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Exploring strengths and weaknesses of mobility inference from mobile 

phone data vs. travel surveys  

 

Origin–destination (OD) matrices serve as a basis for travel demand modelling. 

Traditionally, they are derived from travel surveys that collect detailed trip information 

but with several shortcomings. Mobile phones are regarded as a useful source of 

information on people’s daily mobility. This work explores the use of mobile data in the 

context of mobility studies by comparing matrices derived from both types of sources 

over the same region. The results reveal many common features in the trip information. 

Moreover, although the use of mobile technology may raise questions for short trips, the 

huge representativeness of this technology captures the mobility in OD connections 

extensively regardless the area. This is crucial for non-populated areas (e.g. industrial 

parks or educational campuses), which constitute important mobility hotspots. Based on 

these findings, an applicable data fusion approach to obtain the optimum accuracy from 

these heterogeneous sources is presented and applied. 
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1. Introduction 

Origin–destination (OD) or trip matrices are fundamental inputs for most problems regarding 

the planning and management of transportation systems. They reflect the mobility in an area 

of study during a particular period of time. Each cell in the matrix indicates the number of 

trips that depart from each origin zone to each destination zone. Hence travel demand is 

usually represented using an OD matrix. In the past few decades, OD matrices have been 

derived from travel surveys in which people are asked to describe their travel behaviour on an 

average day or to reconstruct their travel pattern on one or more previous days. Many types of 

surveys, such as home interviews, roadside interviews, or even a combination of them, are 

used to obtain OD matrices in practice; such surveys vary in complexity regarding the 

information which can feasibly be collected and in the level of interaction between the survey 

designer and the respondents (Richardson et al. 1995). Home or household interview surveys 

are the most widely used and are essentially intended to yield data on the travel behaviour of 

the residents of the household (e.g. number of trips made, their origin and destination, purpose 

of trip, mode(s) of travel, departure and arrival times, etc.) and the general characteristics of 

the household or respondent (e.g. family size, age, sex, income, vehicle ownership, etc.). 

Survey-based approaches involve costly and laborious processes for collecting, coding, and 

processing data (Stopher and Greaves 2007; Santos et al. 2011; Ortuzar and Willumsen 2011). 

As a result, surveys are not conducted frequently (about every five or even ten years) and 

various methods are used for estimating an OD matrix in practice (as reviewed in 

Abrahamsson 1998). Among them, the use of traffic counts as measurements of link flows in 

a network model in order to update an existing (probably outdated) matrix has been widely 

considered by many researchers (Van Zuylen and Willumsen 1980; Doblas and Benitez 2005; 

Cascetta et al. 2013). However inference approaches based on just link count data are known 

to be a challenging problem; normally there are a large number of matrices which reproduce 



the observed traffic counts (Abrahamsson 1998). Advances in data collection and 

computational techniques have incorporated other observed data sources in the estimation 

procedure, such as automated vehicle detection (Zhou and Mahmassani 2006; Castillo et al. 

2013) or routing data (Herrera et al. 2010; Parry and Hazelton 2012). Obviously the accuracy 

of OD matrices obtained by these methods will be highly dependent on the quality of the 

information used. Road planners and practitioners demand more accurate and updated 

information for transport planning and decision making. Survey-based approaches strive to 

collect very detailed trip information, but they present several deficiencies (Brög and Erl 

1999; Bonnel 2003; Ampt and Ortuzar 2004; Cools et al. 2010; Ortuzar et al. 2011), mainly 

related to sampling biases (e.g. falling response rates, vacant dwellings) and reporting errors 

(e.g. unreported trips, rounding of arrival and departure times). They no longer seem adequate 

to provide reliable OD matrices. In recent decades, mobile phone data have also become a 

promising data source. Mobile phones are pervasively embedded in people’s lives – more 

than one-third of consumers worldwide said they check their phone within five minutes of 

waking up in the morning, and 20 percent of them check their phone more than 50 times a day 

(Global Mobile Consumer Trends 2017). The deployment of mobile technology is producing 

a massive increase in the volume of data regarding where people have been and when they 

were there, which can not only lead to accurate and updated estimation of mobility matrices, 

but also to infer other valuable features for planning transport, exhaustive reviews can be 

found in Milne and Watling (2018) and Gadzinski (2018). 

The idea of using mobile phones to acquire transport information is becoming more 

and more widespread; reviews of current practices can be found in Steenbruggen et al. (2015); 

Chen et al. (2016); Diao et al., (2016); Rojas et al. (2016); Lee et al. (2016); Lu et al. (2017) 

Malleson et al. (2018); Wang et al. (2018) among others. In the field of OD matrices and 

travel behaviour, the use of mobile phone data has been explored by researchers working on 



simulated frameworks (Caceres et al. 2007; Sohn and Kim 2008; Zhang et al. 2010; Hofer et 

al. 2018) as well as in field tests (Mellegard et al. 2011; Calabrese et al. 2013; Widhalm et al, 

2015, Demissie et al. 2015; Horn et al. 2017; Wang and Chen 2018; Ni et al. 2018). Their 

results reveal that mobile data can overcome typical limitations of traditional surveys, with 

higher sample size, wider coverage, and reduction of the time and cost of data collection and 

processing, while also providing valuable information on temporary mobility patterns. By 

contrast, these works also mention the problems associated with using mobile technology as a 

mobility data source, especially in terms of low spatial resolution and accuracy. To obtain 

more realistic matrices, recent approaches have combined mobile phone data with other types 

of data, such as traffic counts (Caceres et al. 2013; Iqbal et al. 2014; Wu et al. 2015; Meng et 

al. 2017), GPS traces (Gong et al. 2014; Ge and Fukuda 2016; Seo et al. 2017; Nigro et al. 

2018), and even a fusion of crowdsourced geospatial information, smartcard transactions, 

census records, and/or surveys (Toole et al. 2015; Anda et al. 2017; de Regt et al. 2017; 

Bonnel et al., 2018). Despite the important efforts made in exploring the use of mobile phone 

data to characterise people’s mobility, there are still pending issues to be reviewed in the 

context of matrix estimation. This study is an attempt to extend the effort in the area to gain a 

clearer understanding of the potentialities and challenges of this technology compared to 

traditional survey sources, based on the outcomes derived from a real case study.  

This paper is organised as follows: Section 2 introduces an overall view of the case 

study, presenting the study area and the data sources. Section 3 exploits the transport data of 

the pilot case, derived from a household travel survey and a mobile phone telecommunication 

provider; a comparative analysis is carried out, highlighting the differences and similarities 

from the qualitative and quantitative points of view. Section 4 provides a discussion on the 

main advantages and drawbacks revealed by the analysis. Finally, the potentialities and 



challenges of mobile phone data in complementing traditional survey methods are illustrated 

in Section 5 along with some suggested directions for further practical applications. 

2. Data and methods 

2.1. Study area 

The study area corresponds to the urban agglomeration of Malaga, located in the south of 

Spain on the Mediterranean coast. It consists of the city of Malaga, which is the sixth most 

populated city in Spain, and 14 surrounding municipalities in both the coastal zone and the 

interior. The study area has a population of around one million inhabitants and covers 

approximately 1400 km2, divided into 178 transport zones (TZ) defined from census data 

(Fig. 1a). The zoning is also further aggregated into 46 macro-zones (MZ), more general areas 

based on adjacent (similar socioeconomic) transport zones (Fig. 1b). 

    
 (a) (b) 

Fig. 1 Zoning of study area: (a) transport zones and (b) macro-zones. Cities are represented 

by different colours. 

2.2. Trip matrices 

This study is based on available OD matrices derived from two sources: household travel 

surveys (HTS) and mobile phone data (MPD). The last household travel survey, led by the 

regional transport system planning administration, was conducted in October 2014 by the 



Malaga Area Metropolitan Transport Consortium (a Spanish public transport body) with the 

aim of characterising a detailed picture of workday mobility and travel choices made by 

residents of the study area. The survey reported all trips made by each resident of the sampled 

households. In particular, approximately 30,000 persons were interviewed (around 3% of the 

population in the region). The results were then statistically expanded and validated based on 

other socioeconomic datasets obtained by governmental agencies, deriving the corresponding 

OD matrices. 

Mobile phone data come from network operators which collect, store, and process 

massive datasets on subscribers so they can route calls and offer services. The data used for 

this study are based on aggregated and anonymised phone events collected and processed by a 

telecommunication operator with a large market share (around 40%) in the studied area. 

These events consist of active interactions related to phone calls and text messages, as well as 

passive interactions, which occur in the background (or idle status) without the user’s active 

participation. These passive interactions are associated with signalling, such as 

losing/regaining mobile signal or periodic records created when phones are on but have not 

created any other events for a sustained period of time (typically of the order of a few hours). 

Besides, there is also a relevant passive event associated with movement from one specific 

group of cells (called a location area, LA) to another. In mobile systems, the service coverage 

area is classified into cells and these are grouped into LAs. For mobile operating purposes, 

whenever a phone enters a new LA, it notifies the mobile network of its new position. This 

type of event substantially increases the number of the MPD events. Each one is characterised 

by an encrypted user ID (following strict anonymised protocols to guarantee privacy), a 

timestamp when the event occurs, and an event location estimated using algorithms based on 

triangulation of mobile phone mast signals. These events provide ‘footprints’ regarding where 

people have been and when they were there. In this study, a trip is regarded as a one-way 



movement from a zone of origin to a zone of destination at a particular starting time. Users 

are more likely to engage in an activity (by means of a trip) after a ‘stay’ at a particular 

location (that represents the origin or destination of a trip). The remaining footprints provided 

by the events occur during the displacement that takes place. Therefore, the first step is to 

identify which footprints are ‘stays’. For this purpose, several authors have developed 

different algorithms (Widhalm et al. 2015; Alexander et al. 2015; Toole et al. 2015; Jiang et 

al. 2017). In this work, the identification is based on a time threshold in the subsequence of 

events. This threshold for the time between consecutive events (tbce) has been taken as a 

simply rule-of-thumb for identifying if an event belongs to a possible new trip (tbce ≥30 min) 

or to the same trip after a brief stop (tbce <30 min). An event defines the end of a trip when the 

time difference to the next event is more than 30 minutes; this end defines the beginning of 

the ‘stay’ but also the origin of the next subsequence of events. By processing all existing 

events created by the sample of users, trips are inferred. These trips are derived by 

considering the proximity of events not only in terms of time but also regarding the space. For 

instance, it is necessary to analyse whether events reveal an actual movement or they are 

generated by static users due to the ping-pong records in the neighbouring towers. The 

characteristics of the transport network topology are also analysed. For instance, the 

associated distance between two consecutive events as well as the difference between their 

timestamps has to be checked to ensure that they are compatible with the travel distance and 

travel time, respectively, for the possible routes. Based on this, all events generated over the 

study area during two consecutive weeks in February 2015 (ten working days and four 

weekend days) were processed to infer trips made by the considered sample (approximately 

200,000 persons, aged 18 years and above) based on subscribers of the particular operator. 

The results were expanded to represent the full population of the studied area based on census 

data taking into account the area where user’s home is located, similarly to expansion made in 



travel surveys, besides additional mobile phone data features and privacy-assured specificities 

have been considered which affected the expansion: i) only data corresponding to users 

over/equal 18-years old are processed (it is forbidden by national regulations to provide 

mobile data concerning children or teenagers), ii) OD pairs data with less than 5 detected trips 

are eliminated (national data protection laws do not allow to exploit mobile records with that 

lead to infer 1-4 trips because it may be possible to identify the person(s) making the trip(s), 

which is absolutely forbidden to be inferred from mobile technology), iii) data expansion 

follow the market share of the phone operators of the region of study, because the mobile 

sample data used in this case only represent 40%. These steps were supplementarily applied 

to the trip inference taking into account the implicit (and controllable) restrictions related to 

privacy. For the expansion procedure, Tthe home was determined from events generated late 

at night on weekdays (when people usually stay at home). In this sense, it is necessary to 

highlight that, although there are several approaches for expanding data, the approach applied 

to mobile data was based on census data in order to be similar to the one used in the surveys 

provided for this study (this is a task customarily conducted by the Regional transport system 

planning administration and in many cases executed by specialisedst survey companies, 

following standard procedures). So that both data sources (HTS and MPD) were expanded in 

a similar mannerway with the final purpose of not introducing additional bias in comparison 

associated to the expansion stage. As it is previously commented, pPrivacy is a serious 

concern in using data from this kind of technology; hence, to increase privacy, the data are 

translated to be referred at transport zones shown in Fig. 1. For this purpose, the estimated 

location is directly linked to the corresponding traffic zone in the zoning system. Trips are 

also hourly aggregate; that is, a trip is assigned to each hour period based on its starting time. 

Therefore, data are anonymised, aggregated, and expanded, thus it is not possible to associate 

the data with individual users. 



Then, from both kinds of sources, the number of trips departing from one transport 

zone to another in a particular one-hour period (hourly matrices) and in the 24-hour period 

(daily matrices) were derived and compared. The two data sources were not extracted in the 

same time period, there was an interval of several months between HTS and MPD. However, 

they are sufficiently close in time to assume that the mobility behaviour did not suffer 

significant changes; the metropolitan area of Malaga presents a very homogenous mobility 

features during these months of the year. 

3. Comparative analysis 

This section compares and analyses the trip data contained in the mobility matrices derived 

from the two types of sources (mobile data and surveys), providing the main qualitative and 

quantitative findings. For comparative purposes, data trips are pre-processed in order to 

conduct the comparison under the same context. Due to legal issues, only data from persons 

aged 18 years and above are processed., Wwhile survey data collects information from all 

residents of the sampled households, including infants and children, MPD source does not 

provide such information affected by privacy regulations. To avoid this age effect 

andregarding  to comparinge the same mobility phenomenon (trips made by people aged 18 

years and above), the matrices derived from survey data were processed to contain only trips 

made by adults. 

3.1. Quantitative findings 

3.1.1. Sparsity of matrices 

Before making any comparison, the first step to be taken is to analyse the information 

contained in the matrices. A lack of trips between a pair of regions indicates that these regions 

are not generating or attracting trips between each other for some reason. A straightforward 

pairwise cross-checking between HTS and MPD matrices identifies cases where single pairs 



of regions present, with regard to the number of trips: i) similar values (either null or non-null 

ones), ii) very different non-null values, or iii) a null value in one of the matrices versus a 

non-null value in the other. In order to explore this issue, the sparsity of the matrices is 

analysed and compared. The sparsity of the matrix is defined as the number of zero pairs (i.e. 

matrix cell or element) divided by the total number of pairs. Fig. 2 plots this concept for the 

matrices derived from both sources by marking the locations of the nonzero pairs with blue 

circles; the number of nonzero pairs (nz) is also reported. 

 
(a)  (b) (c) (d) 

Fig. 2 Sparsity of matrices based on the 178 transport zones. At daily level: (a) derived from 

MPD, (b) derived from HTS. For  the morning-peak period: (c) derived from MPD, (d) 

derived from HTS. (‘morning-peak’ refers to the time interval 08:00–08:59). 

The visual analysis of the plots in Fig. 2 reveals that the sparsity in matrices from the 

two sources is somehow similar for a particular subset of OD-pairs. There are pairs in the two 

sources that do not have trips; this is more acute during late night hours (as expected) or 

between certain regions. However, the comparison also shows that there are numerous cells 

with zeros in HTS-based matrices that do not correspond to zeros in the MPD-based ones, 

giving the impression that mobile data capture mobility in a higher percentage of all possible 

OD connections. This can be better appreciated by looking at the number of nonzero pairs in 

the two sources. With a zoning-system granularity of 178 transport zones, the matrix consists 

of 31,506 pairs of inter-zonal trips. Then, at daily level, the number of nonzero pairs in the 

MPD-based matrix is around 89% of the total, while in the HTS-based matrix it is around 



34% (Fig. 2 a and b, respectively). In Fig. 2 c and d, for the morning-peak period (trips 

starting between 8:00 and 8:59), the percentage of nonzero pairs in the MPD-based matrix is 

32% versus less than 10% in the HTS-based matrix. This huge difference in the number of 

nonzero pairs between sources also appears at other hour-periods (Fig. 3); for instance, in 

periods in which workday traffic is usually concentrated (between 7:00 and 20:00 hours) the 

percentage of nonzero pairs remains around 30% in the MPD-based matrix while it is around 

5% in the HTS-based one. This can be explained by the presumed wider representativeness of 

the mobile phone sample, based on the fact that surveys cannot observe all possible OD pairs. 

In general, observed trip matrices (e.g. derived from surveys) have a large number of empty 

cells and probably a set of cells with large values. The reason for this is that in a particular 

time interval some OD pairs are more likely to contain trips than others, thus leaving 

numerous cells with a very low number of expected trips. Thus the probability of making no 

observations of a particular OD pair is large. This sparsity property of the HTS-based 

matrices can be considered as a weakness of this methodology, since this kind of matrices 

have to distribute the total number of trips T among a substantially fewer number of elements, 

the nonzero OD pairs. Therefore the expansion process assigns more trips to the OD pairs 

collected in the survey than the real matrix, with trips between all pairs. Consequently, the 

number of trips in these cells is overestimated; meanwhile trips from non-collected OD pairs 

are neglected. By contrast, the wide representativeness of the mobile sample produces dense 

matrices in which most of the cells are filled, although a share of them contains small values.  

 

Fig. 3 Number of nonzero elements in the hourly matrix derived from both HTS and MPD.  

HTS

MPD



3.1.2. Similarities in trip information: OD pairs  

Once the differences in sparseness have been assessed, the level of similarity between 

matrices from the two sources (HTS and MPD) is reviewed and compared. First of all, the 

analysis focuses on trip flow between transport zones (each cell in the matrix) in the two 

sources. Taking into account that the study area is further divided into macro-zones, the trip 

information at this zoning level has also been considered. One of the measurements evaluated 

is the linear correlation coefficient, Pearson’s coefficient (Rp), to determine the level of 

similarity from the quantitative point of view. This coefficient is the most widely used 

measure of the relationship between two variables (i.e. when a change in one variable is 

associated with a proportional change in the other variable). At transport zone level and on a 

daily basis, the Pearson’s coefficient reveals a weak positive linear relationship between 

mobile-based and survey-based trips, with Rp = 0.44; by contrast, the coefficient at macro-

zone level yields a strong linear relationship between the numerical values (trips) in OD pairs 

(Rp = 0.81). On an hourly basis, similar tendencies are obtained (Fig. 4), and the two sources 

get stronger correlation when the zoning system is rolled up to a lower level of granularity 

(i.e. broader zones, less refined discretisation). This remains in time periods in which 

workday traffic is usually concentrated (between 7:00 and 20:00 hours). They coincide with 

hours during which mobile events are less dispersed according to the coefficient of variation, 

meaning there is a higher reliability for analytical purposes.  

 

Fig. 4 Pearson’s coefficient (Rp) by one-hour periods of the day, correlating trips in OD pairs 

derived from the MPD and HTS sources, at both transport zone and macro-zone level. 



However, it is necessary to remark that this kind of traditional correlation metrics may 

not properly deal in terms of comparing matrices with differences in sparsity. As previously 

discussed, matrices derived from HTS have a larger number of empty cells that those derived 

from MPD. This difference in the number of nonzero pairs (compared in Fig. 2) reveals that 

the comparison may lose reliability at transport zone level. Of course, the empty cells in the 

HTS-based matrices can be attributed to sample size limitations, as discussed above, but also 

to the geographical specification of the traffic zones. Then, the results can be more easily 

understood when the zoning system is rolled up to a lower granularity. In such a case, 

although the difference persists, the sparsity of the two matrices based on the 46 macro-zones 

becomes somewhat more comparable at both daily level (Fig. 5 a and b) and hourly level (Fig. 

5 c and d). Then, the comparative analysis of sources is probably more consistent at macro-

zone level, for which the Pearson coefficient gives a reasonably high relationship between the 

trip information derived from the two sources. 

 
(a)  (b) (c) (d) 

Fig. 5 Sparsity of matrices based on the 46 macro-zones. At daily level: (a) derived from 

MPD, (b) derived from HTS. At morning-peak period level: (c) derived from MPD; (d) 

derived from HTS.  

In the previous comparisons, OD matrices are treated as a set of unconnected 

numbers, ignoring spatial and temporal facets of the mobility that are also synthesised in a 

matrix-based form. Therefore, it is advisable to also evaluate the similarity between matrices 

in this context, but traditional statistical measures (e.g., r-squared, mean square error, etc.) are 

not able to find this kind of structural correlation in data. Recent works in the literature 



propose the use of the Mean Structural SIMilarity (MSSIM) index as an OD matrix 

comparator (Djukic et al. 2013; Pollard et al. 2013; Day-Pollard and Van Vuren 2015). The 

most important feature of this metric, developed for comparing images at pixel level (Wang et 

al., 2004), is the use of additional information in the evaluation process on the basis of the 

structural patterns in data. In general, images are highly structured, with pixels that are close 

to each other appearing to have strong dependencies. Based on this, the MSSIM computes 

statistics on groups of pixels (those within a window) and then takes the average (mean), 

rather than computing statistics based on all the pixels in the image together. If an image is 

equated to an OD matrix, the cells in the matrix (or OD pairs) can be seen as pixels that 

exhibit strong dependencies as well. If the two matrices describe similar transport patterns 

then, as with pixels, it is reasonable to expect similarities on windows of OD patterns (Pollard 

et al. 2013). The MSSIM index is designed to capture this property in a [–1, 1] scaled range. 

The largest positive value means the highest similarity (full match), while the smallest 

negative value entails the highest dissimilarity (significant differences). Although the MSSIM 

approach requires further refinement for use with OD matrices, the MSSIM index can identify 

structural differences better than traditional measures such as r-squared; conversely, MSSIM is 

successfully used as a measure of matrix similarity in the works referred to above. The 

MSSIM is calculated by summing and averaging Structural SIMilarity (SSIM) values across a 

whole matrix using an iterative procedure in which the SSIM is calculated over a part of the 

matrix (local window), generally a few cells wide by a few cells high. The expression used for 

calculating the MSSIM between two matrices, A and B, is: 

 
1

1
( , ) ( , )

M

j j

j

MSSIM A B SSIM a b
M =

=   (1) 

where aj and bj are the OD matrix contents at the j-th local window and M is the number of 

local windows in the matrix. The local window, which may be a square box of N × N 

elements, moves cell-by-cell over the entire matrix. At each step, the local statistics and the 



SSIM index are calculated within the local window according to the following expression: 
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where μa and μb are the mean values within this part of the matrices a and b, respectively; σa 

and σb are the variance of each dataset; σab is the covariance of the two matrices; and C1 and 

C2 are stabilisation coefficients. The SSIM is calculated according to the methodology 

described by Wang et al. (2004) and Pollard et al. (2013), with their values for C1 and C2. To 

define the window, it is assumed that the pixels of images that are closer to each other usually 

have a stronger relationship than the more distant ones. The contribution of the proximity in 

the SSIM calculation is then modulated by a Gaussian weighting function, w = {wi | i = 1, 2, 

…, N} for the local window of size N. The estimates of local statistics for the mean, variance, 

and covariance in (2) are then modified to incorporate such weights in the SSIM calculations. 

But in this sense, it is necessary to remark that, unlike in images, the proximity of cells in OD 

matrices does not guarantee that they are also close in space (e.g., zones 1 and 2 may be rather 

distant) and the window has to be established to consider this proximity. This issue was 

already considered in other works using this index for comparing OD matrices; Day-Pollard 

and Van Vuren (2015) proposed the Euclidean distance between two cells i and j defined in 

(3), using the xy-coordinates of the origin and destination centroid for OD pair i (xOi, yOi, xDi, 

yDi) and OD pair k (xOk, yOk, xDk, yDk), as a way of considering this fact in the SSIM 

calculations: 

 ( ) ( ) ( ) ( )
2 2 2 2

 ( , )i k Oi Ok Oi Ok Di Dk Di Dkd ODpair ODpair x x y y x x y y= − + − + − + −  (3) 

This Euclidean distance d is then used in the Gaussian function ( )2dw exp


=  to 

determine the contribution of OD pairs, with cells that are further apart contributing less. 

According to this, the MSSIM values between daily and hourly matrices from the two sources 



are calculated. At daily level, although slightly better results are obtained at macro-zone level 

than at transport zone level, the structural correlation reaches high values in both cases 

(MSSIMTZ = 0.78; MSSIMM Z = 0.83). Fig. 6 shows the structural correlation between matrices 

on an hourly basis, with similar values to the daily case in time periods in which workday 

traffic is usually concentrated (between 7:00 and 20:00 hours). This means that the structural 

patterns in the daily matrix derived from MPD are very close to those captured in the matrix 

derived from HTS, for example in terms of the distribution of trips over destinations. Fig. 7 a 

and b illustrate the flow distribution at the macro-zone level (only pairs with more than 1000 

daily trips) for matrices derived from the HTS and MPD sources, respectively. A visual 

analysis reveals that both sources capture similar patterns, with the majority of flows directed 

to and from home and work areas in Malaga as well as a few flows to and from the second 

most populous city of the study area (Alhaurin de la Torre). In both cases, the highest flow 

occurs between the two cities located in the southwestern part of the area of study (Mijas and 

Fuengirola). Another interesting strand revealed by the analysis, focusing on the time periods 

between 7:00 and 20:00 hours, is that the MSSIM index remains around the same value 

(approx. 0.77) at both macro-zone and transport zone level. Unlike the linear correlation 

coefficient, which is more influenced by the sparsity of matrices, the MSSIM index does not 

appear to reflect significant changes working at different levels of zoning-system granularity. 

This is explained by the fact that the MSSIM index measures the structural aspects of how 

cells (OD pairs) relate to one another and not the individual cell values themselves. Therefore 

the MSSIM index, in addition to identifying structural differences better than traditional 

similarity/correlation indexes, makes it possible to simultaneously compare sparse and dense 

matrices under similar quantitative criteria.  



 

Fig. 6 MSSIM index at both transport zone and macro-zone level for the relationship in the 

OD-pair data derived from the two sources (MPD and HTS) by one-hour period. 

 

    
 (a) (b)  

Fig. 7 Major OD flows between macro-zones: (a) daily matrix derived from the HTS and (b) 

daily matrix derived from the MPD. 

3.1.3. Similarities in trip information: origins and destinations 

Additionally, the level of similarity by origin (aggregating columns in the matrix) and by 

destination (aggregating rows in the matrix) of trips has also been explored using the 

correlation coefficient. Table 1 presents the coefficients reached in these terms, with similar 

values to the values obtained at OD-pair level. The two sources are more correlated when the 

zoning system is rolled up to a lower granularity. Fig. 8 displays these coefficients for all one-

hour periods of a day.  



Table 1. Correlation between trip information from the two sources (MPD and HTS).  

Trip information Zoning system Rp 

By origins Transport zone level 0.38 

 Macro-zone level 0.80 

By destination Transport zone level 0.38 

 Macro-zone level 0.79 

 

 
 (a) (b) 

Fig. 8 Pearson’s coefficient (Rp) by one-hour periods of the day, correlating MPD and HTS 

sources: (a) by origins and (b) by destinations of trips. 



        
 (a) (b)  

        
 (c) (d)  

Fig. 9 Number of trips during the morning-peak period (08:00–8:59): (a) trips originated in 

each macro-zone derived from HTS; (b) trips originated in each macro-zone derived from 

MPD; (c) trips terminated in each macro-zone derived from HTS; (d) trips terminated in each 

macro-zone derived from MPD. 

Fig. 9 represents the study area coloured by the number of trips originated or 

terminated in each macro-zone from the HTS and MPD, all of them referred to the morning-

peak period. In general, the two sources generate similar results, except for major cities (with 

an important component of short-distance trips) and macro-zones including non-populated 

areas. Regarding this last point, an interesting observation can be made by analysing the 

macro-zones in which the major divergences are concentrated. For this purpose, Fig. 10 

displays the proportional distribution of the numerical differences (errors) between the two 

data sources. A positive sign means that the number of HTS-based trips is larger than the 



number of MPD-based trips for each macro-zone, whereas a negative sign means the 

opposite. As can be seen, the major differences between sources occur in the macro-zones 

numbered 1, 14, 21, 26, and 27. In particular, for macro-zone number 1, containing the city 

centre, the analysis reveals that the number of trips originated using HTS is greater than the 

number from MPD. This macro-zone is characterised by an important component of 

shopping, services, and other leisure activities which imply mobility by walking and short 

trips, for which mobile technology may be less precise as a mobility probe (as discussed in 

the next sections). In contrast, the number of trips originated in macro-zones 14, 21, 26, and 

27 derived from MPD is larger than the number derived from HTS. These macro-zones 

include university campuses and major industrial parks, indicating a significant divergence 

regarding the data-collection capability of HTS in these sectors.  

 

Fig. 10 Total error distribution in the number of daily trips originated in each macro-zone 

between the two data sources (HTS and MPD-based matrices).  

A closer look at the information by origins (MPD vs. HTS) now focusing on trips 

originated in each transport zone reveals an important finding when colour and size are added 

to include information on the population (Fig. 11). For trips generated during the whole day 

(Fig. 11a) and during the morning-peak period (Fig. 11b), the HTS source tends to 

underestimate those trips originated in non-populated zones (identified by big red dots). These 

transport zones are associated with mass transportation facilities (like the railway station, 

central bus terminal, and airport) as well as university campuses, industrial parks, and 

hospitals located in the study area. This suggests that these types of zones may not be 



properly represented in survey campaigns, despite being important centres where trips 

originate and terminate. In most cases, this is the fault of designing samples in survey-based 

campaigns based on population size and in terms of the number of households in the study 

area. Non-populated zones are excluded from the sampling frame (there are no households to 

be interviewed); other cases, such as non-resident populated zones, are also not identified by 

surveys based on census data (e.g. university residences). Hence, the sample might not be 

representative of all people travelling from/to these zones. There are other types of surveys 

(e.g. intercept surveys) that take place at non-residential sites while the respondent is in the 

course of carrying out an activity of some type (e.g. shopping). Although they can better 

synthesise the mobility over these zones, these types of surveys using uncontrolled quota 

sampling have controversial drawbacks regarding reliability. It is necessary to use a 

combination of survey methods to take advantage of their pros and cons, but even a 

combination of intercept and home interview surveys may fail to produce matrices where all 

cells have been sampled (Ortuzar and Willumsen 2011). However, the representativeness of 

the MPD sample, which is homogeneously distributed across the territory, captures trips with 

independence of the socioeconomic characteristics of the zone (origin or destination) of trips. 

Other concerns regarding sample size are addressed in the next section.  

 
 (a) (b)  

Fig. 11 Number of trips originated in each transport zone (MPD vs. HTS) coloured according 

to the population: (a) during a day, and (b) during the morning peak period (08:00–8:59). 



3.1.4. Trip distribution by distance 

From the mobile-data perspective, the detection of movements is strongly subject to the 

number of events generated by phones as they communicate with the network. The more 

events are generated, the more footprints are available from which to infer trips. In this 

regard, a longer trip duration increases the possibility of a call, message event, or even the 

abovementioned passive events. In a similar way, a longer trip distance also offers more 

opportunities to generate events (e.g. due to movement events created when a user changes 

from one group of cells to another). An example of this is depicted in Fig. 12a. In contrast, 

when trips are made in less time (because they imply shorter distances or are made at faster 

speeds), mobile phones leave fewer footprints of their ‘approximate’ locations during their 

movement (Fig. 12b). The consequences of these issues cannot be ignored when using MPD, 

since these types of short trips tend to be undercounted or completely overlooked when 

exploiting mobile data.  

  
 (a) (b)  

Fig. 12 Examples of mobile-event generation during (a) a non-short trip and (b) a short trip. 

Therefore, focusing on distance travelled (based on the network shortest distance 

between the origin and destination centroids), Fig. 13a reveals that for medium and long 

distances, which are customarily made by motorised modes, travel rates are very similar for 

the two sources (MPD in blue and HTS in red). But for distances shorter than 2.5 km, a 

MEDIUM-DISTANCE TRIP: 
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Turn on the phone on early morning
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SHORT-DISTANCE TRIP: 

DROP OFF CHILDREN AT SCHOOL

Event 1

Turn on the phone on early morning

Event 2

Periodic record



significant reduction of the MPD rates is appreciated. This suggests that mobile data tend to 

under-report short-distance trips, as shown in Fig. 13b. In this respect, it is worth underlining 

that transport modes related to short-distance trips are usually non-motorised (Ryley 2008) 

and are primarily ‘walking’, although ‘cycling’ also occurs. Research in the literature shows 

that the average ‘walking’ speed is around 4 km per hour (km/h), while that of ‘cycling’ is 

around 10–12 km/h (Jensen et al. 2010), depending on factors such as the user's age, gender, 

or even surface condition. By cross-checking short-distance trips with low travel speeds, a 

dynamic mobility pattern on the scale of the neighbourhood in cities can be obtained; this 

pattern is difficult to detect with the spatial resolution offered by mobile technology (it is 

strongly dependent on the granularity of the mobile network), requiring additional 

methodologies like GPS (Ge and Fukuda 2016). Moreover, in terms of travel time, many of 

those short trips take less than 15–30 minutes, a quite reduced time window for generating 

mobile events. However, this comparison does not seem to be the most appropriate for 

contrast purposes, since survey-based approaches also present resolution problems in such 

time windows. For example, trips tend to be rounded to the nearest 10-minute or even 15-

minute interval by survey respondents (Stopher and Greaves 2007) and daily travel times per 

person are considerably overestimated for the first 15-minute time interval (Gerike et al. 

2015). Thus, to overcome these issues, Fig. 13a also displays travel rates derived from HTS 

considering only trips with durations (reported by respondents) greater than 15 minutes. 

These travel rates (bars in green) are certainly close to MPD rates (bars in blue), especially in 

the context of short distances. But the difference in magnitude of total trips between the two 

sources (Fig. 13b) reveals a concern that should be addressed when using MPD sources. 



  
 (a) (b) 

Fig. 13 Trip distribution from the two sources (MPD vs. HTS) by ranges of the distance 

travelled (in kilometres, km): (a) percentage of daily trips (b) total daily trips. 

3.2. Qualitative findings 

3.2.1. Cost and time consumption 

The resources needed to conduct any travel survey can be defined in terms of budget and 

time. Besides the effort expended on sample design and data acquisition, a considerable 

amount of these resources are needed to code and process data. As a result, the time between 

surveys often ranges from 5 to 10 years. With this frequency, the data soon become outdated 

and, during intermediate periods, the transport demand must be updated using other available 

information (e.g. traffic counts) to derive estimates. Nowadays, administrators demand more 

updated information for analysing transportation policies and strategies. In this study, 

matrices derived from MPD were available in a few weeks, rather than the extremely long and 

costly traditional survey-based approaches. In this sense, mobile phone data offer substantial 

opportunities to improve the cost effectiveness and frequency of data collection and 

processing while also providing valuable information on temporary mobility patterns.  

3.2.2. Sample design 

Representativeness is of paramount importance in describing mobility over a region. In this 

sense, the sample size plays an important role in determining the generalizability of findings. 

As mentioned above, the size of the sample in survey-based approaches is usually determined 



on the basis of the residential population of the study area. Since survey budgets generally 

tend to be tight, the sample size forces a reasonable balance between quality and cost to 

generate good estimates in practice. In this study, approximately 30,000 persons were 

interviewed to construct the matrices derived from HTS (a population of around 3% in the 

region). A main strength of surveys is that they typically use statistical sampling in order to 

make inferences about a general population, within pre-specified margins of error; this allows 

findings to be generalised. 

In the case of mobile data, the sample is customarily limited to subscribers of a given 

mobile phone operator; in this study the matrices derived from MPD were estimated on the 

basis of a sample of approximately 200,000 persons (aged 18 years and above). Therefore, 

although the selection of individuals is not subject to statistical sampling, the sample size is 

larger than in most household travel surveys. Certainly, MPD are provided by a single 

operator who has a finite market share, but one can consider that the sample follows a 

homogeneous distribution in time and space based on the pervasive use of mobile technology, 

with a mobile subscription penetration of 109% in Spain (CNMC 2015), assuming a random 

sample extracted from the whole population. This assumption may be not adequate when 

mobile operators have different penetration rates in the area of study, which may occur when 

broader areas are analysed (not in this case study). Due to the inherent dependency on the 

users’ profile, several works have suggested sampling problems when using datasets from 

mobile phone users (Frias-Martinez and Virseda 2012; Ranjan et al. 2012). For instance, high-

frequency callers may not always be representative of an entire population or certain 

population segments may not be properly represented in the sample (e.g., the usage of mobile 

phones seems somewhat less widespread among people aged 65 and over). However, recent 

works have demonstrated that mobile phone data are robust to biases in terms of phone 

ownership (Wesolowski et al. 2013) and that even phone users with different phone usage 



patterns do not have systematic differences in travel behaviour (Jiang et al. 2017). This 

verification confirms the validity of using a sample of phone users for expansion to the whole 

population. Moreover, while the HTS sample only consists of residents of the study area 

supplemented by specific passer-by surveys at particular zones (with the consequent questions 

that may arise in non-populated zones), the MPD sample also includes visitors within the 

region. This reduces the need for additional resources (e.g. intercept surveys) to draw an 

overall comprehensive picture of travel patterns within an OD matrix.  

3.2.3. Feasibility and timeliness 

A main problem faced in conducting high-quality travel surveys is tied together with non-

response and non-reported information. In general, it is difficult to find respondents who are 

willing and able to be interviewed. Even if they agree to participate, it is possible that the 

responses provided differ from real facts or are left incomplete. The reasons for respondents 

failing to report trips actually made are varied: unwillingness to devote time and effort to 

reporting certain activities, belief that specific trips are too insignificant to be reported, or, 

more frequently, some respondents simply forget trips they have made or forget to record 

them. These measurement errors may also be attributable to other causes such as the 

interviewer’s training or the questionnaire itself. In addition to non-reporting of the correct 

number of trips, it is well known that respondents generally do not provide accurate details 

about other key components of travel, such as travel times, distances, and costs (Stopher and 

Greaves 2007); for instance, respondents typically report their travel time in quantum leaps of 

five- or ten-minute intervals. Mobile phone data play a key role in the context of all these 

errors. This source has the advantage of being collected passively, avoiding many of the 

abovementioned problems and even the difficulty of finding respondents who are willing and 

able to be interviewed, a key problem in surveys. Furthermore, another strength of mobile 

phone data is the timeliness of data collection, without the bias of survey techniques. In travel 



survey data, a non-negligible rate of non-mobility users, that is, households and persons who 

report making no trips on the day of the survey, is frequently assumed. This last issue does 

not represent a dramatic problem because mobile phones provide real-time mobility data 

collected over several days from the repeated sample. 

3.2.4. Level of detail 

It is clear that the determination of trips between origin and destination is mandatory to 

synthesise the travel demand over a region, but other data regarding socioeconomic and trip-

making characteristics of individuals and households are extremely valuable to further 

understand the relationship between trip, travel choice, and scheduling of daily activities. A 

survey is essentially intended to yield data on the travel pattern of the residents of the 

household, providing information regarding the number of trips made, their origin and 

destination, the purpose of the trip, travel mode, time of departure from the origin, time of 

arrival at the destination, and so on. Certainly, it is possible to determine these aspects 

(directly or indirectly) from MPD. Advanced methodologies have been developed during the 

last decade to infer the transportation mode (Reddy et al. 2010; Horn et al. 2017; Semanjski et 

al. 2017; Phithakkitnukoon et al. 2017) or the purpose of the trip (Gong et al. 2014; Alexander 

et al. 2015; Jiang et al. 2017) from mobile data. Nevertheless, an HTS also obtains data on the 

general characteristics of the household that influence trip making (e.g. family size, vehicle 

ownership, occupancy and so on,) from which it is possible to relate the amount of travel per 

household and zonal characteristics and to develop patterns for trip generation rates. In this 

sense, at present, mobile technology is not able to provide these kinds of characteristics which 

are typically available from travel surveys (Wang et al. 2018), although there are efforts in 

that direction (Eftekhari and Ghatee 2016; Rahul and Winter 2016; Xiao et al. 2017; Cheng et 

al. 2017; Yin et al. 2017; Bwambale et al. 2017). Moreover, in the context of multi-stop tours 

associated with trip chaining (e.g. dropping off children at school before going to work), this 



technology requires extra computational efforts with a high uncertainty level to detect stops 

(or stages) made during the trip, particularly if the stops are short in duration, while a travel 

survey is one of the few data acquisition procedures able to collect such information. 

4. Discussion  

This section is devoted to synthesising the main results discussed in previous paragraphs in 

order to provide a clearer understanding of the potential and difficulties of using mobile 

phone data in the field of matrix estimation. Table 2 summarises the main strengths and 

weaknesses.  

Table 2. Main strength and weakness of the MPD source in the context of matrix estimation. 

Strengths Weaknesses 

Higher sample size; wider coverage to capture the 

extensiveness of OD relations and connections. 

Low spatial resolution for matching detailed zoning 

systems and sparse representation in time. 

Reduced time and cost of data collection and 

processing. 

Under-reporting of short trips (distances of less than 2.5 

km). 

Timely data, with valuable information on temporary 

mobility patterns. 

Feasibility data, automatically and passively produced.  

Lack of socioeconomic characteristics of travellers (e.g. 

income, family size, etc.) or even details of trips (e.g. 

number of stops, occupancy, etc.). 

First and foremost, it is worth highlighting that the compared matrices come from 

sources with different technical bases and procedures for collecting, processing, and 

expanding data; in fact, both matrices may contain large errors (which are difficult to 

dimension in some cases). Moreover, although they were conducted over the same area of 

study and very close together in time, the ever-changing daily life and work patterns as well 

as possible roadway system modifications make it difficult to reproduce the exact numeric 

values. There is no solid support defined (i.e. ground truth), so it is difficult to say to what 

extent one is better than the other. However, based on the literature reviewed and the 

comparative analysis presented in the previous paragraphs, we can make the following 

observations:  



• Mobile data offer a wider coverage, creating dense matrices in which a higher 

percentage of all possible OD movements in the studied area are covered.  

• In fact, the wide representativeness of the MPD sample, which is homogeneously 

distributed across the territory, also provides an efficient alternative for sampling areas 

that are not properly represented in the HTS sample (e.g. non-populated zones 

embodying airports, train stations, or industrial parks) or even for visitors’ movement 

within the region (not only residents), without additional resources or surveys.  

• Moreover, many common features of travel behaviour have been detected, despite the 

highly diverse nature of these datasets. In terms of a structural correlation between 

MPD and HTS sources, the comparison has revealed homogeneity at both spatial and 

temporal scales; the structural patterns in matrices derived from MPD are very close to 

those captured in matrices derived from HTS. From the numerical point of view, both 

sources are highly correlated when the zoning system is rolled up to a lower 

granularity, not only for OD trips but also for trips by origins and by destinations.  

• Focusing on non-short trips, the two sources reached similar ratios for the total 

number of trips and trip distribution. 

• However, in the context of short trips, mobile technology in particular seems to 

present more difficulties in obtaining similar trip ratios than HTS sources. This fact is 

mainly motivated by the inherent nature of the events compounding the MPD source. 

As previously explained, the detection of movements using mobile technology is 

strongly dependent on the number of events generated by phones as they communicate 

with the network. For medium- and long-distance trips, the detection accuracy 

improves due to the fact that the number of available events increases in time and 

space (both active and passive events are used). But many short trips take less than 15 

or even 30 minutes, presenting a reduced time window for the generation of mobile 



events. Therefore, mobile events may be too sparse to determine these trips 

consistently. Of course, this does not mean that mobile technology is not able to 

capture short trips at all but merely indicates that short trips are more likely to be 

undetected than other trips according to the current state of this technology.  

• Separately, there is a facet that can also affect the under-reporting of short-trips. This 

issue is associated with the matching algorithms to convert the footprints (generated 

by mobile events during movement) into origins and destinations within the zoning 

system. In the context of this comparative study, both mobility sources (MPD and 

HTS) are referred to a traditional zoning system based on polygonal sectors 

corresponding to administrative divisions (or transport zones). However, mobile 

technology has no information about the exact positions of handsets in the study area 

(like GPS technology) but only has information about regions linked to the service 

coverage area of antennas (or cells). This coverage area varies from site to site, 

ranging from hundreds of metres in urban areas to tens of kilometres in low population 

areas. Since the location algorithm is based on the triangulation of cell tower signals, 

mobility data are constrained by the density of cell towers in the studied area. In this 

study, focusing on a dense urban area, cell tower triangulation works pretty well. In 

particular, the spatial resolution is claimed to be about a few hundreds of metres, 

ranging from 200 to 300 metres. But here, the location is referred to the zoning system 

of the studied area, adding a bit more spatial uncertainty. In mobile systems, the 

antennas are distributed following a Voronoi tessellation to provide adequate radio 

coverage for communication rather than transportation planning criteria (such as 

homogeneous socioeconomic characteristics) used for the zoning system. Then, 

usually a cell (black polygon in Fig. 14a) overlaps not exactly with a typical transport 

zone but partially with two or more transport zones (black polygon in Fig. 14b). 



Therefore, there are errors in the conversion of trips between cells and trips between 

transport zones. The larger the transport zone with which the cell has to be matched, 

the lower the matching error obtained (red polygon in Fig. 14). Moreover, mobile 

systems are designed to have an overlap between the cells to avoid coverage holes. 

Therefore, the complexity of matching ‘footprints’ provided by MPD with the zoning 

system is reduced by working at broader zones (i.e. lower granularity).  

   
 (a) (b)  

Fig. 14 Area division (a) based on Voronoi tessellation in mobile networks; (b) by zoning 

system based on administrative divisions. 

Despite this last remark, matrices derived from MPD can be regarded as a 

complementary source of information that synthesises the overall picture of mobility over a 

region. In particular, when the zoning system is rolled up to a lower granularity, many 

common features in travel behaviour can be detected by cross-checking sources. 

Transportation studies have to be continuously adapted to the changing lifestyles in our 

society but also have to become much more economical to perform. In this sense, mobile data 

represent a valuable technology for transport modelling. The time and cost of data collection 

and processing are visibly reduced as data are automatically and passively generated by 

mobile users. Furthermore, despite the criticisms discussed in Sections 3.2.2 and 3.2.3 

regarding sampling problems, this technology provides a means of sampling people’s 

mobility at large population scales. Therefore, this data collection method allows 



transportation studies to mitigate the effects of the major sources of errors in travel surveys: 

sampling, non-coverage, non-response, and measurement errors (Ortuzar and Willumsen 

2011). This fact is also of paramount importance due to the growing difficulty of contacting 

and interviewing citizens regarding their travel behaviour. But nowadays, public 

administrations are demanding not only more updated information to analyse transportation 

strategies but also more detailed data. In this regard, surveys remain one of the most 

important ways of obtaining rich details about socioeconomic information, trip-making 

characteristics, or even stops. These pieces of information are extremely valuable for transport 

planning and decision making, and therefore it is envisaged that surveys will continue to be an 

integral part of transportation studies. 

4.1. Data fusion approach 

Based on the previous discussion, the challenge is to develop data fusion methodologies able 

to obtain information with the optimum accuracy from a variety of heterogeneous sources. 

This involves taking advantage of the strengths of mobile data (e.g. extensiveness of OD 

relations and connections, representativeness), minimising their weaknesses (in particular 

inaccuracies for short trips) by means of other information sources like travel surveys. 

However, surveys do not have to come from exhaustive procedures intended to yield data on 

origin–destination flows, but on general characteristics of travel behaviour like total trips over 

the study region or trip distribution by distance, which are less costly. One possible way of 

addressing this issue can be seen as an OD matrix estimation problem, for which entropy 

maximisation and information minimisation principles have been commonly used (Wilson 

1970; Willumsen 1978; Van Zuylen 1978; Van Zuylen and Willumsen 1980). These works 

demonstrated that by maximising the entropy, the most likely trip matrix could be estimated 

subject to a set of constraints. An attractive feature originally proposed by van Zuylen (1978) 

consisted of incorporating extra information (like a prior trip matrix) that might lead to a more 



realistic estimate of the trip matrix. With this choice, the relative entropy H of the estimated 

matrix G with respect to a prior matrix M is defined as follows: 
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where gij is the estimated number of trips from transport zone i to j, and mij is the number of 

trips between transport zones i and j from the prior matrix. In this case, the daily MPD-based 

matrix is selected as the prior matrix due to the strengths mentioned in the previous sections. 

The estimated matrix gij will have the same structure as the MPD-based matrix mij, conserving 

the extensiveness of OD relations and connections monitored by mobile technology. The 

entropy maximisation principle seeks to identify the most likely trip matrix consistent with 

the information available (Ortuzar and Willumsen 2011). However, additional information 

has to be included in the problem to correct inaccuracies detected in mobile data, specifically 

for short trips (which tend to be undercounted or completely overlooked in this source). This 

scheme is modelled by means of constrains based on information derived from the available 

travel survey. In the developed framework, the constraints are based on the total number of 

trips and the trip distribution by distance, provided by the HTS-based matrix. Therefore, the 

problem can be reformulated based on this information and the objective function, in a 

simplistic way as follows: 
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Problem (5) resembles the classical double constrained distribution problem. In the 

expressions, the notation adopted uses the uppercase indices to denote macro-level zones, 



whereas transport zone levels are represented by means of lowercase indices. The 

optimisation problem aims to find the OD matrix gij with the closest similar structure to the 

mobile phone matrix, mij, using the criterion of minimising its relative entropy, which can be 

considered as a distance function between matrices G and M. Restrictions in (5) impose that 

the resulting matrix must fulfil a set of state constraints. The constraints defined by (a) will be 

referred to hereafter as ‘histogram restrictions’, and they are aimed at maintaining the trip 

distribution by distance provided by the HTS-based matrix. For its definition, it is necessary 

to distribute OD pairs according to the distance travelled (based on the network shortest 

distance between origin and destination centroids). Therefore each OD-pair is classified in a 

discrete number of intervals or bins, |B|, where Pb is the proportion of trips in the distance 

range identified by bin b, and T is the total number of trips, both magnitudes provided by the 

HTS-based matrix. With the product of the proportion of trips Pb and the total number of trips 

T, the number of trips for each bin is obtained directly. During the estimation procedure, the 

cells in the estimated matrix gij are modified to fulfil the imposed ‘histogram restrictions’. 

However, the prior matrix (MPD-based matrix) contains valuable information regarding the 

‘true’ matrix, thus the estimation method pays careful attention to the distortion of the 

information contained in it. To control the distortion at each cell, of the estimated matrix 

(number of trips from transport zone i to j) with respect to the prior one, an additional set of 

constraints (b) is imposed. In this case, the constrains are built to maintain the number of trips 

at macro-zone level. As mentioned in section 3.1.2, the number of trips between macro-zones 

is more accurate when the zoning system is rolled up to a lower granularity. In fact, the two 

sources (HTS and MPD) reflect a strong linear relationship between the numerical values 

(trips) at macro-zone level, not only for OD trips but also for trips either by origins or by 

destinations. Hence, trips at macro-zone level have to be maintained during the estimation 

procedure. Thus, the number of trips between macro-zones I and J in the estimated matrix are 



forced to be equal to those trips between the same macro-zones in the prior matrix, where I, J 

belong to the set MZ of 46 macro-zones defined in the study area. The analytical solution to 

the optimisation problem (5) is well-known, and it is expressed as: 
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where the lengths of vectors of coefficients α and β are respectively |B| and |MZ|. The solution 

obtained corresponds to a multiplicative model, which implies that original zeros in the prior 

matrix mij are kept as zeros in the final matrix gij, preserving the original structure of mij. 

According to this, the total number of trips T is now distributed among the number of OD 

connections captured by mobile technology, which is clearly higher than those captured by 

surveys. As mentioned in Section 3.1.1, HTS-based matrices have to distribute this total 

number of trips among a substantially fewer number of elements; consequently, the number of 

HTS-based trips tends to be overestimated. The problem (5) can be solved by means of an 

iterative proportional fitting procedure, largely used in transportation studies (Furness 1965; 

Lamond and Stewart 1981; Erlander and Stewart 1990), whose proof of the convergence is 

reported in Bregman (1967). The estimated matrix G obtained preserves the strong linear 

relationship with the prior matrix regarding the numerical values (trips) contained in OD pairs 

at traffic zone level (Rp = 0.91); due to the imposed constraints (b), the Pearson’s coefficient 

at macro-zone level is 1. At this point the inaccuracies related to short trips have been 

overcome in the estimated matrix with regard to the prior one. Fig. 15a presents the trip 

distribution versus distance, the estimated matrix (in cyan) gets similar travel rates to those 

from HTS source (in red), correcting the under-reporting of short trips from MPD (in blue). 

This correction is more easily appreciated in Fig. 15b. 



  
 (a) (b) 

Fig. 15 Trip distribution from the estimated matrix (G) and the two sources (MPD and HTS-

based matrix): (a) percentage of daily trips by ranges (bins) of the distance travelled; (b) total 

daily trips. 

5. Conclusions 

In today's world, new technologies offer effective options for complementing or even 

replacing traditional transport data collection methods. In particular, the pervasive use of 

mobile phones has made this technology emerge as a promising alternative for generating OD 

matrices, traditionally extracted from survey-based approaches. Through passive and active 

events, footprints are generated that reveal the ‘approximate’ locations where people have 

been and the times at which they were there. A number of techniques have already been 

developed in the literature for converting these data into trips. But, in order to provide a 

clearer understanding of the potentialities and challenges of mobile phone data regarding 

traditional survey methods, this work has conducted a comparison among matrices derived 

from both types of sources over the same area of study: the urban agglomeration of Malaga, 

in the south of Spain. The conclusions have been derived by using statistical techniques and 

other methodologies like MSSIM. 

As a result of the comparative analysis presented in this work and other experiences 

with mobile data that have been investigated and reviewed, one can conclude that mobile data 

can be used to draw a complete and representative picture of mobility flows over a region, 

especially when the zoning system is rolled up to a lower granularity. In particular, this 

comparative study has not only demonstrated the existence of many common features in the 



travel characteristics reflected in traditional survey sources but also shown that the huge 

representativeness of this technology allows inherent problems in survey sampling frames to 

be overcome, capturing mobility in OD connections extensively with independence of the 

socioeconomic characteristics of the studied area. This fact is of paramount importance for 

monitoring mobility in non-populated areas such as mass transportation facilities, industrial 

parks, educational campuses, or hospitals, which are regularly excluded from the sampling 

frame (when no households are available to be interviewed). Hence, mobile technology can 

be used as a complementary information source for generating trip matrices using larger 

zones. However, as finer zoning systems are used, the use of mobile technology may raise 

questions about the accuracy of estimated trips, especially for short trips (which imply shorter 

distances or displacements made at faster speeds), which tend to be undercounted or 

completely overlooked in mobile data. Obviously, the importance that this fact may have in 

estimating the origin and destination flows depends on the nature of the studied problem 

itself. The severity is not the same in mobility studies at a national/regional level as in an 

urban context where the occurrence of this segment of mobility cannot be neglected. In this 

sense, the magnitude of the total number of trips is a concern when using mobile phone data, 

which should be addressed in conjunction with location-based services data generated by 

smartphone applications (with larger spatial precision) or other available data (e.g. outdated 

matrices or traffic sensor data) in order to extend and validate the collected data. The findings 

of this work form the basis for further research on developing data fusion methodologies to 

obtain the optimum accuracy from these heterogeneous sources. In such a framework, there 

are modelling tools and optimisation techniques that can also be implemented to minimise 

inaccuracies for short trips. The use of mobile data augmented with less costly travel surveys 

with the main aim of, for example, capturing the magnitude of short trips or even total trips 

over the study region (instead of exhaustive origin–destination flows) also deserves further 



research. In any case, traditional surveys still constitute an extremely valuable source of 

information to be used in transportation studies because of the rich data they provide, 

especially in terms of socioeconomic characteristics. Only a full consideration of all available 

sources can lead to high-quality data collection results.  
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