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Abstract 

Many of the available solar radiation databases only provide global horizontal irradiance (GHI) while there 

is a growing need of extensive databases of direct normal radiation (DNI) mainly for the development of 

concentrated solar power and concentrated photovoltaic technologies. In the present work, we propose a 

methodology for the generation of synthetic DNI hourly data from the hourly average GHI values by 

dividing the irradiance into a deterministic and stochastic component intending to emulate the dynamics of 

the solar radiation. The deterministic component is modeled through a simple classical model.  The 

stochastic component is fitted to measured data in order to maintain the consistency of the synthetic data 

with the state of the sky, generating statistically significant DNI data with a cumulative frequency 

distribution very similar to the measured data. The adaptation and application of the model to the location 

of Seville shows significant improvements in terms of frequency distribution over the classical models. The 

proposed methodology applied to other locations with different climatological characteristics better results 

than the classical models in terms of frequency distribution reaching a reduction of the 50% in the 

Finkelstein-Schafer (FS) and Kolmogorov-Smirnov test integral (KSI) statistics. 

1 Introduction 

The direct component of the solar radiation is the relevant component for Concentrated Solar Power (CSP) 

and Concentrated Photovoltaic (CPV) technologies. Long–term series of Direct Normal Irradiance (DNI) 

measurements are only available for a limited number of places around the world. In general, the available 

DNI series cover relatively short time periods and show more gaps than Global Horizontal Irradiance (GHI) 

series (Roesch et al. 2011) since the measurement equipment of DNI (tracker and pyrheliometer for direct 

measurement) is more complex and expensive and requires more attention. DNI, as well as Diffuse 

Horizontal Irradiance (DHI), is directly related with GHI. Many models to estimate DNI and DHI series 

from GHI series have been developed for decades. Boland et al. (2013) verified that estimating DHI from 

GHI, and then calculating the DNI from the estimated DHI, accomplishes similar results as modeling the 

DNI directly from GHI. 

These models, commonly called separation or decomposition models in the literature, relate GHI with its 

components by mean of dimensionless indexes: the clear sky index (kt), the diffuse fraction (kd) and the 

direct fraction (kb or kn) are some examples. These indexes were introduced by Liu and Jordan (1960) in 

daily scales. Later, other authors have extended their use to other time scales (Tovar-Pescador 2008), mostly 

in hourly time resolution. In their simplest form, these models are presented as first-order empirical fittings 
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between kt and kd or kb indexes (Orgill and Hollands 1977). Other authors (Erbs et al. 1982; Louche et al. 

1991; Oliveira et al. 2002; Jacovides et al. 2006) have developed higher-order models. Both types of models 

usually divide the kt range in several segments according to the shape of the scatter plot. Boland et al. (2001) 

propose a logistic curve model avoiding segmentation. In general, these models with only one predictor 

provide good outcomes when monthly and annual estimated data are compared with measured values but 

not so good in shorter time scales. 

The value of DNI for a given value of GHI varies considerably depending on the atmospheric conditions 

(clouds, aerosols, etc.). Aerosols, that derive mainly from natural but also from anthropogenic (Das et al. 

2016) emission sources, have great impact in local climate (Singh et al. 2017) and therefore in solar 

radiation reaching the surface. Absorbing aerosols (BC, organic carbon, dust etc.) primarily influence the 

solar radiation budget by absorbing radiation at all wavelengths while scattering aerosols (seas salts, 

sulphates, nitrates, etc.) scatter the radiation.  

 Empirical models as the ones referred above are location-dependent (Paulescu and Blaga 2016; Gueymard 

and Ruiz-arias 2014) and need to be verified, and sometimes adjusted, when used in places with different 

climate conditions. The scatter plot shape of the hourly kd or kb indexes against the hourly clearness index 

shows another drawback of these fittings. The wide spread of points in the central region suggests that other 

type of model is necessary for an accurate estimation of the solar radiation components from GHI 

measurements. Some authors propose to add more predictors to the model. In this regard, many options are 

found in the literature: astronomical parameters, as solar altitude and air mass (Perez et al. 1990; Maxwell 

1987; Reindl et al. 1990); meteorological parameters, as air temperature and relative humidity (Reindl et 

al. 1990); and others parameters related with the variability of the solar radiation as variability, persistence 

or stability index (Ridley et al. 2010; Perez and Ineichen 1992; Skartveit et al. 1998). Some interesting 

studies compare models with different number of predictors (Torres et al. 2010; Jacovides et al. 2006; 

Gueymard and Ruiz-arias 2014; Paulescu and Blaga 2016; Dugaria et al. 2015). Paulescu and Blaga (2016) 

analyze the improvements in the performance of diffuse fraction models testing different predictors and 

comparing the results with similar models fitted in other climate areas. The study points out that increasing 

the numbers of predictors might improve the local performance of the model but degrade it when applied 

in other locations. Gueymard and Ruiz-arias (2014) find similar conclusions when validating 36 diffuse 

and direct fraction models with data from arid or desert areas According to Furlan et al. (2012) predictors 

which inform about the state of clouds are more relevant than the traditional meteorological variables and 

pollution indicators in separation models. Models that include indexes related with the variability/dynamics 

of the solar radiation as predictors exhibit the best results in other studies (Gueymard and Ruiz-arias 2014; 

Torres et al. 2010). Torres et al. (2010) show a good concordance between the probability distribution 

function of the diffuse irradiance values measured and calculated with two popular models which also 

include this type of predictors (Perez and Ineichen 1992; Ridley et al. 2010). This comparison, not 

considered in other works, helps to test how the separation model reproduces the dynamic performance of 

the radiation components.  

The common intention when improving a separation model is to reduce statistical indicators such as RMSE, 

MAE, BIAS or R2 and no attention is generally placed in the frequency distribution of the modeled data. 

Using data with unrealistic frequency distributions as input for CSP simulation software leads to unrealistic 

energy yields (Silva-Perez et al. 2014) reaching differences of up to 9% for sites with a similar annual DNI 

(Chhatbar and Meyer 2011). 

In this paper, we present a novel methodology for the synthetic generation of hourly DNI values from 

hourly GHI data that keeps the same frequency distribution as the measured DNI data while the results in 

terms of daily, monthly and annual deviations are similar to those of the most common models. The 

methodology, which is based on the separation of the solar radiation into a deterministic and a stochastic 

component, has been validated in four locations with different climatic conditions, showing a satisfactory 

performance regardless of the location where applied. 
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2 Meteorological databases 

The data set used consists of hourly average values of global and direct solar radiation recorded during 15 

years (2000–2014) for the location of Seville. The measurements were taken with a sampling and storing 

frequency of 0.2 Hz. The GHI has been measured with a secondary standard pyranometer Kipp&Zonen 

CMP21. A first class Eppley NIP pyrheliometer coupled to a sun tracker Kipp&Zonen 2AP measured the 

DNI. The devices are located at the meteorological station of the Group of Thermodynamics and Renewable 

Energy of the University of Seville follow a maintenance and calibration procedure according to the 

recommendations of the instrument manufacturers. Data have been subject to quality-control procedures 

following the Baseline Surface Radiation Network (BSRN) recommendations (McArthur 2004) applying 

the tool proposed by Moreno-Tejera et al. (2015). Data recorded at sun altitudes lower than 10º have not 

been used in this study (Paulescu and Blaga 2016). 

The study has been conducted by splitting the data into a training set and a validation set. The training set 

used to build and adjust a satisfactory model corresponds to the years 2000-2013, while the validation set 

used to assess the performance of the model corresponds to the year 2014. 

In addition, the model has been validated in three other locations with different climates. The selected sites 

are presented in Table 1.  

Table 1. Locations selected for the model validation. 

  
Latitude 

(°N) 

Longitude 

(°W) 

Altitude 

(m) 
Climate Training Test 

Pamplona 42.8 −1.6 450 Atlantic 2010-2011 2012 

Pretoria -25.75 28.22 1410  Sub-Tropical 2013-2014 2015 

Payerne 46.81 6.94 491 Continental 2010-2011 2012 

Seville  37.4 −6.0 10 Mediterranean 2000-2013 2014 

 

The databases of Pamplona and Payerne (Vuilleumier et al. 2014) belong to the BSRN. The database from 

Pretoria has been accessed from the Southern African Universities Radiometric Network (SAURAN) 

(Brooks et al. 2015). The methodology presented in this paper requires a dataset in the corresponding 

location for the training of the model. The length of training set is recommended in at least two years to 

avoid an adjustment to a year particularly different from the average, therefore, the databases have also 

been divided into training (two years for each location) and test sets for the validation of the methodology. 

3 Methodology for the synthetic generation 

The methodology follows the idea of dividing the solar radiation into a deterministic and a stochastic 

component. For a given value of global radiation, there is a range of possible direct radiation values 

conditioned to the state of the atmosphere. The proposed methodology intends to emulate, in a simplified 

form, the variability of the atmospheric components that affect the attenuation of the direct component. The 

deterministic component is generated through a classical separation model (Erbs et al. 1982). The stochastic 

component, which is added to the deterministic component, is calculated from the cumulative frequency 

distribution (CFD) curve of a sufficiently large database. 

3.1 Deterministic component 

An extensive database of hourly DNI and GHI data (thirteen years in the case of Seville) is used to generate 

an empirical separation kt
h- kb

h model for solar elevations higher than 10°. kt
h is the hourly clearness index 

defined as: 
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𝑘𝑡
ℎ = 𝐼𝑔0

ℎ/𝐼0
ℎ                (1) 

Where Ig0
h is the observed hourly average global horizontal irradiance and I0

h is the hourly average 

extraterrestrial irradiance.  

kb
h (Skartveit and Olseth 1992) is the direct fraction index defined as: 

𝑘𝑏
ℎ = 𝐼𝑏𝑛

ℎ/𝐼𝑏𝑛𝑐𝑠
ℎ                (2) 

Where, Ibn 
h is the observed hourly average direct normal irradiance and 𝐼𝑏𝑛𝑐𝑠

ℎ is the hourly average clear-

sky DNI. 

The purpose of using a clear sky model in Eq. (2) is to provide an “envelope” for the DNI, corresponding 

to the cleanest clear sky conditions found on our site. To obtain accurate results, an empirical fit of the clear 

sky DNI with local data is strongly recommended. The clear sky model is adjusted by selecting the 

maximum DNI values for different solar altitudes and fitting them to an empirical clear sky model. Any of 

the well-known clear sky DNI models (Behar et al. 2015) could be used in this step. We have implemented 

the model AB proposed by Silva-Pérez in (Silva-Pérez 2002): 

𝐼𝑏𝑛𝑐𝑠
= 𝐼𝑐𝑠 ∙ 𝐸0 ∙

𝐴

1+𝐵∙𝑚𝑅
                                       (3) 

Where mR is the relative air mass determined according to the expression of (Kasten and Young 1989), Ics 

is the solar constant, E0 the Earth-Sun distance correction and A and B are empirical parameters intended 

to model the state of transparency or turbidity of the atmosphere. For the generation of an envelope curve 

independent of the time of the year, we propose the empirical fit to the maximum DNI values divided by 

the Earth-Sun distance correction obtained for each solar elevation higher than 5°.   

Finally, we calculate the fourth order polynomial fit to the point cloud of kt
h vs kb

h values for solar elevations 

higher than 10° and kt
h lower than 0.85 to avoid incorrect measurements caused by horizon obstacles and 

the ‘enhancement effect’ due to the reflection from the base of the clouds (Tapakis and Charalambides 

2014). Figure 1 shows the fourth order polynomial fit to the empirical separation model calculated with 

thirteen years of hourly data available for Seville. 

 
Fig 1. Fourth order polynomial fit to the to the point cloud of kt

h vs kb
h hourly values. 

3.2 Stochastic component 

The second step for the calculation of the synthetic DNI relies on the frequency distribution of the measured 

database. For a given kt
h value there is a range of possible kb

h values as it can be observed in Figure 1. These 
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possibilities are modeled through a fit to the Empirical Cumulative Frequency Distribution Function 

(ECDF) of the training dataset. For each kt
h, the stochastic component is fitted to the ECDF of the difference 

between the kb
h measured and the kb

h deterministic (kb
h
difference) with the aim of generating only synthetic 

data that have already been measured. In order to have a statistically significant ECDF, we divide the kt
h 

range into intervals of ±0.02 points and we cluster the data into three sun elevations intervals; 10-30°, 30-

60°, and 60-90°, understanding that the behavior of the kb varies significantly depending on this parameter 

(Tovar-Pescador 2008). To illustrate the procedure, Figure 2 shows an example of the stochastic component 

ECDF curves for an hourly kt
h= 0.55 depending on the sun position. For a value of kt

h= 0.55 we take the 

kb
h

difference data corresponding to an interval of kt
h= 0.55 ± 0.02 and the ECDF to which the stochastic 

component is fitted will also depend on the sun position. 

 

Fig 2. Example of the ECDF curves of the kb
h

difference for kt
h= 0.55 and for each sun elevation interval. 

It can be observed that for sun elevations higher than 30°, most of the differences between the measured 

kb
h and the deterministic kb

h are lower than zero while for the lowest elevations the majority of the 

differences are higher than zero. 

3.3 Synthetic generation 

The procedure for the generation of synthetic DNI values given an hourly value of GHI divides the solar 

radiation into a deterministic and stochastic component. The first is generated by the fourth order 

polynomial fit of the hourly kt
h and kb

h values of an extensive database of at least one year. The stochastic 

component is dynamically reproduced by using random numbers from the ECDF curve fitted to each 

kb
h

difference and solar elevation intervals corresponding to each kt
h. The procedure is described below: 

i. Calculate the deterministic component (kb
h
det) by the determination of the kt

h corresponding to the 

hourly GHI mean and obtain its corresponding kb
h using the fourth order polynomial fit adjusted 

to the empirical database (3.1).  

ii. Calculate the ECDF of the difference between the kb
h measured and the 𝑘b_det

ℎ  concerning the kt
h± 

0.02 and its corresponding solar elevation (3.2). 

iii. Generate random numbers from a uniform distribution curve [0,1].  

iv. Locate the value whose cumulative probability is the same as the generated with the random 

number thus obtaining the stochastic component (kb
h
stoc). Figure 3 presents a graphical explanation 

of the step iv.  
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Fig 3. Graphical representation of step iv of the synthetic generation. 

To estimate the synthetic value for each hour, the operation is performed by the following equation: 

𝑘b synth
ℎ = 𝑘b_det

ℎ + 𝑘b stoc
ℎ                              (4) 

To avoid undesired fluctuations of the DNI in clear-sky conditions, we have imposed the condition that the 

kt
h must vary by more than 0.05 points from the previous value; otherwise, the stochastic component 𝑘b_stoc

ℎ  

remains constant. The 𝑘b_synth
ℎ  is limited to a maximum value of one. 

Finally, the hourly synthetic data 𝐼synth
ℎ  is calculated by multiplying the 𝑘b_synth

ℎ  by the clear sky irradiance 

value for that hour. 

𝐼synth
ℎ = 𝐼𝑏𝑛

ℎ
𝑐𝑠

∙ 𝑘b_synth
ℎ                                            (5) 

To avoid negative results, there is a minimum value of zero during daytime and an imposed value of zero 

during nighttime. 

4 Results and discussion 

The analysis of the results has been made in four time scales, hourly, daily, monthly and yearly for the year 

2014 in the location of Seville. Due to the stochastic nature of the methodology, simulating only one year 

may lead to unrepresentative results. Therefore, we have generated synthetically the DNI of the year 2014 

fifty times for the yearly and monthly analysis. The results are presented in a box plot together with the 

measured monthly values in Figure 4.  
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Fig 4. Monthly Box plot of fifty simulations of the synthetic generation of the DNI for the year 2014 in 

comparison with the measured DNI. 

The annual mean of the synthetic data differs in less than 0.5% from the measured value. The monthly 

values show a stable performance with small variations from the mean and the median that is also very 

close to the measured monthly mean demonstrating the robustness of the methodology. The results are 

summarized in Table 2. 

Table 2. Main results of the simulation of the year 2014 fifty times in comparison with the measured DNI. 

Month 
DNI measured 

 (kWh/m2) 

DNI modeled (50 times) 

(kWh/m2) 

Mean Median P25 P75 Max Min 

1 93 93 93 91 95 98 89 

2 83 89 89 88 90 93 86 

3 171 181 181 179 183 185 176 

4 172 183 183 182 185 189 176 

5 270 260 260 256 262 269 253 

6 240 245 245 243 247 254 237 

7 260 252 252 250 254 259 244 

8 282 253 253 251 256 262 238 

9 151 156 156 154 159 161 150 

10 152 167 167 165 170 173 160 

11 96 100 100 99 102 105 93 

12 139 126 126 124 127 131 121 

Annual 2110 2105 2105 2099 2112 2126 2086 

 

In Figure 5, we represent the hourly ECDFs of the fifty synthetically generated annual data sets together 

with the ECDF of the measured data set. We find little differences in terms of frequency distribution 

between all the generated years.  
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Fig 5. ECDF of the fifty synthetically generated annual data sets compared to the measured ECDF for the 

year 2014 in Seville (blue thicker line). 

For the rest of the results analysis, we have selected one of these fifty years since results barely change in 

terms of frequency distribution. He have selected one year whose annual cumulative DNI value was the 

same as the mean of the 50 generated years (2105 kWh/m2). 

Figure 6 presents the modeled and measured kb
h versus the kt

h. A similar performance in both figures can 

be observed. 

  

Fig 6. Scatter plots of the hourly direct fraction index versus the hourly clearness index of the modeled data 

(a) and the hourly direct fraction index versus the hourly clearness index of the measured data (b) for the 

year 2014 in Seville. 

Following the common practices for benchmarking modeled irradiance datasets (Beyer et al. 2008), we use 

the root mean squared difference (RMSD) as the main statistic for the comparison of the observations and 

the data generated synthetically. In the analysis, only daylight hours are considered. 

RMSD = √
1

𝑁
∑ (𝐼𝑚𝑒𝑎𝑠

𝑖 − 𝐼𝑠𝑦𝑛𝑡ℎ
𝑖 )

2𝑁
𝑖=1                   (6) 

Where, N is the number of data pairs, Isynth is the synthetic DNI and Imeas is the measured DNI. 

The corresponding relative differences are calculated as follows: 

𝑟𝑅𝑀𝑆𝐷 = 𝑅𝑀𝑆𝐷
𝐼𝑚𝑒𝑎𝑠

⁄                           (7) 
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Table 3 presents the RMSD and rRMSD of the, hourly, daily and monthly means of the presented model 

and the model only with the deterministic component. 

Table 3. RMSD and rRMSD of the, hourly, daily and monthly means of the presented model and the model 

only with the deterministic component for the year 2014 in Seville. 

  Deterministic + Stochastic Deterministic  

 Hourly  

(W/m2) 

Daily 

(kWh/m2) 

Monthly  

(kWh/m2) 

Hourly      

(W/m2) 

Daily 

(kWh/m2) 

Monthly  

(kWh/m2) 

RMSD  128 1 13 111 0.8 12 

rRMSD (%) 26 18 7 23 13 7 

 

Some examples of the daily profiles are illustrated in Figure 7 where the goodness of the method in 

reproducing the stochastic variation of the atmosphere composition is qualitatively illustrated. The figures 

should be observed in pairs. In each pair, we represent days with similar sky condition but different 

atmospheric composition. The figures on the left represent a clearer atmosphere than figures on the right. 

The first pair represent partially clear days (a-b), the second pair represent partially cover days (c-d), and 

the third pair represent clear days (e-f). 
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Fig 7. Illustrative examples of the results of the synthetic generation compared to the original dataset. 

The assessment of a method for the synthetic generation should aim to find similarities with the frequency 

distribution of measured data. With this purpose, we have calculated the Finkelstein-Schafer (FS) statistic 

(Finkelstein and Schafer 1971) for each dataset. This statistic takes into account the differences between 

the ECDF of the measured and synthetic datasets, and permits the comparison with the results of other 

models regardless of the time resolution and analysis period. 

𝐹𝑆 = 1
𝑛 ⁄ ∑ 𝛿𝑖

𝑛
𝑖=1                   (8) 

Where, δ is the absolute difference between the measured and synthetic ECDF at each point, I and n 

represents the number of readings. Only daylight hours are considered. 

To assess the similarity of the ECDFs over the whole range of observed values, we also calculate the KSI 

(Kolmogorov-Smirnov test integral) index which is used to check the similitude between generated and 

measured DNI values (Espinar et al. 2009) .  
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𝐾𝑆𝐼(%) = 100 ∙
∫ 𝐷𝑛𝑑𝑥

𝑥𝑚𝑎𝑥
𝑥𝑚𝑖𝑛

𝑎𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
          (9) 

Where 𝑥𝑚𝑎𝑥  and 𝑥𝑚𝑖𝑛are the extreme values of the independent variable, and 𝑎𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  is calculated as  

𝑎𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 𝑉𝑐 ∙ (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)         (10) 

The critical value 𝑉𝑐  depends on the population size 𝑁 and is calculated for a 99% level of confidence as  

𝑉𝑐 = 1.63
√𝑁

⁄     𝑁 ≥ 35                        (11) 

In this case 𝑉𝑐 = 0.026 and 𝐷𝑛 are the absolute differences between the ECDFs for each interval. The higher 

the KSI value, the worse the model fit. 

Figure 8 shows the ECDF of the measured and synthetic datasets in addition with the synthetic dataset 

generated only with the deterministic component (left) and their differences (right), for the different solar 

elevation intervals considered in the methodology. The blue dotted line represents the critical value.   
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Fig 8. ECDF of the measured and synthetic datasets for each solar elevation selected interval (left) and their 

differences (right) for the year 2014 at Seville. 
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The synthetic dataset generated using only the deterministic component exhibits a completely different 

frequency distribution compared to the frequency distribution of the measured dataset, especially for solar 

elevations higher than 30° (when the optical efficiency of the solar thermal concentration systems is 

higher).. The FS and KSI statistics indicate a better performance of the synthetic generation with both, the 

stochastic and deterministic components for every solar elevation interval.  

Table 4 presents the KSI and FS of the synthetic dataset generated with both the deterministic and stochastic 

component and the synthetic set only generated with the deterministic component for the different solar 

elevation intervals taken into account. Note that the improvements in the reproduction of the frequency 

distribution for the three intervals considered are greater than the overall improvement. This is because for 

solar elevations higher than 30° the ECDF of synthetic data generated only with the deterministic 

component stands below the ECDF of the measured data (see Fig. 8), while for solar elevations lower than 

30° occurs just the opposite. As a result, the distances are balanced and the statistics KSI and FS become 

smaller in the aggregated values (α > 0, Table 4). 

Table 4. Performance of the methodology in comparison to the deterministic synthetic generation. 

 
Deterministic + Stochastic Deterministic  

solar elevation KSI (%) FS KSI (%) FS 

α > 0 29.2 0.007 56.6 0.015 

0 < α ≤ 30 39.0 0.010 112.8 0.030 

30 < α  ≤ 60 46.9 0.012 212.4 0.056 

α > 60 74.2 0.018 222.7 0.058 

 

The robustness of the methodology can be observed when applying it to other sites with different climatic 

conditions. We tested it on three locations with Atlantic, Sub-tropical and Continental climates analyzing 

the hourly FS and RMSD. The results, summarized in Table 5, show a better performance of the proposed 

methodology compared to the deterministic model performance in terms of frequency distribution in every 

location and for every solar elevation interval.  
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Table 5. FS analysis of the synthetic generation in different locations. 

Location Model Statistic α > 0 0 < α ≤ 30 30 < α  ≤ 60 α > 60 

Pamplona 

Det. + Stoc. 

RMSD (W/m2) 83 67 87 119 

KSI(%) 26.8 34.4 41.2 29.6 

FS 0.007 0.009 0.011 0.008 

Det. 

RMSD (W/m2) 69 51 65 118 

KSI(%) 60.3 61.7 104.5 69.3 

FS 0.016 0.019 0.028 0.018 

Pretoria 

Det. + Stoc. 

RMSD (W/m2) 124 129 122 116 

KSI(%) 29.2 42.0 28.2 33.9 

FS 0.007 0.010 0.007 0.008 

Det. 

RMSD (W/m2) 96 110 83 92 

KSI(%) 36.9 75.7 88.2 188 

FS 0.009 0.021 0.022 0.043 

Payerne 

Det. + Stoc. 

RMSD (W/m2) 136 130 142 147 

KSI(%) 45.2 78.7 85.2 85.9 

FS 0.016 0.024 0.022 0.023 

Det. 

RMSD (W/m2) 113 108 118 126 

KSI(%) 51.7 157.1 229 262.1 

FS 0.018 0.049 0.059 0.070 

 

5 Conclusions 

In this paper, we present a novel and simple methodology for the generation of synthetic hourly DNI data 

taking hourly mean GHI values as input. The goal of this methodology is to improve the results in terms of 

frequency distribution of the synthetic values, which is relevant for the performance of concentrating solar 

energy technologies, especially CSP. The proposed method upgrades the traditional models by dividing the 

solar radiation into a deterministic and a stochastic component. While there is no improvement in terms of 

RMSE, the results in reproducing the solar radiation dynamics quantified in terms of frequency distribution 

are outstanding. The FS and KSI statistics exhibits a reduction of 50% for the year 2014 at the location of 

Seville and reaches a reduction of 70% for solar elevations higher than 30°. In addition, the proposed 

methodology has been applied to other locations with diverse climatic conditions, achieving again excellent 

results compared to the deterministic model. The reduction of the KSI and FS indicators are greater than 

50% for every solar elevation interval analyzed at all the locations, demonstrating the robustness of the 

proposed methodology.   
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