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bInstituto Tecnológico de Matemática Industrial. 15782 Santiago de Compostela. Spain
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Abstract

The aim of this work is to solve identification problems in plug-flow chemical reactors. For this
purpose an adjoint-based algorithm for parameter identification problems in systems of partial
differential equations is presented. The adjoint method allows us to calculate the gradient of the
objective function and the constraint functions with respect to the unknown parameters signif-
icantly reducing the computer time. This leads to solve a minimization problem, in which an
objective function is defined in order to quantify the mismatch between the observed data and the
numerical solution of the parameterized chemical model. For solving the initial and boundary-
value problem we use finite-difference schemes. More precisely, we propose a second-order BDF
method initialized with a first-order one. The algorithm proposed was implemented in a computer
program and some numerical results are shown. The efficiency of the adjoint method, compared
with the classical formula of incremental quotients, is also presented.
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1. Introduction

Important models from different fields of engineering and applied sciences depend on unknown
parameters which must be identified to define completely the system. Examples are common in
biological systems, chemical reaction mechanisms, fluid mechanics, etc. Usually, the parameters
are estimated by solving a minimization problem, where the objective function depends on the
solution of the parameterized model. These models can be systems of numerical, ordinary (ODE)
or partial differential equations (PDE). Many optimization algorithms consist of gradient-based
iterative methods, which require, at each step, the computation of the derivatives of the objective
function and possibly of the constraint functions with respect to the optimization variables. Pa-
rameter identification problems present two classical difficulties: first the number of variables and
parameters of the model can be large and second the governing equations usually involve nonlinear
functions of variables and parameters so, in practice, they have to be solved numerically. Therefore,
a discrete minimization problem is considered instead of the continuous one, where the objective
function depends on the numerical solution of the parameterized model.
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In this paper, we consider a quite general PDE-constrained optimization problem. The main
goal is to propose an algorithm to compute the global solution of the discrete optimization prob-
lem obtained from the previous continuous one by solving the model of the system using some
discretization procedure. More specifically, we concentrate our efforts in introducing an efficient
strategy for computing the derivatives of the discrete objective function with respect to the opti-
mization variables. Basically, three different alternatives could be used: classical finite-difference
methods, automatic differentiation or adjoint method. The first one is very sensitive to the dis-
cretization step, leading to round-off errors when it is small and to truncation error when it is
large. Additionally, the needed computer time is usually very high, mainly for problems with a
large number of optimization variables.

The second one is a set of techniques to transform a program that calculates numerical values
of a function, into a program that computes the values of the derivatives of this function with
about the same accuracy and efficiency as the function values themselves. Therefore, its cost
for our problem will be of the same order or, very likely, higher than solving the state equation.
Some references about automatic differentiation are Bartholomew-Biggs et al. (2000) and Neidinger
(2010). Furthermore, there are a lot of commercial and free packages as, for example, ADOL-C,
CasADi or FABDAB++.

The third one comes from the mathematical theory of optimal control of systems governed by
partial differential equations, as developed by J.L. Lions (see Lions (1971) and Lions (1972)). In
optimal control theory, the gradient of the objective function is calculated indirectly by solving the
so-called adjoint equation. Since the adjoint equation is linear, and thus of reduced complexity, the
cost of obtaining the derivatives of the objective function with respect to each optimization variable
from the solution of the adjoint equation is low. This procedure, which has been successfully used
in different fields and applied to different problems (see, for example, Daescu et al. (2003) or Sandu
et al. (2003) where it was applied in chemical kinetic systems, Jameson (1988) or Pironneau (1974)
in design optimization in fluid dynamics, Maute et al. (2003) in aeroelastic systems, Meric (1985)
in thermoelasticity or Vautard et al. (2000) in atmospheric chemistry), will be the one chosen in
our work.

In this paper, we consider models of reaction systems where the physico-chemical magnitudes
depend on the particular position in the reactor (distributed systems), but only on its axial coordi-
nate, i.e., they are supposed to be constant in the cross-sections. They correspond to the so-called
plug-flow reactors (PFR). We assume that stoichiometric matrix, empirical measurements for vari-
ables and functional expressions for the reaction velocities are known, but the latter depend on
a set of unknown parameters. The proposed method to estimate the values of these unknown
parameters consists in minimizing the deviation between the experimental measurements and the
numerical solution of the parameterized model. This optimization problem is solved by iterative
methods which require, at each step, the computation of both the objective function and its gradi-
ent. In order to obtain the value of the objective function, a finite difference approximation is used
to solve the model which is an initial-boundary value problem. On the other hand, we employ the
adjoint method to obtain the gradient of the objective function with respect to the unknown pa-
rameters. We notice that with this method these derivatives are exactly and efficiently calculated.
In addition, since nonconvex nonlinear functions appear in the optimization problem, the standard
local search tools may get easily trapped in local optima. Therefore, Global Optimization tech-
niques must be used to obtain the global optimum of the problem. In this work, the well-known
Variable Neighborhood Search (VNS) method is applied. For more details on the efficiency of this
methodology, the reader is referred to Carrizosa et al. (2012), Mladenović and Hansen (1997) or
Mladenović et al. (2008).

The identification problem presented in this paper is less treated in the bibliography (see, for
example, Rodrigues et al. (2015a)) than the case where a stirred tank reactor is considered. In
the latter, the mathematical model describing the temperature and species concentrations consists
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of ordinary differential equations. Different methods can be found in the bibliography identifying
the kinetics of the reaction system from experimental data. On one side we have the so-called
simultaneous approach where all reaction rates are identified simultaneously (see, for example,
Bardow and Marquardt (2004) or Bhatt et al. (2012)). On the other side we have the so-called
incremental approach where the identification problem can be decoupled dealing with each reaction
in an individual manner. This is mainly done using the concept of extents as, for example, in Bhatt
et al. (2011), Brendel et al. (2006), Rodrigues et al. (2015b) or Srinivasan et al. (2012). Let us
emphasize that the adjoint method we consider in this paper can be applied to any of the two
approaches.

The present paper is organized as follows. A general PDE-constrained optimization problem
arising from the parameter identification problem of a reaction system in a PFR is presented in
Section 2. For the sake of completeness, the model is deduced for the unsteady and non-isothermal
case so the temperature is also calculated by including the energy conservation equation. The
numerical methods for solving this optimization problem are introduced in Section 3. They include
a BDF second-order finite-difference scheme for solving the system of partial differential equations,
a so-called simultaneous integral method for reaching the global optimum and the discrete adjoint
method for computing the gradient of the objective function with respect to the optimization
variables. In Section 4, we apply the proposed algorithm to a plug-flow reactor and show the
advantage of using the adjoint method. We finish with some conclusions.

2. Identification problem

In this section we develop the identification problem for isothermal or non-isothermal PFRs
when the kinetics of the reactions follow the generalized functional form:

δl(θ,y, z) = Ble
−El/Rθ

Ml∏
k=1

[
N∑
r=1

Glkryr +

N+Nc∑
r=N+1

Glkrzr−N + bkl

]αkl

, l = 1, . . . , L (1)

where θ is the temperature, y are the species concentrations vector, z are the catalysts concen-
trations vector, R is the universal gas constant, N is the number of species, Nc is the number of
catalysts, L is the number of reactions and Bl (Arrhenius pre-factors), El (activation energies),
Glkr, bkl and αkl are the unknown parameters to be found. In what follows, all these parameters to
be identified will be denoted by vector Θ. We also introduce notation x for the vector containing
species concentrations and temperature, i.e., x = (yt, θ)t ∈ RN+1. Kinetics given by equation
(1) were provided by the engineers of Repsol (an integrated oil and gas Company), taking into
account that it can represent all the situations observed in the experimental setups they are trying
to simulate.

Then, being provided experimental data for species concentrations and temperature at the
reactor exit, (x̂e,n), at several times, (Se), and for different experiments (E), the identification
problem is formulated as

min
Θ
Ĵ (Θ), (2)

being

Ĵ (Θ) = J (x(Θ),Θ) :=
∑
e∈E

N+1∑
i=1

∑
ten∈Se

ωien(xe,ni (Θ)− x̂e,ni )2, (3)

where xe,ni (Θ) is the i-th component of the solution of the mathematical model describing the
PFR at time ten ∈ Se and at the reactor exit.

Methodology to solve the optimization problem (2)-(3) is the goal of this paper. This will be
addressed in the next section.
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2.1. PFR reactor model

Plug flow reactors, also called continuous tubular reactors or piston flow reactors, are reactors
with cylindrical geometry. In principle, due to viscosity, the velocity of the flow in a pipe is null
on the wall. Moreover, in the laminar regime, the velocity profile is parabolic with the maximum
at the central axis of the pipe. However, the plug flow is a simple model where the velocity is
assumed to be constant on any cross-section of the pipe (but it may depend on time).

Furthermore, it will be assumed that the physico-chemical magnitudes may vary along the
reactor but they are constant in any cross-section. This means that they depend on time and on
one space variable.

Let z be the axial coordinate of the reactor of length L. Then z ∈ [0,L]. By assuming that (i)
all thermodynamic magnitudes depend only on z and t, (ii) the diffusive, conductive and viscous
dissipation terms can be neglected, (iii) there is no external volumetric heat source, and (iv) the
density of the mixture in the reactor is constant and equal to the density of the input mixture, the
full model for a non-adiabatic PFR is

∂y

∂t
+ v

∂y

∂z
= Aδ(θ,y, z), (4)

∂θ

∂t
+ v

∂θ

∂z
=

1

ŵ′(θ) · y

(
−∆Ĥ(θ) · δ(θ,y, z) +

2g

R
(θext − θ)

)
, (5)

y(0, t) and θ(0, t) are given, ∀t ∈ [0, T ], (6)

y(z, 0) = y0(z), θ(z, 0) = θ0(z), (7)

being v(t) the axial velocity of the flow at time t, A the stoichiometric matrix, δ the reaction
velocity vector with components given by (1), θext the outside temperature, g the convective heat
transfer coefficient and R the radius of the reactor. The components of vector ŵ(θ) ∈ RN are
defined by

ŵi(θ) =Miêi(θ), (8)

where Mi is the molecular mass of species i, while the components of the L-dimensional vector

∆Ĥ(θ) := Atŵ(θ) (9)

are the heat of reactions at temperature θ. Moreover, the function of temperature êi(θ) is the
specific (i.e., per unit mass) internal energy of the i-th species. It is given by

êi(θ) := e∗i +

∫ θ

θ∗
ĉi(s) ds, (10)

where e∗i is the internal energy of formation of the i-th species at temperature θ∗ and ci = ĉi(θ) is
the specific heat of the i-th species at temperature θ.

It must be taken into account that v(t) is supposed to be given (in fact, it is the velocity of the
input current at the inlet of the reactor which can be obtained as its volumetric flow rate, uin(t),
divided by the area of the reactor cross-section).

For the sake of simplicity, we will write system (4)-(7) in the following more compact form:

∂x

∂t
+ v

∂x

∂z
= F(t,x, z), (11)

x(0, t) are given, (12)

x(z, 0) =

(
y0(z)
θ0(z)

)
(13)
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where

F(t,x, z) =

(
Aδ(θ,y, z)

1
ŵ′(θ)·y

(
−∆Ĥ(θ) · δ(θ,y, z) + 2g

R (θext − θ)
) )

. (14)

3. Numerical methodology

3.1. Solver

As we have said at the beginning of Section 2, the initial-boundary value problem (11)-(14)
must be solved to obtain xe,n(Θ) = (ye,n(Θ)t, θe,n(Θ))t. This can be done by using, for instance,
a finite difference method both in time (t) and in space (z). For the sake of stability, the partial
derivatives with respect to z will be approximated by using an upwind differentiation formula,
whereas they are taken implicit in time.

For time discretization, we have chosen a first-order backward differentiation formula (BDF1)
for the first time step and a second-order backward differentiation formula (BDF2) for the subse-
quent ones.

Let us denote by ∆t and h the steps for the time and spatial discretizations, respectively, and
K and J the number of time and spatial mesh points, named ti = i∆t, i = 0, . . . ,K and zj = jh,
j = 1, . . . , J . Thus, ∆t = T/K and h = L/J . By denoting xij and zij approximations of x(ti, zj)
and z(ti, zj), respectively, and vi = v(ti), the resulting discretized equations, for j = 1, . . . , J , can
be written as (for the sake of simplicity superscript e will not be included):

• For t = t1:
x1
j − x0

j

∆t
+ v1

x1
j − x1

j−1

h
= F(t1,x

1
j , z

1
j ). (15)

• For n = 2, . . . ,K:

3xn+1
j − 4xnj + xn−1

j

2∆t
+ vn+1

xn+1
j − xn+1

j−1

h
= F(tn+1,x

n+1
j , zn+1

j ). (16)

Let us notice that each time step amounts to solve J nonlinear systems of N +1 equations (one
system for each spatial mesh-point except for the leftmost one) and N + 1 unknowns (N species
concentrations and temperature). They can be written in a more compact form as follows:

B̃xh = F̃ (17)

where

B̃ =


B1 0
C1 B2

C2 C1 B3

. . .
. . .

. . .

0 C2 C1 BK

 (18)

is a K ×K block-matrix and
F̃ = (b1

t, . . . ,bK
t)t. (19)
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Bi, i = 1, . . . ,K, C1 and C2 are J × J block matrices, each of them of size (N + 1)× (N + 1), and
bi ∈ RJ×(N+1). Their expressions are

B1 =



(
1 + ∆t

h v1

)
I O

−∆t
h v1I

(
1 + ∆t

h v1

)
I

−∆t
h v1I

(
1 + ∆t

h v1

)
I

. . .
. . .

O −∆t
h v1I

(
1 + ∆t

h v1

)
I


, (20)

Br =



(
1 + 2∆t

3h vr
)
I O

− 2∆t
3h vrI

(
1 + 2∆t

3h vr
)
I

− 2∆t
3h vrI

(
1 + 2∆t

3h vr
)
I

. . .
. . .

O − 2∆t
3h vrI

(
1 + 2∆t

3h vr
)
I


, r = 2, . . . ,K, (21)

C1 =

 −
4
3I O

. . .

O − 4
3I

 , (22)

C2 =


1
3I O

. . .

O 1
3I

 , (23)

b1 =


x0

1 + ∆t
h v1x

1
0 + ∆tF(t1,x

1
1, z

1
1)

x0
2 + ∆tF(t1,x

1
2, z

1
2)

...

x0
J + ∆tF(t1,x

1
J , z

1
J)

 , (24)

b2 =


1
3x0

1 + 2∆t
3h v2x

2
0 + 2

3∆tF(t2,x
2
1, z

2
1)

1
3x0

2 + 2
3∆tF(t2,x

2
2, z

2
2)

...

1
3x0

J + 2
3∆tF(t2,x

2
J , z

2
J)

 , (25)

br =


2∆t
3h vrx

r
0 + 2

3∆tF(tr,x
r
1, z

r
1)

2
3∆tF(tr,x

r
2, z

r
2)

...

2
3∆tF(tr,x

r
J , z

r
J)

 , r = 3, . . . ,K, (26)

where I = I(N+1)×(N+1).
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3.2. Integral method

In this subsection we are going to explain how the optimization problem (2)-(3) is solved. It
must be kept in mind that there are real variables in Θ and integer variables too, according to the
user’s choice. Due to this, we will make a process in several steps:

1. As initial solution, the best of several solutions chosen at random is selected, thus providing
a first value for the objective function. The values of the involved parameters are within
user-specified ranges.

(a) If all the parameters are real numbers, we start with the improvement phase, in which
the continuous problem is optimized. The solution is further improved by using the
VNS.

(b) If there are integer parameters, a multi-start is planned for these parameters, whereas
optimization is only done for the real ones. Again, the solution is further improved by
using the VNS.

2. For the vector of unknowns, coming from the second step, we have to make a perturbation of
radius r of each component (starting with r = 1), taking into account whether the components
must take real or integer values.

(a) Firstly, we consider the case where the chosen unknown takes a real value. We define
an interval where the perturbation will take place. In the neighborhood of radius r, this
interval has the following form:[

c− c− Lc
rmax

∗ r, c+
Uc − c
rmax

∗ r
]
, (27)

where c is the best value found up to now for the parameter that we are considering,
Lc and Uc are the lower and the upper bounds of c, respectively, and rmax (maximum
value that r can take) is the maximum number of allowed neighborhoods. In general,
this interval is asymmetric. Once this interval is defined, a random number is selected
in it.

(b) Secondly, let us see the case where the parameter can only take an integer value. We
define the same previous interval for the integer unknown, and later, we modify this
interval as follows: [

dc− c− Lc
rmax

∗ re, bc+
Uc − c
rmax

∗ rc
]
. (28)

An integer number γ between dc − c−Lc

rmax
∗ re and bc + Uc−c

rmax
∗ rc is chosen. Here, b.c

and d.e denote the floor (it returns the integer part of the number) and the ceiling (it
returns the integer part of the number plus one) functions respectively.

Then we proceed with a multi-start with random assignment of parameters within the in-
tervals previously explained. If an improvement in the value of the objective function is
achieved, value of r is reset to 1. Otherwise r = r + 1. This process is repeated until either
the maximum number of neighborhoods rmax or the computation time provided by the user
to complete this step is reached.

3. The vector of parameters obtained in the previous step is introduced as a new initial solution
for optimization, thereby providing a value of the objective function to be compared with
that obtained in step 1.

The process is repeated until the maximum run-time is reached or until the value of the objective
function is less than a user-defined tolerance.

In this optimization process, the derivatives of the objective function are needed, and for this
we are going to use the adjoint method which will be explained below.
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3.3. Adjoint method
In order to obtain the gradient of the objective function involved in the optimization prob-

lem (2)-(3), we could proceed by an approximation of the partial derivatives through numerical
derivation as follows

∂Ĵ
∂Θi

(Θ) ≈ Ĵ (Θ + εiei)− Ĵ (Θ)

εi
, (29)

for i ∈ {1, . . . , Np}, where Np is the number of parameters to identify, εi is the discretization step
for the i-th variable and ei is the i-th vector of the canonical basis of RNp .

However, it is well-known that the computing time for this methodology is very high, due to the
fact that the initial-boundary value problem (4)-(7) must be solved once for each partial derivative.
Moreover, the choice of steps εi is not an easy task. We notice that, if these steps are not properly
chosen, then the accuracy is very poor leading to a bad convergence of the optimization algorithm.
As a less expensive and more accurate (in fact, exact) alternative, we will use the adjoint method
described below.

The first step is to write the continuous optimization problem (2)-(3) in a discrete form:

min
Θ
Ĵd(Θ), (30)

where

Ĵd(Θ) = Jh,∆t(xh(Θ),Θ) :=
∑
e∈E

N+1∑
i=1

∑
ten∈Se

ωien(x
e,n∗(n)
d,i (Θ)− x̂e,ni )2, (31)

xh is the solution of (17) and x
e,n∗(n)
d,i is the i-th component of xh at time t∗n∗(n) = ten. For the

sake of simplicity, we assume that the set of observation instants is a subset of the time mesh, i.e.,
Se ⊂ {t∗n = n∆t, n = 0, . . . ,K}.

Differentiation of the discrete objective function, Ĵ∆t, with respect to Θ leads to

∇ΘĴd(Θ) = ∇Θxh · ∇xJh,∆t(xh(Θ),Θ) +∇ΘJh,∆t(xh(Θ),Θ). (32)

The gradient of the discrete variables xh with respect to the optimization variables, ∇Θxh,
could be obtained from the differentiation of the solution of system (15)-(16) by using the implicit
function theorem. However, it is well-known that the computational cost of this method is high
when the number of optimization variables becomes large, because one should solve Np linearized
state equations, one for each independent variable. For this reason, we are going to use the adjoint
approach, that we recall below.

First, by using (17) we notice that ∇Θxh satisfies

∇Θxh · B̃t = ∇ΘF̃. (33)

Now, we introduce the adjoint state p as the solution of the following linear system:

B̃tp = ∇xJh,∆t(xh(Θ),Θ). (34)

Then, by using (33) and (34) in (32), we obtain ∇ΘĴd(Θ) in terms of the adjoint state, namely

∇ΘĴd(Θ) = ∇ΘF̃p +∇ΘJh,∆t(xh,Θ). (35)

Notice that this method only needs to solve one linear system, the so-called adjoint-state equation
(33). The computation of the derivatives appearing in the above equations, namely, ∇xJ∆t,

∇ΘJ∆t and ∇ΘF̃ can be done analytically.

Remark 3.1. Because of the triangular block structure of matrix B̃, the solution of the linear system
in (34) can be obtained in a recursive manner, starting from the final time, by solving J×K linear
systems of size N + 1. Moreover, the derivative of the discrete objective function can be obtained
cumulatively from the adjoint state. In practice, these two steps are done simultaneously.
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4. Numerical experiments

In this section we will show the results of some numerical experiments obtained with the
developed code. First, we build a synthetic experiment where the expressions of the kinetics of the
reactions are provided, which allow us to solve the model of the reactor (equations (4)-(7)) with
different initial values to generate the ”experimental” data. Second, we use the integral method
introduced in the previous section to solve the raised identification problem and show the obtained
results, comparing them with the exact ones. Finally, we remark on the difference in computing
time required for calculating the gradient of the objective function using the conventional method
of incremental quotients and the adjoint one.

4.1. Describing the test problem

The performance of the integral method for solving the identification problem will be shown by
constructing a test case consisting of a set of six reactions (L=6) involving twelve species (N=12)
and one catalyst (Nc=1), and using certain given expressions for the kinetics of these reactions.
More precisely, the reactions, catalyzed by C1, are

E1 + E2 −→ E3 + E4, (36)

E2 −→ E3 +
1

2
E5, (37)

E2 −→ E6 + E7, (38)

E2 −→ E8 + E9, (39)

E2 −→ E10 + E11, (40)

E4 + E7 −→ E12, (41)

whereas expressions of the components of the reaction velocity vector are

δ1(θ,y) = 5 · 1010e−62737/Rθy1y2z1, (42)

δ2(θ,y) = 2 · 1010e−71097/Rθy2
2z

0.5
1 , (43)

δ3(θ,y) = 1010e−66914/Rθy2
2z1, (44)

δ4(θ,y) = 5 · 109e−85734/Rθy2z
1.1
1 , (45)

δ5(θ,y) = 4 · 109e−133829/Rθy2z
0.5
1 , (46)

δ6(θ,y) = 2 · 109e−63987/Rθy4y7z
1.2
1 . (47)

The reactor considered in this experimental setup has one meter long (L = 1) and a volume of
0.7854 m3, and the outside temperature is θext = 300 K. Specific heat of all the N species is equal
to 2000 J/kg K, whereas their molecular weights are

M = (0.05, 0.14, 0.12, 0.07, 0.04, 0.122, 0.018, 0.07, 0.07, 0.09, 0.05, 0.088)t kg/kmol. (48)

Heat of the reactions at the reference temperature of 298.15 K are ∆Ĥ(θ) = (1.5, 1, 0.8, 0.7, 0.6, 0.5)t

J/kmol. Finally, the overall heat transfer coefficient, g, is equal to 6 W/m2 K (see (5)).
With these data, 10 synthetic experiments (all of them with a catalyst concentration of 0.001

mol/l at any time) were built considering different initial and boundary values of species concen-
trations and temperature as shown in Table 1. Each data set corresponds to 11 equally spaced
times (K = 11), until reaching the end time T = 20 seconds. The values given in this way by the
mathematical model governing the reactor will be used as experimental data in the identification
process, without adding perturbations. When a row in Table 1 has two lines, it means that the
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E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

y1(0, t) [mol/l] 1 1 2 2 1.5 1 1.1 1.3 2 1
1 1 2 2 1.5 1.5 1.25 2 1 1.5

y2(0, t) [mol/l] 1 2 1 2 1 1 1 1 2 2
1 2 1 2 1 1 1 1 2 2.5

y3(0, t) [mol/l] 0 0 0 0 0 0 0 0 0 0
y4(0, t) [mol/l] 0 0 0 0 0 0 0 0 0 0
y5(0, t) [mol/l] 0 0 0 0 0 0 0 0 0 0
y6(0, t) [mol/l] 0 0 0 0 0 0 0 0 0 0
y7(0, t) [mol/l] 0 0 0 0 0 0 0 0 0 0
y8(0, t) [mol/l] 0 0 0 0 0 0 0 0 0 0
y9(0, t) [mol/l] 0 0 0 0 0 0 0 0 0 0
y10(0, t) [mol/l] 0 0 0 0 0 0 0 0 0 0
y11(0, t) [mol/l] 0 0 0 0 0 0 0 0 0 0
y12(0, t) [mol/l] 0 0 0 0 0 0 0 0 0 0
θ(0, t) [K] 383 373 383 373 383 373 383 373 383 373
uin(t) [l/s] 0.01 0.01 0.01 0.001 0.1 0.01 0.01 0.01 0.01 0.01

0.001 0.0001 0.1 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Table 1: Inlet conditions for the experiments

first one contains the values until the time is equal to 10 seconds and the second one from that
time on.

Thus, since the solution of the problem is known, the accuracy of the methodology proposed
in this paper can be analyzed by looking at the functional expressions of the reaction rates. We
can also compare the values of species concentrations and temperature obtained by solving the
mathematical model of the reactor (equations (4)-(7)) for the identified coefficients. This will be
done in Section 4.2.

4.2. Numerical results

For the initial multi-start of the integral method, random values of the parameters are chosen
in the intervals detailed in Table 2.

Parameter Value
Bi [0, 1014]
Ei [0, 200000]
Glkr 1
bkr 0
αlkr [0, 2]

Table 2: Ranges where parameters belong

Once the methodology developed in Section 3 has been used to solve the identification problem
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stated in Section 4.1, the solution obtained leads to the following reaction velocities

δc1(θ,y) = 3.39 · 1013e−61481.2/Rθy1y2z
2
1 , (49)

δc2(θ,y) = 2.02 · 1013e−102817.9/Rθy1.81
2 , (50)

δc3(θ,y) = 3.66 · 1013e−73142.7/Rθy2
2z

1.91
1 , (51)

δc4(θ,y) = 4.68 · 1013e−186096.1/Rθy0.21
2 z0.02

1 , (52)

δc5(θ,y) = 4.15 · 1013e−105823.5/Rθz1.05
1 , (53)

δc6(θ,y) = 3.84 · 1012e−170237.8/Rθy1.24
7 , (54)

and to a value of 0.3475 for the objective function. It must be taken into account that the
identification problem involves Np = 68 parameters to identify with only 100 data. A better
coincidence between expressions of the reactions rates provided by the identification methodology
and the exact ones could be obtained if more experimental data were used. However, we have tried
to solve the problem under realistic conditions where experimental data are limited, to show the
good performance of the method.

Moreover, in order to analyze the goodness of the obtained approximation, we will also compare
graphically the values of the species concentrations and temperature obtained by solving the model
governing the reactor for the identified reaction rates (49)-(54), with those computed from the
”true” model (42)-(47), i.e., with the ”experimental values”. This is done in Figures 1 to 6 where
only the more representative species (those having values above 0.05 mol/l) and the temperature
are plotted.

More precisely, Figures 1 to 5 represent the concentrations of species E1 to E5, showing the
first five experiments on the left side and the last five ones on the right one (where Ei denotes the
i-th experiment). Similarly, Figure 6 shows the temperature. In these plots, curves correspond to
numerical solution and symbols to ”experimental” values.
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(a) Experiments 1 to 5
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(b) Experiments 6 to 10

Figure 1: Observed and computed concentration of species E1 versus time at reactor exit

Since the identification was performed taking into account the absolute errors, which corre-
sponds to consider the weights in the objective function equal to 1 (ωien in equation (3)), a better
fit of the variables with bigger values is achieved. In particular, the temperature is very well ad-
justed (see Figure 6) as well as the concentrations of species Ei, i = 1, . . . , 4. On the other hand,
species E5 seems to be worse approximated than the previous ones. However it is observed that
the errors are very small in absolute value and trends are correctly captured.
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(a) Experiments 1-5
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(b) Experiments 6-10

Figure 2: Observed and computed concentration of species E2 versus time at reactor exit
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(a) Experiments 1-5
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(b) Experiments 6-10

Figure 3: Observed and computed concentration of species E3 versus time at reactor exit

4.3. Performance of adjoint method compared with incremental quotients

In order to show the gain of using adjoint method versus incremental quotients for comput-
ing the gradient of the objective function, ∇ΘĴd(Θ), we proceed with one of the experiments
detailed in Section 4.1 where K = 256, J = 64 and Np = 68. The computer time using a Scilab
implementation and running in an Intel i5-4670 at 3.4 GHz, is shown in Table 3.

Method Computer time
Adjoint method 5 min 38.65 s
Incremental quotients 223 min 56.85 s

Table 3: Computer time for evaluating the gradient of the objective function

According to times shown in Table 3, with the data used in this demo, the adjoint method is
almost 40 times faster than the incremental quotients for calculating only once the gradient of the
objective function. It must be taken into account that the adjoint method needs one evaluation of
the state equation ((4)-(7)), whereas the method using incremental quotients needs Np + 1. For
the sake of completeness of information, evaluating the state equation takes 3 min 33 s.
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(a) Experiments 1-5
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(b) Experiments 6-10

Figure 4: Observed and computed concentration of species E4 versus time at reactor exit

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time (s)

C
om

po
si

tio
n 

(m
ol

/l)

E5

 

 

E1

E2

E3

E4

E5

(a) Experiments 1-5
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Figure 5: Observed and computed concentration of species E5 versus time at reactor exit

εi Absolute error Relative error
10−5 14.357735 358.66526
10−6 1.4444965 36.084431
10−7 0.1445373 3.6106331
10−8 0.0144545 0.3610829
10−9 0.0014458 0.0361160
10−10 0.0001597 0.0039883
10−11 0.0007239 0.0180835

Table 4: Differences between adjoint method and incremental quotients according to discretization step

Discretization steps used to approximate the partial derivatives (εi in equation (29)) were taken
in the range [10−5, 10−11]. The values of the gradient of the objective function so obtained are
compared in Table 4 with those provided by the adjoint method. The relative error is done with
respect to the norm of the gradient calculated with the adjoint method. As it can be seen in this
example, the error produced by difference quotients, which was reduced when the discretization
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Figure 6: Observed and computed temperature versus time at reactor exit

step was chosen smaller, increases again when this is less or equal than 10−11.

5. Conclusions

An integral method for solving a parameter identification problem in systems of partial differ-
ential equations, using the adjoint state for the calculation of the gradient of the objective function,
has been proposed. The adjoint method provide better results, in terms of accuracy and computer
time, the higher the number of parameters to be identified. This is because it only requires one
solution of the state equation and the construction and solution of a linear system while, if the
gradient of the objective function were calculated with a method of incremental quotients, this
would require the solution of the state equation Np + 1 times, being Np the number of parameters
to be identified. Moreover, the adjoint method is not only faster but avoids the problem of accuracy
associated with the choice of the discretization step in the approximation of the partial derivatives
using incremental quotients; in fact, it is exact.

This methodology has been applied to the identification problem in an unsteady plug-flow
reactor where temperature is also calculated. Numerical solution obtained for a synthetic case
was compared with the exact solution used to provide the experimental data for the optimization
problem, with good agreement. Better fit could be obtained if more experimental data were
considered or if appropriate weights were used in the objective function.

Actually, it is being successfully used in reactors with real data by the Spanish energy company
Repsol in its Technology Center. Unfortunately, confidentiality issues prevent such experiments
can be shown in this paper.
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Mladenović, N., Hansen, P., 1997. Variable neighborhood search. Comput. Oper. Res. 24, 1097–
1100. doi:10.1016/S0305-0548(97)00031-2.

Neidinger, R., 2010. Introduction to Automatic Differentiation and MATLAB Object-Oriented
Programming. SIAM Rev. 52, 545–563. doi:10.1137/080743627.

Pironneau, O., 1974. On Optimum Design in Fluid Mechanics. J. Fluid Mech. 64, 97–110.
doi:10.1017/S0022112074002023.

Rodrigues, D., Billeter, J., Bonvin, D., 2015a. Incremental Model Identification of Distributed Two-
phase Reaction Systems. IFAC-PapersOnLine 48, 266–271. doi:10.1016/j.ifacol.2015.08.192.

Rodrigues, D., Srinivasan, S., Billeter, J., Bonvin, D., 2015b. Variant and invariant states for chem-
ical reaction systems. Comput. Chem. Eng. 73, 23–33. doi:10.1016/j.compchemeng.2014.10.009.

15



Sandu, A., Daescu, D.N., Carmichael, G.R., 2003. Direct and adjoint sensitivity analysis of chemi-
cal kinetic systems with KPP: Part I - Theory and software tools. Atmos. Environ. 37, 5083–5096.
doi:10.1016/j.atmosenv.2003.08.019.

Srinivasan, S., Billeter, J., Bonvin, D., 2012. Extent-based incremental identification of reaction
systems using concentration and calorimetric measurements. Chem. Eng. J. 207-208, 785–793.
doi:10.1016/j.cej.2012.07.063.

Vautard, R., Beekmann, M., Menut, L., 2000. Applications of adjoint modelling in atmo-
spheric chemistry: Sensitivity and inverse modelling. Environ. Model. Softw. 15, 703–709.
doi:10.1016/S1364-8152(00)00058-X.

16


