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Recent studies have demonstrated that the Guadiana Estuary contains metal concentrations in 14 
excess of background values. Therefore, this work aims to document the potential 15 
environmental hazards associated with the availability of these metals in this environment of 16 
high ecological value. Mineralogical analysis shows that the sediments are composed mainly of 17 
quartz, albite, and clay minerals (illite, smectite, kaolinite, and vermiculite) along with several 18 
small, reactive compounds (including soluble sulphated salts, Fe-Mn oxyhydroxides, organic 19 
matter, and pyrite) capable of retaining metals, which can be subsequently released, causing 20 
environmental degradation. BCR sequential extraction shows that As, Cd, Cu, Mn, Pb, and Zn 21 
present mobile fractions with respect to the total metal content (41, 100, 57, 53, 70, and 69%, 22 
respectively) in any of the described reactive phases (F1+F2+F3).Calculated environmental 23 
risk indices demonstrate moderate to considerable ecological risk for almost the entire estuary, 24 
associated mainly with acid mine drainage from the nearby Iberian Pyrite Belt. In addition, the 25 
indices highlight several zones of extremely high risk, which are related to industrial and urban 26 
dumps in the vicinity of the estuary and to heavy traffic on the international bridge. 27 
 28 

Keywords: Guadiana Estuary, sediment pollution, metal speciation, sequential extraction, ecological risk indices. 29 
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1. Introduction 1 

 2 

The Guadiana River drains the western part of the Iberian Pyrite Belt (IPB), one of the world’s 3 

most important metallogenetic sulphide provinces (Figure 1), where mining dates back to the 4 

Third Millennium B.C. (Nocete et al., 2005). Associated with these mining areas are acidic 5 

leachates containing high concentrations of metals, metalloids, and sulphates, collectively 6 

known as acid mine drainage (AMD). Extractions of minerals from the IPB were particularly 7 

intense in the middle of the 19th century (Morral, 1990); since then, activity has declined with 8 

only a small number of currently active mines. However, the environmental impact of AMD 9 

still exists. There are several sources of AMD, including outcrops of polymetallic sulphide 10 

deposits, the products related to the exploitation of these deposits (such as waste piles, residues 11 

from the smelting process, ashes, and low-grade stockpiles), and the abandoned underground 12 

stopes and chambers. Metals and metalloids leaching from abandoned, sulphide-rich mines are a 13 

very important source of environmental pollution of water, soils, and sediments in the IPB 14 

(Romero et al., 2006; Pérez-López et al., 2008). These leachates are responsible for the 15 

present pollution and the degradation in water quality of the lower part of the Guadiana River 16 

Basin (GRB) and, consequently, of the estuarine sediments, which act as the final continental 17 

filters prior to fluvial discharge into the Gulf of Cádiz.  18 

The consequences of these intense mining activities in the GRB have been documented in 19 

various recent studies (e.g. Álvarez-Valero et al., 2008; Pérez-López et al., 2008; Delgado et 20 

al., 2009). However, there has been only limited investigative effort made to evaluate the 21 

consequences of these activities in the estuarine area. The estuarine area is recognised as having 22 

high ecological value and contains the Natural Area “Marismas de Isla Cristina” in the Spanish 23 

sector of the estuary and the Natural Reserve “Sapal de Castro Marim y Vila Real de Sto. 24 

António” in the Portuguese sector. However, existing studies of the polluting agents in the 25 

Guadiana Estuary (Morales, 1997; Ruiz et al., 2001; Delgado et al., 2009b; Delgado et al., 26 

2010) are not sufficient to evaluate their total environmental impact because the chemical state 27 

in which elements are present in the sediments (easily exchangeable ions, metal carbonates, 28 



 4 

oxides, sulphides, organometallic compounds, ions in crystal lattices of minerals, etc.) needs to 1 

be known to evaluate their mobility, bio-availability, and toxicity (e.g. Usero et al., 1998; 2 

Weisz et al., 2000; Yu et al., 2001; Pérez-López et al., 2008).  3 

When environmental conditions change (pH, redox potential, organic matter, etc); some of the 4 

sediment-bound metals can be remobilised and released back into the water, where they can 5 

have adverse effects on living organisms (e.g. Li et al., 2001; Morillo et al., 2002; Peng et al., 6 

2009). The most crucial property of metal ions is that they are bioavailable and not 7 

biodegradable in the environment and that their uptake by benthonic organisms depends largely 8 

on their mobility, total concentration, and chemical form (Morillo et al., 2007). Several 9 

analytical methodologies based on sequential extraction procedures (SEP) have been devised to 10 

study metal mobility and the potential level of bioavailability (Sundaray et al., 2011) in 11 

sediments based on the sum of the exchangeable and associated carbonate fractions (e.g. 12 

Kabala et al., 2001; Fuentes et al., 2004; Karbassi et al., 2005; Vanek et al., 2005). 13 

Sequential extractions provide quantitative information about the distributions of various 14 

elements among operationally defined geochemical fractions in soils, sediments, and waste 15 

materials. Numerous sequential extraction methods are used at present, and they differ 16 

according to the types of reagent used, the experimental conditions applied, and the numbers of 17 

steps involved (e.g. Tessier et al., 1979; Gibson and Farmer, 1986; Dold, 2003). One of the 18 

most common methods is the BCR sequential extraction scheme, a simple three-stage procedure 19 

that has been thoroughly tested by inter-laboratory trials (Cappuyns et al., 2007). The original 20 

sequential extraction was proposed by the European Community Bureau of Reference (BCR) to 21 

standardize various existing procedures, obtaining three separate fractions (acid soluble-22 

extractable, reducible, and oxidable) (Ure et al., 1993) and to achieve comparability when 23 

sequential extraction is used (Quevauviller, 1997). This scheme has been improved in 24 

subsequent studies (Rauret et al., 1999; Sahuquillo et al., 1999; Arain et al., 2008). The 25 

digestion methods applied generally provide information on the total or pseudo-total content of 26 

trace elements in sediments without giving a direct evaluation of anthropogenic contributions 27 

and the consequent pollution level of the sites (Perez-Santana et al., 2007).  28 
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The objectives of the present study were to investigate the mobility of the most toxic elements 1 

(As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, S, and Zn) in the Guadiana saltmarsh sediments by 2 

applying the BCR (modified) sequential extraction scheme to this environment affected by 3 

multiple anthropogenic contaminants, to combine the sequential extraction data with 4 

mineralogical analyses from X-ray diffraction (XRD) and scanning electron microscopy (SEM), 5 

and to determine the mineral reactivity occurring in the estuary. The aforementioned techniques, 6 

along with the calculation of ecotoxicity indexes, should allow us to establish monitoring 7 

strategies for future action plans on this site of high ecological value. In addition, based on the 8 

results obtained in this work, a detailed study of two boreholes through the Holocene infill of 9 

the Guadiana Estuary is currently underway, using the same methodology and also examining 10 

rare earth elements (REEs). The drilling is expected to reveal the evolution of the ecological 11 

evolution of the Guadiana Estuary during the last 13,000 years and should improve our 12 

understanding of metal fractionation in environments historically affected by AMD. 13 

 14 

2. Materials and methods 15 

 16 

2.1. Description of sampling sites and superficial sediments 17 

The physiographic and geological characteristics of the study area have been thoroughly 18 

described in recent studies (Boski et al., 2002; Boski et al., 2008; Delgado et al., 2009a; 19 

2010). 20 

For sampling of surficial sediments, 20 representative sampling points in the estuarine area were 21 

selected. The sampling points were positioned in the lower estuary within 30 km of the 22 

shoreline, coinciding with the marine domain (Figure 1). The surface sediments correspond to 23 

the margins of the principal channels in the estuary (Figure 1); these include the main channel of 24 

the Guadiana River itself, the “Carrasqueira” and “Castro Marim” stream channels (Portuguese 25 

basin), and the stream channels “La Canela”, “San Bruno”, and “Carreras” (Spanish basin). 26 

The channels’ active margins are situated between the mean spring low-water and mean neap 27 

high-water (Borrego et al., 1995). For this reason, they undergo tidal action (flooded during 28 
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high tide) and represent the current environmental state of the sedimentary system of interest 1 

(Delgado et al., 2010). Further details about the sampling and sample pre-treatment are 2 

described in Delgado et al. (2010). 3 

 4 

 2.1.1. Sequential extractions procedure (SEP) 5 

The SEP applied in this study was the improved version of the initial BCR three-step scheme 6 

(Quevauviller et al., 1997). The procedure is summarized below and full details are reported 7 

elsewhere (e.g., Rauret et al., 1999; Sahuquillo et al., 1999). 8 

Step 1. (water/acid soluble and exchangeable fraction/carbonate included): acetic acid (20 ml of 9 

0.11 M solution) was added to 0.5 g of accurately weighed sample in 50 ml polyethylene 10 

centrifuge tubes, and shaken for 16 h at room temperature. The extracts were then separated 11 

from the residue by centrifuging for 20 min at 3000 rpm, decantation into polyethylene 12 

containers and storage at 4º C for analysis. The residues were washed with 10 ml de-ionized 13 

water by shaking for 15 min and centrifuged. 14 

Step 2. (reducible fraction): 20 ml of 0.1 M hydroxylammonium chloride (adjusted to pH of 15 

around 2 by adding HNO3) were added to residues from Step 1. The extraction was performed 16 

as described in Step 1. 17 

Step 3. (oxidisable): 10 ml of 8.8M H2O2 (pH 2.0–3.0) was added drop-by-drop to the residues 18 

from Step 2. The tubes were covered and the contents were digested for 1 h at room temperature 19 

and 1 h at 85º C in a water bath. Volume was reduced to around 2–3 ml by evaporation. Step 3 20 

was performed twice. Finally, 25 ml of 1M ammonium acetate (adjusted to pH 2 by adding 21 

HNO3) was added to the cool residues, which were separated and rinsed as described in Step 1. 22 

Step 4. (residual fraction): The residue from Step 3 was treated by the procedure used for 23 

determination of the pseudo-total trace elements content by aqua regia digestion (10 ml of a 24 

mixture of 12M HCl and 15.8 M HNO3 in a 3:1 ratio) in teflon reactors. Reactors were 25 

maintained for 20 h in a fume hood and then simmered on a hot plate for 1 h at 100º C. 26 

 27 

 28 
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2.1.2. Analysis and quality control of the data 1 

Total element concentrations were measured by Acme Analytical Laboratories Ltd (Vancouver, 2 

Canada), accredited under ISO 9002, through its Italian affiliate (ERS Srl, Napoli), by 3 

inductively coupled plasma atomic emission spectroscopy (ICP-AES) and inductively coupled 4 

plasma mass spectrometry (ICP-MS). A total of 36 elements (Ba, Al, K, Mg, Mn, Si, Ag, As, 5 

Be, Bi, Ca, Cd, Ce, Co, Cr, Fe, Cu, Li, Mo, Na, Ni, P, Pb, Sb, S, Se, Sn, Sr, Te, Ti, Tl, U, V, W, 6 

Y, and Zn) were reported for a 0.1-g sample analysed by ICP-emission spectrometry following 7 

a lithium metaborate/tetraborate fusion and dilute nitric acid digestion. The most polluting 8 

elements form the basis for subsequent discussion: S, Fe, As, Cd, Cr, Co, Cu, Ni, Pb, Zn, and 9 

Mn. Hereafter, the term “metal” includes both metals (e.g. Cd) and metalloids (e.g. As). 10 

Although the sequential extraction procedure is usually applied for assessing metal mobility, S 11 

is also discussed within this group because it is the most abundant element in AMD; Ca is also 12 

discussed because of the important role of CaCO3 in the incorporation of trace metals that are 13 

released under acid conditions (Ayyamperumal et al. 2006). Total carbon and sulphur were 14 

determined by loss on ignition (LECO) and have been reported in a recent paper (Delgado et 15 

al., 2010). 16 

Accuracy was calculated with respect to Acme’s in-house reference materials DS7 and SO-18. 17 

These were calibrated for an aqua regia digestion/ICP-MS determination with published values 18 

for concentrated HCl and HNO3 digestion in the Canadian Certified Reference Materials Project 19 

(CCRMP) TILL-4 and LKSD-2. 20 

In addition, four replicates were analysed to check the quality of the analysis. The relative 21 

percentage difference (% RPD) was calculated (Equation 1). The results for % RPD (Table 1) 22 

were reasonably good and close to zero, the expected value. Most values were below 0.5%, 23 

except for Cr at 2.14%. All RPD values were lower than 5%. 24 

Evaluation of the analytical performance of the total concentration was made by analysing the 25 

certified reference materials (CRMs) STSD-1 and STSD-2 (from stream sediments). The 26 

measured concentrations of all analytes (Table 1) coincide with, or are very close to, the 27 

standard reference values. Generally, the recovery ranges (Equation 2) of the principal elements 28 
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under study (Fe, Al, As, Cd, Co, Cr, Cu, Ni, Pb, and Zn) were between 78.5 and 105%, except 1 

those for Cd and Cr, for which there were no certified reference values. 2 

For the studied elements, an internal check of the results was performed by comparing the sum 3 

of the four steps from the SEP (acid-soluble + reducible + oxidisable + residual) with the 4 

analysis of total element concentration (Acme Analytical Laboratories) reported in Table 3. 5 

These calculations can be used to validate the results and for inter-laboratory comparisons 6 

(Pérez-López et al., 2008). The recovery percentage of the sequential extraction was calculated 7 

using Equation 3. The calculations revealed good percentage recoveries for As, Co, Cu, Fe, Mn, 8 

Ni, Pb, and Zn, indicating the reliability of the data (except for Cd, because of its low 9 

concentrations). The average recovery value for the studied major elements and metals was 90 ± 10 

17% (Table 2). 11 

 12 

% RPD = (S-D)/(S+D)/2) X 100.      Equation 1 13 

Where: S = determined value of the samples, D = value of the duplicates. 14 

% Recovery = (Obtained value/Certified value) X 100    Equation 2 15 

%Recovery = (F1 + F2 + F3 + R/ Total Concentration) x 100   Equation 3 16 

Where: Total concentration refers to the values obtained by Acme Laboratories.   17 

 18 

In addition, the results obtained for extractable concentrations were compared with indicative or 19 

certified values following the procedures for the standard reference material (BCR-701), and 20 

they showed that certified (or indicative) and obtained values were not significantly different 21 

(Table 2). All these considerations provided an assurance of the quality of the analytical 22 

extraction data. 23 

 24 

2.2. Mineralogical characterisation 25 

Mineralogical characterisation of the sediment was performed by X-ray diffraction (XRD) 26 

techniques on a Bruker AXS model D8 Advance diffractometer. Working conditions were as 27 

follows: slit fixed at 12 mm, CuK monochromatic radiation, 20 mA, and 40 kV. Random 28 
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powders were scanned from 3 to 65º 2 at 0.5 s counting time per step. For clay mineral 1 

identification, oriented aggregates of the <2-µm fraction were obtained by sedimentation and 2 

then saturated with ethylene glycol (EG) under vacuum for 48 h. This was followed by a 3 

thermal treatment (TT) at 550ºC for 2 h. Treated, oriented aggregates were scanned from 3 to 4 

20º 2 at 0.5 s counting time per step. Semi-quantitative mineralogical determination was 5 

estimated with XPowder software (Martin, 2004). 6 

In order to complete the mineralogical characterization, selected samples were examined on a 7 

JEOL JSM-5410 scanning electron microscope (SEM) operating with an accelerating voltage of 8 

20 kV, using back-scattered electron (BSE) imaging and energy dispersive X-ray (EDX) 9 

microanalysis (Link ISIS system) to identify amorphous or poorly-crystallised phases and 10 

accessory heavy minerals. Additionally, a sequential mineralogical study was developed on 11 

each residue of the SEP to understand the reactivity of the metal in the different geochemical 12 

fractions of the sediments. 13 

2.3. Statistical analysis 14 

Multivariate statistical analysis of the principal components (PCA) was performed using a 15 

Pearson’s correlation matrix (0.05 significance level) to evaluate the levels of association of the 16 

variables (metals-metalloids) at the different steps of the SEP. This technique has been widely 17 

used to distinguish the factors that control the geochemical behaviour of metals in the estuarine 18 

system (e.g. Wu et al. 2007). The values of the factor matrix can be improved by using the 19 

varimax rotation method, which maximizes factor variance (Kaiser et al., 1958), because it is an 20 

orthogonal rotation that minimises the number of variables that have high loadings on each 21 

factor, thereby simplifying the transformed data matrix and assisting interpretation.  22 

 23 

2.4. Quantification of sediment pollution 24 

A significant number of indicators designed to approximate the quality of sediments and soils 25 

and the risk that these pose to aquatic ecosystems can be found in the literature (e.g. Caeiro et 26 

al., 2005). To establish the environmental risk of the Guadiana Estuary sediments, the potential 27 
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ecological risk was estimated by calculating some of these frequently used pollution indices as 1 

follows. 2 

Potential ecological risk was defined by Hakånson et al., (1980) and was used as a diagnostic 3 

tool for water pollution control purposes: This empirical index provides a simple comparative 4 

tool for assessing the level of heavy metal pollution (Bhuiyan et al., 2010) and allows 5 

comparisons to be made between several estuarine systems. 6 

The distribution of metal and metalloid pollution in the different phases of the modified BCR 7 

procedure offers an indication of their availability, which, in turn, enables a risk assessment to 8 

be made of the present pollutants in the aquatic environment (Chen et al., 2010). In this 9 

context, the sediments were classified according to a Risk Assessment Code (RAC) used in 10 

previous investigations of heavy metal pollution of sediments (e.g. Perin et al., 1985). The 11 

RAC is assigned by taking into account the percentage of metal associated with the 12 

soil/sediment in the exchangeable and carbonate fractions: there is no risk when the F1 BCR 13 

fraction is lower than 1%; low risk for a range of 1–10%; medium risk for a range of 11–30%; 14 

high risk from 31 to 50%; and very high risk for higher F1 percentages. 15 

 16 

3. Results and Discussion 17 

 18 

3.1. Sediment characteristics 19 

Table 3 shows the total concentrations obtained for major oxides (%) and for the main metals 20 

and metalloids (mg kg-1) that can be hazardous to the environment. The mineral phases and the 21 

semiquantitative mean percentages determined by “Xpowder” software from 20 sediment 22 

samples are shown in Figure 2. The XRD study shows that the surface sediments are composed 23 

mainly of quartz, feldspar type albite, and clay minerals in average proportions of 69.89, 6.67 24 

and 23.44%, respectively (Figure 2A).  25 

The clay-group minerals present in the sediments were determined by means of specific 26 

treatments. The oriented aggregates allowed the distinction of illite in all samples, with a mean 27 

of 6.67%. Subsequently, oriented aggregates were treated with EG to distinguish the presence of 28 
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smectites and vermiculites (Figure 2B, top). The results show that the smectite- and kaolinite-1 

type phylosilicates dominate over the vermiculite-type in surface samples. Thus, the mean 2 

percentage of vermiculite is 6.38, while smectites-kaolinites have higher values, with a mean of 3 

10.49%. Moreover, oriented aggregates were subjected to a thermal treatment at 550ºC, which 4 

destroys kaolinite, thus allowing distinction between it and the chlorite-group minerals. As 5 

shown in Figure 2B (bottom), a collapse of the 7Ǻ peak is produced, which implies that 6 

kaolinite is the detected mineral phase. The results for the peak located at 14Ǻ are consistent 7 

with the results of treatment with EG, because at that temperature the collapse of vermiculite 8 

can also be seen. 9 

 10 

3.2. SEM data 11 

A scanning electron microscope was used to aid in characterizing the mineralogy of the 12 

sediments, focusing on the main metallic phases that are unlikely to be distinguished by XRD. 13 

The SEM spectra (Figures 3 and 4) indicate that the sediments are composed mainly of Si, Al, 14 

Fe, Mg, Mn, and, to a lesser extent, Ca and K. In addition, Fe oxyhydroxides [probably low 15 

crystalline or amorphous phases (Figure 3A)], fine-grained sulphide minerals, and native 16 

sulphur were identified (Figure 3C). Pyrite appears in two neoformational habits: small 17 

aggregated crystals occupying hollows or on other mineral surfaces (Figure 3B up) and 18 

framboidal pyrite (Figure 3B down), both suggesting in situ secondary precipitation (Sarmiento 19 

et al., 2009). In this case, perfectly spherical framboids could be identified in the sediments 20 

(Figure 3B, down), characteristic of a slow-growing mineralization according to Butler and 21 

Rickard, (2000). In general, the framboids show a size distribution below 10 µm, suggesting 22 

formation in an anoxic environment (Hawkins and Rimmer, 2002).  23 

Various studies have attempted to explain the formation of framboidal pyrite (Ohfuji and 24 

Richard, 2005). Some authors claim that this morphology is the result of the pyritisation (DOP) 25 

of bacteria (Love, 1957); while others claim it is a process of DOP up to organic particles or 26 

colloids (Kribek, 1975). More recent studies suggest another mineral (greigite - Fe3S4) as a 27 

precursor to inorganic oxidation (Butler and Rickard, 2000). In summary, although the exact 28 
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mode of production of framboidal pyrite in sediment remains contentious, it obviously implies a 1 

process of sulphide reduction. 2 

Nevertheless, the pyrite/Fe-oxyhydroxide association could also point to their formation at the 3 

expense of the amorphous or poorly crystallized Fe oxyhydroxides, which abound in these 4 

sediments. Thus, the Fe oxyhydroxides’ reactivity (Haese, 2001) depends on their crystal-5 

chemical parameters as well as on other factors like the selectivity of the organisms involved in 6 

the reduction process. As an example, according to Lovely and Phillips (1986), Geobacter 7 

metallireducens are capable of reducing amorphous and poorly crystalline Fe phases but not 8 

crystalline ones. 9 

In recent studies (Otero and Macías, 2002a, b), the presence of Fe oxyhydroxides in anoxic 10 

environments is argued based on two modes: I) sediment is colonized by vascular plants 11 

(mainly Spartina maritima) and high pyrite concentrations, and part of the Fe is mobilized to 12 

the surface, where it is oxidised and precipitates, generating high quantities of reactive Fe; and 13 

II) the Fe2+ generated by amorphous Fe oxyhydroxides is adsorbed on the surface of the 14 

crystalline Fe oxyhydroxides, thus preserving their structure. 15 

 The presence of lanthanide group elements (La and Ce) was detected, associated with P (Figure 16 

3A bottom) and with other major constituents, which points to the precipitation of secondary 17 

minerals such as monazite, whose presence may be controlled by P inputs related to the 18 

extended use of phosphate fertilizers in the inner zones of the basin. In this case, REE 19 

fractionation is probably attributable to the presence of P in the estuarine waters, although 20 

recent studies in the source area show MREE enrichment of the leachates originating from the 21 

massive sulphides (Pérez-López et al., 2010). 22 

The presence of Cu associated with S (Figure 4A) enables the existence of secondary sulphated 23 

salts capable of retaining heavy metals that can be subsequently liberated, causing estuarine 24 

degradation when environmental conditions, such as pH and salinity, change (Pérez et al., 25 

1991). 26 

The sequential mineralogical study (Figure 4) allowed the reactivity of the metal phases to be 27 

determined. Therefore, the resistance of the Fe-Mn oxyhydroxides and pyrite to neutral or acetic 28 
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acid (0.11 mol/l) solutions (F1) was checked (see Figure 4A for an example). The SEM images 1 

confirmed that the Fe-Mn oxyhydroxides were dissolved in step 2 and pyrite in step 3 associated 2 

with the oxidisable fraction. Monazite, as previously described, was still observed after step 2 3 

(Figure 4B, sample CAN-1). According to the literature (Oelkers et al, 2002), monazite 4 

dissolution rates are relatively low, as they are controlled by the breaking of strong O-REE 5 

links. 6 

Also of note is the association between Ca and elements such as S and Fe (Figure 4A, top), as 7 

previously described for the Holocene sediments of the Guadiana Estuary (Boski et al., 2008). 8 

This association could explain pyrite oxidation processes under locally acidic conditions in the 9 

presence of shell fragments that release Ca, favouring the precipitation of secondary carbonates 10 

like siderite (FeCO3) that usually incorporate metals such as As, Cd, or Cu. 11 

Finally, heavy accessory minerals resistant to the sedimentary cycle (zircon and titanite) were 12 

identified, according to previous studies of the Huelva littoral sediments (Fernández-Caliani et 13 

al., 1997), as well as other accessory minerals originating from the source area, such as apatite, 14 

preserving its typical prismatic habit (Figure 4C). 15 

The progressive removal of metallic phases is shown in Figure 4D, which depicts the sequence 16 

of the treatment from F1 to F4 (attack with aqua regia, pseudo-total concentrations). Most of 17 

the bright metallic elements (images of back-scattered electrons) present in F1 disappear after 18 

F4 treatment because of the progressive dissolution of soluble salts, Fe-Mn oxyhydroxides, 19 

authigenic sulphides, and, lastly, silicate minerals strongly resistant to the steps of the treatment. 20 

 21 

3.3. Geochemical fractionation 22 

To determine the reactivity of the mineral phases capable of incorporating metals and 23 

metalloids, the leachates from each step of the SEP of the sediments of the Guadiana Estuary 24 

were analysed and are shown in Figure 5 as percentages of As, Ca, Cd, Co, Cr, Cu, Fe, Mn, Ni, 25 

Pb, S, and Zn. 26 

Considering the mobile fraction (F1+F2+F3) of surficial sediments (Pérez-López et al., 27 

2008), high percentages of As, Cd, Co, Cu, Mn, Pb, S, and Zn (41, 100, 51, 57, 53, 70, 96, and 28 
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69%, respectively) were recovered. Among the considered elements, Fe, Cr, and Ni have similar 1 

distributions, with recovery percentages below 30%. These elements show natural 2 

concentrations and are associated with the finer fraction of the sediments and with Al content 3 

(Delgado et al., 2010). On the other hand, the distribution of Fe (Figure 5A) is important, as the 4 

higher proportions (average concentrations above 5000 ppm) were extracted in the reducible 5 

fraction (F2), associated with Fe-Mn oxyhydroxides, and thus it plays an important role in the 6 

leaching of metals into the environment. Such metals are still labile and may be released upon 7 

decomposition of the oxides under the suboxic conditions produced during high tide periods; 8 

consequently, they could present a significant risk to soil quality and biota (Chlopecka, 1996). 9 

Chromium (36 ppm) and Ni (29 ppm) concentrations (Table 3) are low, similar to that of Co, 10 

which, in spite of extraction percentages above 51%, has low concentrations (average 18 ppm). 11 

These three elements are at close to the background values determined by Delgado et al., 12 

(2009b) and do not pose overall risks for the estuary. However, recent studies (Delgado et al., 13 

2010) have demonstrated that, in some areas (e.g. Castro Marim tidal channel), Ni can 14 

represent an environmental risk, reaching values 12 times above the background of the area. 15 

Preferable extraction of Cr in the oxidisable fraction has been previously reported in estuarine 16 

environments (e.g. Pazos-Capeans et al., 2005), associated with sulphides or with organic 17 

matter. The similar extraction of Co, Cr, and Ni in the F2 and F3 stages indicates that Fe oxide 18 

(Sakan et al., 2009) and sulphide/organic matter, respectively, are the most significant phases 19 

for binding these elements. 20 

The rest of the studied elements (As, Cd, Cu, Pb, Zn, and S) are generally associated with 21 

sulphide mineral oxidation processes and the generation of AMD. These elements have the 22 

highest extraction percentages, reaching values near 100% in the water-soluble fraction (F1) for 23 

Cd as well as rather high percentages of Zn, S, and Mn. This fraction poses the main 24 

environmental risk for aquatic ecosystems (Morillo et al., 2007) because the metals contained 25 

are easily leached in neutral or slightly acidic waters and are thus amenable to assimilation by 26 

organisms. For this reason, numerous authors have proposed F1 as the more bio-available 27 

fraction (e.g. Kabata-Pendias, 1993; Alvarez-Valero et al., 2009) in the environment and 28 
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could therefore be used to assess the potential ecological risk. These weakly absorbed metals, 1 

retained on the sediment surface by relatively weak electrostatic interaction (such as within clay 2 

minerals, organic matter, and hydrous oxides), can be released by ion-exchange processes and 3 

precipitated or co-precipitated with the carbonates present in many soils (Marín et al., 1997; 4 

Filgueiras et al., 2004). 5 

The hazardousness of Cd should be highlighted, because it was recovered in the F1 fraction 6 

up to 88% in all samples of the estuary (mean value of 0.15 ppm), with particularly high 7 

concentrations in samples such as CAN-1 (0.5 ppm), S-00-15 (0.7 ppm), and LEZ-6 (1.4 ppm). 8 

The high percentages of Cd obtained from F1 leaching could be related to the selective 9 

oxidisation of the pyrite and to the formation of secondary carbonates (siderite) capable of 10 

retaining heavy metals. This notion is supported by its high affinity with Ca under alkaline and 11 

oxidising conditions; Cd with Ca, which showed high concentrations in this phase, were 12 

released from carbonates. Apart from this source, which is clearly related to AMD, Cd can also 13 

be released from several sources in the area, including fuel combustion, phosphate fertilizers, 14 

road traffic, sewage sludge, and waste disposal (Hutton, 1983), all related to demographic 15 

pressure in the vicinity of the mouth of the Guadiana River. 16 

The mean recovery percentages for Mn in F1 were 25% (around 124 ppm), but they reached 17 

maximum values of 45% in samples RG-17, CARR-11, and CAR-11. High values of Mn 18 

associated with F1 have been reported in other sediment studies (Sakan et al., 2009; Chen et 19 

al., 2010). In this case, Mn2+ can be more easily adsorbed on the surfaces of fine granules than 20 

can other ions, and it can be precipitated under higher pH conditions ranging from 8.5 to 10 21 

(Lui et al., 2005), a range that has been determined in the study area by Delgado et al., 22 

(2009a). Furthermore, it could interact with CO3
2- to form MnCO3 (rhodochrosite). 23 

Zinc was extracted in F1 in average proportion of 36% of the total concentration (66 ppm) 24 

and S in mean proportion of 42%. These elements are likely related to water or acid-soluble 25 

sulphidic compounds, typical of metal-enriched environments (e.g. Cánovas et al., 2007; 26 

Barba-Brioso et al., 2009), and to the formation of organo-metallic compounds associated with 27 

the F3 fraction, as previously documented in the IPB (Morillo et al., 2008). 28 
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Lead and Cu are mainly associated with the reducible fraction (F2), accompanied by 1 

noticeable proportions of Zn, attaining mean values of 65, 35 and 26%, respectively. 2 

Concentrations of these elements as high as 22, 20 and 50 ppm, respectively, were extracted, 3 

similar to the results reported in several previous studies (e.g., Morillo et al., 2008; Wang et 4 

al., 2009). The accumulation of hazardous metals in the reducible fraction is in accordance with 5 

many studies showing that Fe-Mn-oxyhydroxides are important scavengers of these metals in 6 

soils and that they play an important role in controlling their mobility in the environment (Burt 7 

et al., 2003; Kaasalainen and Yli-Halla, 2003; Alvarez et al., 2006; Davidson et al., 2006). 8 

Arsenic also appears to be associated with F2, probably related to Fe-Mn oxyhydroxides, as 9 

arsenate is commonly adsorbed onto Fe (III) hydroxides (Dold and Fontboté, 2001). This 10 

element shows slightly higher mean values in the oxidisable fraction (F3) (12% of the total 11 

concentration, 7 ppm), mainly associated with S (mean values 52%, 29 ppm). These 12 

concentrations are probably related to the authigenic Fe-Cu sulphide formation and organic 13 

matter, which play an important role in controlling the mobilization of As (Bhuiyan et al., 14 

2010).  15 

The elements associated with AMD processes in the inner zones of the GRB (Delgado et al., 16 

2009) occur in the same association in the Guadiana sediments (Delgado et al., 2010). 17 

Moreover, recent isotopic studies (Company et al., 2008) confirm their association with 18 

polymetallic, massive sulphides upstream. Nonetheless, there exist other discrete sources, such 19 

as port activities, that are likely to be adding Zn and Pb (paint and fuel), or traffic on the 20 

international bridge, contributing to levels of Pb (Delgado et al., 2010) and to levels of other 21 

traffic-related elements such as As and Cd. 22 

 23 

3.4. Relationship between variables: PCA  24 

Principal components analysis of the association of metal-metalloids with different reactive 25 

phases showed that the variables analysed account for 62, 66, 66, and 73% of the total sample 26 

variability from steps F1, F2, F3, and F4, respectively (Figure 6). In fact, the PCA simulation 27 

shows two groups of elements with a high level of association (correlation coefficient > 0.5) in 28 
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step 1 of SEP (F1 fraction, water-soluble fraction and carbonates) based on the factor loading 1 

obtained. Group I is characterized by elements such as As, Cd, Co, Cr, Cu, Ni, and Zn 2 

preferentially associated with S, suggesting the association of metal-metalloid elements with 3 

sulphated salts precipitated during dry periods (Figure 6). Group II is characterized by an 4 

association of Fe, Ca, Mn, and Pb, which confirms the presence of secondary carbonate 5 

precipitates, such as siderite (Fe carbonate) or rhodochrosite (Mn carbonate), capable of 6 

retaining metallic elements.  7 

The analysis for step 2 (F2, reducible fraction) of SEP is characterized by the distribution of two 8 

groups of elements. Group I, composed of As, Cd, Cr, Cu, Zn, and Pb associated with Fe, 9 

confirms the important role of Fe oxyhydroxides in the retention of the metallic elements in the 10 

F2 fraction. Group II contains elements not associated with the Fe oxyhydroxides, such as Co, 11 

Ni, Ca, and Mn.  12 

The analysis for F3 (oxidisable fraction) seems to show the relationship between the trace 13 

elements and sulphides/organic matter. Figure 6 shows a concentrated group of elements (S, Fe, 14 

Cu, and Zn) that confirm this association. Finally, for F4 (residual fraction), there is no clear 15 

relationship evident between the elements. However, a visual assessment of the distribution of 16 

elements in Figure 6 shows that a group of elements (Mn, Fe, Cu, Co, Cr, Ni, and Zn) 17 

characterized by their affinity to the silicate minerals can be distinguished.  18 

 19 

3.5. Ecological risk assessment 20 

It should be noted that the RAC does not take into account the total metal concentration 21 

(Keller and Hammer 2004). However, the RAC code may be useful in assessing the 22 

environmental risk using sequential extractions as a characterization method (Jain, 2004; Singh 23 

et al., 2005; Liu et al., 2009; Rodriguez et al., 2009). Based on this premise, the RAC results 24 

show that Cd (FI = 88.01%) represents a very high ecological risk, and Zn (F1 = 36.13%) and 25 

Mn (F1 = 25%) a medium risk. The rest of the metals (except Pb with F1 = 0.19%, no risk) 26 

represent a low environmental risk in the Guadiana Estuary (Figure 5 and Table 4).  27 
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Other parameters have been used in the literature to estimate the risk associated with metals 1 

and metalloids in aquatic environments. The pollution load index (PLI) (Wilson and Jeffrey, 2 

1987; S. Caeiro et al., 2005; Bhuiyan et al., 2010) and the degree of contamination (Dc) 3 

(Hakånson et al., 1980; Chen et al., 2010) are based on the sum of the contamination factors 4 

(Cf
i), equivalent to the enrichment factors (EF). In general, the highest values of PLI (Table 4) 5 

are indicative of the highest environmental risk for the Guadiana Estuary and are particularly 6 

high in areas close to coastal populations (S-00-15; CAN-1; CAN-9; CARR-4), near the 7 

international bridge (S-00-5), and in the Castro Marim tidal channel (LEZ-6; RG-3), all sites 8 

that have been proposed by Delgado et al. (2010) as ecologically vulnerable. Similarly, the high 9 

Dc values present in most of the estuary correspond to the most vulnerable areas identified 10 

using the PLI, with the risk ranges established varying between moderate and very high in all 11 

cases. 12 

In spite of the good quality of these indexes for representing environmental risks, they do not 13 

take into consideration the toxic response to the elements (Tr
i), based mainly on the effects of 14 

bio-production and of lipophilic substances engaged in the pattern of metals (Hakånson et al., 15 

1980). For this reason, the potential ecological risk (Table 4) should be taken into consideration 16 

for sustainable development (Chen et al., 2010). The RI (Håkanson et al., 1980) provides 17 

information regarding the potential ecological risk that the sediments could pose in aquatic 18 

environments resulting from the release of metals. For this reason, RI has been used frequently 19 

as a diagnostic tool for water pollution control purposes, but the RI considers that the source of 20 

contamination in water is the sediments and has therefore been used in a wide range of 21 

ecological risk assessments of heavy metals in sediments. The calculations of RI values in the 22 

present study have identified some environmental risk ranges lower than those for the other 23 

reported indexes, although most of the vulnerable sites listed above remain consistent in the new 24 

calculations. Samples such as S-00-5, S-00-12, and S-00-15 continue to indicate high ecological 25 

risk values, while samples such as LEZ-6, CAN-1, and CARR-4 decrease from very high to 26 

considerable risk, and others such as CAN-9 and RG-3 change from very high to moderate risk. 27 
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Sequential extraction investigations, widely described and used in the literature, normally 1 

estimate the potential risk of a waste-soil-sediment based on relative comparison. However, 2 

these indexes are an approach to environmental risk associated with metals and the effects they 3 

may cause in this environment of high ecological value. These effects are currently not 4 

significant, but they could be more evident with the human impacts on the environment such as 5 

the recent proposal to dredge the main channel of the estuary to increase tourism in the 6 

emergent coastal area. Nevertheless, the results obtained using the most relevant potential 7 

toxicity indexes suggest that a toxicological study should be made for a better characterization 8 

of the total bioavailability of pollutants in the study area.  9 

 10 

4. Conclusions 11 

 12 

This research has examined the ecological risks posed by toxic elements in the surficial 13 

sediments of the Guadiana Estuary on the border between Spain and Portugal. A mineralogical 14 

study of the sediments showed that the main components of the sediments are quartz, albite, 15 

illite, smectite-kaolinite, and vermiculites. Although XRD did not identify reactive phases 16 

capable of containing potentially mobilised metals, the SEM analysis showed the presence of 17 

soluble sulphated salts, low crystalline Fe-Mn oxyhydroxides, and authigenic pyrite, all capable 18 

of retaining elements such as As, Cd, Cu, Pb, and Zn.  19 

The association of Fe, Ca, Mn, and Pb obtained in the F1 (mobile fraction) of the PCA points 20 

to the possible presence of secondary carbonate precipitates, such as siderite or rhodochrosite , 21 

capable of retaining metallic elements. The analysis also revealed a relationship between metal-22 

metalloids and Fe oxyhydroxides in F2 (reducible fraction) and between trace elements and 23 

sulphides/organic matter in F3 (oxidisable fraction). 24 

Based on the BCR F1 extraction percentages, the elements can be ordered in terms of their 25 

potential hazards: Cd > Zn > Mn > Cu > As > Pb. Elements such as Co, Cr, Ni, and Fe are 26 

present in sediments at natural (background) concentrations and do not pose any environmental 27 
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risk, although the pattern of Fe oxyhydroxides may play an important role in the release of 1 

metals. 2 

Because of the high F1+F2+F3 extraction percentages of Cd, Zn, Mn, Cu, As, and Pb, these 3 

elements could pose a potential environmental risk, especially for biota. Cadmium is of 4 

particular concern because it is highly toxic, while Zn and Mn have very high concentrations in 5 

the mobile and consequently more available fraction (F1) of the sediments. 6 

Overall, environmental risk analysis for the metals investigated shows a moderate to 7 

considerable ecological risk over almost the entire estuary, associated mainly with acid mining 8 

drainage processes in the nearby Iberian Pyrite Belt. In addition, the analysis reveals the 9 

existence of discrete zones of extremely high risk, particularly related to high concentrations of 10 

As, Cd, Zn, Pb, and Hg, probably derived from industrial and urban dumps in the vicinity of the 11 

estuary and from heavy volumes of traffic on the international bridge. The results of this 12 

research should provide a reference point for future activities affecting the sediments of the 13 

Guadiana estuary, such as construction of new bridges or dredging of the main channel to 14 

improve its navigability.  15 
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Obteined value Certified value % Recovered Obteined value Certified value % Recovered % RPD

Al2O3 8.67 9.00 96.3 16.0 16.1 99.4 1.49

Fe2O3 6.28 6.50 96.6 7.35 7.50 98.0 0.34

CaO 3.66 3.60 102 4.18 4.00 105 0.66

MnO 0.47 0.50 94.0 0.13 0.10 130 0.06

TiO2 0.64 0.80 80.0 0.73 0.80 91.3 0.45

As 19.8 23.0 86.1 33.3 42.0 79.3 0.60

Cd 0.90 not data - 0.80 not data - 0.10

Co 16.3 17.0 95.9 20.0 19.0 105 0.40

Cr 54.4 not data - 102 not data - 2.14

Cu 34.6 36.0 96.1 41.2 47.0 87.7 0.90

Ni 19.3 24.0 80.4 49.2 53.0 92.8 0.50

Pb 37.4 35.0 107 68.5 66.0 104 0.50

Zn 150 178 84.3 193 246 78.5 0.90
Mayor in %, mirrors in ppm. % RPD (Relative Percentage Difference)

CAN STSD-1 CAN STSD-2

 

Table 1. Evaluation of the performance of the analysis using the % RPD and comparison with 

certified values.  

 

 

 

As Cd Co Cr Cu Ni Fe Mn Pb S Zn Ca

F1 Obtained value - 7.05 ± 0.09 - 2.10 ± 0.15 48.0 ± 1.5 14.1 ± 0.1 - - 2.55 ± 0.01 - 184 ± 7 -

Certified value - 7.34 ± 0.35 - 2.26 ± 0.16 49.3 ± 1.7 15.4 ± 0.9 - - 3.18 ± 0.21 - 205 ± 6 -

- - - - - -

F2 Obtained value - 3.21 ± 0.02 - 47.0 ± 0.9 138 ± 3 27.5 ± 1.1 - - 121 ± 3 - 98 ± 6 -

Certified value - 3.77 ± 0.28 - 45.7 ± 2.0 124 ± 3 26.6 ± 1.3 - - 126 ± 3 - 114 ± 5 -

- - - - - -

F3 Obtained value - 0.09 ± 0.07 - 129 ± 13 46.9 ± 4.9 13.8 ± 3.7 - - 9.5 ± 1.8 - 43.3 ± 13.3 -

Certified value - 0.27 ± 0.06 - 143 ± 7 55.2 ± 4.0 15.3 ± 0.9 - - 9.3 ± 2.0 - 45.7 ± 4.0 -

- - - - - -

R Obtained value - 0.05 ± 0.01 - 52.3 ± 7.7 32.6 ± 3.8 31.3 ± 0.8 - - 12.0 ± 0.7 - 69.6 ± 0.1 -

Indicative value - 0.125 ± 0.075 - 62.5 ± 7.4 38.5 ± 11.2 41.4 ± 4.0 - - 11.0 ± 5.2 - 94.6 ± 12.2 -

104 47 83 90 91 89 95 89 88 116 86 105

STEPS / ELEMENT

% Recovery (Eq. 3)

Certified BCR-701 References Material Values  

Table 2. Quality control of data using: (1) measured, certified, and indicative values for 

extractable amounts in certified reference material BCR-701; and (2) comparative results (% 

recovery) calculated using Equation 3.  
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Table 3. Total concentrations of major elements (presented as oxides) and the main metals and 

metalloids (presented in mg kg-1) in surficial sediments of the Guadiana Estuary. 

  

Sample Al2O3 Fe2O3 MnO CaO TOT/S As Cd Co Cr Cu Hg Ni Pb Zn

BRU 2 15.39 6.13 0.07 0.94 0.07 21.8 0.20 17.4 37 48.5 0.33 26.8 30.5 136

BRU 5 16.46 5.95 0.04 0.63 0.42 29.4 0.40 21.0 40 69.3 0.40 32.1 42.5 234

CAN 1 16.26 6.12 0.05 0.84 0.23 44.6 0.50 20.5 35 64.8 0.57 28.9 47.9 271

CAN 9 16.35 6.31 0.06 0.99 0.53 26.1 0.40 20.9 38 65.8 0.47 30.5 43.4 205

CAR 4 15.78 5.86 0.05 0.81 0.09 21.2 0.20 14.1 32 39.4 0.31 22.7 25.6 123

CAR 12 15.88 6.33 0.11 0.62 0.23 39.6 0.20 16.8 39 49.5 0.24 30.9 39.0 182

CARR 4 13.59 5.04 0.04 0.92 1.22 27.4 0.40 15.1 31 43.3 0.45 23.0 32.3 173

CARR 11 15.29 6.07 0.06 0.84 0.08 30.8 0.10 17.1 37 64.9 0.42 26.0 41.4 181

CARR 15 16.59 6.12 0.04 0.69 0.33 28.8 0.20 16.1 41 66.6 0.53 28.9 46.8 215

LEZ 6 16.82 6.77 0.05 0.85 0.50 55.6 1.40 21.8 36 71.9 0.53 30.8 45.6 483

LEZ 11 16.02 6.20 0.06 0.91 0.18 25.2 0.30 18.5 31 48.0 0.34 28.0 34.0 173

RG 3 14.74 5.24 0.04 0.74 0.38 25.8 0.20 12.6 32 57.6 0.34 24.1 30.2 102

RG 5 16.11 5.52 0.05 0.88 0.13 25.5 0.30 15.3 42 65.3 0.39 29.7 36.4 207

RG 12 16.76 6.45 0.14 1.00 0.06 23.8 0.10 20.8 49 51.5 0.19 41.6 30.0 147

RG 15 17.89 7.18 0.19 0.86 0.05 19.1 0.30 22.6 46 47.5 0.16 38.1 23.9 119

RG 17 18.08 7.06 0.15 0.61 0.03 25.7 0.10 19.9 43 56.6 0.21 34.3 32.1 169

S-00-5 14.08 5.32 0.05 1.41 0.19 16.1 0.20 16.2 31 34.5 4.43 22.7 26.6 108

S-00-12 14.14 5.23 0.06 1.15 0.28 23.4 0.40 18.2 31 49.2 3.76 25.1 29.2 161

S-00-15 14.71 6.97 0.09 1.02 0.13 81.8 0.70 17.5 36 68.9 2.97 29.8 28.1 311

S-4 12.82 4.61 0.06 1.75 0.20 19.4 0.20 13.7 14 32.5 0.27 20.8 22.9 147

Mayor Oxides and total sulfur (TOT/S) in %, Trace Elements in ppm
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Table 4. Risk indexes and grades of potential ecological risk assessment of sediments polluted 

by As, Cd, Co, Cr, Cu, Hg, Ni, Pb, and Zn in the Guadiana Estuary. 



Figure Captions 

 

 
Fig. 1. Map of the study area (Guadiana saltmarshes, SW Iberian Peninsula), showing the 

different sub-systems of the area and the locations of sample points. 

 

Figure 2. A. Average percentages obtained by “Xpowder” semi-quantitative analysis for major 

minerals and clays in the sediments. B. Examples of solvation with Ethylene glycol (sample 

RG-17) and thermal treatment (sample S-00-15) for distinguishing clay mineral phases. 

Abbreviations of mineral names recommended by SCMR (Siivola and Schmid, 2007). Qtz, 

quartz; Ab, albite; Ill, Illite; Sme, smectite; Kln, kaolinite; Chl, Chlorite; Vrm, vermiculite.  

 

Figure 3. Mineralogical characterisation (by SEM) of the surficial samples. A. Top: Example 

of presence of Fe-Mn oxyhydroxides (sample CAN-1), Bottom: Phosphorous and lanthanides 

in surficial sediments; Mnz, monazite (sample CAN-1). B. Example of the presence of sulphide 

minerals in surficial sediments (CAN-1 and LEZ-6 samples); Py (N), newly-formed pyrite and 

Py (NF) newly-formed framboidal pyrite. C. Native sulphur (sample LEZ-6). D. Example of 

accessory minerals: Zrn, zircon and Ttn, titanite.  

 

Figure 4. Mineralogical characterisation (by SEM) of the different steps to the SEP. A. 

Example of the presence of sulphide minerals Py (N), new-formed pyrite and Py (NF) newly-

formed framboidal pyrite,  associated with Fe-Mn oxyhydroxides (S-00-15). B. Phosphorous 

and lanthanides association; Mnz, monazite (CAN-1). C. Accessory minerals in surficial 

sediments (S-00-5) and main constituents of sediments.  D. Evolution between steps 1 and 4, 

progressive destruction of the metallic mineral phases.  

 

Figure 5. Percentages of As, Ca, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, S, and Zn extracted in each 

step of the sequential extraction procedure for the surficial sediments of the Guadiana Estuary.  

 

Figure 6. Representation of the principal component analysis (PCA) for the different steeps 

recovered in the SEP. F1, water-soluble fraction and carbonates; F2, reducible fraction; F3, 

oxidisable fraction; F4, residual fraction. Alpha significance level 0.05.  
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