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Abstract—Usually, complex-valued RKHS are presented as 
an straightforward application of the real-valued case. In this 
paper we prove that this procedure yields a limited solution for 
regression. We show that another kernel, here denoted as pseudo- 
kernel, is needed to learn any function in complex-valued fields. 
Accordingly, we derive a novel RKHS to include it, the widely 
RKHS (WRKHS). When the pseudo-kernel cancels, WRKHS 
reduces to complex-valued RKHS of previous approaches. We 
address the kernel and pseudo-kernel design, paying attention 
to the kernel and the pseudo-kernel being complex-valued. In 
the experiments included we report remarkable improvements 
in simple scenarios where real a imaginary parts have different 
similitude relations for given inputs or cases where real and 
imaginary parts are correlated. In the context of these novel 
results we revisit the problem of non-linear channel equalization, 
to show that the WRKHS helps to design more efficient solutions. 

Index Terms—Complex-valued RKHS, kernel methods, regres- 
sion, non-linear channel equalization. 

 

I. INTRODUCTION 

OMPLEX-VALUED signal processing is of fundamental 

interest. Its main benefit is the availability of processing 

the real and imaginary parts as a single signal. It finds 

application in a vast range of nowadays systems in science 

and engineering such as telecommunications, optics, elec- 

tromagnetics, and acoustics among others. Signal processing 

for complex-valued signals has been widely studied in the 

linear case, see [1] and references therein. The non-linear 

processing of complex-valued signals has been addressed from 

the point of view of neural networks, [2] and, recently, using 

reproducing kernel Hilbert spaces (RKHS). Some complex 

kernel-based algorithms have been lately proposed for clas- 

sification [3], regression [4], [5], [6] and mainly for kernel 

principal component analysis [7]. Regarding regression, in [5] 

the authors propose a complex-valued kernel based in the 

results in [3] and face the derivative of cost functions by using 

Wirtinger’s derivatives. Same kernel is adopted in [4]. And in 

[8] the augmented version of the algorithm is proposed. In [6] 

the authors review the kernel design to improve the previous 

solutions. These previous approaches have been developed in 

the framework of kernel least mean square (KLMS). 

Except for the method in [8] all these algorithms are 

straight-forward applications of real-valued RKHS. In [8] 

some additional considerations are developed for time adaptive 

estimation within the definition of the inner product in the 

feature space. These formulations, that are useful in the 
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learning of many problems, are limited for learning in others. 

As we show in this paper they cannot learn any given complex- 

valued non-linear function. 

In this paper we propose a novel RKHS for complex-valued 

fields with full representation capabilities. We show that to 

represent any complex-valued function we need to include an 

additional term, denoted as pseudo-kernel1. We refer to this 

new approach as widely RKHS (WRKHS) after widely linear 

complex valued solutions in linear systems [1]. The results in 

[4], [5] and [6] can be seen as a particular case of WRKHS 

in which the pseudo-kernel is considered zero. We denote 

these approaches as strictly complex-valued RKHS (SRKHS). 

The need for the WRKHS can be justified in cases where 

the real and imaginary parts are correlated and learning them 

independently is, at best, suboptimal. Besides there are some 

relations that cannot even be capture with SRKHS approach, 

while our WRKHS, relaying on the pseudo-kernel, is able to 

learn on those scenarios, as we illustrate in the experimental 

section. 

One of the key issues with our WRKHS is the need to 

define kernels and pseudo-kernels. In this paper we describe 

valid kernels and pseudo-kernels. We also detail in which cases 

the WRKHS can be simplified to a SRKHS with complex or 

real-valued kernel. 

Two experiments are included to illustrate the capabilities of 

WRKHS. First, we face a regression where clearly a different 

kernel for the real and imaginary parts benefits the learning. 

Then we learn a function using WRKHS with a real-valued 

kernel and a pure imaginary complex-valued pseudo-kernel. 

This solution allows modeling a dependence between real 

and imaginary part. Here, a WRKHS clearly improves the 

regression. We revisit the problem of non-channel equalization 

to conclude, from the results in this paper, that the best option 

is a SRKHS with real-valued kernel, even in the non-circular 

case. To compare to previous approaches we develop a version 

for the recursive case with sample selection [9] and compare 

it to the results in [5], [6] for non-linear channel equalization. 

The paper is organized as follows. In the next section 

we review some concepts needed on RKHS. We continue in 

Section III with the derivation of WRKHS. In Section IV the 

SRKHS is developed as a special case of WRKHS. Section V 

is devoted to the analysis of the kernel and pseudo-kernel and 

some new proposals. The performance of these approaches is 

illustrated in Section VI, where several scenarios are presented 

and the application of WRKHS is discussed. We end with 

Conclusions. 

The notation used in the paper is as follows. For matrix A, 

[A]l,q is its (l, q) entry, AT is the transpose of A, AH the 

1The pseudo-kernel plays a similar role of the pseudo-covariance of 
complex-valued random variables. 
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Hermitian transpose, A∗ its complex conjugate and A—∗ its 
inverse conjugate. In denotes the identity matrix of size n. 

For a vector a, [a]l denotes its l-th entry. To denote the i-th 

sample of a vector and signal we use, respectively, a(i) and 

a(i). The real and imaginary parts are denoted by subindex 

r and j, respectively, i.e. a = ar + jaj, with j =  1. To 

denote the complex Gaussian distribution with mean vector µ, 

covariance matrix K and pseudo-covariance matrix K̃ we use 

N  µ, K, K̃ . We write the inner or dot product as ⟨ a, b⟩  

= 

III. WIDELY COMPLEX RKHS 

Based on the widely linear concept [1] we propose the fol- 

lowing RKHS for regression in complex-valued formulation. 

 
Definition 3.1: Widely complex RKHS. We denote as widely 

complex-valued RKHS (WRKHS) the RKHS defined by the 

kernel k : X × X → C and a pseudo-kernel k˜ : X × X → C, 

f (x•) = 
Σ 

αik(x•, x(i)) + 
Σ 

α∗ k̃ (x• , x(i)) (6) 

bHa = aTb∗.  

where αi ∈ C. 

i=1 i=1 

II. RKHS 

A RKHS is a Hilbert space of functions that can be defined 

by a reproducing kernel k : X × X → R [10]. Given the 

reproducing kernel k, the RKHS Hk of real-valued functions 

on the set X is the Hilbert space containing k(x, ·) for every 

The pseudo-kernel is related to the feature map, φ : Cq, 

by k̃ (x• , x) = φ(x•), φ(x)∗ . We introduce the following 
definitions that we need in the next proposition. 

Definition 3.2: Kernels of real-imaginary parts of the feature 

space. We define the kernels for the real to real, real to 

imaginary, imaginary to real and imaginary to imaginary parts 

of the feature space, respectively, as 
x ∈ X and where k has the reproducing property 

f (x•) = ⟨ f, k(x•, ·)⟩ k ∀f ∈ Hk, (1) 

being ⟨ ·, ·⟩ k  the  inner  product  in  Hk.  In  

particular, 

⟨ k(x, ·), k(x•, ·)⟩ k = k(x, x•). In a RKHS, functions are 

in 

γ (x , x) = ⟨ φ (x ), φ 
(x)⟩ , 

γrj(x•, x) = ⟨ φr(x•), 

φj(x)⟩ , 
γjr(x•, x) = ⟨ φj(x•), 
φr(x)⟩ , 

γjj(x•, x) = ⟨ φj(x•), 

φj(x)⟩ , 

where γrj(x•, x) = γjr(x, x•). 

 

 

(7) 

the closure of the linear combinations of the kernel at given 

points: 

n 

f (x•) = αik(x•, x(i)) = k(x•, X)α, (2) 
i=1 

Proposition 3.1: WRKHS reproducing properties. The 

WRKHS can learn the real and the imaginary parts of the 

output as in (3). 

Proof. The output (6) as a function of the feature space can 

be rewritten as 
n n 

where f is in the class F of real functions forming a 

  
f (x•) = 

Σ 
αi⟨ φ(x•), φ(x(i))⟩  + 

Σ 
α∗⟨ φ(x•), 

φ(x(i))∗⟩ . 

[k(x•, x(1)), k(x•, x(2)), ..., k(x•, x(n))]. In the complex-valued case, one might work with the real In composite form it follows that 

and imaginary parts stacked into a so denoted composite vector 
 
fr(x•)
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parallels the one in the scalar, with the main difference that 
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T
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α
  

fR(x•) =

 
fr(x•)

 

=

 
krr(x•, X) krj(x•, X)

  
αr

 

(3)
 

 

that can be rewritten in compact form as fR(x•) = 

KR(x•, X)αR. We have two-dimensional vector, and we can 
define an estimator by minimizing the regularized empiri- 

cal error on the basis of a training set D = {X, y} = 
{(x(1), y(1)), ..., (x(n), y(n))}: 

  

= 2

 
γrr(x•, X)  γrj(x•, X)

  
αr

 

. (8)
 

 
This corresponds to the approach in (3) where the entries of 

the matrix in KR(x•, X) can be easily identified. □ 

In the proof of Proposition 3.1 we added both terms in (6). 

An interesting conclusion can be drawn if we develop each 

term independently, 
 

 
(fr(x(i)) − yr(i))2+ 

 
(fj(x(i)) − yj(i))2+ f  2 

 
fr(x•)

 

=
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φr

 
TΦr + φj T 

TΦj φr 
T T 

T T T 

n i=1 n i=1 n  R K fj(x•) −φr• Φj + φj•
 Φr φr• Φr + φj• 

Φj αj 

 
the coefficients yield 

(4) T T 

+ r• • •
T 

• 
T . 

 α R  =  (

real Hilbert space, α = [α , α , ..., α n ]T, and k(x , X) = 

Φj Φr αj 

the reproducing kernel is now matrix valued [11], 

• • 

n 

T 

n 
• • 

i=1 i=1 

form. The definition of RKHS for vector valued functions fj(x•) 
= + 

= 2 
Φj 
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KR(X, X) + λI2n)—1 yR, (5) +φr• Φj + φj•
 Φr −φr• Φr + φj• 

Φj −αj  

(9) 

where yR = [yTyT]T, with yr = [yr(1), ..., yr(n)]T and yj = 

[yj(1), ..., yj(n)]T. 

The two matrices above resemble the covariance and the 

pseudo-covariance in complex-valued Gaussian distributions, 

respectively. The pseudo-covariance cancels for conditions 
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T
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T

 

• 
Φj(X) and Φ(X) is an m × n matrix whose i-th column 

• 
2 γjr(x•, X)  γjj(x•, X) 

• • • 

1 

similar to those of the proper case in complex-valued random and substitution in (11), it yields the prediction 
T T T T 

variables: if φr• φr = φj φj and φr φj = —φj φr. f (x ) = k(x , X) 
h

P—1y — C—1 K̃  (X, X)P—∗y∗
i
 

From the result in (9), the WRKHS can be rewritten in 

complex-valued form as follows 

f (x•) = k(x•, X)α + k̃ (x• , X)α∗, (10) 

and we next derive the value for α by minimizing the regu- 
larized empirical error. We will make use of the augmented 

vector f (x•) = [f (x•) f ∗(x•)]T: 

• • 

+ k̃(x• , X) 
h

P—∗y∗ — C—∗ K̃  ∗(X, X)P—1y
i 

(20) 

where C = (K(X, X) + λIn), and P = C 

K̃ (X, X)C—∗ K̃  ∗(X, X). Now the pair α, α∗ are easily 
identifiable. 

f (x ) =

  
k(x•, X) 

k̃ (x• , X)
  

α
  

= K(x , X)α, (11) IV. STRICTLY COMPLEX RKHS 

• k̃∗(x•,  X) k∗(x•, X) α∗ • 

where matrix K(x•, X) is the augmented kernel matrix, and 

α = [αT αH]T is also an augmented vector. There exists 
a simple relation between the composite and the augmented 

vector, f (x•) = TfR(x•), where 

By removing the last term in (6) we have a particular case of 

the WRKHS that we denote as strictly complex-valued RKHS. 

Definition 4.1: Strictly complex-valued RKHS. We denote as 

strictly complex-valued RKHS (SRKHS) the RKHS defined by 
 

In jIn 
 

2n×2n 
the kernel k : F × F → C, 

 

  
 

and TTH = THT = 2I2n . This simple transformation allows 
f (x•) =  

i=1 
αik(x•, x(i)) =  

i=1 
αi⟨ φ(x•), φ(x(i))⟩   (21) 

us to calculate the augmented vector (11) from the real and 
imaginary parts (3): where αi ∈ C and the feature map is given by φ : F → Cq. 

It can be proved to be a RKHS by using complex-valued 1  H Hilbert spaces, see [12]. This RKHS, that it is a straightfor- 
f (x•) = TKR(x•, X)αR = TKR(x•, X) 

2 
T TαR 

ward application of the real-valued RKHS, is limited compared 
1 =  TK (x , X)THα. (13) to the WRKHS as we show next. 

2 R •  

Hence, the augmented kernel matrix is related to KR(x•, X) 
Proposition 4.1: SRKHS is limited as RKHS. The SRKHS 

is limited to represent any given complex-valued function. In 
as 

K(x•, X) = TKR(x•, X)TH. (14) 
2 

particular, it yields a subset of the functions that WRKHS can 

represent. 

And the augmented vector α can be found from (5) as 

α = TαR = T (KR(X, X) + λI2n)—1 yR 

Proof. By rewriting the output (21) in composite form, i.e. 

real and imaginary parts stacked in vector form, 

—1
 —1 1  H 

 
fr(x•)

 
 

" 
φr

 
TΦr + φj 

 

TΦj φr 
TΦj — φj 

T
Φr

# 
αr

  

= 
1  

(TH)—1 (K 
2 R 

1
 

1 

(X, X) + λI2n 

1 

) T—1
 —1 

y 
 —1 

 

 
 

 

 

 
where φr 

 

 

= φr(x•), φj 

   

(22) 

= φj(x•), Φr = Φr(X), Φj = 

= (K(X, X) + λI2n)—1 y. (15) 

Note that in the general complex case, two functions k(x•, x) 

and k̃ (x• , x) must be defined. By identifying KR(x•, X) in 
(8) and substituting it in (14), 

K(x , X) = 
1 

T

  

2

 
γrr(x•, X)  γrj(x•, X)

  

TH.  (16) 

is φ(x(i)). It can be observed that the diagonal blocks of 

the matrix above have the same value while the off-diagonal 

ones have opposite sign. Hence, it cannot provide the same 
solutions than the WKRHS in (6) where in the general case 

krr(x•, X) /= kjj(x•, X) and krj(x•, X) /= —kjr(x•, X). □ 

The previous proposition is a consequence of the fact that 

 

the kernel and pseudo-kernel can be identified: 

k(x•, x(i)) = γrr(x•, x(i)) + γjj(x•, x(i)) 

+ j (γjr(x•, x(i)) — γrj(x•, x(i))) , (17) 

k̃ (x• , x(i)) = γrr(x•, x(i)) — γjj(x•, x(i)) 

+ j (γjr(x•, x(i)) + γrj(x•, x(i))) . (18) 

Finally, by applying the matrix-inversion lemma to (15), 

and imaginary parts are not generally translated into linear 

operations applied to its complex counterpart. 

 

A. Kernel structure 

We next study the structure of the kernel for the SRKHS. 
Proposition 4.2: Kernel in SRKHS. The solution in (3) 

with  krr(x•, x(i))  =  kjj(x•, x(i))  =  krr(x(i), x•)  and 

 

(K(X, X) + λI2n)—1 = 
K(X, X) + λIn K̃ (X, X) 

K̃ ∗(X, X) K∗(X, X) + λIn 
(19) 

—1 krj(x•, x(i)) = krj(x(i), x•) yields the SRKHS in (21) with 
kernel 

k(x•, x(i)) = krr(x•, x(i)) — jkrj(x•, x(i)). (23) 

n n 

T 

y 

• • • 

linear operations applied to a real vector formed with the real 

T = 
I n —jI n 

∈ C , (12) 

= (KR(X, X) + λI2n) T TyR 
fj(x•) 

= 
Φj αj 

= T (KR(X, X) + λI2n) TH • 

2 2 2 
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· · · F 

| | 

r • = 
rr • rj • r C x ) (x 

r 

′ T ′ 

j 

r j 

f (x ) k (x , X)α inputs with |xr — x′|2, while for the imaginary ones it uses 
rr ′ 2 

·
 

cos(2(xr — x′)T(xj + x′)/γ) 

    

where | · | is the l2-norm. 

+ j
 

κR

 
xr, x

  
— κR (xj, x )

 
, (32) 

r j 

r j 

· — — r j 

Proof. First, we rewrite (21) in vector form as 

f (x•) = φ(x•)TΦ(X)∗α = k(x•, X)α (24) 

and decompose it into real and imaginary parts as in (22). 

Define 

V. KERNEL DESIGN 

The kernel is a key tool in RKHS: it encodes our assump- 

tions about the function that we wish to learn. The kernel 

measures similarity between inputs. In this section we first 

analyze kernels, including previous proposals. Then we face 

the design of pseudo-kernels, for WRKHS. 
krr(x•, X) = γrr(x•, X) + γjj(x•, X), 

krj(x•, X) = γrj(x•, X) — γjr(x•, X), 
(25)  

A. Kernel 

where γrr(x•, X) = [γrr(x•, x(1)),  , γrr(x•, x(n))], and 

we have analogous definitions for γjj(x•, X), γrj(x•, X) and 

γjr(x•, X). The terms in (25) can be identified in (22) as 

 
f (x )

  
k (x , X) k (x , X)

  
α
 
 

In [3], [5] a complex-valued Gaussian kernel approach is 

proposed. The kernel used was as an extension of the real 

Gaussian kernel: 

k (x, x′) = exp
 

—(x —  ′∗ T 
— x′∗)/γ

 
. (29) 

fj(x•) —krj(x•, X) krr(x•, X) αj If we separate the real and imaginary parts, x = xr + jxj and 
x′ = x′ + jx′, then it follows that 

where it can be concluded that krr(x•, x(i)) = kjj(x•, x(i)). r j 

Going back to (21) it follows that k(x•, x(i)) = kC(x, x′) = exp
 

—(|xr — x′|2 — |xj + x′|2)/γ
 
 

krr(x•, x(i)) and krj(x•, X) in (25) and definitions in (7), it 

is easy to check the symmetries krr(x•, x(i)) = krr(x(i), x•) 
and krj(x•, x(i)) = —krj(x(i), x•). 

□ 
Note first that by minimizing the regularized empirical error 

α in (24) we have 

α = (K(X, X) + λIn)—1 y, (27) 

where [K(X, X)]r,s = k(x(r), x(s)). Also, it is important 

to remark that a SRKHS is a particular case of the solution 

in (3), even if the kernel is complex-valued. By analogy 

with covariances of complex-valued random variables, this 

formulation resembles the proper case. In the proper case real 

and imaginary parts exhibit the same covariance while the 

covariance of the real part to the imaginary part is minus the 

covariance of the imaginary part to the real one [1]. 

 

B. Connection to previous approaches 

It is straightforward to show that previous approaches in [4], 

[5], [6] belong to the SRKHS type with kernels as described 

in the following section and, therefore, are limited compared 

to the WRKHS. An interesting singular case of this SRKHS 

formulation corresponds to the scenario where the real and 

imaginary parts are not related. In this case, kjr =  krj = 0 
and the formulation yields, 

exp 2j(xr x ) (xj + x )/γ 

= exp
 

—|xr — x′|2/γ
 

exp
 

|xj + x′|2/γ
 
 

 

—j sin(2(xr — x′)T(xj + x′)/γ)
 

, (30) 

 

Another complex-valued kernel was proposed in [6] also 

within a SRKHS. The authors of the proposal remarked that 

the kernel in (29) does not have the intuitive physical meaning 

of a measure of similarity of the samples and propose the so- 

called independent kernel: 

kind(x, x′) = κR (xr, x′) + κR xj, x′ (31) 
′ ′ 
j r 

where κR is a real kernel of real inputs. 

These two kernels, kC and kind, were introduced in [5] and 

[6] as part of a machine of the type in (21). First conclu- 
sion, in the view of Proposition 4.1, is that these methods 

belong to SRKHS. For SRKHS krr(x, x′) = kjj(x, x′) the 
pseudo-kernel cancels and the kernel matrix is limited to 

have a particular symmetry. In the view of Proposition 
both kernels kC and kind are of the form given in ( 

k(x, x′) = krr(x, x′) jkrj(x, x′), with krr(x, x′) = krr(x′, x) 
and krj(x, x′) = krj(x′, x). These symmetries for one- 
dimensional complex-valued inputs are illustrated in Fig. 1 and 
Fig. 3. In these figures it can be observed the particular way 

these kernels measure similarity between inputs. The kernel 
 
fr(x•)

 
 

 
krr(x•, X)αr

 
 (28) 

kC in (29), measures similarities between real parts of the 

  

where the kernel in (21) is real. This is the simple com- 

plexification described in [13], [12] based on building a 

complex Hilbert space considering functions of the form 

f ( ) = fr( ) +jf j( ) where fr and fj are in class  . Note that 

fr and fj must be real for every input, and that being in the 

same class implies the same real-valued reproducing kernel 

for the real and the imaginary parts [13]. This procedure is 

limited in that it amounts to learning the real and imaginary 

parts independently but with the same kernel. 

xj + xj . Also, it is not stationary and has an oscillatory 

behavior. We illustrate these features in the example in Fig. 1. 

The exponent in the kernel may easily grow large and positive 

as can be observed in the example depicted in Fig. 2. This 

might cause numerical problems in the learning algorithms. 

On the other hand, the kernel kind in (31) has a very particular 

structure since it follows the structure in (23) but it is not 

written as a function of the complex-valued inputs, but as a 

function of the real and imaginary parts of the inputs. This 

way of measuring the similarity between the inputs produces 

• • 

23), 
4.2, 

(26) 

krr(x•, x(i)) — jkrj(x•, x(i)). Finally, from the definitions of 

= , 
j j 

r 

r j 
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a particular cross-shape, as shown in the example in Fig. 3. 

Again, notice that because of the high constant values along 

the real and imaginary axis this kernel may be not useful for 

a wide range of systems. 
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Fig. 3. Real and imaginary parts of kind(x, x′) when x = 0 +j0 and x′ with 
real and imaginary parts in [−15, 15], γ = 0.8. 
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An example of this kernel is shown in Fig. 4. We will use 

this kernel for the equalization problem in the Experiments 

Section, where usually real and imaginary parts in a digital 

Fig. 2. kC(x, x′) when x = x′ with real and imaginary parts in [−15, 15], 
γ = 80. 

 

Our conclusion is that, in WRKHS with null pseudo-kernel, 
enforcing a complex-valued kernel is counterproductive unless 
you identify, for the particular problem at hand, a skew- 

symmetry of the kind krj(x, x′) = krj(x′, x). Note that a null 
pseudo-kernel and a real-valued kernel yields the complexifi- 

cation case in (28). The way that similarity is measured and the 

structure of the kernel function are two important issues to take 

into account when designing the kernel. Regarding similarity, 

since we are working in a model with complex-valued inputs, 

we propose using the difference between complex-valued 

inputs, dx = (x x′). In addition, if an isotropic behavior is 

desired, functions krr(x, x′) and krj(x′, x) in (23) could better 

rely on the inner product dHdx = (x  x′)H(x  x′) rather 
than on expressions of real and imaginary parts. We propose as 

communication constellations are independent but exhibit sim- 

ilar properties. 

 

B. Kernel and Pseudo-Kernel 

In WRKHS we have both the kernel, k(x, x′), and the 

pseudo-kernel, k̃ (x ,  x′). These kernels can be written as func- 

tions of the kernels of the real part, γrr(x, x′), the imaginary 

part, γjj(x, x′) and the real-imaginary parts γjr(x, x′) and 

γrj(x, x′), as in (17)-(18). Therefore the design is quite open. 
We bring here two particular but interesting cases. First one is 

the scenario where real and imaginary parts are independent 

but exhibit different properties and different kernels should be 

used. As a second case we design a kernel for the scenario 

where real and imaginary parts are not independent. 

1) Different kernels for the real and imaginary parts: If 

the real and imaginary parts need different kernels we may use 

5 
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Σ 

— 

— — 
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— 

a real-valued kernel for the real part, γrr(x, x′), and another 

real-valued design for the imaginary one, γjj(x, x′), assuming 
independence between real and imaginary parts. The kernels 

in (17)-(18) yield 

k(x•, x(i)) = γrr(x•, x(i)) + γjj(x•, x(i)), 

k̃ (x• , x(i)) = γrr(x•, x(i)) — γjj(x•, x(i)). (34) 

Note that this scenario is simple, but the SRKHS is not a 

valid framework to explain it in a complex-valued formalism 

and a pseudo-kernel is needed. Besides, the resulting kernels 

are real-valued. 

2) Non-independent real and imaginary parts: This sce- 

nario can be easily handled by using the concept of separable 

kernel and sum of separable (SoS) kernels [11]. In the complex 

case a mixed effect regularizer (MER) translates into 

Q 

k(x•, x(i)) = 2 k(q)(x•, x(i)), (35) 
q=1 

Q 

k̃ (x• , x(i)) = 2j ω(q)k̃(q)(x•, x(i)), (36) 
q=1 

if we choose k(q)(x•, x(i)) to be real-valued kernels of 
complex-valued inputs, where 0 < ω(q) < 1. 

 

VI. EXPERIMENTS 

A. Learning with WRKHS 

To illustrate the learning with WRKHS we bring here two 

synthetic experiments. In the first one we learn with a different 

similarity measurement for the real and the imaginary parts. 

We use the WRKHS solution in (20) with the kernel and 

pseudo-kernel in (34). In the second scenario we exploit the 

relation between the real and imaginary parts of the output, 

using (35)-(36). 

1) Real and imaginary parts: We propose to learn a non- 

linear function of the type y(x) = yr(x) + jyj(x), where x = 
xr + jxj and in this experiment 

1 

yr(x) = Sinc(1.2xr + 2r) · Sinc(1.2xj — 2r) 

r=—1 

yj(x) = Sinc(0.2xj — 1.5). (37) 

We generate n = 200 random training samples of y(x) in the 

range [  5, 5]. In (34), krr(x, x′) and kjj(x, x′) are kG(x, x′) 
in (33) with γ = 1 and γ = 3.5, respectively. Since the 
imaginary part of the output has a softer behavior, the optimal 
hyperparameter of the kernel is larger than for the real part. 

The result is included in Fig. 5, where the training samples 

are plotted in red circles. Without a pseudo-kernel we can 

not use a different similarity measurement for the real and the 

imaginary parts. In Fig. 6 we include the result of the learning 

of the imaginary part if the same kernel with γ = 1 is used for 

both the real and the imaginary parts. In this case we observe 

that the learning of the imaginary part exhibits quite a larger 

error. The overall mean square error (MSE) with the WRKHS 

is 54.9 dB while WRKHS with null pseudo-kernel is 38.8 
dB. 

 

 
 

 

 
Fig. 5. Real (top) and imaginary (bottom) parts of the WRKHS estimation 

f (x) versus the real and imaginary parts of the input. The training samples 
are depicted as red circles. 

 

 

 

Fig. 6. Imaginary part of the WRKHS estimation f (x) with null pseudo- 
kernel versus the real and imaginary parts of the input. Same kernel for the 
real and imaginary parts are used. The training samples are depicted as red 
circles. 

 

 

2) Non-independentreal and imaginary parts: We propose 

to learn a non-linear function of the type y(x) = yr(x)+jyj(x), 
where yr(x) = zr + ωzj, yj(x) = zj + ωzr, 

zr(x) = Sinc(0.5xr) · Sinc(0.5xj) 

zj(x) =0.1 · Sinc(0.3xj). (38) 

and x = xr + jxj. We generate n = 200 random training 

samples of y(x) in the range [ 5, 5]. In (34) we use MER and 

SoS but with just one term, Q = 1, setting ω = ω(1) = 0.3. 

The kernel k(1)(x, x′) in (35)-(36) is the Gaussian, kG(x, x′), 
in (33) with γ = 2. The result of the learning is depicted in 
Fig. 7. Note that the real and imaginary parts are similar but 

not equal. The MSE of this solution is  45.3 dB, while the 

solution for ω(1) = 0, that corresponds to SRKHS, is  41.8 
dB. 

 

B. Nonlinear channel equalization 

The main advantage of the analysis of the WRKHS in this 

paper is that it greatly facilitates decisions to make through the 

design to select the simplest model. To illustrate this point we 

bring here the nonlinear channel equalization in [5] and [8]. 

We use the channel considered in [5] and [8]. It consists of a 

linear filter t(n) = (—0.9 + 0.8j)· s(n) +(0.6 — 0.7j)· s(n — 1) 
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WRKLS (M=500) 

NCKLMS2-G 

 

√ 
—
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is labeled as strong nonlinear channel. The input signals had 

the form s(n) = 0.70(  1  ρ2X(n) + jρY (n)), and X(n) 
and Y (n) were Gaussian random variables. Note that the real 

and the imaginary parts of the input signals were genera√ted 

independently. The input signals are circular for ρ = 1/ 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7. Real (top) and imaginary (bottom) parts of the WRKHS estimation 

f (x) versus the real and imaginary parts of the input. A separable kernel was 

used with Q = 1 and ω(1) = 0.3. The training samples are depicted as red 
circles. 

 

−4 
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−8 

and highly noncircular if ρ approaches 0 or 1. At the receiver 

end of the channel, the signal q(n) was corrupted by additive 

white circular Gaussian noise with the SNR set to 16 dB, as in 
[5]. The aim of the channel equalization task is to construct 

an inverse filter, which acts on the received signal r(t) and 

reproduces the original input signal s(n) as close as possible. 

To this end, the inputs to the equalizer are the sets of samples 

x = [r(n + D), r(n + D  1),   , r(n + D  L + 1)]T, where 
L > 0 is the filter length and D is the equalization time delay. 

The authors in [5] first proposed a machine than can be 

easily proved to be within the SRKHS framework to later 

improve it adding more terms [8]. Kernel used was kC in (29). 

The algorithms proposed, the NCKLMS2 and the ACKLMS, 

are of the kernel LMS type and they use novelty sparsification 

criterion to reduce the number of training samples used to 

compute the solution. We use the code available in [14] to 

run these algorithms. All the parameters required for both 

algorithms (γ in kernel and step update parameter) are set 

to the values described in [5] and [8], except for the strong 

nonlinear channel in the noncircular case, where in order to 

ensure convergence it is needed to increase γ to γ = 202. The 

parameters for the sparsification are δ1 = 0.15 and δ2 = 0.2. 

Also, L = 5 and D = 2, on a set of 5000 samples of the 

input signal considering both the circular and the noncircular 

(ρ = 0.1) cases and the described nonlinear channel. In all 

cases the results in [5] and [8] are averaged over 500 trials 

where the input signals s(n) a√n d  noise are generated randomly. 

1) Circular case, ρ = 1/ 2: From the problem at hand 

0 1000 2000 3000 4000 5000 
n 

Fig. 8. Averaged MSE along n for NCKLMS2, ANCKLMS, NCKLMS2-i, 
NCKLMS2-G, the WRKLS and the WRKLS with M=500 basis for the strong 
nonlinear channel equalization problem and the circular input case. 
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0 1000 2000 3000 4000 5000 

n 
Fig. 9. Averaged MSE along n for NCKLMS2, ANCKLMS, NCKLMS2-i, 

NCKLMS2-G, the WRKLS and the WRKLS with M=500 basis for the strong 

nonlinear channel equalization and the noncircular input case (ρ = 0.1). 

 

 

and a memoryless nonlinearity. The nonlinearity is q(n) = 
t(n) + (0.2 + 0.25j) · t2(n) + (0.12 + 0.09j) · t3(n) and it 

we know that the output has independent real and imaginary 
parts. Since there is no relation between real and imaginary 

parts we have krj(x, x′) = 0 and the kernel should be chosen 
real-valued. Hence, we avoid the design of a skew-symmetric 

imaginary part krj(x, x′) =   krj(x′, x). Besides, using the 
same kernel for the real and the imaginary parts is a suitable 

assumption in the circular case, since we expect both to 

behave similarly in terms of similarity. We conclude that the 

solution lies within a WRKHS with null pseudo-kernel, i.e. 

(21). The Gaussian kernel krr(x, x′)= kG(x, x′) in (33) with 
null imaginary part is a suitable solution in this equalization 

problem [15], [16]. The values for the hyperparameters are set 

to γ = 8.92 and λ = 0.32. To compare the solution in (21) 

with coefficients given by (27), we derive the kernel recursive 

least square (RKLS) [9] version of WRKHS with null pseudo- 

kernel, denoted as WRKLS. This approach adaptively com- 

putes the solution for each new input and retains M basis or 

samples to compute it, reducing the computational complexity. 

We first compare the performances of the NCKLMS2 [5], the 

ACKLMS [8] and the SRKLS. We include two versions of the 

WRKHS: with basis removal criterion (M = 500) and without 

basis removal criterion. Note that the number of bases used by 

the NCKLMS2 and the ACKLMS algorithms with the novelty 

sparsification criterion grows above 2000 in the experiments 

in this section, and therefore the choice of M = 500 is far 
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below that number. In Figs. 8 we can observe the averaged 

MSE along the input samples for these four methods and the 

channels and inputs described. The MSE value depicted for 

each sample is the averaged MSE for all previous outputs, as 

in [5], [14]. 

2) Non-circular case, ρ = 0.1: In the non-circular case we 

have a different behavior for the real and imaginary part of the 

output, but just in the scaling. The similarity between inputs 

remains the same and we may use the same kernel for the 

real and imaginary part. The solution for the coefficients will 

change, but just in scale. The module of αr in (27) increases 

while the module of αj decreases. Therefore, we may apply 

exactly the same solution as in the circular case. In Figs. 9 

we compare the performance of the WKRLS with no basis 

selection and 500 basis to the results of the mean square error 

for the NCKLMS2 and the ACKLMS with sparsification. The 

values for the hyperparameters are set to γ = 10.4 and λ = 
0.18. 

3) Discussion: It can be observed in the figures the re- 

markable good results of the WKRLS in all the cases, strong 

nonlinear channels and circular or noncircular signals. With 

only M = 500 bases used for the prediction, the averaged 

MSE is very close to the method using all samples. When 

comparing with the NCKLMS2 and ACKLMS, the SKRLS 

remarkably outperforms both algorithms that use above 2000 
basis. The gains are not only due to the better capabilities 

of the recursive and basis removal approach used but to the 

model selection. From the results in this paper we conclude 

first that the best option is a WKRHS with real-valued kernel 

and null pseudo-kernel. Since real and imaginary parts are 

independent and they exhibit similar similitude measure up 

to a scaling. Hence, a good selection of kernel and (null) 

pseudo-kernel improves the final results. To further illustrate 

this point, we also include the NCKLMS2 algorithm with 

the kernel used in the WRKLS, in (33). This algorithm is 

labeled as NCKLMS2-G in the figures. The parameters for 

this algorithm are the same that were previously used for 

the NCKLMS2, and the novelty criterion is again used for 

the sparsification. Note that by using the proposed kernel we 

obtain a much better performance in all cases when comparing 

with the NCKLMS2 or ACKLMS algorithms. Finally, for the 

sake of completeness we also include in the comparison the 

method in [6]: the NCKLMS2 algorithm with the independent 

kernel (31) with κR being the real-valued Gaussian kernel. We 

labeled this algorithm as NCKLMS2-i in the figures. Although 

this kernel seems more suitable for the problem at hand than 

the complex Gaussian kernel (29), as shown in the figures, the 

performance is not as good as the NCKLMS2-G algorithm. 

The reason, again, is a sub-optimal model selection, where 

we have a kernel with non-null imaginary part and with the 

particular cross-shape shown in Fig. 3. 

 

VII. CONCLUSIONS 

Complex-valued kernel regression has been tackled by 

adapting the real-valued approaches in a straight forward 

manner [4], [5], [6]. As in strictly linear estimation, this is 

useful in many scenarios, it is not efficient in others. We 

develop a novel solution, WRKHS, to avoid this limitation. 

The solution is based on including a pseudo-kernel. The 

resulting structure of the regressor resembles that of the widely 

complex linear solutions, being capable of learning the real 

and imaginary parts of the output regardless of the relation 

between them. In the experiments we show how systems with 

independent and different real and imaginary parts are better 

learned. Regression for correlated real and imaginary parts is 

also improved. We introduce some proposals for the kernel and 

the pseudo-kernel. The complex-valued nature of the kernel 

and the pseudo-kernel is also discussed. When the pseudo- 

kernel cancels, special attention is to be paid to the imaginary 

part of the kernel. In this case the imaginary part must be 

skew symmetric or null. We apply these concepts to face the 

nonlinear channel equalization, minimizing the overall error. 

We believe the results in this paper are relevant to better 

face any complex-valued regression problem, using complex- 

valued formulation. 
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