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Abstract: Transport studies require, as a preliminary step, conducting a 

survey process to a sample of the universe of users of the transportation 

system. The statistical reliability of the data determines the goodness of the 

results and conclusions that can be inferred from the analyses and models 

generated. In this communication a methodology, based on the techniques of 

"bootstrapping", to the robust statistical estimate of freight transport matrices 

is presented; this allows to generate the confidence intervals of travel between 

origin-destination pairs defined by each cell of the OD matrix derived from a 

freight transport survey.  

This result is of interest in defining the dimensions of certainty for matrix 

cells and subsequent adjustment by techniques based on aggregate data (i.e. 

traffic counts, cordon line matrices, paths, etc.). 

The techniques of "bootstrapping" originated in the 70's, although widely 

used during the 90's, have not been fully exploited in the field of freight 

transport studies. To address this study a data set from a statistically reliable 

freight transport study conducted in Spain at the level of multi-province 

regions has been used. 

1. INTRODUCTION 

Origin-destination (OD) trip tables are required in most transportation 

applications to represent the spatial distribution of transport demand. The 

procedures to construct these tables are mainly based on available 

information collected by a transport survey. The level of the 

comprehensiveness and quality of the survey determines the confidence and 

reliability of the data captured. Incomplete and/or inaccurate data have 

negative consequences in characterising transport mobility and will invalidate 

subsequent stages (i.e. modelling, estimations, forecasting). As a complement 

to survey-based data-capturing techniques, other pieces of information, that 

might be easily available, quick or inexpensive, can help to improve the 

reliability of the eventually inferred OD trip table (i.e. link volumes, trips 

between macro-zones, cordons and screen-line counts, vehicle speeds, path 

travel times, path flows). To assess the quality of OD trip table estimates 

versus survey-captured tables, a large amount of statistical measures can be 

used to quantify the accuracy of the data observed (that is, of the pieces of 

information available).       

The construction of freight transport matrices of a given region to be 

analysed feeds on the data collected in a process of surveying a sample of 

agents (users) of the transportation system. There are several techniques to 

perform freight data collection, of which the most commonly used can be 

classified into two families, based on the disaggregation level of the agents: a) 
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Individual agent level. In this case a sample of companies (prone to 

receive/ship goods) is chosen from the whole economic frame. This sample 

must be statistically representative of the economic distribution functions, 

which depend on many variables. b) Specific economic sector level. A sample 

is chosen from among the sector universe in the region. The sample must 

also be chosen to be statistically representative of the sector distribution 

according to variables associated with the item. Obviously, the level of 

aggregation of the sector variables affects the explanatory power of the 

collected data in relation to reality. This case is broadly used for the specific 

sector of transportation agents (i.e. freight transport companies and registered 

freight vehicles), though the data captured are limited (mostly origin-

destination, product and load).  

Of these techniques, one of the most widely used is based on surveying 

samples of registered freight vehicles distributed according to their registration 

plates. Once the studied region is discretised into transport areas by 

aggregating census districts, municipalities or counties, the sample size 

proves to be a function of the total number of vehicles distributed among the 

zones and according to the registered population; this ensures the high 

statistical reliability of information collected on a zonal level.  

By this sampling technique, and for each zone, the number of freight vehicles 

registered therein, the vehicle type histogram can be easily obtained. The 

choice of the vehicle types to be surveyed is made through a process of 

random draws without replacement from the universe in each area, so that it 

reproduces the histogram. From the practical and professional standpoint, the 

sample and the universe generally are related through sampling rate (weight) 

coefficients. The weighting process (expansion) does not guarantee that the 

expanded data follow the same patterns as reality and the 

"representativeness" of the expanded data matrix, in relation to the real 

unknown matrix, is questionable. For a more precise characterization of the 

expanded matrix there are numerous techniques to refine this 

“representativeness”, of which confidence intervals are the most practical. 

This piece of work describes a model that estimates the level of confidence 

of data captured for each OD pair and can be easily extended to its 

aggregated magnitudes by origin and destination. This objective is addressed 

by using the statistical technique of bootstrapping to evaluate the uncertainties 

in each OD pair estimate, which is used to infer confidence intervals for OD 

matrices retrieved from transport surveys. Preliminary results are obtained 

from applying the developed methodology to a selected case of freight 

transport at a national scale in Spain. 
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This paper is organised as follows: Next section justifies the interest of 

confidence intervals for the definition of constraints that should be verified 

during the adjustment of the OD matrix; it introduces a concise state of the art 

in the derivation of confidence intervals for each OD trip matrix cell, and a 

review of analytical methods and empirical techniques devoted to replicated 

bootstrap and its implementation for the inference of confidence intervals is 

also included. The case study section shows the results derived from an 

actual practical application; this allows a glimpse of the interest of the 

methodology presented. The final section ends up with major conclusions and 

further research lines to be followed. 

 

2. CONFIDENCE INTERVALS FOR OD MATRICES 

2.1  Problem definition 

For a given study area divided into transport zones where agents can travel 

from each origin (ranging from 1 to on ) to all destinations (from 1 to dn ), 

ij    denotes the OD trip matrix, where ij  stands for the number of freight 

vehicle trips from origin zone i to destination zone j, and 
1 1

o dn n

ij

i j

  
 

 the total 

number of trips within the study region. Obtaining matrix  requires the 

observation of all trips made in the area, by both the freight vehicle registered 

population and passers-by; this is an impossible task to tackle. Instead, a 

surveying process can be accomplished a number of times E, on samples 

taken from the population of vehicles from transport system which travel in the 

area, providing a series of matrices 
1 2 E, ,...,T T T which represent a stochastic 

series where the total number of trips eT  is distributed among the o dn n cells (

o dC n n  categories) according to a multinomial probability distribution of 

parameters
ij    :  

11

11 11 11 11 11P ,..., , ,..., !( ) ... ( ) / ! ... !  (1)
ee
n no d

o d o d o d o d o d

TTe e e e e e

n n n n n n n n n nT T T T T T T T          
 

    

where ij stands for the probability of detecting e

ijT trips in pair i-j, and where 

0

1 1

dn n
e e

ij

i j

T T
 

 , and 
0

1 1

1
dn n

ij

i j


 

 . 

For a sufficiently high number E of samples, eT may be approximated by a 

normal distribution. This approach is of low interest because of the 

impracticability and budget restrictions on conducting multiple repeated 

studies to obtain more than just one matrix. Instead, one can accept the 
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hypothesis that a single array 1T T , with a total travel 1T T , statistically 

characterizes the said series. 

The generation of a large number of samples  ˆ , 1,...,m m M T , replicated 

by random samples from matrix T , allows to estimate the parameters of the 

distribution (1) as: 

1

1

011 2

ˆ , 1,...,
ˆ , 1,..., ; 1,...,

ˆ ˆ ˆ...

m

ij ij ij

ïj ij ij dM

E T m M T T
p p i n j n

T TT T T

           

    

 
                 (2) 

accepting 1T and 1

ijp  as unbiased estimates of mean T of the total number of 

trips and the probabilities of the number of cell trips (maximum likelihood 

estimator), respectively. Under these assumptions, expression (1) is 

particularised as: * * *

11 11 11P , P ,..., , ,...,
o d o d o dn n n n n nT T T T T T p p        

T T p , 

which stands for the probability distribution function of all possible matrices *T

with parameters T and  ˆ
ijp . 

2.2  Analytical confidence intervals 

When performing a statistical inference from a sample, the reliability of this 

has a decisive influence. Although there are several indexes to quantify this 

reliability, the confidence interval is the most widely used and accepted 

methodology. If s represents the parameter of interest, its classical confidence 

interval is defined as ( ) 1l uP s s s      (replacing the equal sign in inequality

  in case of discrete variables), where ( , )l us s  represents the range within 

which the true value of s can be found with a probability of (1 )100 %  .  

In case of a matrix T, the confidence intervals are given by either 

( )ij ij ijL T U  or ( )l u

ij ij ijp p p  , where ijp  stands for trip proportion 

( )
ij

ij

ij

ij

T
p

T T



. 

There are other techniques, such as the hypothesis test, to perform 

statistical inference based on statistical distributions; but as a general rule, 

confidence intervals are more informative and preferred than hypothesis tests 

when both are available (Burdick and Graybill,1992).  

For certain distributions, the expressions of the confidence intervals are 

well defined at analytical or numerical level. In case of the multinomial 

distribution there are different methods proposed in the literature, mainly 
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depending on the desired confidence level, the length of the interval, or a 

combination of both identified by the confidence index, the size of the sample 

and the matrix covariance of the probabilities. All these methods are grouped 

into two large families: a) analytical ones, based on approximate approaches, 

b) empirical methods, based on successive extractions.  

2.3  Empirical confidence intervals 

Bootstrap is a technique of replicating samples by extraction, presented in 

1979 (Efron, 1979; Efron and Tibshirani, 1993), used to estimate a distribution 

from which to extract several parameters of interest (i.e, mean, variance). The 

assumptions made by this technique are minimal and limited to the 

distribution, followed by the estimator of the draws, and reliably reflect the 

properties of the estimator of the starting sample. 

This technique involves random draws, with replacement, of subsets from 

the input data. The extractions are performed in such a way that each data 

item is represented identically in the random extraction scheme. Its 

characteristics differ from the Monte-Carlo method in connection with the 

sampling process. There are other variations of randomised replicating, such 

as the jackknife method, but analyses carried out up to day do not support the 

superiority of one over the other (Severiano et al., 2011).  

With the aim of simulating a process of replicating trip matrices, a random 

number m of matrix samples *T  with on rows and dn columns are extracted. 

The sum of cell elements *T coincides with the total number of trips T of the 

starting data matrix. Each replicate sample * *

0, 1,..., ; 1,...,ij dT i n j n    T is 

obtained in T random draws, with replacement, from the original data set

0, 1,..., ; 1,...,ij dT i n j n    T . To obtain the bootstrap confidence interval, for 

each pairwise cell of the m extractions, the percentile method for an intended 

coverage of  1 2  is obtained directly from the distribution percentiles   and

1  . Therefore, to obtain the 95% confidence interval lower and upper limits, 

the 0.025 m  and 0.925 m  values are computed from the bootstrap ordered 

indexes, as m extractions are available. Using multiple extractions, following 

Efron’s bootstrap technique, a generic empirical statistics parameter estimator 

̂  of a statistics parameter  , and confidence interval for    can be 

constructed as summarised in the following pseudo-algorithms: 

 Estimate of statistics parameter ̂ : 

 For the initial data set 11( ,..., )
o dn nT T , estimate the multinomial proportions, 

from (2), and assume the hypothesis that these ratios correspond to the 
“true” population proportions. 
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 Generate M samples * *

0, 1,..., ; 1,...,m m

ij dT i n j n    T of size 
1 1

o dn n

ij

i j

N T T
 

   

from the multinomial distribution of parameters π̂ .  

 Estimate the parameter set ̂  from the M drawn samples related to each ij-

th matrix cell:   

    * *ˆ ˆ ˆ, 1,2,..., ; 1,2,..., , 1,2,..., , 1,2,..., ; 1,2,...,m

ij o d ij o di n j n m M i n j n          

 Estimate of cell standard error and mean:
1/2

1 1

ˆ ˆˆ / ( 1) , / .
M M

m m m

ij ij ij ij ij

m m

M M    
 

   
        

   
   

 Construction of a confidence interval for parameter ij based on bootstrap 

percentiles: 

 For each ij-th matrix cell, with all M bootstrap samples, histograms are 

constructed from ˆm

ij . 

 Compute percentiles /2 1ˆ ˆ ( / 2)ij ijF  and  1 /2 1ˆ ˆ (1 / 2)ij ijF    , where 

ˆˆ ( )ij ijF   is the empirical distribution. 

 Compute confidence intervals directly from the percentiles of the empirical 

distribution 1 1ˆˆ ˆ ˆ( ) : ( / 2), (1 / 2)ij ij ij ijF F F    
 

 , where 1ˆ ( )ijF   stands for the 

percentile of the bootstrap empirical distribution constructed by sorting the 
bootstrap estimators in ascending order. 

2.4  OD matrix estimation approaches 

The O-D matrix is the keystone piece of information fundamental input to most 

transportation systems analysis methods. This matrix evinces the volume of 

traffic between all origins and destinations in the transportation network. The 

O-D matrix is difficult and often costly to obtain by direct methods such as 

carrying a home-based survey; consequently, indirect or synthetic techniques 

that seek to infer this matrix based on indirect measures such as license plate 

surveys (Van der Zijpp, 1996), automatic vehicle identification (AVI) systems 

(Dixon and Rilett, 2000; Kwon and Varaiya, 2005) and cell phones (Caceres 

et al., 2011) are widely used.  

The problem of OD inference, estimation and prediction has been dealt 

with during the last two and a half decades (Cascetta, 1984; Ben-Akiva, 1987; 

Cascetta et al.1993). In most of the published literature, OD estimation is 

based on historical demand information provided by a prior matrix and 
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additional information such as link count data and other more recent traffic 

surveillance technologies. The objective of this problem is simulating an OD 

matrix close to a prior or possibly outdated matrix and which, when assigned 

to the network model of the transport system, reproduces the observed 

magnitudes with a controlled error. Beside the hypothesis assumed and the 

approaches followed, there are factors that make it hard to be certain of the 

quality and reliability of the OD matrix estimated. To obtain a complete OD 

matrix by direct measurements describing the transport demand within a given 

region is an unfeasible task because of budget, manpower and time 

limitations. Therefore, OD matrices have customarily been estimated using 

different methodologies. The alternative most used over the past twenty-five 

years and with the largest amount of documented work in the literature is a 

mixed analytical-empirical method which uses traffic counts as measurements 

of link flows in a network model in order to adjust an existing matrix derived 

from a survey. The prior matrix can be regarded as an observation (a good 

approximation) of the “true” OD matrix to be estimated. In methods based on 

this approach, the prior OD matrix is iteratively “adjusted” or “changed” to 

reproduce the observed traffic counts when assigned to the transportation 

network. The most widespread adjustment methodology is based on obtaining 

trip matrices, expressed in equivalent vehicles, that replicate as closely as 

possible the volume observed when matrices are assigned to a reliable 

transport network model by an assignment code.  

Estimating the unknown OD matrix using a limited observed/measured 

sample data from the traffic system is generally an underspecified problem; 

the number of OD unknown variables to be estimated is usually greater than 

the number of observations from the system. Therefore a quite large number 

of feasible solutions can be obtained for the OD matrix estimate problem. In 

consequence, additional pieces of information have to be incorporated to draw 

a unique solution. Supplementary hypothesis have to be set such as a metric 

relating observed and modelled magnitudes such as (i) measured link 

volumes, (ii) travel times, (iii) speeds, (iv) trajectories and path choices, (v) 

either full or partial prior OD matrices, among others.  In summary, the OD trip 

matrix estimation goal is to infer the closest OD matrix to a prior matrix, such 

that when loaded to the transportation network model reproduces the 

observed measured data as closely as possible. Numerous metrics have been 

proposed in the literature: (i) Euclidean and non-euclidean least squares, (ii) 

maximum entropy (see Kapur, 1989 for a comprehensive review), (iii) 

stochastic methods, (iv) heuristic and metaheuristic methods, among other 

mixed approaches. As a consequence wide variations in the OD estimates are 

confronted.  
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In general one can affirm that the different methods of estimating OD trip 

matrices based on traffic counts, developed in the literature, have the 

following generic form (Yang at al.1992): 

   1 2
, 

Minimize

. .  = (

1

0 ( ,  )

F F

s t Assign

 





 

  

v T

T, T v, v

v T)                                                                    (3) 

where functions 1F  and 2F  are two metrics that measure distance between the 

estimated OD matrix T , and the prior matrix, T , and between the estimated 

and the observed volumes in network links, v and v respectively. 

The proposed formulation follows the basics of scheme (3); however, to 

control the distortion of the prior matrix a set of bounded variable constraints 

(for each matrix cell) are prescribed. This manner of proceeding is intended to 

keep the variation of the information contained in the adjusted matrix 

compared to the prior matrix within a range considered to be feasible.  

Regarding the adjustment problem, the necessary volume data are inferred 

from data collected on traffic counts on certain links. The formulation 

proposed to adjust the prior OD matrix includes the Euclidean distance 

between estimated and observed volume data and the distance between the 

prior and estimated matrices; in addition, a set of variable bounds and 

functional constraints which define admissible ranges for individual OD pairs, 

zone productions and attractions, and total number of trips are included. 

These bounds are defined by the confidence intervals inferred by the 

bootstrap technique. Then a modified mathematical formulation from (3) 

results in the programming approach proposed in this investigation by 

incorporating the following constraints, as follows: 

;    ;    O O D D

ij ij ij i ij i j ij j

j D i O

L T U L T U L T U
 

                                                     (4) 

where the necessary mathematical conventions to formulate the new OD 

matrix adjustment approach are summarised: i  O: origin zones (no);  j  D : 

destination zones (nd); ,ij ijU L : upper and lower bounds for (i, j) OD pair;  

,O O

i iU L : upper and lower bounds for trips generated by zone i; ,D D

j jU L : upper 

and lower bounds for trips attracted by zone j; v : observed travel demand 

through links; ,  : weights factor associated with the volume on links and 

OD matrix cells, respectively; v : volume on links; Tij: inter-province travel 

demand (trips) from origin i to destination j. In addition to the above 
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dimensions established to control the distortion of the information contained in 

the matrices, and in order to preserve the basic structure of such information, 

one can set a series of maximum increments and decrements for those pairs 

of the prior matrix where no information is available (Doblas and Benitez, 

2005; Caceres et al., 2011). 

Then, a modified mathematical formulation from (3) results in the bi-level 

programming approach proposed in this investigation, formulated as follows: 

 

 

   1 2
0

Upper Level     Lower Level

Min                         Min ( )

. .      = (                                           . . ,

a

ij a

ij

v

a
T v

a A

a ak k

i j J k K

F F s v dv

s t Assign s t v h

 





  

 

 





 

T, T v, v

v T)    

          1                                                          ,                  ,

          0 ( ,  ) 1                                                     0  

ij

I

k ij

k K

k

a A

h T i O j D

h

 

 



 

     

   





, ,

                       ,

                 

                   

              ,  
O D

ij

ij ij ij

O O

i ij i

j D

D D

j ij j

i O

R R

ij O D

i R j R

k K i O j D

L T U i O j D

L T U i O

L T U j D

L T U i R j R





 

  

    

   

   

    





 

(4) 

where the necessary mathematical conventions, to formulate the new OD 
matrix adjustment bi-level approach, are summarised. 

 
Indices and sets 
i  O: origin zones (no);  j  D : destination zones (nd); a  A: network links; k 

 Kij : routes or paths from origin i to destination j. 
 
Constants 

ak : 1 if link a belongs to path k, 0 otherwise; ,ij ijU L : upper and lower bounds 

for (i, j) OD pair;  ,O O

i iU L : upper and lower bounds for trips generated by zone 

i; ,D D

j jU L : upper and lower bounds for trips attracted by zone j; RU , RL :upper 

and lower bounds for total network trips;  ,av a A  v  : observed travel 

demand through links  a A  (observed volume); ,  : weights factor 

associated with the volume on links and OD matrix cells, respectively. 
 
Functions 

( )a as v : performance (volume-delay or cost) function of link a A . 
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Variables 

 v ,  av a A   : volume on link a; 
kh : flow on path k;  Tij: inter-province travel 

demand (trips) from origin i to destination j, (note that Tij is variable for the 
global OD adjustment process, but constant for every assignment stage). 

In addition,
O D

ij

i R j R

T
 

  stands for inter-macrozonal trips between pairs i-j, 

where origin i and destination j belong to macrozones Ro and Rd, 

respectively; similarly ijT represents the same quantity referred to the prior 

matrix T . As a general notation, bounds ijL and ijU (both with and without 

upper indexes) are identified with the endpoints of the uncertainty intervals 

inferred in formulation (4).  

The lower level program stated in (4), known as Beckmann’s 

transformation, is the basic model for obtaining those volumes va on all 

network links satisfying the user-equilibrium conditions for a given fixed 

demand Tij (Sheffi, 1985).  

 

3. CASE STUDY 

A real case study has been carried out to demonstrate the application of the 

methodology and the importance of incorporating confidence interval 

information in mobility OD matrices. 

As a first stage, starting from the origin-destination matrix (prior non-

elevated matrix) retrieved from the non-elevated data provided by a transport 

survey, a bootstrap generating program estimates confidence intervals for 

each origin-destination matrix cell.  This outcome defines the intervals where 

cell trips are allowed to fluctuate under a similar confidence level.  

The second stage adjusts the prior matrix under a bi-level optimization 

scheme. The macroscopic assignment arrangement uses a commercial 

network tool  to derive traffic flow on links of the modelled transport network. 

The upper level is an optimization scheme, which minimizes the deviation 

between modelled and measured traffic flows (all vehicles and trucks) on 

selected links. The information provided by the confidence intervals is 

incorporated as constraints in the optimization scheme. 

The case analysed is the Spain Road Freight National Survey EPTMC 

(Fomento, 2008), on a sample captured of a continuous basis during 52/53 

weeks every year. The study population consists of heavy goods vehicles 

registered in Spain, authorised to transport goods by road, with operations in 

the territory and abroad. The observation unit is vehicle-week (i.e. transport 

operations performed by selected vehicles during one week). This includes all 

operations that start in the reference week, although they may finish 
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afterwards. Data captured provide information on the characteristics of the 

vehicle, goods transported, origin, destination and distance of the operation. 

Transport operations relate to the movement of goods, which do not 

necessarily coincide with the movement of vehicles. Goods transported are 

grouped into ten classes; 0: agricultural products and live animals, 1: food and 

fodder, 2: solid mineral fuels, 3: petroleum products, 4: minerals and waste to 

recast, 5:  iron products, 6: mineral raw or manufactured and construction 

materials, 7: fertilizers, 8: chemicals, 9: machinery, vehicles, manufactured 

objects and special transactions. Goods transported are quantified in gross 

tons (goods, packaging and container). The raw data of the survey present 

information at the origins and destinations at the province level, and are 

statistically representative at the regional level, but not significant at province 

level.  The raw province disaggregated level is used for the application of the 

techniques presented hereinafter. 

The sample design is based on a stratified random sampling with vehicle-

week as the sampling unit. Samples were selected independently for each 

week of the year, at the rate of 1,000 vehicles per week, stratified by type of 

service (public / private) and type of vehicle. The selection of sampling units in 

each stratum is performed using a systematic sampling with random start 

upon the vehicle registration regional record. To expand the captured data, a 

stratified expansion estimator is used to correct incidences during the survey. 

The estimates are calculated in each stratum, yielding the total population as 

the sum of the estimates of each of them. The response rate for 2008 was 

71.7%. The valid sample size surveyed amounts to 37,305 vehicles. The 

number of valid sample transport operations is 529,229, disaggregated into a) 

intra-municipal: 168,291, b) intra-regional: 302,825, c) inter-regional: 50,104, 

and d) international: 8,009.  

3.1 OD matrix confidence intervals estimation 

The simulations carried out comply with the empirical procedure introduced in 

section 3.3. The computer program was coded in Matlab. The simulated 

multinomial sample replication was generated by the subroutine MNRND. All 

simulation studies were performed on a 12 core Intel Xeon E5645 personal 

computer using parallel computing. To provide a reliable confidence interval, a 

large sample size is desirable. In this case a size of 10,000 bootstrap samples 

was used. These simulations consist of the following steps: 

i. For the initial data set estimate the multinomial proportions ijp  and 

assume the hypothesis these ratios correspond to the “true” population 

proportions. 
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ii. Extract 10,000 multinomial samples from the survey matrix. 

iii. Obtain confidence intervals for each cell sample on the 95% level, 

based on the drawn subset corresponding to each cell.  

iv. Assess the average length of full, left and right halves of intervals as 

the mean of the difference between the upper and lower limits of each 

interval ( )ij ijU L , the difference between the mean value and the lower 

limit ( )ij ijT L , and the difference of the upper value and the mean 

value ( )ij ijU T , respectively. 

v. Weight (expand) each cell confidence interval according to the cell 

sampling rate. 

Confidence interval lengths inferred versus trip nominal values for all OD 

matrix cells are depicted in Figure 1(a). The solid curve is the regression 

curve, obtained by a least-squares fit, with expression a b

ij ij ijU L e T   where 

parameters 0.2083,  0.4825a b   with a t-statistics of 29 and 770 respectively. 

The coefficient of determination of this adjustment,
2. 0.996Adj R  ,is 

sufficiently high to ensure the goodness of fit. 

Figure 1(b) reflects the histogram of confidence interval lengths for OD cell 

trips. It is easy to notice the large number of null trip cells, a recursive 

behavior in most transport survey studies. 

 

 

 

 

 

Fig. 1. Confidence interval length ij ijU L  a) versus cell trips b) histogram. 

 

3.2  Adjusting mobility matrices 

Figure 2 shows a summary of the results achieved in the assignment process 
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adjusted matrix gives rise to a value of 0.604 for the same coefficient, (Figure 

2b). The assessment of the methodology in terms of distortion of the 

information contained in the adjusted matrix in relation to the prior one, 

provides a high correlation value due to the bound constraints imposed 

(Figure 3). The determination coefficient between both matrices are 2 0.949R 

for the inter-province case and 2 0.981R  for the inter-regional one. 

The solid straight lines are the linear regression lines, obtained by a least-

squares fit.. 

The control in the OD estimation, containing the level of distortion between 

both prior and undated matrices, utilising the information incorporated by the 

cell confidence interval, guarantees reliability and brings a certain degree of 

soundness to the final results regarding the OD matrix obtained. 

It is trivial and stated (Doblas and Benitez, 2005) that relaxing the 

constraints derived from the cell confidence intervals would both (i) increase 

the determination coefficient between observed and modelled volumes 

(unconstraint optimization yields better optimum values of the objective 

function than constraint optimization) and (ii) would deteriorate the correlation 

between prior and adjusted OD matrices; therefore a comparison in this terms 

does not offer valuable information worth to be analysed. 
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(b) 

FIGURE 2 Relationship between measured (x-axis) and modelled volumes (y-

axis) (in vehicles) using the (a) prior matrix or (b) the adjusted matrix. 
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FIGURE 3 Correlation between prior (x-axis) and adjusted (y-axis) OD 

matrices (in vehicles) using (a) inter-province matrix or (b) inter-regional 

matrix. 
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4. CONCLUSIONS 

A general methodology for the development, treatment and incorporation of 

additional information sources to the problem of OD matrix estimation, based 

on the definition of confidence intervals for the trip matrix cells, is presented. 

This approach is based on the definition of confidence intervals for the 

matrix cells extracted by a travel survey. The approach has been applied to 

the real case of the wide annual inter-province freight transport in Spain. 

The experimental validation of the proposed models has shown evidence 

that the bootstrap technique is an alternative that may be considered for the 

determination of confidence intervals of the volume of trips between OD pairs. 

This allows defining an acceptable measure of the magnitudes to be imposed 

in the process of adjusting OD matrices. The consequences of this finding are 

significant, particularly for the generation of OD matrices that conform to that 

collected by a survey, diminishing the level of uncertainty involved in this 

extremely underspecified problem. To ensure the widespread professional 

application of this technique it will be necessary to further perform validation 

on large scale real cases in order to outline the degree of robustness, 

efficiency and numerical stability of outcomes. 
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