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Abstract

This paper presents new results for the Discrete Ordered Median Problem (DOMP). It exploits proper-
ties of k-sum optimization to derive specific formulations for the monotone DOMP (MDOMP), that arises
when the λ weights are non-decreasing monotone, and new formulations for the general non-monotone
DOMP. The main idea in our approach is to express ordered weighted averages as telescopic sums whose
terms are k-sums, with positive and negative coefficients. Formulations of k-sums with positive coeffi-
cients derive from the linear programming representations obtained by [Ogryczack and Tamir, 2003] and
[Blanco et al., 2014]. Valid formulations for k-sums with negative coefficients are more elaborated and
we present 4 different approaches, all of them based on mixed integer programming formulations. An
extensive computational experience based on a collection of well-known instances shows the usefulness of
the new formulations to solve difficult problems such as trimmed and anti-trimmed mean.
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1 Introduction

In a remarkable paper by [Ogryczack and Tamir, 2003] these authors introduce a novel linear time algorithm
to compute the sum of the k-largest entries (k ≤ n) of an arbitrary vector of n components. This approach
gives rise to a linear programming representation of such an evaluation. More recently, a different linear
programming representation of the sum of the k largest components of a vector has also been obtained
[Blanco et al., 2014]. The earlier idea in [Ogryczack and Tamir, 2003] was later exploited by [Kalcsics et al.,
2002] to develop an efficient representation for the k-centrum location problem and more generally extended
to deal with some classes of Discrete Ordered Median Problems (DOMP) (the reader is referred to [Nickel
and Puerto, 2005, Puerto et al., 2009, Kalcsics et al., 2010] for further details on this problem). More
recently, the same approach has been used in [Puerto et al., 2017] to provide new algorithms to the general
k-sum optimization problem. The interested reader is referred to [Aouad and Segev, 2019], [Blanco, 2019],
[Delaplanque et al., 2020], [Labbé et al., 2017], [Olender and Ogryczak, 2019] or [Puerto, 2019] for the most
recent results on DOMP appeared in the literature.

k-sum optimization problems are well-understood and solved in a number of important cases (see [Puerto
et al., 2017]). In particular, it has been observed that DOMP, under the hypothesis that the λ modeling
weights are monotone, can be easily reformulated using as building blocks k-sum terms.

The main goal of this paper is to show how to exploit the powerfulness of k-sum optimization within
the framework of the monotone and general non-monotone DOMP. Our contribution is to present a range
of formulations for the monotone and general version of DOMP using different forms of representing k-
sums. In this journey, we resort to express ordered weighted averages as telescopic sums whose terms are
k-sums, with positive and negative coefficients. Next, to get valid mathematical programming formulations
we distinguish between reformulations for k-sums with positive and negative coefficients in the objective
function. Formulations of k-sums with positive coefficients derive from the linear programming represen-
tations obtained by [Ogryczack and Tamir, 2003] and [Blanco et al., 2014]. Valid formulations for k-sums
with negative coefficients are more cumbersome and we present 4 different approaches, all of them mixed
integer programming formulations. The first two are based on radius formulations in the spirit of [Elloumi
et al., 2004, Maŕın et al., 2009, Maŕın et al., 2010, Garćıa et al., 2011, Puerto et al., 2011]. The third one
uses a folk approach including big-M constraints to represent the necessary sorting, and the fourth one
is a new three-index formulation with a highly competitive performance. We compare these formulations
among them and with another one presented in [Nickel and Velten, 2017] showing their differences and the
superiority of our new three-index formulation. This formulation is able to solve instances with more than
150 demand points in few seconds.

The paper is organized in five sections. The first one is the introduction. There, we motivate our research
and describe the contributions. In addition, there is a subsection devoted to state the considered problems
and the relationship between k-sums functions and the ordered median function. Section 3 introduces the
monotone version of DOMP and presents two valid mathematical programming formulations to handle it.
There it is also proved that both are equivalent in terms of the linear programming relaxation, although,
as we will see, their performance is not equal when applied to different combinatorial objects. Section 4
analyzes the general DOMP, i.e., with no hypothesis of monotonicity in its λ weights. We present four
different formulations for the problem and analyze some theoretical relationships among them. In Section
5, we give alternative valid formulations for the general DOMP using a different rationale based on the
results in [Blanco et al., 2014] rather than in those by [Ogryczack and Tamir, 2003] used in Section 4.
Computational results are reported in Section 6. The paper ends with some conclusions and remarks for
future research.
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2 DOMP basics

2.1 The k-sum and the Ordered Median functions

Let N = {1, . . . , n} be a set of indices. Assume that we are given a real n-vector d = (d1, . . . , dn) and let us
denote by d() = (d(1), . . . , d(n)) the vector with the components of d sorted in non-decreasing sequence, i.e.,
d(1) ≤ . . . ≤ d(n). It is easy to check that the following two dual linear programs return as its optimal value

Sk(d) =

n∑
`=k

d(`),

the sum of the n− k + 1 largest values (i.e., from d(k) to d(n)) out of the n components of the given vector
d (see e.g. [Ogryczack and Tamir, 2003] and [Kalcsics et al., 2002]):

max
∑
i∈N

dixi

s.t.
∑
i∈N

xi = n− k + 1

xi ≤ 1, ∀i ∈ N
xi ≥ 0, ∀i ∈ N


=


(OT) min (n− k + 1)t +

∑
i∈N

zi

s.t. t +zi ≥ di ∀i ∈ N
zi ≥ 0 ∀i ∈ N.

(1)

In the following we shall denote the formulation in the right hand side as OT. It is clear that, under the
assumption of non-negative d-values, the first constraint in the maximization problem can be replaced by
an inequality and then the associated dual variable t can be further strengthened to be non-negative.

A second way to recover the value Sk(d) is based on two results that exploit the non-negativity and

monotonicity of the λ-vectors used in ordered median functions (omf), namely
∑
k∈N

λkd(k) (see [Nickel and

Puerto, 2005] for further details). We reproduce them in Lemma 1 for the sake of completeness:

Lemma 1. Let P(n) be the set of permutations of N .

1. Let d ∈ Rn and λ ≥ 0. Then
∑
k∈N

λkd(k) is a monotonically non-decreasing function of d.

2. If 0 ≤ λ1 ≤ · · · ≤ λn, then
∑
k∈N

λkd(k) = max
σ∈P(n)

∑
i∈N

λidσ(i).

The proof can be found, for instance, in [Nickel and Puerto, 2005]. The reader may observe that using

Lemma 1 one can write down the evaluation of the function
∑
k∈N

λkd(k) by means of the optimal value of the

following Integer Linear Problem:

∑
k∈N

λkd(k) =



max
∑
k∈N

∑
i∈N

(λkdi)pik

s.t.
∑
i∈N

pik = 1 ∀k ∈ N∑
k∈N

pik = 1 ∀i ∈ N

pik ∈ {0, 1} ∀i, k ∈ N.

(2)
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We observe that the constraints of the problem above are those that model permutations, i.e., assignment
constraints. Thus, variables pik are enforced to be binary by total unimodularity and could be relaxed to
be non-negative. This fact allows us to compute the dual problem and its value will also be a valid form of

evaluation for
∑
k∈N

λkd(k):

∑
k∈N

λkd(k) =

 (BHP) min
∑
`∈N

u` +
∑
i∈N

vi

s.t. u` +vi ≥ λ`di ∀i, ` ∈ N.
(3)

In the following we will denote the formulation in the right hand side of (3) as BHP because it appears
in [Blanco et al., 2014] for the first time.

Remark 1. Under nonnegativity conditions of the vectors d and λ, the linear constraints of the above
assignment problem (2) can be relaxed to be less than or equal to 1. This results in non-negative dual
multipliers u and v. The implication is that the representation of

∑
k∈N λkd(k) is modeled by a simplified

problem

∑
k∈N

λkd(k) =



min
∑
`∈N :
λ`>0

u` +
∑
i∈N

vi

s.t. u` + vi ≥ λ`di ∀i, ` ∈ N : λ` > 0
u` ≥ 0 ∀` ∈ N : λ` > 0
vi ≥ 0 ∀i ∈ N.

In particular, the above discussion leads to an alternative representation to the one in (1) for Sk(d). We
state that result in the following lemma.

Lemma 2. Assuming that d ≥ 0, the following is a valid representation of Sk(d):

Sk(d) = min
∑
`≥k

u` +
∑
i∈N

vi

s.t. u` + vi ≥ di ∀i ∈ N, ∀` ≥ k
u` ≥ 0 ∀` ≥ k
vi ≥ 0 ∀i ∈ N.

Now, to represent the ordered median value of d for any λ ∈ Rn, namely
∑

k∈N λkd(k), we can resort to
the following observation whose proof is direct and left to the reader.

Lemma 3. It holds ∑
k∈N

λkd(k) = ∆1

∑
i∈N

di +
∑
k≥2

∆kSk(d) =
∑
k≥1

∆kSk(d) (4)

where λ0 := 0 and ∆k := λk − λk−1 for all k ∈ N .

2.2 The p-median problem

Based on Lemma 3 we can exploit the different representations of Sk(d) to enforce new formulations of
the ordered median objective with applications to different combinatorial objects. In particular, this paper
focuses on the application to the so-called p-median polytope. Consider variables yj = 1 if the facility at
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position j is open and zero otherwise; and xij = 1 if client placed at position i is allocated to the facility at
j. Then, the p-median polytope is:

X = {x ∈ Rn×n, y ∈ Rn :
∑
j∈N

yj = p,
∑
j∈N

xij = 1 ∀i ∈ N,

xij ≤ yj ∀i, j ∈ N, 0 ≤ yj ≤ 1 ∀j ∈ N, xij ≥ 0 ∀i, j ∈ N}.

In the following, for the sake of readability, we will also refer to the integer lattice points within X as
XI .

Based on this idea we can formulate the Discrete Ordered Median Location Problem by means of several
mixed integer linear formulations. Next, we present the simplest cases, those that correspond to the choice
of nondecreasing lambda weights.

Assume that we are given a cost matrix C = (cij), where cij represents the cost of allocating the client
placed at position i to the facility opened at j, cij ≥ 0. The goal of DOMP is to find a set of p facilities to
open so as to minimize the allocation costs of clients to facilities evaluated with an ordered median objective
function.

It is straightforward to realize that for a given feasible point (x, y) ∈ XI , its assignment costs are

c(x) := (
∑
j∈N

c1jx1j , . . . ,
∑
j∈N

cnjxnj).

Therefore, the evaluation of the ordered median function for a given vector (λ1, . . . , λn) results in:∑
i∈N

λic(i)(x),

where c()(x) = (c(1)(x), . . . , c(n)(x)) is a reordering of c(x) that satisfies c(1)(x) ≤ c(2)(x) ≤ · · · ≤ c(n)(x).

3 The Monotone Discrete Ordered Median Problem

Let us assume, in this section, that 0 ≤ λ1 ≤ · · · ≤ λn, and denote this as the monotonicity assumption.
Then, using (4) replacing Sk(c(x)) by its valid formulation given by (1), one obtains the following formulation
for the Monotone Discrete Ordered Median Problem (MDOMP).

(MDOMPOT0) min
∑
k∈N

∆k

(
(n− k + 1)tk +

∑
i∈N

zik

)
s.t.

∑
j∈N

cijxij − tk ≤ zik ∀i, k ∈ N

(x, y) ∈ XI

zik ≥ 0 ∀i, k ∈ N.

Once again, under the assumption of non-negative cij costs, we can assume that tk ≥ 0 for all k ∈ N .
It is also well-known that if the costs are non-negative, in an optimal solution of the DOMP, allocations of
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clients are always done to the closest facility. This, in turns, implies that the p-median polytope does not
need to include extra constraints to enforce that property. Nevertheless, if we consider some negative ∆,
that property is lost and it must be enforced with closest assignment constraints [Espejo et al., 2012] added
to the corresponding formulation.

Remark 2. The above formulation can be strengthened taking advantage of the ties in the consecutive values
of the λ-vector. Let us assume that there are Q different “blocks”, each one with qk replications, k = 1, . . . , Q:

λ = (λ1, . . . , λ1︸ ︷︷ ︸
q1

, λ2, . . . , λ2︸ ︷︷ ︸
q2

, . . . , λQ, . . . , λQ︸ ︷︷ ︸
qQ

).

Hence, taking ∆k = λk − λk−1 for k = 2, . . . , Q and ∆1 = λ1, the following is also a valid formulation for
the MDOMP:

(MDOMPOT ) min

Q∑
k=1

∆k

((
Q∑

k′=k

qk′

)
tk +

∑
i∈N

zik

)
s.t.

∑
j∈N

cijxij − tk ≤ zik ∀i ∈ N, k = 1, . . . , Q

(x, y) ∈ XI

zik ≥ 0 ∀i ∈ N, k = 1, . . . , Q.

Analogously, we also obtain a valid formulation of MDOMP for general nondecreasing λ-weights using
Lemma 2. We will enrich that formulation forcing the combination of Lemmas 2 and 3. Obviously, this
results in using a larger number of variables and constraints, since we wish to have explicitly all k-sums in
the objective function. Our goal will become transparent in the next sections. Indeed, the formulation that
we announce is:

(MDOMPBHP ) min
∑
k∈N :
∆k>0

∆k

∑
`≥k

uk` +
∑
i∈N

vki


s.t. uk` + vki ≥

∑
j∈N

cijxij ∀i, k ∈ N : ∆k > 0, ∀` ≥ k

(x, y) ∈ XI

uk` ≥ 0 ∀k ∈ N : ∆k > 0, ∀` ≥ k
vik ≥ 0 ∀k ∈ N : ∆k > 0, ∀i ∈ N.

For the sake of readability, let us denote by zLPA the optimal value of the LP-relaxation of (MDOMPA).
Next, we analyze the relation between the two models for the MDOMP previously developed.

Theorem 1. zLPOT0
= zLPBHP .

Proof. Let us assume a vector λ that satisfies the monotonicity assumption. We observe that for a given
feasible point (x, y) ∈ X the evaluation of

∑
k∈N λkc(k)(x), i.e., the omf for the assignment cost c(x), is
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equivalently given as

∑
k∈N

λkc(k)(x) =



min
∑
k∈N

uk +
∑
i∈N

vi

s.t. uk + vi ≥ λk
∑
j∈N

cijxij

uk ≥ 0 ∀k ∈ N
vi ≥ 0 ∀i ∈ N

=


min

∑
k∈N

∆k((n− k + 1)tk +
∑
i∈N

zik)

s.t.
∑
j∈N

cijxij − tk ≤ zik ∀i,∀k ∈ N

zik ≥ 0 ∀i,∀k ∈ N.

Therefore, the optimal values of the linear relaxations of (MDOMPOT0) and (MDOMPBHP ) coincide.

4 Some families of new formulations for DOMP based on OT

The extraordinary performance shown by the above formulations in the monotone cases (see Section 6.1)
leads us to extend the rationale behind the k-sum representations to a more general framework where
monotonicity of λ is lost.

Recall that we have already assumed in Section 3 the nonnegativity of the costs cij , i, j ∈ N , and
parameters λk, k ∈ N . Consider again Sk(c(x)) =

∑
j≥k c(j)(x). Based on Lemma 3 we have the validity of

the following equation:

min
x∈XI

∑
k∈N

λkc(k)(x) = min
x∈XI

∑
k∈N

∆kSk(c(x)). (5)

The problem in the right hand side of (5) can be re-written as:

min
x∈XI

∑
k∈N :
∆k>0

∆kSk(c(x)) +
∑
k∈N :
∆k<0

∆kSk(c(x)). (6)

The representations of the k-sum problem by means of one of the linear programs given in (MDOMPOT )
and (MDOMPBHP ) can be plugged into (6) provided that the coefficient ∆k is positive. Otherwise, the
validity is lost. This fact was already observed in [Puerto et al., 2017] although the goal of that paper was
mainly theoretical and not focused on developing formulations.

Clearly, for all k ∈ N with ∆k > 0, Sk(c(x)) can be replaced in (6) by the corresponding optimization
problem (MDOMPOT0) or (MDOMPBHP ). However, if ∆k < 0, some alternative representations, most
likely given by a mixed integer linear program, are required. We pursue this goal in the rest of the paper.

4.1 New radius formulation for the general DOMP (DOMPOTr1)

Consider a fixed (x, y) ∈ XI . A first valid representation for the k-sum, Sk(c(x)), as a mixed integer linear
program, regardless of the sign of the ∆-coefficients, can be obtained via the radius rkh variables that were
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applied for instance in [Elloumi et al., 2004, Puerto, 2008, Garćıa et al., 2011, Puerto et al., 2011]. By sorting
the different nonzero values in the cost matrix C with g the number of different values and G = {1, . . . , g},
we obtain

0 =: c(0) < c(1) < . . . < c(g) := max
i,j∈N

cij .

Then the radius variables are defined for ` ∈ N and h ∈ G as follows:

r`h =

{
1 if the `-th allocation cost is at least c(h),

0 otherwise.

Using these variables, the value of Sk(c(x)) can be obtained by solving the following problem:

min
∑
`≥k

(
r`gc(g) +

g−1∑
h=1

(r`h − r`,h+1)c(h)

)
s.t. r`−1,h ≤ r`h ∀` ≥ 2, ∀h ∈ G∑

`∈N
r`h =

∑
i,j∈N :
cij≥c(h)

xij ∀h ∈ G (7)

r`h ∈ {0, 1} ∀` ∈ N, ∀h ∈ G.

Next, we apply this formulation with the assignment costs coming from variables (x, y) ∈ XI . However,
if its objective function appears with a negative coefficient within another problem, it is not true anymore
that the location variables x in the p-median polytope will take the assignment given by the smallest possible
costs. This must be enforced by the formulation by adding the so-called closest assignment constraints, see
e.g. [Espejo et al., 2012]. In this case, we can use the following set of inequalities:∑

j∈N :
cij>cim

xij + ym ≤ 1 ∀i,m ∈ N. (8)

Let α := min{k ∈ N : ∆k < 0}. The first valid formulation of DOMP with non-monotone λ-vector can
be obtained combining (4), (MDOMPOT0), (7) and (8):

(DOMPOTr1) min
∑
k∈N :
∆k>0

∆k

(
(n− k + 1)tk +

∑
i∈N

zik

)

+
∑
k∈N :
∆k<0

∆k

∑
`≥k

(
r`gc(g) +

g−1∑
h=1

(r`h − r`,h+1)c(h)

)
(9)

s.t. tk + zik ≥
∑
j∈N

cijxij ∀i, k ∈ N : ∆k > 0 (10)

∑
j∈N :

cij>cim

xij + ym ≤ 1 ∀i,m ∈ N (11)
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r`−1,h ≤ r`h ∀` ≥ α, ∀h ∈ G (12)∑
`≥α

r`h=
∑
i,j∈N :
cij≥c(h)

xij ∀h ∈ G (13)

(x, y) ∈ XI (14)

zik, tk ≥ 0 ∀i, k ∈ N : ∆k > 0 (15)

r`h ∈ {0, 1} ∀` ≥ α, ∀h ∈ G. (16)

The objective function (9) has two parts. The first part computes the sum of the k-sums terms (Sk(c(x)))
for positive ∆k, whereas the second part evaluates, according to (7), the terms with negative ∆k. Constraints
(10) are the same that appear in formulation (1) but applied to the allocation costs in the p-median polytope.
Therefore, these constraints allow for a correct representation of Sk(c(x)) whenever ∆k > 0. Constraints
(11) are closest assignment constraints. Constraints (12) and (13) are those that ensure the correct sorting
of allocation costs in positions k with ∆k < 0. Finally, (14)-(16) define the range of the variables in the
model.

4.2 Another radius formulation (DOMPOTr2)

The above formulation can be strengthened replacing the definition of the radius variables following [Maŕın
et al., 2009]. Define for each row i ∈ N of the cost matrix C, gi as the number of different non-zero elements
in row i and Gi := {1, . . . , gi}. Thus, we obtain the ordering

ci(0) := 0 < ci(1) < . . . < ci(gi) := max
j∈N

cij

of the row. In addition, let

`ih =

{
min{s : ci(s) ≥ c(h)} if c(h) ≤ ci(gi),
gi + 1 otherwise.

Then we can define the variables wih, for all i ∈ N , h ∈ Gi:

wih =

{
1 if the allocation cost for i is at least ci(h),

0 otherwise.
(17)

We add for convenience wi,gi+1 := 0, for all i ∈ N . Next, we also consider the new set of variables ρkh, for
all k such that ∆k < 0 and h ∈ G, defined as the number of times that an allocation cost greater than or
equal to c(h) is used in the computation of Sk(c(x)).

Now, we obtain, as in (DOMPOTr1), the following formulation:

(DOMPOTr2) min
∑
k∈N :
∆k>0

∆k((n− k + 1)tk +
∑
i∈N

zik)

+
∑
k∈N :
∆k<0

∆k

∑
h∈G

(c(h) − c(h−1))ρkh (18)
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s.t. wih ≥ 1−
∑
j∈N :

cij<c
i
(h)

yj ∀i ∈ N, ∀h ∈ Gi (19)

∑
j∈N

yj = p (20)

wih + yj ≤ 1 ∀i, j ∈ N, ∀h ∈ Gi : cij < ci(h) (21)

tk + zik ≥
∑
h∈Gi

(ci(h) − c
i
(h−1))wih ∀i ∈ N, ∀k ∈ N : ∆k > 0 (22)

ρkh ≤
∑
i∈N :
`ih≤gi

wi`ih ∀k ∈ N, ∀h ∈ G : ∆k < 0 (23)

ρkh ≤ n− k + 1 ∀k ∈ N, ∀h ∈ G : ∆k < 0 (24)

yj ∈ {0, 1} ∀j ∈ N (25)

zik, tk ≥ 0 ∀i, k ∈ N : ∆k > 0 (26)

ρkh ≥ 0 ∀k, ∀h ∈ G : ∆k < 0 (27)

wih ≥ 0 ∀i ∈ N, h ∈ Gi. (28)

The objective function (18) has two parts: the first one that accounts for the sum of the terms Sk(c(x))
for ∆k > 0, and the second one does the same for ∆k < 0. Constraints (19) and (21) enforce closest
assignment of clients to facilities since wih assumes value 1 whenever all the facilities that give allocation
costs to client i less than c(h) are closed and client i can be assigned at a cost at least c(h) only if any
plant j satisfying cij < c(h) is closed. The next constraints, namely (20), assure that p facilities are opened.
Constraints (21) together with (19) allow one to define the w variables as continuous. Constraints (22)
define the terms Sk(c(x)) for ∆k > 0. Finally, constraints (23) and (24) ensure the correct definition of the
ρ and w variables. Indeed, (23) limit the number of addends greater than or equal to c(h) in the k-sum
Sk(c(x)), with ∆k < 0, whereas (24) state an upper bound on that number of addends. The range of the
variables of the problem is given in (25)-(28).

Observe that the variables wih are defined as continuous although by the combination of constraints
(19) and (21) they will assume binary values in any feasible solution. As a consequence, variables ρ will
also assume integer values since they are bounded above by integer values and they appear in the objective
function (18) with a negative coefficient.

4.3 A big M formulation for the general DOMP (DOMPOTγ)

As mentioned above, one can obtain different formulations using different representations of Sk(c(x)) for
those k such that ∆k < 0. In this section, we propose another formulation based on the same rationale that
in the papers by [Labbé et al., 2017] and [Nickel and Velten, 2017]. To this end, we define variables γik that
assume value one if the allocation cost of client i goes sorted in position k and zero otherwise; and variables
ωik that take the value of the allocation cost of client i if it goes in position k and zero otherwise. Then it
follows that, for fixed (x, y) ∈ X (regardless whether (x, y) are integer or not), we can compute Sk(c(x)) as
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the following maximization problem:

Sk(c(x)) = max
∑
i∈N

ωik

s.t.
∑
i∈N

γik = n− k + 1

ωik ≤Mγik ∀i ∈ N
ωik ≤

∑
j∈N

cijxij ∀i ∈ N

γik ∈ {0, 1} ∀i ∈ N
ωik ≥ 0 ∀i ∈ N.

(29)

Next, combining (10), (11) and (29) results in the following valid formulation for DOMP:

(DOMPOTγ) min
∑
k∈N :
∆k>0

∆k

(
(n− k + 1)tk +

∑
i∈N

zik

)
+
∑
k∈N :
∆k<0

∆k

∑
i∈N

ωik (30)

s.t. (10), (11)∑
i∈N

γik = n− k + 1 ∀k ∈ N : ∆k < 0 (31)

ωik ≤Miγik ∀i, k ∈ N : ∆k < 0 (32)

ωik ≤
∑
j∈N

cijxij ∀i, k ∈ N : ∆k < 0 (33)

γik ∈ {0, 1} ∀i, k ∈ N : ∆k < 0 (34)

ωik ≥ 0 ∀i, k ∈ N : ∆k < 0 (35)

zik, tk ≥ 0 ∀i, k ∈ N : ∆k > 0 (36)

(x, y) ∈ XI ,

where we can use as Mi the k-th biggest element in {cij}j∈N .

The objective function (30) has two parts: the first one that accounts for the sum of the terms Sk(c(x))
for ∆k > 0, and the second one that, according to (29), does the same for ∆k < 0. Constraints (10) are
borrowed from (DOMPOTr1) and allow for a valid representation of Sk(c(x)) for ∆k > 0. Constraints (11)
enforce closest assignment of clients to facilities. The rest of the constraints come from (29) and are used
to get a valid representation of Sk(c(x)) for negative ∆k. Indeed, (31) ensure that the Sk(c(x)) term will
have only n − k + 1 elements, namely those corresponding to c(k)(x), . . . , c(n)(x). With (32) and (33), it is
enforced that the allocation cost of client i only goes sorted in position k if γik 6= 0. Finally, (34)-(36) define
the range of the variables.

4.4 A three-index formulation for the general DOMP (DOMPOTθ)

Yet another formulation can be developed, based on (DOMPOTγ) exploiting its structure to avoid defining
the O(n2) γ binary variables and the use of big-M constraints. Instead, we define the variables θkij as 1 if
the cost of allocating client i to facility j is sorted in position k and 0 otherwise. The reader should observe
that although the variables are defined as integer, actually they can be considered as continuous since, as we
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will see, there always exists an optimal solution in integer values. This fact gives rise to the rather efficient
formulation for the problem given below.

(DOMPOTθ) min
∑
k∈N :
∆k>0

∆k

(
(n− k + 1)tk +

∑
i∈N

zik

)

+
∑
k∈N :
∆k<0

∆k

∑
i∈N

∑
j∈N

cijθ
k
ij (37)

s.t. (10), (11)∑
i∈N

∑
j∈N

θkij = n− k + 1 ∀k ∈ N : ∆k < 0 (38)

θkij ≤ xij ∀i, j, k ∈ N : ∆k < 0 (39)

θkij ≥ 0 ∀i, j, k ∈ N : ∆k < 0 (40)

zik, tk ≥ 0 ∀i, k ∈ N : ∆k > 0 (41)

(x, y) ∈ XI .

Once again, the objective function (37) has two parts: the first one accounts for the sum of the terms
Sk(c(x)) for ∆k > 0, and the second one does the same for ∆k < 0. Constraints (10) allow for a valid
representation of Sk(c(x)) for ∆k > 0. Constraints (11) enforce closest assignment of clients to facilities.
The remaining constraints, namely (38) and (39), are used to get a valid representation of Sk(c(x)) for
∆k < 0. Finally, (40) define the range of the variables θkij . The reader may observe that since xij are binary

and θkij appears in the objective function with a negative coefficient (∆k < 0), if xij = 1 then θkij = 1, thus

in the optimal solution θkij ∈ {0, 1}.

Finally, we conclude this section with a relationship that holds between the two previous formulations
(DOMPOTγ) and (DOMPOTθ):

zLPOTγ ≥ zLPOTθ.

Indeed, the inequality can be verified checking that any feasible solution (t, z, x, y, γ, ω) to (DOMPOTγ)
induces a feasible solution to (DOMPOTθ) (t, z, x, y, θ) by taking θkij = xijγik for all i, j, k ∈ N .

4.4.1 Valid inequalities for this formulation

For any of the above formulations, the relationship Sk(c(x)) ≤ Sk−1(c(x)) for all k ≥ 2 translated into the
adequate space of variables results in a valid inequality. In this case, it can be written for those k such that
∆k > 0, ∆k+1 < 0 as

(n− k + 1)tk +
∑
i∈N

zik ≤
∑
i∈N

∑
j∈N

cijθ
k−1
ij ∀k ∈ N : ∆k > 0 and ∆k+1 < 0.

Another observation that leads to derive valid inequalities comes from the fact that, by its own definition,
the variables θkij are non-increasing in k for a given pair (i, j). This results in

θkij ≤ θk̄ij ∀i, j ∈ N, ∀k > k̄ ≥ 2, and ∆k,∆k̄ < 0.
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4.5 Comparison

This subsection is devoted to compare our formulation (DOMPOTθ) with another one that, in addition, also
uses the set of variables αki , for i, k ∈ N , ∆k < 0 and corresponds to (29)-(35) in [Nickel and Velten, 2017].
We recall it for the sake of completeness.

(DOMPOT−NV ) min
∑
k∈N :
∆k>0

∆k

(
(n− k + 1)tk +

∑
i∈N

zik

)

+
∑
k∈N :
∆k<0

∆k

∑
i∈N

∑
j∈N

cijθ
k
ij (42)

s.t. (10), (11)∑
i∈N

αki = n− k + 1 ∀k ∈ N : ∆k < 0 (43)

θkij ≤ xij ∀i, j, k ∈ N : ∆k < 0 (44)

θkij ≤ αki ∀i, j, k ∈ N : ∆k < 0 (45)

θkij ≥ 0 ∀i, j, k ∈ N : ∆k < 0 (46)

zik, tk ≥ 0 ∀i, k ∈ N : ∆k > 0 (47)

(x, y) ∈ XI .

One can easily check that (DOMPOTθ) is stronger than (DOMPOT−NV ). Indeed, we prove that any feasi-
ble solution (x, y, z, t, θ) of (DOMPOTθ) can be lifted to a feasible solution (x, y, z, t, θ, α) of (DOMPOT−NV ).
Define αki =

∑
j∈N θ

k
ij for all i, k ∈ N, ∆k < 0. Clearly, α satisfies (43) and α and θ satisfy (45). Moreover,

one can also prove that (DOMPOTθ) is equivalent to a strict strengthening of (DOMPOT−NV ) replacing
(45) by

∑
j∈N θ

k
ij ≤ αki for all i, k ∈ N, ∆k < 0 which follows since

∑
i∈N xij = 1.

The above mentioned strengthening is not a little change since it allows one to reduce the number of
binary variables in O(n2). Moreover, as can be seen in the following example, it has an enormous impact
in the quality of the lower bound given by the linear relaxations. We also note in passing that in the
original formulation to model the general DOMP in [Nickel and Velten, 2017], there is a missing family of
constraints. In DOMP, as in any other location problem, it is required that demand points are allocated to
their closest service facility. This is automatically implied by formulations with positive coefficients in the
objective function. However, if some coefficients are negative in the objective function this requirement must
be imposed explicitly by some constraints. These constraints, at times called closest assignment constraints
are missing in formulation (29)-(35) in [Nickel and Velten, 2017].

Example 1. Consider the following network with n = 6 nodes and distance matrix C taken from Beasley li-
brary[Beasley, 2012]. We want to solve DOMP with a randomly generated λ = (0.62, 0.17, 0.54, 0.55, 0.02, 0.91)
and p = 2.

C =



143 127 185 171 78 115
145 129 188 180 108 145
99 83 142 134 154 134
98 82 141 133 155 133
70 54 113 105 160 123
101 85 144 136 191 154


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If one runs formulations (DOMPOTθ) the linear relaxation of the problem is 236.358 with a gap (100(optimal−
linear relaxation bound)/optimal) at the root node of 0.1%. On the other hand, the correction of formu-
lation (DOMPOT−NV ) carried out adding the required closest assignment constraints results in a linear
relaxation of 37.0 with a gap at the root node of 84.4%. Extensive mumerical comparisons can be found in
Section 6.

5 Formulations based on BHP

In this section, our goal is to obtain new formulations of DOMP based on a different representation for the
k-sums based on Lemma 2. Recall that we are interested in combinatorial objects defined by the points
(x, y) belonging to the p-median polytope. Therefore, to model the DOMP we can apply the representations
above to the assignment costs c(x) induced by the points (x, y) ∈ XI .

The new formulations follow easily from the corresponding ones in the previous section replacing, in each
one of them, the representation of Sk(c(x)) given previously in Lemma 1 by the representation derived from
Lemma 2. We include them for the sake of completeness. Variables and constraints are the same as those
presented before and thus, we do not describe them again.

The following four formulations correspond, in the given order, with formulations (DOMPOTr1), (DOMPOTr2),
(DOMPOTγ) and (DOMPOTθ) after the substitution mentioned above.

5.1 BHP radius formulation obtained from (DOMPOTr1)

We denote by (DOMPBHPr1) the formulation that comes from (DOMPOTr1) replacing the representation
of Sk(c(x)) using Lemma 2. It results in the following.

(DOMPBHPr1) min
n∑

k:∆k>0

∆k

(
n∑
`=k

uk` +
∑
i∈N

vki

)

+

n∑
k:∆k<0

∆k

n∑
`=k

(
r`gc(g) +

g−1∑
h=1

(r`h − r`h+1)c(h)

)
(48)

s.t. (11), (12), (13)

uk` + vki ≥
∑
j∈N

cijxij i, k ∈ N, ` = k, . . . , n : ∆k > 0

(49)

ukl, vki ≥ 0 i, ` = k, . . . , n : ∆k > 0 (50)

r`h ∈ {0, 1} ∀` ≥ α, ∀h ∈ G
(x, y) ∈ XI .
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5.2 BHP radius formulation obtained from (DOMPOTr2)

Formulation (DOMPBHPr2) is the one that comes from (DOMPOTr2) replacing the representation of Sk(c(x))
using Lemma 2. It results in the following.

(DOMPBHPr2) min
∑
k∈N :
∆k>0

∆k

(
n∑
`=k

uk` +
∑
i∈N

vki

)

+
∑
k∈N :
∆k<0

∆k

∑
h∈G

(c(h) − c(h−1))ρkh (51)

s.t. (19), (20), (21), (23), (24)

uk` + vki ≥
∑
h∈Gi

(ci(h) − c
i
(h−1))wih ∀i, k, ` ∈ N : ∆k > 0, ` ≥ k (52)

yj ∈ {0, 1} ∀j ∈ N
uk`, vki ≥ 0 i, ` = k, . . . , n : ∆k > 0 (53)

ρkh ≥ 0 ∀k, ∀h ∈ G : ∆k < 0

wih ≥ 0 ∀i ∈ N, h ∈ Gi.

5.3 BHP formulation obtained from (DOMPOTγ)

Formulation (DOMPBHPγ) is the one that comes from (DOMPOTγ) replacing the representation of Sk(c(x))
using Lemma 2. It results in the following.

(DOMPBHPγ) min
n∑

k:∆k>0

∆k

(
n∑
`=k

uk` +
∑
i∈N

vki

)
+

∑
k:∆k<0

∑
i∈N

∆kωik

s.t. (11), (31), (32), (33), (49)

γik ∈ {0, 1} ∀i, k ∈ N : ∆k < 0

ωik ≥ 0 ∀i, k ∈ N : ∆k < 0

uk`, vki ≥ 0 i, ` = k, . . . , n : ∆k > 0

(x, y) ∈ XI .

5.4 BHP formulation obtained from (DOMPOTθ)

Formulation (DOMPOTθ) is the one that comes from (DOMPOTθ) replacing the representation of Sk(c(x))
using Lemma 2. It results in the following.

(DOMPBHPθ) min

n∑
k:∆k>0

∆k

(
n∑
`=k

uk` +
∑
i∈N

vki

)
+

n∑
k:∆k<0

∆k

∑
i∈N

∑
j∈N

cijθ
k
ij

s.t. (11), (38), (39), (49)

θkij ≥ 0 ∀i, j, k ∈ N : ∆k < 0
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Notation λ-vector Name

T1 (1, 1, . . . , 1, 1) p-median
T2 (0, 0, . . . , 0, 1) p-center
T3 (0, 0, . . . , 0, 0, 1, 1, . . . , 1, 1︸ ︷︷ ︸

k

) k-centrum, k = n/2

T4 (0, . . . , 0︸ ︷︷ ︸
k1

, 1, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
k2

) k1 − k2-Trimmed mean, k1 = k2 = n/10

T7 λ random Random
T8 (α, α, . . . , α, α, 1) Centdian, α = 0.5
T9 (α, 0, . . . , 0, 1− α) Hurwitz criteria, α = 0.5
T10 (−1, 0, . . . , 0, 1) Range
T11 (1, . . . , 1︸ ︷︷ ︸

k1

, 0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
k2

) k1 − k2-Antitrimmed mean, k1 = k2 = n/10

Table 1: Types of λ-vectors used in experiments (T1, T2, T3 and T8 correspond to monotone vectors)

uk`, vki ≥ 0 i, ` = k, . . . , n : ∆k > 0

(x, y) ∈ XI .

6 Computational experiments

This section reports the computational experiments done to compare the performance of our new for-
mulations for MDOMP and DOMP. All our experiments have been carried out on a PC with two Intel
Xeon processors with 3.46 GHz and 48 GB of RAM. The models were written in Mosel and solved using
Xpress 7.7. The results of the experiments, split by formulation and instance by instance, are available in
https://github.com/DiegoPonceIMUS/MDOMP.

6.1 Comparing specialized formulation for monotone λ

This section is devoted to test whether it is advisable to apply specialized formulations for the MDOMP as
compared with the general ones already available in the literature [Maŕın et al., 2009, Labbé et al., 2017].

First of all, we would like to compare the performance of our new formulations (MDOMPOT ) and
(MDOMPBHP ), valid only for monotone λ-weights, with the results in [Labbé et al., 2017]. In order to
compare the results, we use the same cost matrices (i.e., random instances in which the elements of the cost
matrix are integer numbers randomly generated between 10,000 and 100,000) and family of lambda vectors
(see Table 1) considered in the paper [Labbé et al., 2017]. The reader may note that we are also using the
same notation as in that paper to refer to previous formulations of DOMP. We have tested five different
configurations of monotone λ-vector (T1, T2, T3, T7-monotone and T8) per size. For each considered size
(number of clients) in this section we report on the average of 5 instances, thus the overall number of solved
instances is 405 (3 different sizes of instances, 3 different number of servers, 5 cost matrices and 9 λ-vectors1).

Table 2 reports on the average of the 405 instances for formulation (DOMP4(B&C-3)), described in
[Labbé et al., 2017], (MDOMPOT ) and (MDOMPBHP ). In this table the reader can find the CPU time

1T7 has been replicated 5 times.
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required to solve the problems whenever the optimal solution is found. In those cases in which some
instances are not solved to optimality, we report between parenthesis the number of instances not solved to
optimality. Further, we also report the maximum time required to solve all the instances and the integrality
gap in percentage. The computational experiment illustrates the theoretical result obtained in Theorem
1: integrality gap of (MDOMPOT ) and (MDOMPBHP ) is the same. We observe that the specialized
formulations (MDOMPOT ) and (MDOMPBHP ) take advantage of the monotone structure of the λ-vectors,
which results in an important reduction of the CPU time as compared with the general formulations. The
comparison between (MDOMPOT ) and (MDOMPBHP ) does not show a significant difference, at least in
medium size instances. For this reason we have designed another computational experiment to compare
these two formulations on bigger instances of MDOMP.

Solution approach Time (s) Tmax(s) GAP(%)

MDOMPBHP (B&B) 0.13 0.93 2.62
MDOMPOT (B&B) 0.10 0.96 2.62
DOMP4(B&C − 3) 338.97(11) 7200.00 5.10

Table 2: Results for different formulations for n = 10, 20, 30

In the following, we wish to test the size limit that can be handled with the monotone formulations.
In this analysis, we fix a CPU time limit of 7200 seconds and consider instances with a number of clients
ranging from 100 to 180 because even for this last size there are some cases that we could not solve to
optimality.

We have solved 250 instances in this second computational experiment. The combinations of parameters
were the following: 5 different number of clients, 5 cost matrices per each client size, 2 different number of
servers and 5 different λ-vectors, as before.

We report the results in three tables (3-5). All the tables show the same information. First, they include
the CPU time to solve the problems whenever the optimal solution is found and the number of unsolved
instances between parenthesis. Second, they report the average number of nodes explored in the B&B tree.

Table 3 shows the behavior of the formulations depending on the number of clients (n). We can observe
that, as the number of clients n increases, the problem becomes more difficult for both formulations, although
(MDOMPOT ) outperforms (MDOMPBHP ) in CPU time and number of problems solved for n ≥ 160.

(MDOMPOT) (MDOMPBHP)
n Time(s) Nodes Time(s) Nodes

100 11.76 363 12.28 448
120 28.52 599 34.38 850
140 72.58 1880 103.52 2655
160 262.41 13722 622.29(1) 15572
180 518.95 13364 901.86(2) 15486

Table 3: Average CPU-Time and number of nodes by number of clients

We also wish to know the dependence of formulations with respect to the number of facilities to be
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opened. Table 4 compares the behavior of the formulations (MDOMPOT ) and (MDOMPBHP ), for two
different number of facilities to be opened. We observe that once again (MDOMPOT ) has better performance,
although in this case (MDOMPBHP ) outperforms (MDOMPOT ) for larger values of p. We note in passing
that in both formulations we have applied the same preprocessing defined by Claim 1 in [Labbé et al., 2017].

(MDOMPOT) (MDOMPBHP)
Time(s) Nodes Time(s) Nodes

p =
⌊
n
2

⌋
47.95 951 29.18 1655

p =
⌊
n
3

⌋
309.74 11020 640.55(3) 12349

Table 4: Average CPU-Time and number of nodes by available servers

In the final part of our first computational study, we compare the results in Table 5, classifying the
problems by the corresponding λ-vectors. Here we should distinguish two different patterns: 1) we observe
that the resolution times are rather competitive for the cases of the median (T1), center (T2) and cent-dian
(T8); nevertheless, this is not the case for the k-centrum (T3) and the monotone random λ (T7) where the
problems get more difficult and require very large branch-and-bound trees. At the moment, we do not have
any clear explanation for this different behavior concerning the alternative λ-vectors.

(MDOMPOT) (MDOMPBHP)
Time(s) Nodes Time(s) Nodes

T1 0.59 1 6.89 1
T2 1.26 13 1.26 13
T3 204.44 47657 946.37(2) 56429
T7 280.54 1240 410.49(1) 1316
T8 0.64 1 6.85 1

Table 5: Average CPU-Time and number of nodes by type of λ-vector

As a general conclusion of our computational experiments we can state that it is advisable to use the
formulations that exploit the monotonicity in the λ-vector. In general, formulation (MDOMPOT ) performs
better than (MDOMPBHP ) since it requires shorter CPU times, being the only exception the case where
the number of servers is large (around p = n/2). In this last case one should use (MDOMPBHP ) as shown
in Table 4.

6.2 New formulations for general DOMP

The goal of this section is to compare the performance of new formulations presented in Sections 4 and 5 for
the general DOMP. We analyze four different classes of non-monotone λ-vectors, namely T4, T9, T10 and
T11. We use a dataset consisting in p−median instances from OR Lib [Beasley, 2012]. In order to obtain
the cost matrix C we use the procedure explained in [Labbé et al., 2017] which gives rise to instances of
sizes n = 50− 200 without symmetry and with very few repeated costs. The structure of the tables in this
section is similar to those in Section 6.1, namely we report for each formulation the CPU time, the number
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of unsolved instances, the gap at termination, the integrality gap and the number of explored nodes of the
B&B tree.

We first perform a preliminary study with smaller instances using the data of problems pmed1-pmed5
in Beasley’s library, to discriminate among the most promising formulations in Section 4. Then, based on
this pilot study we move forward to compare the four best formulations from Section 4 and Section 5 on
larger size instances pmed1− pmed20.

The results of our pilot analysis are summarized in Tables 6 and 7. There, we compare formulations
(DOMPOTγ), (DOMPOTθ), (DOMPOTr1), (DOMPOTr2), (DOMPOT−NV ), (DOMPBHPγ), (DOMPBHPθ),
(DOMPBHPr1), and (DOMPBHPr2). Note that formulations (DOMPOTγ), (DOMPOTθ), (DOMPBHPγ),
and (DOMPBHPθ) differ from {(DOMPOTri), (DOMPBHPri)}, i = 1, 2 in the set of decision variables. The
former are based on γ and θ variables whereas the latter are based on radius variables and their corre-
sponding constraints. One can easily observe that formulations (DOMPOTθ) and (DOMPOTr2) outperform
(DOMPOTγ) and (DOMPOTr1). The same behavior is also observed for the corresponding formulation based
on BHP.

These results lead us to include in our complete comparison only formulations (DOMPOTθ), (DOMPOTr2),
(DOMPBHPθ) and (DOMPBHPr2), as they are the ones with the best performance in the pilot study. Table
8 summarizes the results of our comparative analysis.

For T4, T9 and T11 all the formulations are able to solve almost all the considered Beasley’s instances
(pmed1 − pmed20). In fact, the formulations proposed in this paper are very efficient for some particular
λ structures as shown by the small gap at termination and computing time required to solve them, even
for relatively large sizes (n > 150). It is remarkable that for T4, (DOMPOTθ) requires an average time of
only 36.10 seconds and a very small number of nodes (8 in average) of the B&B trees over the entire set
of instances. Recall that, as introduced for Table 2, numbers between parenthesis report the number of
instances not solved to optimality within the time limit. In the trimmed mean λ structure, the formulations
based on θ variables clearly outperform the radius formulations. Although in general (DOMPOTθ) requires
less time to certify optimality, it is for this particular λ where the difference is the biggest one. We would
also like to emphasize that instances with lambda type T10 are well-known to be very difficult (see [Maŕın
et al., 2010]). However, formulations based on θ variables are able to solve 14 out of 20 instances within the
time limit, what is a remarkable behavior for this particularly difficult λ structure.

T4 T9 T10 T11 Total
Time(s) Gap Time(s) Gap Time(s) Gap Time(s) Gap Time(s) Gap

DOMPOTγ 1624.88 0.00 81.76 0.00 20.73 0.00 442.57 0.00 542.49 0.00
DOMPOTθ 0.82 0.00 0.49 0.00 2.92 0.00 0.48 0.00 1.18 0.00
DOMPOTr1 7.05 0.00 600.79 0.00 7200.26(5) 78.99 251.94 0.00 2015.01(5) 19.75
DOMPOTr2 4.32 0.00 1.74 0.00 26.30 0.00 2.31 0.00 8.67 0.00
DOMPOT−NV 6632.92(4) 60.61 5787.74(4) 4.54 23.87 0.00 318.41 0.00 3190.74(8) 16.29
DOMPBHPγ 1824.38 0.00 929.45 0.00 23.34 0.00 296.43 0.00 768.40 0.00
DOMPBHPθ 0.72 0.00 1.14 0.00 4.99 0.00 1.15 0.00 2.00 0.00
DOMPBHPr1 9.77 0.00 3159.29(2) 8.89 5925.34(4) 79.43 223.66 0.00 2329.51(6) 22.08
DOMPBHPr2 6.82 0.00 1.89 0.00 38.62 0.00 3.20 0.00 12.63 0.00

Table 6: Average CPU-Time and gap at termination by different ordered median objective functions. In-
stances pmed1− pmed5
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T4 T9 T10 T11 Total
GAP(%) Nodes GAP(%) Nodes GAP(%) Nodes GAP(%) Nodes GAP(%) Nodes

DOMPOTγ 47.83 177044 11.10 29020 91.90 1223 8.84 243494 39.92 112695
DOMPOTθ 0.07 1 2.66 23 73.90 870 1.66 29 19.57 231
DOMPOTr1 1.10 1 2.66 25150 100.00 236472 1.66 5932 26.36 66889
DOMPOTr2 2.97 5 2.66 13 91.21 583 1.66 27 24.63 157
DOMPOT−NV 118.51 156276 11.10 979528 73.90 924 8.84 27338 53.09 291017
DOMPBHPγ 47.83 198046 11.10 574939 91.90 949 8.84 138331 39.92 228066
DOMPBHPθ 0.07 1 2.66 42 73.90 729 1.66 56 19.57 207
DOMPBHPr1 1.10 1 2.66 112794 100.00 130698 1.66 1708 26.36 61300
DOMPBHPr2 2.97 4 2.66 18 91.21 1102 1.66 23 24.63 287

Table 7: Average integrality gap and number of nodes of the branching tree by different ordered median
objective functions. Instances pmed1− pmed5

T4 T9 T10 T11 Total
Time(s) Gap Time(s) Gap Time(s) Gap Time(s) Gap Time(s) Gap

DOMPOTθ 36.10 0.00 384.81(1) 0.13 2699.55(6) 7.59 483.07(1) 0.06 900.88(8) 1.94
DOMPOTr2 858.99(1) 0.13 406.74(1) 0.38 3810.06(9) 30.93 583.33(1) 0.09 1414.78(12) 7.88
DOMPBHPθ 136.03 0.00 427.07(1) 0.38 3357.44(6) 14.41 699.20(1) 0.10 1154.93(8) 3.72
DOMPBHPr2 976.25 0.00 425.33(1) 0.38 4543.16(10) 42.07 682.61(1) 0.11 1656.84(12) 10.64

Table 8: Average CPU-Time and gap at termination, by different ordered median objective functions.
Instances pmed1− pmed20

7 Conclusions

This paper exploits new results on k-sum optimization to derive new formulations for the (MDOMP) and
(DOMP). We present two different families of formulations that are defined by the rationale to represent
k-sums, either with the OT formulation presented in (1) or with the BHP representation described in (3).
Within these two families we compare formulations based on different sets of variables. Our computational
results show that the best results come from the combination of the OT formulation with θ variables, namely
formulation (DOMPOTθ).

For the sake of readability, this paper has restricted itself to consider ordered median problems based
on location problems, or in other words, based on allocation costs coming from the p-median polytope.
Extensions of the same tools to other combinatorial objects such as shortest paths, matchings, spanning
trees, etc, will be the subject of a follow up paper.
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Puerto, J., Rodŕıguez-Ch́ıa, A. M., and Tamir, A. (2009). Minimax Regret Single-Facility Ordered Median
Location Problems on Networks. INFORMS Journal on Computing, 21:77–89.
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