺𝑐𝑒𝑙𝑙

𝑚𝑒𝑎𝑠

𝐺𝑐𝑒𝑙𝑙
𝑚𝑒𝑎𝑠⁄ )                     (10) 284 

 285 

𝐸𝑟𝑟𝑜𝑟𝑐𝑒𝑙𝑙
𝑠𝑦𝑛𝑡ℎ

= 100 · (
𝐺𝑐𝑒𝑙𝑙

𝑠𝑦𝑛𝑡ℎ
− 𝐺𝑐𝑒𝑙𝑙

𝑚𝑒𝑎𝑠

𝐺𝑐𝑒𝑙𝑙
𝑚𝑒𝑎𝑠⁄ )                    (11) 286 
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287 

288 

 289 

 290 

Figure 5. Four daily 10-min solar radiation profiles for the location of Seville. 𝐺𝑝𝑦𝑟  is the solar 291 

radiation measured with the pyranometer, 𝐺𝑐𝑒𝑙𝑙
𝑚𝑒𝑎𝑠  is the solar radiation measured with the PV 292 

reference cell and 𝐺𝑐𝑒𝑙𝑙
𝑠𝑦𝑛𝑡ℎ

 is the synthetically obtained PV reference cell data. On the left, the 293 

daily profiles, on the right the instant errors.  294 
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From day 187 of figure 5 we can observe that the greater error values are found for low solar 295 

elevations at clear sky conditions α<5° mainly caused by high incidence angles. It is noticeable 296 

that on cloudy days, such as the one presented in day 4 in figure 5, this tendency is not observed. 297 

From day 4 we can observe that on cloudy days, with a greater amount of DHI, the differences 298 

between both errors is lower than on sunny days, meaning that the model shows worse 299 

performance on cloudy days, possibly due to the spectral distribution of the solar radiation that 300 

may drop most of the energy in the accepted wavelengths range of the cell on cloudy days. 301 

According to Nann et al., [31] clouds act somewhat as aneutral density filter upper wavelength 302 

limit of the VIS region of the spectrum. At the upper wavelength limit of VIS and in the NIR 303 

region, clouds are strong absorbers of radiation in selected wavelength bands, due to increased 304 

water-vapour absorption and by liquid-water absorption.  305 

In any case, synthetic data errors (𝐸𝑟𝑟𝑜𝑟𝑐𝑒𝑙𝑙
𝑠𝑦𝑛𝑡ℎ

) are lower than pyranometer data errors 306 

(𝐸𝑟𝑟𝑜𝑟𝑝𝑦𝑟) for all sky conditions and for a wide range of solar elevations and solar radiation 307 

levels.  308 

In figure 6 we perform the same evaluation for Lancaster. The error of the synthetic data 309 

(𝐸𝑟𝑟𝑜𝑟𝑐𝑒𝑙𝑙
𝑠𝑦𝑛𝑡ℎ

) is lower than the error when comparing pyranometer to calibrated cell data 310 

(𝐸𝑟𝑟𝑜𝑟𝑝𝑦𝑟) for all the sky conditions. In any case, the approach is more accurate for clear sky 311 

conditions and greater solar elevations. We can only find errors in the synthetic data greater 312 

than 5% for solar elevations lower than 5°. It should be noted that solar radiation data at low 313 

elevations have negligible impact on the photovoltaic module yield.  314 

315 

316 
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317 

 318 

Figure 6. Four daily 10-min solar radiation profiles for the location of Lancaster. 𝐺𝑝𝑦𝑟  is the solar 319 

radiation measured with the pyranometer, 𝐺𝑐𝑒𝑙𝑙
𝑚𝑒𝑎𝑠  is the solar radiation measured with the PV 320 

reference cell and 𝐺𝑐𝑒𝑙𝑙
𝑠𝑦𝑛𝑡ℎ

 is the synthetically obtained PV reference cell data. On the left, the 321 

daily profiles, on the right the instant errors.  322 

In figure 7 we present the daily cumulative values of 𝐺𝑝𝑦𝑟, 𝐺𝑐𝑒𝑙𝑙
𝑚𝑒𝑎𝑠and 𝐺𝑐𝑒𝑙𝑙

𝑠𝑦𝑛𝑡ℎ
 for the location of 323 

Seville and Lancaster. In Lancaster there is a period with no available data covering 12 days in 324 

October. In the correct data, we can observe that the synthetically obtained daily cumulative 325 

data is more similar to the PV reference measured solar radiation data than the pyranometer 326 

measurements daily cumulative data.  327 

 328 

Figure 7. Daily cumulative solar radiation values for the location of Seville (left) and Lancaster 329 

(right). 𝐺𝑝𝑦𝑟  is the solar radiation measured with the pyranometer, 𝐺𝑐𝑒𝑙𝑙
𝑚𝑒𝑎𝑠  is the solar radiation 330 
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measured with the PV reference cell and 𝐺𝑐𝑒𝑙𝑙
𝑠𝑦𝑛𝑡ℎ

 is the synthetically obtained PV reference cell 331 

data. 332 

In tables 6-7 we present the monthly and annual cumulative values of the measured and 333 

synthetic time series for one year for the location of Seville and Lancaster respectively with the 334 

percentage differences in comparison to the reference PV cell measured data. We identified 335 

continuous irregularities on twelve consecutive days in October in Lancaster. We have not 336 

included this month in the performance evaluation of the model. We can observe that the 337 

synthetically generated data show lower differences in the monthly cumulative values in 338 

comparison to the monthly cumulative values of the reference PV cell-measured dataset varying 339 

from -0.2% to 1.4% in Seville and from 0.3% to 3.3% in Lancaster, while the monthly cumulative 340 

values of the pyranometer measurements show differences that range from 5.3% to 9.5% in 341 

Seville and 4.4% to 11.1% in Lancaster. We can observe that the greater differences in the 342 

pyranometer monthly data in comparison to the cell-measured monthly data are found from 343 

September to March coinciding with the time of the year with the lower solar elevations. 344 

Table 6. Monthly and annual cumulative values of the synthetic sets and their differences in 345 
comparison to the measured reference cell data for the location of Seville. 346 
 347 

Dataset Unit Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year 

𝐺𝑐𝑒𝑙𝑙
𝑚𝑒𝑎𝑠 kWh/m2 62 87 154 159 195 229 229 210 165 114 77 70 1751 

𝐺𝑝𝑦𝑟 
kWh/m2 66 93 164 167 206 243 242 224 175 121 83 77 1861 

𝐸𝑟𝑟𝑜𝑟𝑝𝑦𝑟 7.0 7.1 6.5 5.3 5.7 6.1 5.8 6.5 5.7 6.2 7.5 9.5 6.3 

𝐺𝑐𝑒𝑙𝑙
𝑠𝑦𝑛𝑡ℎ

 
kWh/m2 62 87 154 160 197 232 231 212 165 114 76 70 1760 

𝐸𝑟𝑟𝑜𝑟𝑐𝑒𝑙𝑙
𝑠𝑦𝑛𝑡ℎ

 -0.2 0.4 0.2 0.4 1.1 1.4 0.9 1.0 -0.4 -0.5 -0.7 -0.1 0.5 

 348 

Table 7. Monthly and annual cumulative values of the synthetic sets and their differences in 349 

comparison to the measured reference cell data for the location of Lancaster. 350 

Dataset Unit Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year(*) 

𝐺𝑐𝑒𝑙𝑙
𝑚𝑒𝑎𝑠 kWh/m2 74 95 122 150 174 180 185 166 136 - 80 71 1432 

𝐺𝑝𝑦𝑟 
kWh/m2 80 102 130 159 181 190 194 176 149 - 89 78 1527 

𝐸𝑟𝑟𝑜𝑟𝑝𝑦𝑟 7.8 8.0 6.1 5.6 4.4 5.6 4.7 6.4 9.4 - 11.1 9.3 6.6 

𝐺𝑐𝑒𝑙𝑙
𝑠𝑦𝑛𝑡ℎ

 
kWh/m2 75 96 123 152 174 182 186 169 141 - 82 72 1452 

𝐸𝑟𝑟𝑜𝑟𝑐𝑒𝑙𝑙
𝑠𝑦𝑛𝑡ℎ

 0.8 1.9 1.0 0.9 0.3 1.4 0.4 1.6 3.7 - 3.3 1.3 1.4 

(*)October not included in the total sum 351 

The increased differences in Lancaster may be attributed to the good training of the model for 352 

Seville (through the multi-step regression analysis) and the use of an empirical parameter 353 

developed for Seville. 354 
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4.1 Mean evaluation 355 

We evaluate the deviations between the modelled and measured PV reference cell data using 356 

the Root Mean Squared Deviation (𝑅𝑀𝑆𝐷) calculated following equation 12. We also calculate 357 

the RMSD of the pyranometer data in comparison to the calibrated cell-measured data in order 358 

to show a base to compare (equation 13). 359 

RMSD𝑐𝑒𝑙𝑙 = √1

𝑁
∑ (𝐺𝑐𝑒𝑙𝑙

𝑚𝑒𝑎𝑠 − 𝐺𝑐𝑒𝑙𝑙
𝑠𝑦𝑛𝑡ℎ

)
2

𝑁
𝑖=1                                                                                                           (12) 360 

RMSD𝑝𝑦𝑟 = √
1

𝑁
∑ (𝐺𝑐𝑒𝑙𝑙

𝑚𝑒𝑎𝑠 − 𝐺𝑝𝑦𝑟)
2𝑁

𝑖=1                                                                                                           (13) 361 

where N is the number of data pairs, 𝐺𝑐𝑒𝑙𝑙
𝑚𝑒𝑎𝑠 is the global horizontal irradiance measured with 362 

the reference PV cell, 𝐺𝑐𝑒𝑙𝑙
𝑠𝑦𝑛𝑡ℎ

 is the global horizontal irradiance synthetically obtained from 363 

pyranometer measurements and 𝐺𝑝𝑦𝑟  is the solar radiation measured with the pyranometer. 364 

The evaluation is performed in the 10-min and daily resolution. Only data for solar elevations 365 

greater than 2º are considered in this analysis. In table 8 we present the RMSD𝑐𝑒𝑙𝑙  and in table 366 

9 the RMSD𝑝𝑦𝑟 in the 10-min and daily resolution for the test datasets. We also present the 367 

RMSD in % by dividing the RMSD by the average value (equations 14 and 15).  368 

RMSD𝑐𝑒𝑙𝑙(%) = 100 ∙ (
√1

𝑁
∑ (𝐺𝑐𝑒𝑙𝑙

𝑚𝑒𝑎𝑠 − 𝐺𝑐𝑒𝑙𝑙
𝑠𝑦𝑛𝑡ℎ

)
2

𝑁
𝑖=1

𝐺𝑐𝑒𝑙𝑙
𝑚𝑒𝑎𝑠̅̅ ̅̅ ̅̅ ̅̅

⁄ )                                                                    (14) 369 

RMSD𝑝𝑦𝑟(%) = 100 ∙ (
√

1

𝑁
∑ (𝐺𝑐𝑒𝑙𝑙

𝑚𝑒𝑎𝑠 − 𝐺𝑝𝑦𝑟)
2𝑁

𝑖=1

𝐺𝑐𝑒𝑙𝑙
𝑚𝑒𝑎𝑠̅̅ ̅̅ ̅̅ ̅̅

⁄ )                                                                    (15) 370 

 371 

For Seville, the average value (𝐺𝑐𝑒𝑙𝑙
𝑚𝑒𝑎𝑠̅̅ ̅̅ ̅̅ ̅̅ ) in the 10-min resolution is 391 W/m2 and in the daily 372 

resolution is 4.7 kWh/m2. For Lancaster, the average value (𝐺𝑐𝑒𝑙𝑙
𝑚𝑒𝑎𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅) in the 10-min resolution is 373 

371 W/m2 and in the daily resolution is 3.8 kWh/m2. 374 

Table 8. RMSD𝑐𝑒𝑙𝑙 in the 10-min and daily resolution for Seville and Lancaster test datasets. 375 

Station (year) 
RMSD10-min  RMSDdaily 

W/m2 % kWh/m2 % 

Seville (2016) 9.5 2.4 0.06 1.4 

Lancaster (2016) 19.7 3.8 0.09 2.5 

 376 

Table 9. RMSD𝑝𝑦𝑟 in the 10-min and daily resolution for Seville and Lancaster test datasets. 377 

Station (year) 
RMSD10-min  RMSDdaily 

W/m2 % kWh/m2 % 

Seville (2016) 29.6 7.5 0.33 6.9 

Lancaster (2016) 41.7 8.1 0.29 7.7 

 378 
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The RMSD between measured data from the reference cell and pyranometer, mainly related to 379 

spectral and angular losses, reach 8% on a daily basis. Moreover, when applying the correction 380 

algorithm, the RMSD between measured data from the reference cell and synthetic data is 381 

reduced to 2%. In figure 8 we present the daily 𝐺𝑐𝑒𝑙𝑙
𝑚𝑒𝑎𝑠 vs the daily 𝐺𝑝𝑦𝑟 together, with the 382 

daily 𝐺𝑐𝑒𝑙𝑙
𝑠𝑦𝑛𝑡ℎ

 in Lancaster in the figure on the left and Seville in the figure on the right in a scatter 383 

plot. We can observe how the BIAS is reduced significantly from values around 6% to values 384 

lower than 2%. Reduction is even higher in Seville.  385 

386 
Figure 8. Scatter plot of the daily cumulative solar radiation values measured with the cell versus 387 

the daily solar radiation values measured with the pyranometer and the synthetically generated 388 

data for the location of Lancaster (a) and Seville (b).  389 

4.2 Distribution evaluation 390 

The distribution is evaluated since it is assumed that differences in these terms may lead to 391 

differences in PV plant production. To evaluate the distribution, we calculate the KSI 392 

(Kolmogorov-Smirnov test integral, equation 16) index defined as the integrated differences 393 

between the CDFs of two datasets. It is a widely used index to compare cumulative distributions 394 

of measured and synthetic solar radiation sets [32]. The unit of this index is the same for the 395 

corresponding magnitude. We only analyse data for solar elevations greater than 2º. 396 

𝐾𝑆𝐼 = ∫ 𝐷𝑛𝑑𝑥
𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛

,                                                                                                                                (16) 397 

where, 𝑥𝑚𝑎𝑥 and 𝑥𝑚𝑖𝑛are the extreme values of the independent variable, and 𝐷𝑛 are the 398 

differences between the CDFs of datasets evaluated in 100 points. The higher the KSI values, the 399 

greater the differences in the CDFs of the evaluated datasets. We calculate the KSI as a 400 

comparison of the CDFs of the solar radiation sets measured with the pyranometer to the solar 401 

radiation sets measured with the PV reference cell in one hand, and the synthetically obtained 402 

PV reference cell solar radiation sets to the solar radiation sets measured with the PV reference 403 

cell in the other hand. This calculation is performed in order to quantify the impact of the 404 

developed model when used as a correction factor for spectral and angular losses of silicon cells. 405 

In Figure 9 we represent the CDFs of the measured and synthetic sets for Seville and Lancaster 406 

2016.  407 
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 408 

Figure 9. CDFs of the measured and synthetic sets for Seville 2016 (a) and Lancaster 2016 (b). 409 

𝐺𝑝𝑦𝑟 is the solar radiation measured with the pyranometer, 𝐺𝑐𝑒𝑙𝑙
𝑚𝑒𝑎𝑠  is the solar radiation 410 

measured with the PV reference cell and 𝐺𝑐𝑒𝑙𝑙
𝑠𝑦𝑛𝑡ℎ

 is the synthetically obtained PV reference cell 411 

data. 412 

In Table 10 we present the KSI value (W/m2) of the evaluated datasets. The measurements with 413 

pyranometer and reference PV cell present different CDFs. However, the synthetically generated 414 

reference PV cell data present a significant improvement towards similarity to the measured PV 415 

cell CDF. 416 

Table 10. 𝐾𝑆𝐼  (W/m2) for Seville and Lancaster test datasets. 417 

Parameter Station (year) 𝐺𝑝𝑦𝑟 𝐺𝑐𝑒𝑙𝑙
𝑠𝑦𝑛𝑡ℎ

 

KSI (W/m2) 
Seville (2016) 24.6 3.7 

Lancaster (2016) 35.6 8.6 

 418 

The similarity on the measured and synthetic reference PV cell data can be quantified with the 419 

KSI. It is reduced by 85% for the location of Seville and by 75% in Lancaster. The model has been 420 

trained with more than three years of measurements from the location of Seville, therefore its 421 

performance is slightly better for Seville than for Lancaster. In any case, it is worth highlighting 422 

that the model can be globally applied without any local adaptation. Obviously the errors are 423 

lower for the location where the model has been trained. 424 

4.3 Autocorrelation evaluation 425 

There is a relation between consecutive values that should be maintained when generating 426 
synthetic solar radiation data. To that end, we evaluate the autocorrelation qualitatively by 427 
calculating and representing the ramp rates (RRs), defined as the difference between successive 428 
data points over 10 minutes (equation 17).  429 
 430 

𝑅𝑅 =
(𝐺𝐻𝐼𝑘 − 𝐺𝐻𝐼𝑘−1)

∆𝑡
⁄                                             (17) 431 

where Δt refers to an interval of 10 minutes. The units will be given in W/m2∙min. We calculate 432 

the absolute RR values for the annual datasets taking into account only daytime observations. 433 

We qualitatively evaluate the RRs of each dataset through the CDFs (Figure 10) and 434 
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quantitatively through the Kolmogorov Smirnov Index of the CDFs of the Ramp rates (KSIRR) 435 

(Table 11). 436 

Figure 10. CDFs of the RRs of the measured and synthetic sets for Seville 2016 (a) and Lancaster 437 

2016 (b). 𝐺𝑝𝑦𝑟 is the solar radiation measured with the pyranometer, 𝐺𝑐𝑒𝑙𝑙
𝑚𝑒𝑎𝑠  is the solar 438 

radiation measured with the PV reference cell and 𝐺𝑐𝑒𝑙𝑙
𝑠𝑦𝑛𝑡ℎ

 is the synthetically obtained PV 439 

reference cell data. 440 

 441 

 Table 11. 𝐾𝑆𝐼𝑅𝑅  (W/m2۰min) for Seville and Lancaster test datasets. 442 

Parameter Station (year) 𝐺𝑝𝑦𝑟 𝐺𝑐𝑒𝑙𝑙
𝑠𝑦𝑛𝑡ℎ

 

KSIRR (W/m2۰min) 
Seville (2016) 0.22 0.11 

Lancaster (2016) 0.41 0.20 

 443 

From the RRs evaluation we can observe a reduction in the KSIRR of around 50% in both locations 444 

from 𝐺𝑝𝑦𝑟 to 𝐺𝑐𝑒𝑙𝑙
𝑠𝑦𝑛𝑡ℎ

 . The model, which has been trained with data measured in Seville, presents 445 

therefore a better performance in terms of autocorrelation for the location of Seville than for 446 

the location of Lancaster, but we can highlight its global applicability without any local 447 

adaptation. Nevertheless, more locations should be evaluated to assess the performance of the 448 

model in a wider range of climates. 449 

5 Conclusions  450 

In this paper, we present a simple model to obtain reference cell 10-min solar radiation data 451 

from thermopile pyranometer measured data series with reasonable accuracy. Our model does 452 

not require any other input data besides the pyranometer measurements and can be globally 453 

applied with no local adaptation or calibration. We have trained the model in one location 454 

(Seville, Spain) and applied it in two locations, Seville and Lancaster (USA), obtaining satisfactory 455 

results. The model is developed from an initial cluster of the training data and several 456 

regressions, taking into account the main parameters affecting the angular and spectral losses; 457 

the solar elevation and the clearness index. At the time of using it, only thermopile pyranometer 458 

data and a few geometrical calculations are required. This way, the model shows great simplicity 459 

facilitating its applicability. 460 
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The model shows better performance on sunny days with high solar elevations, when most of 461 

the energy is obtained. We have evaluated the mean, distribution and autocorrelation of the 462 

synthetic sets in comparison to measured data with a reference cell using measured data with 463 

a pyranometer as input. Daily RMSD is reduced from 7-8% to 1-2% when evaluating a complete 464 

annual set. The frequency distribution of the synthetic sets is also improved. It has been 465 

quantified in an 80% reduction of the KSI.  The autocorrelation is quantified through the KSI of 466 

the RRs obtaining also a reduction of 50%. The model shows better performance for the location 467 

of Seville, where it has been trained, since solar radiation depends on local phenomena. Future 468 

works will focus on the improvement of the model by using data from more different climates 469 

for its training, and tests will focus on the evaluation of its global applicability.  470 
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