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Continuous location under the effect of ’refraction’

Vı́ctor Blanco · Justo Puerto · Diego Ponce

November 24, 2017

Abstract In this paper we address the problem of locating a new facility on a d-dimensional space
when the distance measure (`p- or polyhedral-norms) is different at each one of the sides of a given
hyperplane H. We relate this problem with the physical phenomenon of refraction, and extend it
to any finite dimensional space and different distances at each one of the sides of any hyperplane.
An application to this problem is the location of a facility within or outside an urban area where
different distance measures must be used. We provide a new second order cone programming
formulation, based on the `p-norm representation given in [4] that allows to solve the problem
in any finite dimensional space with second order cone or semidefinite programming tools. We
also extend the problem to the case where the hyperplane is considered as a rapid transit media
(a different third norm is also considered over H) that allows the demand to travel, whenever it
is convenient, through H to reach the new facility. Extensive computational experiments run in
Gurobi are reported in order to show the effectiveness of the approach. Some extensions of these
models are also presented.
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1 Introduction

In the literature of transportation research it is frequent to address routing or distribution prob-
lems where the movement between points is modeled by the combination of different transporta-
tion modes, as for instance a standard displacement combined with several high speed lines. Similar
approaches have been also applied in some location problems [9] considering that movements can
be performed in a continuous framework or taking advantage of a rapid transit line modeled by
an embedded network; and different applications of these models are mentioned in the location
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literature. For instance, the location of a facility within or outside an urban area where, due to the
layout of the streets within the city boundary, the movement is slow, while outside this boundary
in the rural area movement is fast. Another possible application, mentioned by Brimberg et. al
[6] could be in a region where, due to the configuration of natural barriers or borders, there is a
distinct change in the orientation of the transportation network, as for instance in the southern
area of Ontario.

Location problems are among the most important applications of Operation Research. Con-
tinuous location problems appear very often in economic models of distribution or logistics, in
statistics when one tries to find an estimator from a data set or in pure optimization problems
where one looks for the optimizer of a certain function. For a comprehensive overview of Location
Theory, the reader is referred to [10] or [21]. Most of the papers in the literature devoted to con-
tinuous facility location consider that the decision space is Rd, endowed with a unique distance.
We consider here the problem where Rd is split by a hyperplane H = {x ∈ Rd : αtx = β} for some
α ∈ Rd and β ∈ R, into two regions HA and HB , with sets of demand points A and B, respec-
tively. Each one of these regions is endowed with a (possibly different) norm ‖ · ‖A and ‖ · ‖B ,
respectively, to measure the distance within the corresponding region. For the ease of presentation
we will restrict ourselves to consider that the involved norms are `p, p > 1, or polyhedral. Recall
that a polyhedral (or block) norm is characterized by a unit ball being a polytope symmetric
with respect to the origin and with non empty interior. The only `p-norms that are polyhedral
are the well-known `1- and `∞-norm. Therefore, we deal with the problem of finding the location
of a new facility such that the overall sum of the weighted distances from the demand points is
minimized. This setting induces a transportation pattern where, in each side of the hyperplane,
the motion goes at a different speed. This problem is not new and we can find antecedents in
the literature in the papers by Parlar [18], Brimberg et. al [6,7], Fathaly [14], among others, and
it can be seen as a natural generalization of the classical Weber’s problem (see [13,20]). Note
that the distances between two points, depending on the region where they are located, may be
measured with different norms. Hence, the distance between two points x and y is ‖x− y‖A (resp.
‖x−y‖B) if they belong to HA (resp. to HB), or the length of the shortest weighted path between
them otherwise. We point out that in this setting if two points x and y are in the same half-space,
it is not allowed to traverse the hyperplane on paths connecting them. The reader is referred to
Section 6.2 for the analysis of this latter case. Related problems have been analyzed in [1,3,5,
8,22,23,25], among others. In order to address this location problem, first we have to solve the
question of computing the shortest path between points in different regions since our goal is to
optimize a globalizing function of the length of those paths. We note in passing that some partial
answers in the plane and particular choices of distances can be found in [15].

This problem is closely related with the physical phenomenon of refraction. Refraction describes
the process that occurs when the light changes the medium, and then the phase velocity of a wave
is changed. This effect is also observed when sound waves pass from one medium into another,
when water waves move into water of a different depth or, as in our case, when a traveler moves
between opposite sides of the separating hyperplane. Snell’s law states that for a given pair of
media and a planar wave with a single frequency, there is a ratio relationship between the sines of
the angle of incidence θA and the angle of refraction θB and the indices of refraction nA and nB of
the media: nA sin θA = nB sin θB (see Fig. 1). This law is based on Fermat’s principle that states
that the path followed by a light ray between two points is the one that takes the least time. As
a by-product of the results in this paper, we shall find an extension of this law that also applies
to transportation problems when more than one transportation mode is present in the model.

Our goal in this paper is to design an approach to solve the above mentioned family of location
problems, for any combination of norms and in any dimension. Moreover, we show an explicit
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formulation of these problems as second order cone programming (SOCP) problems (see [2] for
further details) which enables the usage of standard commercial solvers to solve them.
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Fig. 1: Illustration of Snell’s law on the plane.

The paper is organized in 7 sections. In Section 2 we analyze the problem of computing shortest
paths between pairs of points separated by a hyperplane H when the distance measure is different
in each one of the half-spaces defined by H. We characterize the crossing (gate) points where a
shortest path intersects the hyperplane, generalizing the well-known refraction principle (Snell’s
Law) for any dimension and any combination of `p-norms. Section 3 analyzes location problems
with distance measures induced by the above shortest paths. We provide a compact mixed-integer
second order cone formulation for this problem and a transformation of that formulation into two
continuous SOCP problems. In Section 4 the problem is extended to the case where the hyperplane
is endowed with a third norm and thus, it can be used to reduce the length of the shortest paths
between regions. Section 5 is devoted to the computational experiments. We report results for
different instances. We begin comparing our approach for the first model, with those presented (
on the plane and for `1- and `2-norms) in [18] and [27] by using the data sets given there; then we
test our methodology using the 50-points data set in [12] (on the plane and different combinations
of `p-norms, both for the first and the second model); and finally we run a randomly generated
set of larger instances (5000, 10000 and 50000 demand points) for different dimension (2, 3 and 5)
and different combinations of `p-norms. Section 6 is devoted to some extensions of the previous
model. The paper ends, in Section 7, with some conclusions and an outlook for further research.

2 Shortest paths between points separated by a hyperplane

Let us assume that Rd is endowed with two `pi -norms each one in the corresponding half-space
Hi, i ∈ {A,B} induced by the hyperplane H = {x ∈ Rd : αtx = β}. Let us write αt = (α1, . . . , αd)
and assume further that pi = ri/si with ri, si ∈ N \ {0} and gcd(ri, si) = 1, i ∈ {A,B}. Here, ‖z‖p
stands for the `p norm of z ∈ Rd.

We are given two points a, b ∈ Rd such that αta < β and αtb > β, with weights ωa, ωb
respectively and a generic (but fixed) point x∗ = (x∗1, . . . , x

∗
d)
t such that αtx∗ = β.
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The following result characterizes the point x∗ that provides the shortest weighted path be-
tween a with weight ωa > 0 and b with weight ωb > 0 using their corresponding norms in each
side of H.

Lemma 1 If 1 < pA, pB < +∞, the length dpApB (a, b) of the shortest weighted path between a and b

is

dpApB (a, b) = ωa‖x∗ − a‖pA + ωb‖x∗ − b‖pB ,

where x∗ = (x∗1, . . . , x
∗
d)
t, αtx∗ = β must satisfy the following conditions:

1. For all j such that αj = 0:

ωa

[ |x∗j − aj |
‖x∗ − a‖pA

]pA−1

sign(x∗j − aj) + ωb

[ |x∗j − bj |
‖x∗ − b‖pB

]pB−1

sign(x∗j − bj) = 0.

2. For all i, j such that αiαj 6= 0.

ωa

[
|x∗i − ai|
‖x∗ − a‖pA

]pA−1
sign(x∗i − ai)

αi
+ ωb

[
|x∗i − bi|
‖x∗ − b‖pB

]pB−1
sign(x∗i − bi)

αi
=

ωa

[ |x∗j − aj |
‖x∗ − a‖pA

]pA−1 sign(x∗j − aj)
αj

+ ωb

[ |x∗j − bj |
‖x∗ − b‖pB

]pB−1 sign(x∗j − bj)
αj

.

Proof Computing dpApB (a, b) reduces to solving the following problem:

min
x:αtx=β

ωa‖x− a‖pA + ωb‖x− b‖pB .

The above problem is a convex minimization problem with a linear constraint. Consider the
Lagrangian function L(x, λ) = ωa‖x − a‖pA + ωb‖x − b‖pB + λ(αtx − β). Then necessary and
sufficient optimality conditions read as:

ωa

[
|xj − aj |
‖x− a‖pA

]pA−1

sign(xj − aj) + ωb

[
|xj − bj |
‖x− b‖pB

]pB−1

sign(xj − aj) + λαj = 0, j = 1, . . . , d

αtx− β = 0.

First of all, if αj = 0 we obtain condition 1. from the first set of equations. Next, if λαj 6= 0
the above system gives rise to condition 2. �

In the case where one of the two norms involved is not strict, i.e. pA or pB ∈ {1,+∞} there
are non-differentiable points besides the origin and the optimality condition is obtained using
subdifferential calculus. Let us denote by ∂f(x) the subdifferential set of f at x.

Lemma 2 If pA = +∞ or pB = 1, the length dpApB (a, b) of the shortest weighted path between a and

b is

dpApB (a, b) = ωa‖x∗ − a‖pA + ωb‖x∗ − b‖pB ,

where x∗ = (x∗1, . . . , x
∗
d)
t, αtx∗ = β must satisfy:

λα ∈ ωa∂‖x∗ − a‖pA + ωb∂‖x∗ − b‖pB , for some λ ∈ R.

Proof The result follows from applying the rules of subdifferential calculus (see [24]) to the shortest
path problem between a and b with the distance measure dpApB . �
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We note in passing that the optimality condition in Lemma 2 gives rise, whenever pA or pB are
specified, to usable expressions. In particular, if both pA and pB ∈ {1,+∞} the resulting problem
is linear and the condition is very easy to handle. Lemmas 1 and 2 extend the results in [15] to
the case of general norms and any finite dimension greater than 2.

Next consider the following embedding π : Rd → Rd+1, π(x) = (x, αtx − β), for x ∈ Rd. Take
any point x∗ such that αtx∗ = β. Clearly, π(a) = (a, αta−β), π(x∗) = (x∗, 0) and π(H) = H×{0}.
Then, let us denote by γa the angle between the vectors π(a−x∗) = (a−x∗, 0) and (a−x∗, αta−β).

Now, we can interpret |αta−β|
‖a−x∗‖pA

as a generalized sine of the angle γa (see Fig. 2). The reader may

note that in general this ratio is not a trigonometric function, unless pi = 2, i ∈ {A,B}. This way
we define by abusing of notation

sinpA γa =
|αta− β|
‖a− x∗‖pA

(analogously sinpB γb =
|αtb− β|
‖b− x∗‖pB

).

The above expression can be written by components, namely:

sinpA γa =

∣∣∣∣∣∣
d∑
j=1

αjaj − αjx∗j
‖a− x∗‖pA

∣∣∣∣∣∣ , (observe that αtx∗ = β). (1)

Finally, by similarity we shall denote the non-negative value of each component in the previous
sum as

sinpA γaj :=
|αjaj − αjx∗j |
‖a− x∗‖pA

, j = 1, . . . , d.

With the above convention we can state a result that extends the well-known Snell’s Law to
this framework. It relates the gate point x∗ in the hyperplane αtx = β between two points a and
b in terms of the generalized sine (1) of the angles γa and γb.

x∗α
t
b
−
β

b

γb

α
ta
−
β

a

γa

α
t z = β

Fig. 2: Illustrative example of the generalized
sines.

Corollary 3 (Snell’s-like result) The point x∗ = (x∗1, . . . , x
∗
d)
t, αtx∗ = β that defines the shortest

weighted path between a and b is determined by the following necessary and sufficient conditions:

1. For all j such that αj = 0:

ωa

[ |x∗j − aj |
‖x∗ − a‖pA

]pA−1

sign(x∗j − aj) + ωb

[ |x∗j − bj |
‖x∗ − b‖pB

]pB−1

sign(x∗j − bj) = 0.
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2. For all i, j, αiαj 6= 0.

ωa

[
sinpA γai
|αi|

]pA−1
sign(x∗i − ai)

αi
+ ωb

[
sinpB γbi
|αi|

]pB−1
sign(x∗i − bi)

αi
=

ωa

[
sinpA γaj
|αj |

]pA−1 sign(x∗j − aj)
αj

+ ωb

[
sinpB γbj
|αj |

]pB−1 sign(x∗j − bj)
αj

,

Corollary 4 (Snell’s Law) If d = 2, pA = pB = 2 and H = {(x1, x2) ∈ R2 : α1x1 + α2x2 = β}
with α1, α2, β ∈ R, the point x∗ satisfies that

ωa sin θa = ωb sin θb,

where θa and θb are: 1) if α1 ≤ α2, the angles between the vectors a− x∗ and (−α2, α1)t, and b− x∗
and (α2,−α1)t, or 2) if α1 > α2, the angles between the vectors a − x∗ and (α2,−α1)t, and b − x∗
and (−α2, α1)t.

Proof Since for d = 2 the `2-norm is isotropic, we can assume w.l.o.g. that the separating line
is x2 = 0. Thus, after a change of variable x∗ can be taken as the origin of coordinates and
a = (a1, a2) such that a1 ≥ 0, a2 < 0, b = (b1, b2) such that b1 ≤ 0, b2 > 0.

Next, the optimality condition using Lemma 1 is ωa
|a1|
‖a‖2 −ωb

|b1|
‖b‖2 = 0. The result follows since

sin θa = |a1|
‖a‖2 and sin θb = |b1|

‖b‖2 . �

3 Location problems with demand points in two media separated by a hyperplane

In this section we analyze the problem of locating a new facility to serve a set of given demand
points which are classified into two classes, based on a separating hyperplane. The peculiarity of
the model is that different norms to measure distances may be considered within each one of the
half-spaces induced by the hyperplane.

Let A and B be two finite sets of given demand points in Rd, and ωa and ωb be the weights
of the demand points a ∈ A and b ∈ B, respectively. Consider H = {x ∈ Rd : αtx = β} to be the
separating hyperplane in Rd with α ∈ Rd and β ∈ R, and

HA = {x ∈ Rd : αtx ≤ β} and HB = {x ∈ Rd : αtx > β}.

We assume that Rd is endowed with a mixed norm such that the distance measure in HA is induced
by a norm ‖ · ‖pA , the distance measure in HB is induced by the norm ‖ · ‖pB and pA ≥ pB . We
assume further that pi = ri/si, with ri, si ∈ N \ {0} and gcd(ri, si) = 1, i ∈ {A,B} and that the
distance between two points inside HA (resp. HB) is measured with the norm in HA (resp. HB).

Observe that the hypothesis that pA ≥ pB ensures that moving through HA is at least as fast

as moving within HB .
The goal is to find the location of a single new facility in Rd so that the sum of the distances

from the demand points to the new facility is minimized. The problem can be stated as:

f∗ := inf
x∈Rd

∑
a∈A

ωa dpA,pB (x, a) +
∑
b∈B

ωb dpA,pB (x, b) (P)

where for two points x, y ∈ Rd, dpA,pB (x, y) is the length of the shortest path between x and y, as
determined by Lemmas 1 and 2.
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Note that the shortest paths can be explicitly described by distinguishing whether the new
location is in HA or HB . Let x ∈ Rd and z ∈ A ∪B, then:

dpA,pB (x, z) =

{
‖x− z‖pi x, z ∈ Hi, i ∈ {A,B}

min
y∈H
‖y − z‖pi + ‖x− y‖pj if x ∈ Hj , z ∈ Hi, i, j ∈ {A,B}, i 6= j.

Theorem 5 Assume that min{|A|, |B|} > 2. If the points in A or B are not collinear and pA < +∞,

pB > 1 then Problem (P) always has a unique optimal solution.

Proof Let us define the function f(x, y) : Rd×(|A|+|B|)d → R as:

f(x, y) =


f≤(x, y) :=

∑
a∈A

ωa‖x− a‖pA +
∑
b∈B

ωb‖x− yb‖pA +
∑
b∈B

ωb‖yb − b‖pB if αtx ≤ β

f>(x, y) :=
∑
a∈A

ωa‖ya − a‖pA +
∑
a∈A

ωa‖x− ya‖pB +
∑
b∈B

ωb‖x− b‖pB if αtx > β.

It is clear that

f∗ = min{

(SP≤)︷ ︸︸ ︷
inf

αtx≤β,αtyb=β,∀b∈B
f≤(x, y),

(SP>)︷ ︸︸ ︷
inf

αtx>β,αtya=β,∀a∈A
f>(x, y)}.

We observe that both functions, namely f≤ and f> are continuous and coercive. This implies that
inf

αtx≤β,αtyb=β,∀b∈B
f≤(x, y) is attained since the domain is closed and bounded from below. Thus

a solution for this subproblem always exists. Moreover, we prove that f≤ is strictly convex which
in turn implies that the solution of the first subproblem (SP≤) is unique.

Indeed, let (x, y), (x′, y′) be two points in the domain of f≤ and 0 < λ < 1.

f≤(λx+ (1− λ)x′, λy + (1− λ)y′) =
∑
a∈A

ωa‖λx+ (1− λ)x′ − a‖pA

+
∑
b∈B

ωb‖λx+ (1− λ)x′ − λyb − (1− λ)y′b‖pA

+
∑
b∈B

ωb‖λyb + (1− λ)y′b − b‖pB

(A not collinear and pA > 1) <
∑
a∈A

ωa(λ‖x− a‖pA + (1− λ)‖x′ − a‖pA)

+
∑
b∈B

ωb(λ‖x− yb‖pA + (1− λ)‖x′ − y′b‖pA)

+
∑
b∈B

ωb(λ‖yb − b‖pB + (1− λ)‖y′b − b‖pB )

= λf≤(x, y) + (1− λ)f≤(x′, y′).

The analysis of the second subproblem is different since the domain is not closed. First,
analogously to the above proof it follows that f> is strictly convex in its domain, namely αtx >

β, αtya = β, ∀a ∈ A. Therefore, if the infimum is attained (in the interior of HB) the solution
must be unique. Next, we will prove that if the inf of the second subproblem is not attained
then it cannot be an optimal solution of Problem (P) since there exists another point in αtx ≤
β, αtyb = β, ∀b ∈ B with a smaller objective value.
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Let us assume that no optimal solution of (SP>) exists. This implies that the infimum is
attained at the boundary of HB and therefore there exists (x̄, ȳ), αtx̄ = β such that

inf
αtx>β,αtya=β,∀a

f>(x, y) = f>(x̄, ȳ).

Next,

f>(x̄, ȳ) =
∑
a∈A

ωa‖ȳa − a‖pA +
∑
a∈A

ωa‖x̄− ȳa‖pB +
∑
b∈B

ωb‖x̄− b‖pB

≥
∑
a∈A

ωa‖ȳa − a‖pA +
∑
a∈A

ωa‖x̄− ȳa‖pA +
∑
b∈B

ωb‖x̄− b‖pB

≥
∑
a∈A

ωa‖x̄− a‖pA +
∑
b∈B

ωb‖x̄− b‖pB . (∗)

Now, since x̄ ∈ H, let B1 := {b ∈ B : ωb‖x̄− b‖pB ≥ ωb‖b− ȳb‖pB +ωb‖x̄− ȳb‖pA} and B2 = B \B1.
(Observe that ȳb = x̄ for all b ∈ B2 and then

∑
b∈B2

ωb‖x̄ − ȳb‖pA = 0.) This allows us to bound
from below (∗) as follows:

(∗) ≥
∑
a∈A

ωa‖x̄− a‖pA +
∑
b∈B1

ωb‖x̄− ȳb‖pA +
∑
b∈B1

ωb‖b− ȳb‖pB +
∑
b∈B2

ωb‖x̄− b‖pB

=
∑
a∈A

ωa‖x̄− a‖pA +
∑
b∈B

ωb‖x̄− ȳb‖pA +
∑
b∈B1

ωb‖b− ȳb‖pB +
∑
b∈B2

ωb‖ȳb − b‖pB

=
∑
a∈A

ωa‖x̄− a‖pA +
∑
b∈B

ωb‖x̄− ȳb‖pA +
∑
b∈B

ωb‖b− ȳb‖pB

= f≤(x̄, ȳ).

Hence, (x̄, ȳ) provides a smaller or equal objective value evaluated in (SP≤) which concludes the
proof. �

The above description of the distances allows us to formulate Problem (P) as a mixed integer
nonlinear programming problem by introducing an auxiliary variable γ ∈ {0, 1} that identifies
whether the new facility belongs to HA, which in fact is equal to HA, or HB .

Theorem 6 Problem (P) is equivalent to the following problem:

min
∑
a∈A

ωaZa +
∑
b∈B

ωbZb (2)

s.t. za − Za ≤Ma(1− γ), ∀a ∈ A, (3)

θa + ua − Za ≤Ma γ, ∀a ∈ A, (4)

zb − Zb ≤Mb γ, ∀b ∈ B, (5)

θb + ub − Zb ≤Mb (1− γ), ∀b ∈ B, (6)

za ≥ ‖x− a‖pA , ∀a ∈ A, (7)

θa ≥ ‖x− ya‖pB , ∀a ∈ A, (8)

ua ≥ ‖a− ya‖pA , ∀a ∈ A, (9)

zb ≥ ‖x− b‖pB , ∀b ∈ B, (10)

θb ≥ ‖x− yb‖pA , ∀b ∈ B, (11)

ub ≥ ‖b− yb‖pB , ∀b ∈ B, (12)

αtx− β ≤M(1− γ), (13)

αtx− β ≥ −Mγ, (14)

αtya = β, ∀a ∈ A, (15)

αtyb = β, ∀b ∈ B, (16)

Za, za, θa, ua ≥ 0, ∀a ∈ A, (17)

Zb, zb, θb, ub ≥ 0, ∀b ∈ B, (18)

ya, yb ∈ Rd, ∀a ∈ A, b ∈ B, (19)

γ ∈ {0, 1}. (20)
with M,Ma,Mb > 0 sufficiently large constants for all a ∈ A, b ∈ B.
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Proof Let us introduce the auxiliary variable γ =

{
1 if x ∈ HA,
0 if x ∈ HB ,

that models whether the location

of the new facility x is in HA or in the closure of HB . (Observe that if x ∈ HA ∩HB = H, γ can
assume both values.) Note that constraints (13),(14) and (20) assure the correct definition of this
variable. Next, we define the auxiliary variables Za ∀a ∈ A and Zb ∀b ∈ B that represent the
shortest path length from the new location at x to a ∈ A and b ∈ B, respectively. Similarly, with
za and zb we shall model ‖x− a‖pA and ‖x− b‖pB , respectively.

We shall prove the case x ∈ HA, since the case x ∈ HB follows analogously when γ = 0. In
case x ∈ HA (being then γ = 1), let us denote with θb the distance between x and the gate point,
yb, of b on H, namely θb = ‖x− yb‖pA ; and with ub the distance between yb and b, ub = ‖b− yb‖pB
for all b ∈ B (16). Since γ = 1, the minimization of the objective function and constraints (3)-(6)
and (7), (11) and (12) assure that the variables are well-defined and that:

Za = za = ‖x− a‖pA and Zb = θb + ub = ‖x− yb‖pA + ‖b− yb‖pB .

Hence, the minimum value of
∑
a∈A

ωaZa+
∑
b∈B

ωbZb is the overall sum of the shortest paths distances

between x and the points in A ∪B. �

The reader may note that valid choices of the M, Ma, Mb constants that appear in the
formulation (2)-(20) can be easily obtained. Indeed, by standard arguments one can prove that it
suffices to take the big-M constants, in the above formulation, as Mc = 4 max

a∈A, b∈B
{‖a‖pA , ‖b‖pB}

∀ c ∈ A ∪ B and M = 2 max
p∈{pA,pB}

‖α‖p max
a∈A, b∈B

{‖a‖pA , ‖b‖pB} + β. (We note in passing that the

proposed values are valid upper bounds although some smaller values may also work.) In spite of
that, the above formulation may not be the more appropriate way to solve Problem (P) since one
can take advantage of the following fact.

Observe that the hyperplane H induces the decomposition of Rd into Rd = HA∪HB , and such
that HA ∩HB = H. Moreover, using the result in Theorem 5, Problem (P) is equivalent to solve
two problems, restricting the solution x to be in HA and in HB .

Theorem 7 Let x∗ ∈ Rd be the optimal solution of (P). Then, x∗ is the solution of one of the following

two problems:

min
∑
a∈A

ωaza +
∑
b∈B

ωbθb +
∑
b∈B

ωbub (PA)

s.t. (7), (11), (12), (16),

αtx ≤ β, (21)

za ≥ 0, ∀a ∈ A,
θb, ub ≥ 0, ∀b ∈ B,

x, yb ∈ Rd.

min
∑
b∈B

ωbzb +
∑
a∈A

ωaθa +
∑
a∈A

ωaua (PB)

s.t. (8), (9), (10), (15),

αtx ≥ β, (22)

zb ≥ 0, ∀b ∈ B,
θa, ua ≥ 0, ∀a ∈ A,

x, ya ∈ Rd.

Proof Let x∗ be the optimal solution of (P). By Theorem 6, x∗ must be the optimal solution of
(2)-(20). Hence, we can distinguish two cases: (a) x∗ ∈ HA; or (b) x∗ ∈ HB . First, let us analyze
case (a). Since x∗ ∈ HA, then γ∗ = 1. Hence, the non-redundant constraints in (P) are (16), (21),
(7), (11) and (12), and the variables Za and Zb in (P) reduce to za and θb + ub, respectively. The
above simplification results in the formulation of Problem (PA).

For case (b), the proof follows in the same manner. The reader may note that the hyperplane
H is considered in both problems. However, by the proof of Theorem 5, if x∗ is in H, since we
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assume that pA ≥ pB , the optimal value of (PA) is not greater than the optimal value of (PB)
and the solution can be considered to belong to HA. �

From theorems 5 and 7 we get the following result that gives an interesting localization prop-
erty about the solutions of the problem ((PA) or (PB)) whichever one has the best objective
value.

Theorem 8 Let (x∗, y∗) ∈ Rd×|B|d be the optimal solution of (PA) and (x̂, ŷ) ∈ Rd×|A|d be the

optimal solution of (PB), with objective values f∗ and f̂ , respectively. If f∗ > f̂ (resp. f∗ < f̂),

y∗b = y∗b′ = x∗, for all b, b′ ∈ B (resp. ŷa = ŷa′ = x̂, for all a, a′ ∈ A). Moreover, if f∗ = f̂ ,

y∗b = y∗a = x∗ = x̂, ∀a ∈ A, b ∈ B.

As we mentioned before, the cases where the norms used to measure distances are `p-norms,
p ∈ Q, 1 < p < +∞, are very important and their corresponding models simplify further. In what
follows, we give explicit formulations for these problems.

Theorem 9 Let ‖ · ‖pi be an `pi -norm with pi = ri
si
> 1, ri, si ∈ N \ {0}, and gcd(ri, si) = 1 for

i ∈ {A,B}. Then, (PA) is equivalent to

min
∑
a∈A

ωaza +
∑
b∈B

ωbθb +
∑
b∈B

ωbub (23)

s.t. (21), (16),

tak − xk + ak ≥ 0, ∀a ∈ A, k = 1, . . . , d, (24)

tak + xk − ak ≥ 0, ∀a ∈ A, k = 1, . . . , d, (25)

vbk + xk − ybk ≥ 0, ∀b ∈ B, k = 1, . . . , d, (26)

vbk − xk + ybk ≥ 0, ∀b ∈ B, k = 1, . . . , d, (27)

gbk − ybk + bk ≥ 0, ∀b ∈ B, k = 1, . . . , d, (28)

gbk + ybk − bk ≥ 0, ∀b ∈ B, k = 1, . . . , d, (29)

trAak ≤ ξ
sA
ak z

rA−sA
a , ∀a ∈ A, k = 1, . . . , d, (30)

vrAbk ≤ ρ
sA
bk θ

rA−sA
b , ∀b ∈ B, k = 1, . . . , d, (31)

grBbk ≤ ψ
sB
bk u

rB−sB
b , ∀b ∈ B, k = 1, . . . , d, (32)

d∑
k=1

ξak ≤ za, ∀a ∈ A, (33)

d∑
k=1

ρbk ≤ θb, ∀b ∈ B, (34)

d∑
k=1

ψbk ≤ ub, ∀b ∈ B, (35)

za, ξak, tak,≥ 0, ∀a ∈ A, k = 1, . . . , d, (36)

θb, ub, ρbk, vbk ≥ 0, ∀b ∈ B k = 1, . . . , d, (37)

ψbk, gbk ≥ 0, ∀b ∈ B k = 1, . . . , d, (38)

x, yb ∈ Rd, ∀b ∈ B. (39)

Proof Note that the difference between (PA) and the formulation (23)-(39) stems in the constraints
that represent the norms [(7), (11) and (12)] in (PA) that are now rewritten as (24)-(35). This
equivalence follows from the observation that any constraint in the form Z ≥ ‖X − Y ‖p, for any
p = r

s with r, s ∈ N \ {0}, r > s and gcd(r, s) = 1, and X,Y variables in Rd, can be equivalently
written as the following set of constraints:

Qk +Xk − Yk ≥ 0, k = 1, . . . , d,
Qk −Xk + Yk ≥ 0, k = 1, . . . , d,
Qrk ≤ R

s
kZ

r−s, k = 1, . . . , d,
d∑
k=1

Rk ≤ Z,

Rk ≥ 0, ∀k = 1, . . . , d.


(40)
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This result can be obtained from [4], although it is detailed here for the sake of readability.
Indeed, let ρ = r

r−s , then 1
ρ + s

r = 1. Let (Z,X, Y ) fulfill the inequality Z ≥ ‖X − Y ‖p. Then we
have

‖X − Y ‖p ≤ Z ⇐⇒

(
d∑
k=1

|Xk − Yk|
r
s

) s
r

≤ Z
s
rZ

1
ρ ⇐⇒

(
d∑
k=1

|Xk − Yk|
r
sZ

r
s (−

r−s
r )

) s
r

≤ Z
s
r ,

⇐⇒
d∑
k=1

|Xk − Yk|
r
sZ−

r−s
s ≤ Z. (41)

Then (41) holds if and only if ∃R ∈ Rd, Rk ≥ 0, ∀k = 1, . . . , d such that |Xk−Yk|
r
sZ−

r−s
s ≤ Rk,

satisfying
∑d
k=1Rk ≤ Z, or equivalently, |Xk − Yk|r ≤ RskZ

r−s and
∑d
k=1Rk ≤ Z.

Set Qk = |Xk − Yk| and Rk = |Xk − Yk|pZ−1/ρ. Then, clearly (Z,X, Y,Q,R) satisfies (40).
Conversely, let (Z,X, Y,Q,R) be a feasible solution of (40). Then, Qk ≥ |Xk − Yk| and Rk ≥

Q
( rs )

j Z−
r−s
s ≥ |Xk − Yk|

r
sZ−

r−s
s . Thus,

∑d
k=1 |Xk − Yk|

r
sZ−

r−s
s ≤

∑d
k=1Rk ≤ Z, which in turn

implies that
d∑
k=1

|Xk − Yk|
r
s ≤ Z Z

r−s
s and hence, ‖X − Y ‖p ≤ Z. �

Remark 1 (Polyhedral Norms) Note that when the norms in HA or HB are polyhedral norms, as the
well-known `1 or `∞ norms, a much simpler (linear) representation than the one given in Theorem
9 is possible. Actually, it is well-known (see for instance [21,22,26]) that if ‖ · ‖ is a polyhedral
norm, such that B∗, the unit ball of its dual norm, has Ext(B∗) as set of extreme points, the
constraint Z ≥ ‖X − Y ‖ is equivalent to the following set of linear inequalities:

Z ≥ et(X − Y ), ∀e ∈ Ext(B∗).

Corollary 10 Problem (PA) (resp. (PB)) can be represented as a semidefinite programming problem

with |A|(2d+ 1) + |B|(4d+ 3) + 1 (resp. |B|(2d+ 1) + |A|(4d+ 3) + 1) linear constraints and at most

4d(|A| log rA+|B| log rA+|B| log rB) (resp. 4d(|B| log rB+|A| log rB+|A| log rA) positive semidefinite

constraints.

Proof By Theorem 9, Problem (PA) is equivalent to Problem (23)-(39). Then, using [4, Lemma
3], we represent each one of the nonlinear inequalities, as a system of at most 2 log rA or 2 log rB
inequalities of the form X2 ≤ Y Z, involving 3 variables, X,Y, Z with Y,Z non negative. Hence,
by Schur complement, it follows that

X2 ≤ Y Z ⇔

Y + Z 0 2X
0 Y + Z Y − Z

2X Y − Z Y + Z

 � 0, Y + Z ≥ 0. (42)

Hence, Problem (PA) is a semidefinite programming problem because it has a linear objective
function, |A|(2d+ 1) + |B|(4d+ 3) + 1 linear inequalities and at most 4d(|A| log rA + |B| log rA +
|B| log rB) linear matrix inequalities. �

The reader may note that by similar arguments and since the left-hand representation of (42) is
a second order cone constraint, Problem (PA) can also be seen as a second order cone program.

The following example illustrates this model with the 18-points data set from Parlar [18].
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Example 11 Let H = {x ∈ Rd : 1.5x− y = 0} and consider the set of 18-demand points in [18]. We

consider that the distance measure in HA is the `2-norm while in HB is the `3-norm. The solution of

Problem (P) is x∗ = (9.23792, 6.435661) with objective value f∗ = 103.934734.

Fig. 3 shows the demand points A and B, the hyperplane H, the solution x∗, as well as the shortest

paths between x∗ and the points in A and B.

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

HA

HB

x∗

Fig. 3: Demand points and optimal solution of Example 11.

Finally, to conclude this section we address a restricted case of Problem (P). Let {g1, . . . , gl} ⊂
R[X] be real polynomials and K := {x ∈ Rd : gj(x) ≥ 0, j = 1, . . . , l} a basic closed, compact
semialgebraic set with nonempty interior satisfying that for some M > 0 the quadratic polynomial
u(x) = M −

∑d
k=1 x

2
k has a representation on K as u = σ0 +

∑`
j=1 σj gj , for some {σ0, . . . , σl} ⊂

R[X] being each σj sum of squares (Archimedean property [16]). We remark that the assumption

on the Archimedean property is not restrictive at all, since any semialgebraic set K ⊆ Rd for
which it is known that

∑d
k=1 x

2
k ≤ M holds for some M > 0 and for all x ∈ K, admits a new

representation K′ = K ∪ {x ∈ Rd : gl+1(x) := M −
∑d
k=1 x

2
k ≥ 0} that trivially verifies the

Archimedean property.
For the sake of simplicity, we assume that the domain K is compact and has nonempty interior,

as it is usual in Location Analysis. We observe that we can extend the results in Section 3 to a
broader class of convex constrained problems.

Remark 2 Let K := {x ∈ Rd : gj(x) ≥ 0, j = 1, . . . , l} be a basic closed, compact semialgebraic set
with nonempty interior, and consider the restricted problem:

min
x∈K

∑
a∈A

ωa d(x, a) +
∑
b∈B

ωb d(x, b). (43)

Assume that K satisfies the Archimedean property and further that any of the following conditions
hold:

1. gi(x) are concave for i = 1, . . . , l and −
∑l
i=1 νi∇

2gi(x) � 0 for each dual pair (x, ν) of the prob-
lem of minimizing any linear functional ctx on K (Positive Definite Lagrange Hessian (PDLH)).

2. gi(x) are sos-concave on K for i = 1, . . . , l or gi(x) are concave on K and strictly concave on
the boundary of K where they vanish, i.e. ∂K ∩ ∂{x ∈ Rd : gi(x) = 0}, for all i = 1, . . . , l.
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3. gi(x) are strictly quasi-concave on K for i = 1, . . . , l.

Then, there exists a constructive finite dimensional embedding, which only depends on pA, pB
and gi, i = 1, . . . , l, such that the solution of (43) can be obtained by solving two semidefinite
programming problems.

The validity of the above statement follows from the fact that the unconstrained version of
Problem (43) can be equivalently written as two SDP problems using the result in Theorem 7
and Corollary 10. Therefore, it remains to prove that under the conditions 1, 2 or 3 the constraint
set x ∈ K is also exactly represented as a finite number of semidefinite constraints or equivalently
that it is semidefinite representable (SDr). The discussion that the three above mentioned cases
are SDr is similar to that in [4, Theorem 8] and thus it is omitted here. �

4 Location problems in two media divided by a hyperplane endowed with a different

norm

In this section we consider an extension of the location problem in the previous section where the
separating hyperplane is endowed with a third norm, namely ‖ · ‖pH , and it may be used to travel
in shortest paths crossing it. Thus, the new problem consists of locating a new facility to minimize
the weighted sum of the distances to the demand points, but where, if it is convenient, a shortest
path from the facility to a demand point that crosses the hyperplane may travel through it. This
way the hyperplane can be seen as a rapid transit boundary for displacements between different
media.

We define the shortest path distance between two points a and b in Rd by

dt(a, b) =

{
‖a− b‖pi if a, b ∈ Hi, i ∈ {A,B},

min
x,y∈H

‖x− a‖pA + ‖x− y‖pH + ‖y − b‖pB if a ∈ HA, b ∈ HB , (DT)

and x, y represent the access and the exit (gate) points where the shortest path from a to b crosses
through the hyperplane.

As in Section 2 we can also give a general result about the optimal gate points of the shortest
weighted path between points in this framework. In this case we must resort to subdifferential
calculus to avoid nondifferentiability situations due to the possible coincidence of x∗ and y∗. Let
us denote by ∂xf(x∗, y∗) (resp. ∂yf(x∗, y∗)) the subdifferential set of the function f as a function
of its first (resp. second) set of variables, i.e. y is fixed (resp. x is fixed), at y∗ (resp. x∗).

Lemma 12 The distance dt(a, b) of the shortest weighted path between a and b is

ωa‖x∗ − a‖pA + ωH‖x∗ − y∗‖pH + ωb‖y∗ − b‖pB ,

where x∗ = (x∗1, . . . , x
∗
d)
t, and y∗ = (y∗1 , . . . , y

∗
d)t, αtx∗ = β, αty∗ = β must satisfy:

λaα ∈ ωa∂‖x∗ − a‖pA + ωH∂xdH(x∗, y∗), for some λa ∈ R,
λbα ∈ ωb∂‖y∗ − b‖pB + ωH∂ydH(x∗, y∗), for some λb ∈ R,

being dH(x, y) = ‖x− y‖pH .

Now, we consider again the embedding defined in Section 2: x ∈ Rd → (x, αtx − β) ∈ Rd+1.
Denote by γa the angle between the vectors (a − x∗, 0) and (a − x∗, αta − β) and by γb the

angle between (b − y∗, 0) and (a − y∗, αtb − β). Then, we can interpret |αta−β|
‖a−x∗‖pA

and |αtb−β|
‖b−y∗‖pB

as generalized sines of the angles γa and γb, respectively (see Fig. 4). The reader may again note
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that in general these ratios are not trigonometric functions, unless pA = pB = 2. We define the
generalized sines as:

sinpA γa =
|αta− β|
‖x∗ − a‖pA

and sinpB γb =
|αtb− β|
‖y∗ − b‖pB

.

These expressions can be written by components as:

sinpA γa =

∣∣∣∣∣∣
d∑
j=1

αjaj − αjx∗j
‖a− x∗‖pA

∣∣∣∣∣∣ , sinpB γb =

∣∣∣∣∣∣
d∑
j=1

αjbj − αjy∗j
‖b− y∗‖pB

∣∣∣∣∣∣ .
Finally, by similarity we shall denote the non-negative value of each component in the previous

sums as

sinpA γaj :=
|αjaj − αjx∗j |
‖a− x∗‖pA

and sinpB γbj :=
|αjbj − αjy∗j |
‖b− y∗‖pB

, j = 1, . . . , d.

y∗ x∗α
t
b
−
β

b

γb

α
ta
−
β

a

γa

α
t z = β

Fig. 4: Illustrative example of the generalized sines when traversing H.

With the above notation, we state the following results derived from Lemma 12.

Corollary 13 (Snell’s-like result) Assume that ‖ · ‖pA , ‖ · ‖pB , ‖ · ‖pH are `p-norms with 1 < p <

+∞. Let x∗, y∗ ∈ Rd, αtx∗ = αty∗ = β. Then, x∗ and y∗ define the shortest weighted path between a

and b when traversing the hyperplane is allowed if and only if the following conditions are satisfied:

1. For all j such that αj = 0:

ωa

[ |x∗j − aj |
‖x∗ − a‖pA

]pA−1

sign(x∗j − aj) + ωH

[ |x∗j − y
∗
j |

‖x∗ − y∗‖pH

]pH−1

sign(x∗j − y
∗
j ) = 0,

ωb

[ |y∗j − bj |
‖y∗ − b‖pB

]pB−1

sign(y∗j − bj)− ωH
[ |x∗j − y

∗
j |

‖x∗ − y∗‖pH

]pH−1

sign(x∗j − y
∗
j ) = 0.

2. For all i, j, such that αiαj 6= 0:

ωa

[
sin γai
|αi|

]pA−1
sign(x∗i − ai)

αi
+ ωH

[
|x∗i − y

∗
i |

‖x∗ − y∗‖pH

]pH−1
sign(x∗i − y

∗
i )

αi
=

ωa

[
sin γaj
|αj |

]pA−1 sign(x∗j − aj)
αj

+ ωH

[ |x∗j − y
∗
j |

‖x∗ − y∗‖pH

]pH−1 sign(x∗j − y
∗
j )

αj
,
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and

ωa

[
sin γbi
|αi|

]pB−1
sign(y∗i − bi)

αi
− ωH

[
|x∗i − y

∗
i |

‖x∗ − y∗‖pH

]pH−1
sign(x∗i − y

∗
i )

αi
=

ωa

[
sin γbj
|αj |

]pB−1 sign(y∗j − bj)
αj

− ωH
[ |x∗j − y

∗
j |

‖x∗ − y∗‖pH

]pH−1 sign(x∗j − y
∗
j )

αj
.

Corollary 14 If d = 2, pA = pB = pH = 2 and H = {(x1, x2) ∈ R2 : x2 = 0}, the points x∗, y∗

satisfy one of the following conditions:

1) ωa sin θa = ωb sin θb = ωH
|y∗1 |

‖x∗−y∗‖pH
and x∗ 6= y∗, or

2) ωa sin θa = ωb sin θb and x∗ = y∗,

where θa is the angle between the vectors a− x∗ and (0,−1) and θb the angle between b− y∗ and (0, 1)
(see Fig. 5).

Proof To prove 1), since the Euclidean norm is isotropic, we can assume w.l.o.g. that after a
change of variable x∗ and y∗ can be taken such that x∗1 = 0, y∗1 ≥ 0 and a = (a1, a2) such that
a1 ≥ 0, a2 < 0, b = (b1, b2) such that b1 ≤ 0, b2 > 0.

The optimality condition using Lemma 12, assuming x∗ 6= y∗, is:

ωa
|a1|

‖x∗ − a‖2
− ωH

|y∗1 |
‖x∗ − y‖2

= 0,

−ωb
|y∗1 − b1|
‖y∗ − b‖2

+ ωH
|y∗1 |

‖x∗ − y∗‖2
= 0. (44)

The result follows since sin θa = |a1|
‖x∗−a‖2 , sin θb =

|y∗1−b1|
‖y∗−b‖2 .

If x∗ = y∗ the result for condition 2) follows from Corollary 4. �

Note that in Corollary 14 one can make w.l.o.g. the assumption that the separating line is x2 = 0
due to the isotropy of the Euclidean norm.

Corollary 15 If d = 2, pA = pB = pH = 2 and H = {(x1, x2) ∈ R2 : x2 = 0} then the following

assertions hold:

1. If ωa = ωb = ωH 6= 0, then θa = θb.

2. If ωH = 0 and ωaωb 6= 0, then θa = θb = 0.

Proof The proof follows observing that if y∗1 > 0 from equation (44) in Corollary 14 we get that
|y∗1 − b1| = ‖y∗ − b‖2 which is impossible unless b2 = 0, contradicting the hypotheses in the proof.
Therefore, y∗1 cannot be greater than zero. Hence, in this case the condition reduces to x∗ = y∗

and ωa
|a1|

‖x∗−a‖2 = ωb
|b1|

‖y∗−b‖2 . Thus, sin θa = sin θb.

Next, the case when ωH = 0 and ωaωb 6= 0, reduces to compute the projections onto H, of
each one of the points a and b. Indeed by condition 1) in Corollary 14, sin θa = sin θb = 0, being
θa = θb = 0 (see Fig. 6). �
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Fig. 5: Snell’s law when traversing H.
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Fig. 6: Snell’s law when traversing H and ωH = 0.

Lemma 16 Let a ∈ HA and b ∈ HB. Then,

1. If max{pA, pB} ≥ pH the shortest path distance dt(a, b) = min
x:αtx=β

‖x − a‖pA + ‖x − b‖pB , i.e. it

crosses H at a unique point.

2. If pH ≥ max{pA, pB} then the shortest path from a to b may contain a non-degenerated segment

on H.

Proof Let us consider the general form of the solution to determine dt(a, b), namely

dt(a, b) = min
x,y∈H

‖x− a‖pA + ‖x− y‖pH + ‖y − b‖pB .

Clearly, if pA ≥ pH, we have

‖x− a‖pA + ‖x− y‖pH + ‖y − b‖pB ≥ ‖x− a‖pA + ‖x− y‖pA + ‖y − b‖pB ;

( by the triangular inequality) ≥ ‖y − a‖pA + ‖y − b‖pB . �

Definition 17 We say that the norms `pA , `pB and `pH satisfy the Rapid Enough Transit Media
Condition (RETM) for a ∈ A and b ∈ B if:

1. For y∗ ∈ arg min
y∈H
‖y − a‖pA , ‖a− y∗‖pA + ‖x− y∗‖pH ≤ ‖x− a‖pA , for all x ∈ H, and

2. For x∗ ∈ arg min
x∈H
‖x− b‖pB , ‖b− x∗‖pB + ‖x∗ − y‖pH ≤ ‖y − b‖pB , for all y ∈ H.

Note that the above definition states that a triplet of norms (`pA , `pB , `pH) satisfies the condition
if the norm defined over the hyperplane H is ‘fast enough’ to reverse the triangle inequality when
mixing the norms, i.e., when the shortest path from a point outside the hyperplane to another
point in the hyperplane benefits from traveling throughout the hyperplane.

Lemma 18 Let a ∈ HA and b ∈ HB. Then, if ∞ > pH ≥ pA ≥ pB ≥ 1 and the corresponding norms

satisfy the RETM condition for a and b, the shortest path from a to b crosses throughout H in the

following two points:

x∗ = a− αta− β
‖α‖∗pA

δAα and y∗ = b− αtb− β
‖α‖∗pB

δBα

where ‖·‖∗pA and ‖·‖∗pB are the dual norms to ‖·‖pA and ‖·‖pB , respectively, and δAα ∈ arg max‖δ‖pA=1 α
tδ,

δBα ∈ arg max‖δ‖pB=1 α
tδ.
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Proof First, note that x∗ and y∗ correspond with the projections of a and b onto H, respectively
(see [17]). Let x, y ∈ H be alternative gate points in a path from a to b. Then

‖b− y‖pB + ‖x− y‖pH + ‖a− x‖pA
RETM
≥ ‖b− y∗‖pB + ‖y∗ − y‖pH + ‖x− y‖pH + ‖a− x∗‖pA

+ ‖x∗ − x‖pH
≥ ‖b− y∗‖pB + ‖a− x∗‖pA + ‖y∗ − x‖pH + ‖x∗ − x‖pH
≥ ‖b− y∗‖pB + ‖a− x∗‖pA + ‖y∗ − x∗‖pH .

�

Example 19 Let H = {(x, y) ∈ R2 : y = x} and a = (4, 5)t ∈ HA, b = (12, 11)t ∈ HB with

pA = pB = 1 and pH = +∞. We observe that these norms satisfy the RETM condition for a and b.

First of all, we realize that the closest `1-points to a and b, x∗ and y∗, respectively, on H must belong

to x∗ ∈ [(4, 4), (5, 5)] and y∗ ∈ [(11, 11), (12, 12)], respectively.

1. Let (y, y) ∈ H. ‖a−x∗‖1+‖x∗−(y, y)‖∞ = 1+min{|4−y|, |5−y|} and ‖a−(y, y)‖1 = |4−y|+|5−y|.
Then, for y ≥ 5, we get that 1 + (y− 5) = y− 4 ≤ (y− 4) + (y− 5) = 2y− 9, which is always true

for y ≥ 5. Otherwise, if y ≤ 4, 1 + (4− y) = 5− y ≤ (4− y) + (5− y) = 9− 2y, which is always

true for y ≤ 4.

2. Let (x, x) ∈ H. ‖b−y∗‖1+‖y∗−(x, x)‖∞ = 1+min{|11−x|, |12−x|} and ‖a−(x, x)‖1 = |12−x|+
|11−x|. Then, for x ≥ 12, we get that 1+(x−12) = x−11 ≤ (x−12)+(x−11) = 2x−23, which is

always true for x ≥ 12. Otherwise, if x ≤ 11, 1+(11−x) = 12−x ≤ (12−x)+(11−x) = 23−2x,

which is always true for x ≤ 11.

0 2 4 6 8 10 12

0

2

4

6

8

10

12

H

a x∗

y∗ b

Fig. 7: Shortest distance from a to b in Ex-
ample 19.

Hence, the RETM condition is satisfied, and the shortest path from a to b crosses in H through

their projections:

x∗ = (5, 5) and y∗ = (11, 11).

The overall length of this path is ‖a− x∗‖1 + ‖x∗ − y∗‖∞ + ‖b− y∗‖1 = 1 + 6 + 1 = 8 (see Fig. 7).
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Note that the RETM condition is defined for any triplet of norms (`pA , `pB , `pH) and for any
pairs of points a and b. Hence, unless the condition is fulfilled for all pairs of points a ∈ A and
b ∈ B, we cannot extend Lemma 18 to the location of all the points in A and B. Actually, even
for the slowest `p-norm in HA and HB , namely `1, and the fastest one in H, namely `∞, it is easy
to check that such a condition is not verified for every pair of points.

Once we have analyzed shortest paths between points in the framework of the location problem
to be solved, we come back to the original goal of this section: the location of a new facility to
minimize the weighted sum of shortest path distances from the demand points. Thus, the problem
that we wish to analyze in this section can be stated similarly as in (P).

min
x∈Rd

∑
a∈A

ωadt(x, a) +
∑
b∈B

ωb dt(x, b). (PT)

Note that Problem (P), analyzed in Section 3, is a particular case of Problem (PT) when the
two crossing points y1 and y2 are enforced to be equal, i.e. whenever it is not allowed to move
traversing the hyperplane when computing shortest paths between the different media.

By similar arguments to those used in Theorem 5 we can also state an existence and uniqueness
result for Problem (PT).

Theorem 20 Assume that min{|A|, |B|} > 2. If the points in A or B are not collinear 1 < pH < +∞
and 1 < pB ≤ pA < +∞ then Problem (PT) always has a unique optimal solution.

It is also possible to give sufficient conditions so that Problem (PT) reduces to (P). The
following proposition clearly follows from Lemma 16.

Proposition 21 Let A,B ⊆ Rd and H = {x ∈ Rd : αtx = β}. Then, if pA ≥ pB ≥ pH, Problem

(PT) reduces to Problem (P).

The description of the shortest path distances in (DT), allows us to formulate Problem (PT)
as a mixed integer nonlinear programming problem in a similar manner as we did in Theorem 6
for (P).
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Theorem 22 Problem (PT) is equivalent to the following problem:

min
∑
a∈A

ωaZa +
∑
b∈B

ωbZb (45a)

s.t. (3), (5), (7), (10), (13), (14),

θa + ua + ta − Za ≤ M̂a γ, ∀a ∈ A, (45b)

θb + ub + tb − Zb ≤ M̂b (1− γ), ∀b ∈ B, (45c)

θa ≥ ‖x− y1a‖pB , ∀a ∈ A, (45d)

ua ≥ ‖a− y2a‖pA , ∀a ∈ A, (45e)

ta ≥ ‖y1a − y2a‖pH , ∀a ∈ A, (45f)

θb ≥ ‖x− y1b‖pA , ∀b ∈ B, (45g)

ub ≥ ‖b− y2b‖pB , ∀b ∈ B, (45h)

tb ≥ ‖y1b − y
2
b‖pH , ∀b ∈ B, (45i)

αtyia = β, ∀a ∈ A, i = 1, 2, (45j)

αtyib = β, ∀b ∈ B, i = 1, 2, (45k)

Za, za, θa, ua, ta,≥ 0, ∀a ∈ A, (45l)

Zb, zb, θb, ub, tb,≥ 0 ∀b ∈ B, (45m)

y1a, y
2
a, y

1
b , y

2
b ∈ Rd, ∀a ∈ A, b ∈ B (45n)

γ ∈ {0, 1}. (45o)

with M̂a, M̂b > 0 sufficiently large constants for all a ∈ A, b ∈ B.

The reader may note that appropriate values of the constants M̂a, M̂b can be easily derived
which results in values similar to those described at the end of Theorem 6. Moreover, one can
have a much better solution approach based on a simple geometrical observation.

The following result states that the solution of Problem (45) can also be reached by solving
two simpler problems when restricting the solution to belong to HA or HB .

Theorem 23 Let x∗ ∈ Rd be the optimal solution of (PT). Then, x∗ is the solution of one of the

following two problems:

min
∑
a∈A

ωaza +
∑
b∈B

ωbθb+∑
b∈B

ωbub +
∑
b∈B

ωbtb

s.t. (7), (45g), (45h),

(45i), (45k), (45l), (21), (PTA)

za ≥ 0, ∀a ∈ A,
θb, ub, tb ≥ 0, ∀b ∈ B,

x, y1b , y
2
b ∈ Rd,

min
∑
b∈B

ωbzb +
∑
a∈A

ωaθa+

∑
a∈A

ωaua +
∑
a∈A

ωata

s.t. (10), (45d), (45e),

(45f), (45j), (45m), (22), (PTB)

zb ≥ 0, ∀b ∈ B,
θa, ua, ta ≥ 0, ∀a ∈ A,

x, y1a, y
2
a ∈ Rd.

A similar proof to the one of Corollary 10 would allow us to give an equivalent SOCP formu-
lation for problems (PTA) and (PTB).
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Fig. 8: Points and optimal solution of Example 24.
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Fig. 9: Shortest path from x∗ to (2, 8).

We illustrate Problem (PT) with an instance of the 18 points data set in [18].

Example 24 Consider the 18 points in [18] and the separating line H = {x ∈ Rd : 1.5x − y = 0}.
Assume that in HA the distance is measured with the `2-norm, in HB the distance is induced by the `3-

norm and on H the norm is 1
4 `∞. Fig. 8 shows the demand points A and B, the hyperplane H and the

solution x∗. The optimal solution is x∗ = (9.133220, 6.897760) with objective value f∗ = 100.442353.

Note that the difference between this model and the one above is that the shortest path distance from

the new facility to a demand point may not cross the hyperplane H at a unique point. Comparing the

results with those obtained in Example 11 for the same data set, but not allowing the use of H as a

high speed media, we get savings in the overall transportation cost of 3.492381 units. In Fig. 9, we can

observe that the shortest path from the new facility x∗ and the demand point (2, 8) consists of traveling

from x∗ to y1 = (5.918243, 8.877364) in HB (using the `3-norm), then traveling within the hyperplane

H from y1 to y2 = (4.635013, 6.952519) (using the 1/4− `∞-norm) and finally to (2, 8) in HA (using

`2-norm). Actually, the overall length of the path is:

d3(x∗, y1) +
1

4
d∞(y1, y2) + d2(y2, (2, 8)) = 3.447879 + 0.4812115 + 2.835578 = 6.7646685.

Finally, we state, for the sake of completeness, the following remark whose proof is similar to
the one for Remark 2 and that extends the second order cone formulations in Theorem 23 to the
constrained case.

Remark 3 Let {g1, . . . , gl} ⊂ R[X] be real polynomials and K := {x ∈ Rd : gj(x) ≥ 0, j = 1, . . . , l}
a basic closed, compact semialgebraic set with nonempty interior satisfying the Archimedean
property, and consider the following problem

min
x∈K

∑
a∈A

ωadt(x, a) +
∑
b∈B

ωbdt(x, b). (46)

with dt(x, y) as defined in (DT). Assume that any of the following conditions hold:

1. gi(x) are concave for i = 1, . . . , ` and −
∑l
i=1 νi∇

2gi(x) � 0 for each dual pair (x, ν) of the prob-
lem of minimizing any linear functional ctx on K (Positive Definite Lagrange Hessian (PDLH)).

2. gi(x) are sos-concave on K for i = 1, . . . , ` or gi(x) are concave on K and strictly concave on
the boundary of K where they vanish, i.e. ∂K ∩ ∂{x ∈ Rd : gi(x) = 0}, for all i = 1, . . . , l.

3. gi(x) are strictly quasi-concave on K for i = 1, . . . , l.

Then, there exists a constructive finite dimension embedding, which only depends on pA, pB , pH
and gi, i = 1, . . . , `, such that (46) is equivalent to two semidefinite programming problems. �
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5 Computational Experiments

We have performed a series of computational experiments to show the efficiency of the proposed
formulations to solve problems (P) and (PT). Our SOCP formulations have been coded in Gurobi
5.6 and executed in a PC with an Intel Core i7 processor at 2x 2.40 GHz and 4 GB of RAM. We
fixed the barrier convergence tolerance for QCP in Gurobi to 10−10.

Our computational experiments have been organized in three blocks because the goal is dif-
ferent in each one of them. First, we report on the data sets already considered in Parlar [18] and
Zaferanieh et al. [27]. These data are sets of 4, 18 (in [18]), 30 and 50 (in [27]) demand points
in the plane and separating hyperplanes y = 0.5x, y = x, y = 1.5x. Second, we consider the
well-known 50-points data set in Eilon et. al [12] with different separating hyperplanes and norms
in each one of the corresponding half-spaces. Finally, we also report on some randomly generated
instances with 5, 000, 10, 000 and 50, 000 demand points in dimension 2, 3 and 5 and different
combinations of norms.

The results of the first block are included in Tables 1 and 2. Table 1 shows in columns CPUTime

([18,27]), f∗ ([18,27]) and x∗([18,27]) the results reported in [18] (for the 4 and 18 points data sets)
and [27] (for the 30 and 50 points data sets), and in columns CPUTime(P), f∗(P) and x∗ (P) the
results obtained with our approach. (The reader may observe that the CPU times are not directly
comparable since results in [27] were obtained in a machine with a single processor at 2.80 GHz).
In this table N is the number of demand points, H is the equation of the separating hyperplane
(line), CPUTime is the CPU-time and f∗ and x∗ are the objective value and coordinates of the
optimal solution reported with the corresponding approach, respectively. In order to compare
our objective values and those obtained in [18] or [27], we have evaluated such values by using
the solution obtained in those papers, where the authors provided a precision of two decimal
places. This evaluation was motivated because we found several typos in the values reported in
the papers. The goal of this block of data is to compare the quality of solutions obtained by the
different methods. Comparing with our method, we point out that our solutions are superior since
we always obtain better objective values than those in [18] or [27]. These results are not surprising
since both [18] and [27] apply approximate methods whereas our algorithm is exact. Furthermore,
the approach in [27] is much more computationally costly than ours. Additionally, in order to
check whether a rapid transit line can improve the transportation costs from the demand points
to the new facility, we report in Table 2 the results obtained for the same data sets applied to
Problem (PT) taking ‖ · ‖H = 1

4 `∞. We observe that in this case the overall saving in distance
traveled ranges in 5% to 24%.

Table 3 reports the results of the second block of experiments. In this block, we test the
implementation of our SOCP algorithm over the 50-points data sets in [12]. The goals are: (1) to
check the efficiency of our methodology for a well-known data set in location theory, considering
different norms in the different media, over the models (P) and (PT) (Note that in [18] and [27]
only (P) is solved using `1 and `2-norms); and (2) to provide some benchmark instances to compare
current and future methodologies for solving (P) and (PT). To this end, we report CPU times
and objective values for different combination of `p-norms (`2, `3 and `1.5) and polyhedral norms
(`1, `∞) fulfilling the conditions pA > pB for Problem (P) and pH > pA ≥ pB for Problem (PT)
and different slopes for the separating hyperplane H = {x ∈ R2 : y = λx} with λ ∈ {1.5, 1, 0.5} to
classify the demand points.

Finally, Table 4 shows the results of our computational test for the third block of experiments.
The goal of this block is to explore the limits in: 1) number of demand points, 2) dimension
of the framework space; and 3) combination of norms, that can be adequately handled by our
algorithm for solving problems (P) and (PT). For this purpose, we consider randomly generated
instances with N ∈ {5000, 10000, 50000} demand points in [0, 1]d, for d = 2, 3 and 5. The separating
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N H CPUTime (P) f∗ (P) x∗ (P) CPUTime [18,27] f∗ [18,27] x∗ [18,27]

4 y = x 0.037041 26.951942 (3.333333, 1.666666) 49.62 26.951958 (3.33, 1.66)

18 y = 1.5x 0.057064 112.350633 (8.926152, 6.465740) 35.54 112.350702 (8.92, 6.46)

30 y = 0.5x 0.056049 301.378686 (6.000000, 4.000000) 8.25 301.491361 (6.01, 4.02)

30 y = x 0.076050 265.971645 (5.658661, 4.586579) 15.31 265.973315 (5.65, 4.60)

30 y = 1.5x 0.074053 257.814199 (5.512428, 4.561921) 16.94 257.814247 (5.51, 4.56)

50 y = 0.5x 0.107079 1126.392248 (11.000000, 8.000000) 35.00 1127.382313 (11.23, 8.00)

50 y = x 0.116091 966.377027 (10.730800, 8.661463) 30.61 966.377615 (10.73, 8.67)

50 y = 1.5x 0.095062 939.487369 (10.525793, 8.603231) 29.44 939.487629 (10.53, 8.60)

Table 1: Comparison of results from Parlar [18] and Zafaranieh et al. [27] and our approach (P).

N H CPUTime(PT) f∗ (PT) x∗ (PT)

4 y = x 0.0000 20.5307 (0.000000, 0.000001)

18 y = 1.5x 0.0000 108.3362 (8.811381, 7.119336)

30 y = 0.5x 0.0156 254.7805 (6.000000, 3.000000)

30 y = x 0.0000 230.7513 (5.234851, 5.234838)

30 y = 1.5x 0.0156 244.4072 (5.153294, 5.102873)

50 y = 0.5x 0.0156 917.1736 (11.923664, 5.961832)

50 y = x 0.0156 808.2990 (10.000020, 9.999995)

50 y = 1.5x 0.0156 892.4482 (10.521522, 9.571467)

Table 2: Results of model (PT) with ‖ · ‖H = 1
4 `∞ for the data sets in [18] and [27].

hyperplane was taken as H = {x ∈ Rd : xd = 0.5} and the different norms to measure the distances
in each region (`1, `2, `1.5, `3 and `∞) combined adequately to fulfill the conditions (see Lemma 16
and Proposition 21) to assure that the problems are well-defined and that the different instances
of Problem (PT) do not reduce to (P). From Table 3, we conclude that our method is rather
robust so that it can efficiently solve instances with more than 50000 demand points in high
dimensional spaces (d = 2, 3, 5) and different combinations of norms in a few seconds. We have
observed that instances with polyhedral norms, in particular `1, are in general harder to solve than
those with smooth norms. This behavior is explained because the representation of polyhedral
norms requires to add constraints depending on the number of extreme points of their unit balls.
This figure grows exponentially with the dimension and for instance, for 50000 points in dimension
d = 5, our formulation needs 50000× 5× 32 = 8, 000, 000 linear inequalities in order to represent
the norm `1. This results in an average CPU time of 1019.48 seconds (with a maximum of 3945.82
seconds) for those problems where either `pA or `pB equals `1, whereas the CPU time for the
remaining problems in dimension d = 5 is 215.69 seconds (with a maximum of 697.50 seconds).

6 Extensions

In this section we state some additional results for some variations of the problems that we
addressed in previous sections: 1) each demand point a ∈ A (b ∈ B) has associated two different
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H = {y = 1.5x} (|A| = 15) H = {y = x} (|A| = 18) H = {y = 0.5x} (|A| = 39)

pA pB pH CPUTime f∗ CPUTime f∗ CPUTime f∗

1.5 1 0.0000 230.8447 0.0313 212.9341 0.0156 200.6406

2
1 0.0158 227.9991 0.0156 202.6576 0.0000 185.9525

1.5 0.0313 194.1881 0.0313 189.0401 0.0156 182.1283

3

1 0.0313 223.8203 0.0469 194.1612 0.0156 174.0444

1.5 0.0156 192.0466 0.0469 180.9279 0.0313 170.3199

2 0.0156 178.2223 0.0312 174.8964 0.0313 168.5066

∞

1 0.0000 219.8367 0.0000 182.1900 0.0000 161.2033

1.5 0.0313 188.7783 0.0156 168.9589 0.0000 157.2146

2 0.0156 175.4420 0.0156 163.6797 0.0000 155.6124

3 0.0156 164.5924 0.0156 159.3740 0.0156 154.3965

1 1

1.5 0.0156 237.4732 0.0156 224.9178 0.0000 236.1300

2 0.0000 237.3162 0.0156 218.9480 0.0000 235.4689

3 0.0156 236.3904 0.0156 213.5591 0.0156 234.9807

∞ 0.0000 233.7967 0.0156 204.3500 0.0000 234.7300

1.5

1

2 0.0156 230.8165 0.0313 206.9512 0.0469 200.5514

3 0.0625 228.5484 0.0938 201.5863 0.0156 200.3068

∞ 0.0313 225.9387 0.0156 192.4722 0.0156 200.1428

1.5

2 0.0313 196.5559 0.0469 193.3584 0.0313 196.4864

3 0.0469 196.5561 0.0469 188.3989 0.0313 196.3008

∞ 0.0156 196.5431 0.0469 179.3396 0.0313 196.1787

2

1
3 0.0156 225.7539 0.0313 197.2805 0.0156 185.9501

∞ 0.0156 223.1421 0.0156 188.1506 0.0156 185.9133

1.5
3 0.0469 194.1881 0.0469 184.0770 0.0313 182.1271

∞ 0.0156 194.1881 0.0313 175.0117 0.0158 182.0955

2
3 0.0156 180.1096 0.0156 178.0624 0.0156 180.1097

∞ 0.0156 180.1097 0.0156 169.7842 0.0156 180.0857

3

1

∞

0.0313 221.2011 0.0156 184.9957 0.0313 174.0442

1.5 0.0313 192.0466 0.0313 171.8455 0.0313 170.3199

2 0.0156 178.2223 0.0313 166.6027 0.0156 168.5066

3 0.0312 166.8362 0.0469 162.3214 0.0313 166.8361

Table 3: Results for the 50-points data set in [12].

norms, which are different from those associated to other points, to measure distances at each
side of the separating hyperplane: and 2) the shortest length path between two points in the
same half-space is allowed to be computed using, if convenient, some displacement throughout
the hyperplane. Observe that the first case is the natural extension to this framework of the so
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|A|+ |B| = 5000 |A|+ |B| = 10000 |A|+ |B| = 50000

pA pB pH d = 2 d = 3 d = 5 d = 2 d = 3 d = 5 d = 2 d = 3 d = 5

1.5 1 3.2034 5.4599 10.1520 7.4852 9.2511 19.0804 40.9418 74.9246 115.2941

2
1 1.5939 2.2502 7.6415 5.1255 8.2040 14.0078 21.8708 25.9411 59.7786

1.5 3.9692 6.0632 4.5474 8.1728 14.0797 23.8067 55.2635 83.8310 154.2883

3

1 3.9222 5.1412 6.9852 6.8132 9.4927 20.6114 42.9964 61.4724 116.4665

1.5 5.4850 10.0950 13.4449 14.3149 21.0337 34.0574 91.9616 106.6900 206.6997

2 7.9385 9.8603 10.1802 14.2672 17.7362 38.0629 95.3150 135.0647 180.6230

∞

1 0.3125 0.6940 9.4607 0.8750 1.6096 6.3288 6.0945 25.7856 89.7772

1.5 1.2346 2.2502 8.6333 5.6724 4.9605 9.1259 18.8410 32.5503 54.0310

2 0.8908 1.2188 15.9704 1.9534 2.7346 7.9853 18.8615 17.2053 40.5464

3 3.4691 2.7346 12.0584 9.5637 6.7195 9.5323 71.7654 70.1868 49.5907

1 1

1.5 18.9396 28.7109 15.6735 37.5415 80.9833 401.8414 596.6057 878.6363 3171.6235

2 13.7043 24.4318 13.2359 29.2056 68.3894 372.3283 354.3334 721.5562 3166.1511

3 17.5702 25.1258 3.8570 39.3008 93.4990 415.0733 541.8219 1014.1090 3945.8234

∞ 4.9695 11.7517 3.1101 13.7673 26.7468 96.7260 133.7586 632.9736 2492.2830

1.5

1

2 5.2506 8.2509 4.6457 13.7986 16.0956 37.3793 105.4177 103.2694 273.0866

3 6.2975 11.9545 4.0473 13.2135 24.9720 57.8267 96.9583 128.9880 326.7660

∞ 3.6722 5.5632 4.1409 7.0632 13.1580 31.0345 46.1239 81.3482 118.2435

1.5

2 12.9546 15.8455 3.7347 23.3466 29.3155 46.6898 138.6629 200.2891 385.1307

3 13.5232 14.9234 4.5473 22.2837 33.9099 53.9483 171.0538 175.6803 697.5071

∞ 12.0022 11.5482 3.9533 21.8464 22.1743 37.0102 111.1779 144.5975 241.2852

2

1
3 3.5316 7.6883 125.3288 9.8294 11.5794 41.0986 61.4067 62.9410 158.6635

∞ 1.7034 3.3288 145.9833 3.5629 7.7041 15.4610 22.8465 38.9976 98.4269

1.5
3 5.6255 9.3605 105.3967 13.4234 19.0805 45.4697 71.1114 101.3439 269.3303

∞ 5.1256 5.4850 137.3159 7.6791 16.5075 24.8255 63.0027 85.4602 134.8291

2
3 6.6725 9.4387 132.3028 12.1731 20.4003 39.2473 79.9453 121.0863 220.7875

∞ 4.6879 5.4607 153.6319 9.4696 14.5639 22.6620 68.1690 63.1358 118.4005

3

1

∞

3.7357 6.5511 17.7052 7.8602 10.1575 34.1457 37.1292 48.5630 140.3546

1.5 7.7665 10.4455 17.7145 15.2061 26.2626 37.2546 84.7931 119.5438 235.1177

2 7.6569 10.6885 17.4306 16.5483 23.6745 44.5896 99.2611 227.0411 219.4903

3 9.8843 10.0948 19.1583 19.2838 21.8153 43.0209 129.5420 153.3979 243.4983

Table 4: CPU Times in seconds for randomly generated data sets.

called location problems with “mixed” norms; whereas the second case extends the applicability
of the separating media as a general rapid transit space in the transportation problem.



Continuous Location under refraction 25

6.1 Location problems with mixed norms

Location problems with mixed norms are those where each demand point is allowed to measure
distances with a different distance measure. The interpretation is that each demand point may
be using a different transportation mode so that its velocity is different from one another. This
framework can also be applied to the location problems considered in this paper. Indeed, it suffices
to endow each single demand point with two norms one on each side of the separating hyperplane.

Let us assume that each demand point a ∈ HA (resp. b ∈ HB) has associated two norms ‖ · ‖pAa
and ‖ · ‖pBa (resp. ‖ · ‖pAb and ‖ · ‖pBb ) such that each one of them is used to measure distances with

respect to the points in HA or in HB .
This way, for any x ∈ Rd the distance between x and z ∈ A ∪B can be computed as:

d(z, x) =

 ‖z − x‖piz ∀x, z ∈ Hi, i ∈ {A,B}

miny∈H ‖z − y‖piz + ‖y − x‖
pjz
∀x ∈ Hj , z ∈ Hi, i, j ∈ {A,B}, i 6= j

(47)

With this generalized framework for measuring distances from the different demand points,
we can consider the following location problem: Let A and B be two finite sets of given demand
points in Rd, and ωa and ωb be the weights of the demand points a ∈ A and b ∈ B, respectively.
Consider H = {x ∈ Rd : αtx = β} to be the separating hyperplane in Rd with α ∈ Rd and β ∈ R,
and

HA = {x ∈ Rd : αtx ≤ β} and HB = {x ∈ Rd : αtx > β}.
The goal is to find the new facility x ∈ Rd minimizing the overall distance (47) to all the demand
points, i.e.,

min
x∈Rd

∑
a∈A

ωad(x, a) +
∑
b∈B

ωb d(x, b). (48)

A similar proof to the one for Theorem 6, allows us to write the following valid formulation
for Problem (48).

Corollary 25 Let x∗ ∈ Rd be the optimal solution of (48). Then, x∗ is the solution of one of the

following two problems:

min
∑
a∈A

ωaza +
∑
b∈B

ωbθb +
∑
b∈B

ωbub

s.t. za ≥ ‖x− a‖pAa , ∀a ∈ A,

θb ≥ ‖x− yb‖pAb , ∀b ∈ B,

ub ≥ ‖b− yb‖pBb , ∀b ∈ B,

αtyb = β, ∀b ∈ B,

αtx ≤ β,
za ≥ 0, ∀a ∈ A,
θb, ub ≥ 0, ∀b ∈ B,

x, yb ∈ Rd.

min
∑
b∈B

ωbzb +
∑
a∈A

ωaθa +
∑
a∈A

ωaua

s.t. θa ≥ ‖x− ya‖pBa , ∀a ∈ A,

ua ≥ ‖a− ya‖pAa , ∀a ∈ A,

zb ≥ ‖x− b‖pBb , ∀b ∈ B,

αtya = β, ∀a ∈ A,

αtx ≥ β,
zb ≥ 0, ∀b ∈ B,
θa, ua ≥ 0, ∀a ∈ A,

x, ya ∈ Rd.
Once again, if we assume that all the considered norms are `p or polyhedral then the above prob-
lems admit reformulations as linear or second order cone programs that can be solved efficiently
with good computational results as shown in the previous sections. The reader may note that the
extension of the location problems with mixed norms to the framework in the Section 4 is similar
and thus the details are not included here.
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6.2 Location Problems and Critical Reflection

Motivated by some practical situations in transportation systems using rapid transit lines and
critical reflection in Physics, here we consider another extension of the location problem addressed
in the previous sections. Depending on the nature of the media separating the space it may be
advantageous not only to use it to determine the shortest path between points in different regions
but also between points in the same half-space. In these cases, a shortest path between a and b

in the same half-space may also consist of three legs: the first one from a to the hyperplane, the
second one within the hyperplane and the last one from the hyperplane to b. Indeed, it is not
difficult to realize that this type of pattern may induce distance measures with smaller length
than those where displacements on the separating media are not allowed for points in the same
region. We illustrate this behavior with the following example.

Example 26 Let us consider the hyperplane H = {(x, y) ∈ R2 : x − y = 0}, a = (4, 3) ∈ HB and

b = (8, 7) ∈ HB. Assume that the norm in HB is `1 while the norm in H is `∞. The shortest path

length with the framework described in the previous sections is d1(b, a) = ‖b−a‖1 = |8−4|+ |7−3| = 8.

However, using the alternative approach previously described, the shortest path from b to a goes through

the hyperplane H and thus d(b, a) = d1(b, (7, 7)) + d∞((7, 7), (4, 4)) + d1((4, 4), a) = 1 + 3 + 1 = 5.

Figure 10 shows the difference between both paths: with a dashed line the direct path with the `1-norm

and with a bold line the three legs of the path throughout the hyperplane.

Let H = {x ∈ Rd : αtx = β} be a hyperplane that separates Rd in two half spaces HA = {x ∈
Rd : αtx ≤ β} and HB = {x ∈ Rd : αtx > β}; and assume that these regions are endowed with
three distance measures ‖ · ‖pH , ‖ · ‖pA and ‖ · ‖pB , respectively. Furthermore, we are given two
finite sets of demand points A ⊂ HA and B ⊂ HB .

HB

HA

(4, 3)

(8, 7)

Fig. 10: Shortest paths from (4, 3) to (8, 7) with the different frameworks.

First of all, we define the shortest path distance in the new framework.

dex(x, z) =

min{‖x− z‖i,miny1,y2∈H ‖x− y1‖pi + ‖y1 − y2‖pH + ‖y2 − z‖pi}, ∀x, z ∈ Hi, i ∈ {A,B},

miny1,y2∈H ‖x− y1‖pi + ‖y1 − y2‖pH + ‖y2 − z‖pj , ∀x ∈ Hi, z ∈ Hj , i, j ∈ {A,B}, i 6= j.

Next, the new location problem that appears in this extended framework is:

f∗ := inf
x∈Rd

∑
a∈A

ωa dex(x, a) +
∑
b∈B

ωb dex(x, b). (PEX)

The following result gives a valid mixed integer nonlinear programming formulation for (PEX).
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Theorem 27 Let x∗ ∈ Rd be the optimal solution of (PEX) and Ma,Mb > 0 sufficiently large con-

stants for all a ∈ A, b ∈ B. Then, x∗ is the solution of one of the following two problems:

min
∑
a∈A

ωaza +
∑
b∈B

ωb(θb + ub + tb)

s.t. z1a ≥ ‖x− a‖pA , ∀a ∈ A,

z2a ≥ ‖x− y1a‖pA , ∀a ∈ A,

z3a ≥ ‖y1a − y2a‖pH , ∀a ∈ A, (PAEX)

z4a ≥ ‖y2a − a‖pA , ∀a ∈ A,

θb ≥ ‖x− y1b‖pA , ∀b ∈ B,

ub ≥ ‖y2b − b‖pB ∀b ∈ B,

tb ≥ ‖y1b − y
2
b‖pH , ∀b ∈ B,

za ≥ z1a +Ma(δa − 1), ∀a ∈ A,

za ≥ z2a + z3a + za4 −Maδa, ∀a ∈ A,

αtx ≤ β,

min
∑
b∈B

ωbzb +
∑
a∈A

ωa(θa + ua + ta)

s.t. z1b ≥ ‖x− b‖pB , ∀b ∈ B,

z2b ≥ ‖x− y
1
b‖pB , ∀b ∈ B,

z3b ≥ ‖y
1
b − y

2
b‖pH , ∀b ∈ B, (PBEX)

z4b ≥ ‖y
2
b − b‖pB , ∀b ∈ B,

θa ≥ ‖x− y1a‖pA , ∀a ∈ A,

ua ≥ ‖y2a − a‖pB ∀a ∈ A,

ta ≥ ‖y1a − y2a‖pH , ∀a ∈ A,

zb ≥ z1b +Mb(δb − 1), ∀b ∈ B,

zb ≥ z2b + z3b + za4 −Mbδb, ∀b ∈ B,

αtx ≥ β,

αtyja = β, ∀a ∈ A,∀j = 1, 2,

αtyjb = β, ∀b ∈ B,∀j = 1, 2,

δa ∈ {0, 1}, ∀a ∈ A,

x, y1a, y
2
a, y

1
b , y

2
b ∈ Rd.

αtyjb = β, ∀b ∈ B,∀j = 1, 2,

αtyja = β, ∀a ∈ A,∀j = 1, 2,

δb ∈ {0, 1}, ∀b ∈ B,

x, y1b , y
2
b , y

1
a, y

2
a ∈ Rd.

Proof The proof of this theorem is similar to the one in Theorem 7 once binary variables δa (δb)
are introduced to model the minimum that appears in the expression of dex defined above. �

The reader may observe that unlike the problems in the previous sections, the above reformulation
falls within the field of mixed integer nonlinear programming and therefore, one cannot expect to
solve these problems easily. In spite of that, if the norms considered in the different regions are
either `p or polyhedral these problems are still solvable for medium size instances using nowadays
available mixed integer second order cone programming solvers. Furthermore, we note in passing
that valid values of the constants Ma, Mb can be easily derived which result in values similar to
those described at the end of Theorem 6.

Next, we illustrate Problem (PEX) with an instance taken from [18].

Example 28 Consider the 18 points data set in [18]. Take as the separating line H = {x ∈ Rd :
1.5x − y = 0}. Assume that in HA and HB the distance is measured with the `1-norm and that H
is endowed with the `∞-norm. Fig. 11 shows the demand points A and B, the hyperplane H and the

solutions of problems (PEX) and (PT), x∗ = (3.3333, 5) and x′ = (9, 8), respectively. The optimal

value of (PEX) is f∗ = 128.00 while the one for (PT), f ′ = 132.9166. In Fig. 12 we illustrate one

of the shortest paths between the demand point (6, 1) and the optimal facility x∗, both in the same

half-space, that travels through the hyperplane: d((6, 1), x∗) = 5.3333 + 1
4 4 = 6.3333. This distance is

smaller than the `1 distance between them: d1((6, 1), x∗) = 6.66666.
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Fig. 11: Points and optimal solution of Ex. 28.
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Fig. 12: Shortest paths from x∗ to (6, 1).

We have implemented this new formulation in Gurobi 5.6 in order to compare the results
obtained with this approach and the one proposed in Section 4 for the data sets in [18], [27] and
[12]. We have used very different distance measures in the half-spaces and the hyperplane, namely
`1 in HA and HB and 1

4 `∞ in H = {(x, y) ∈ R2 : y = α1x} with α1 ∈ {0.5, 1, 1.5}. (The reader may
observe that this choice corresponds to the most extreme cases within the `p-norms, namely `1
and `∞.) The results are presented in Table 5. This table summarizes by rows the three different
choices of α1 ∈ {0.5, 1, 1.5}. The table has three blocks, one per each α1. Each of these blocks
shows the results for problems with different number of demand points N ∈ {4, 18, 30, 50}. For
each model, namely (PT) and (PEX), we report by columns the same information: coordinates of
optimal solutions, optimal values and CPU time to get the solutions.

The CPU time was limited to two hours for solving the problem. In some problems the optimal
facility is the same using the different approaches, although, as expected, the optimal value for
(PEX) is at least as good as for (PT). In some of the largest problems (those with 50 demand
points) optimality could not be proven with this time limit, but the suboptimal solution already
improves the one obtained when the “reflection” is not allowed. In those problems the CPU time
was indicated as > 7200 and we write in parenthesis the gap between such a solution and the best
lower bound found when the time limit was reached. In general, the CPU times for these data
sets are tiny when (PT) is run, and increase considerably when Problem (PEX) is solved, due to
the binary variables that appear in the model.

7 Conclusions

This paper addresses the problem of locating a new facility in a d-dimensional space when the
distance measures (`p or polyhedral norms) are different at each one of the sides of a given hyper-
plane H. This problem generalizes the classical Weber problem, which becomes a particular case
when the same norm is considered on both sides of the hyperplane. We relate this problem with
the physical phenomenon of refraction and obtain an extension of the law of Snell with application
to transportation models with several transportation modes. We also extend the problem to the
case where the hyperplane is considered as a rapid transit media that allows the demand points
to travel faster through H to reach the new facility. Extensive computational experiments run in
Gurobi are reported in order to show the effectiveness of the approach.

Several extensions of the results in this paper are possible applying similar tools to those used
here. Among them we may consider a broader family of location problems, namely Ordered median
problems [19,20,21], with framework space separated by a hyperplane. Similar results to the ones
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α N x′ (PT) f ′ (PT) CPUTime(PT) x∗ (PEX) f∗ (PEX) CPUTime(PEX)

0.5

4 (5, 2.5) 16.75 0.0000 (5, 2.5) 16.75 0.015623

18 (9, 4.5) 97.75 0.0000 (9, 4.5) 89.5 0.03125

30 (6, 3) 266.5 0.0000 (6, 3) 251 0.03125

50 [27] (12, 6) 959.75 0.0000 (11, 5.5) 911.5 >7200 (11.03%)

50 [12] (5.89, 2.945) 201.5475 0.0000 (5.89, 2.945) 189.9075 >7200 (11.51%)

1

4 (, 0) 22.5 0.0000 (5, 5) 22.5 0.015623

18 (8, 8) 123 0.0000 (8, 8) 105.5 0.078125

30 (5, 5) 265.25 0.0000 (5, 5) 251.25 1.297066

50 [27] (1, 10) 927.75 0.0000 (1, 10) 873.5 124.81

50 [12] (5, 5) 177.5225 0.0000 (5.57, 5.57) 170.4 550.1219

1.5

4 (5, 6) 24.166667. 0.0000 (4, 6) 23.666667 0.015621

18 (9, 8) 132.916667 0.0000 (3.3333, 5) 128 0.015629

30 (5, 5) 299.75 0.0000 (2.6667, 4) 269.75 0.062504

50 [27] (11, 10) 1076.583333 0.015625 (5.3333, 8) 1009.25 >7200 (5.98%)

50 [12] (3.7133, 5.570) 206.3725 0.015627 (3.5, 5.250) 195.519167 >7200 (11.52%)

Table 5: Results of models (PT) and (PEX).

in this paper can be obtained assuming that the sequence of lambda weights is non-decreasing
monotone, inducing a convex objective function. Another interesting extension is the consideration
of a framework space subdivided by an arrangement of hyperplanes. In this case, the problem can
still be solved using an enumerative approach based on the subdivision of the space induced by
the hyperplanes although it will be necessary to elaborate further on the computation of shortest
length paths traversing several regions. Note that the subdivision induced by an arrangement
of hyperplanes can be efficiently computed [11], although its complexity is exponential in the
dimension of the space. This topic will be the subject of a follow up paper.
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