
 

 

                                              

 

Depósito de Investigación de la Universidad de Sevilla 

 

https://idus.us.es/ 

 

 

This is an Accepted Manuscript of an article published by Sage: 

F. G. Benitez, L. Romero, N. Caceres, and J. M. del Castillo. Adjustment of 

Origin–Destination Matrices Based on Traffic Counts and Bootstrapping 

Confidence Intervals. Transportation Research Record 2013 2343:1, 43-50. 

https://doi.org/10.3141/2343-06 

 

© 2013 National Academy of Sciences.  

En idUS Licencia Creative Commons CC BY-NC-ND 

 

 

https://idus.us.es/
https://journals.sagepub.com/doi/abs/10.3141/2343-06
https://journals.sagepub.com/doi/abs/10.3141/2343-06
https://journals.sagepub.com/doi/abs/10.3141/2343-06
https://doi.org/10.3141/2343-06


Benitez , Romero, Caceres, Castillo 1 

 

ADJUSTING ORIGIN-DESTINATION MATRICES BASED ON TRAFFIC 

COUNTS AND BOOTSTRAPPING CONFIDENCE INTERVALS 

 

 

 

 
F.G. Benitez1*, Professor 

L. Romero2, PhD. Research Associate 

N. Caceres3, PhD. Research Associate 

J.M. del Castillo4, Professor 

 

Transportation Engineering, Faculty of Engineering 

 University of Seville 

Camino de los Descubrimientos, s/n, Seville 41092, Spain 

Tel.: +34 954 488135, Fax: +34 954 487316 

Email: benitez@esi.us.es1, l_m_romero@esi.us.es2, noeliacs@esi.us.es3, 

delcastillo@us.es4 

 

 

 

 

 

 

 

 

 

 

 

 

(*) Corresponding Author  

 

 

Word count: 6705 + 3 Figures  = 7455 

 

 

 

 

mailto:benitez@esi.us.es3
mailto:l_m_romero@esi.us.es2
mailto:noeliacs@esi.us.es3


Benitez , Romero, Caceres, Castillo 2 

 

ABSTRACT 

 

Mobility studies require, as a preliminary step, conducting a survey to a sample of users of the 

transportation system. The statistical reliability of the data determines the goodness of the results 

and conclusions which can be inferred from the analyses and models generated. Due to the high 

economic costs of the collecting field stages, collected data are partially reused in either a 

disaggregated o aggregated manner. In the first case, the statistical reliability is not always 

guaranteed, affecting drastically the results to be derived from projections and estimates of future 

hypothetic scenarios. 

In this paper we present a methodology, based on the techniques of "bootstrap", for the 

robust statistical estimation of the mobility matrices, and generate the confidence intervals of 

travel between origin-destination (OD) pairs defined by each matrix cell derived from a survey. 

This result is of interest in defining the dimensions of certainty for matrix cells and subsequent 

adjustment by techniques based on aggregate data (i.e. traffic counts, cordon line matrices, paths, 

etc.). 

To address this task we have counted with a statistically reliable data mobility study 

conducted in Spain at the level of regions. This paper presents the results derived from 

disaggregating date at interprovincial level, and an application to the posterior mobility matrix 

adjustment based on traffic counts data. The study results demonstrate the potential of the 

methodology developed and the usefulness of conclusions. 
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INTRODUCTION 

 

Modeling transport demand based on transport data of different nature and captured by 

different procedures has been disseminated by research papers, spread out in specialized books 

and deployed in professional studies.  Although there are a large variety of methods, most 

approaches follow the traditional construction of an origin–destination (OD) trip matrix estimate 

based on available information collected by a transport survey. Either estimating or adjusting an 

OD matrix that generates information (i.e. flows, speeds) that are most compatible with observed 

field data (i.e. link volumes, trips between zones, cordons and screen-line counts, vehicle speeds) 

is the main goal of most matrix estimation methods.  The confidence on the results, derived from 

the modeling and its derived planning study, is based on the reliability of each of the prior stages 

of this type of studies and in particular on the first one: transport data captured during the survey 

process. Inaccurate OD estimates could have far reaching negative consequences including 

unrealistic mobility forecast patterns.  

The construction of mobility matrices of a given region to be analyzed, OD matrices, 

feeds on the collected data in a process of surveying a sample of users of the transportation 

system. Clearly, the number of trips carried out in the region under study and their characteristics 

(i.e. spatial and temporal distribution, modes of transport used, purposes, stages, etc.) is a 

function not only of the population size, but of other endogenous factors to the existing 

transportation system (i.e. infrastructure, modes, services, accessibility, etc), endogenous to 

individuals within the resident population characterized by socioeconomic attributes (i.e. age, 

education, profession, resources, etc) and endogenous to the region through geo-socio- 

economics characteristics (i.e. jobs, shops, services, etc) mainly. Of these factors, population size 

is the most correlated attribute with the aggregate total number of trips generated in the region. 

For the highest level of disaggregation, the individual, geo-socio-economics characteristics of 

users and the level of service of the transport system are the factors that best explain the 

generation/attraction of trips (1). 

Although there are several techniques to perform data collecting, the most customary 

used can be classified into two families, based on the disaggregation level of the population: 

 

a) Individual level. In this case a sample of individuals is chosen from the population. This 

sample must be statistically representative of the population distribution functions. 

 

b) Household level. A sample is chosen from among the household universe in the region. 

The sample must also be chosen to be statistically representative of the distribution of 

households according to variables associated with the item. Obviously, the level of 

aggregation of the household variables affect the explanatory power of the data collected in 

relation to reality. 

 

c) Other higher levels of aggregation. They are less relevant as general methodologies, but 

are used to supplement the data captured by some of the previously cited methods, it is the 

case of surveys at specific trip generators or attractors and other places where non-residents 

and passers-by can be collected. 

 

From these techniques, one of the most widely used is based on the research of mobility patterns 

of samples based on family units or households (2). Once the studied region is discretized into 
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transport areas by aggregating census districts, the sample size turns to be a function of the total 

number of households distributed among the zones and according to the resident population; this 

ensures a high statistical reliability of trip information collected on a zonal level. Census data 

provide insight into the distribution of households by family size, this is the reason this variable 

is aggregated in order to obtain in a direct manner the household histogram by family size. Other 

useful variables that characterize households in a more disaggregated way, available in the 

government and public administration, are the number of vehicles per household, the assessed 

value of housing, among others.  

By this sampling technique, and for each area z , denoting by zH  the number of 

households in the area, the household histogram by family size can be easily obtained. The 

choice of those households to be surveyed is made through a process of random draws without 

replacement from the universe in each area, so that it reproduces the histogram. The elements of 

the original sample that fail, by any external cause to the survey for instance, are replaced by 

other substitutes with similar characteristics (i.e. same size) in order to preserve the sampling 

distribution. From the practical and professional standpoint, the sample and the universe 

generally are related through expansion coefficients. For the present case, they are defined by 
t

t z
z t

z

H
k

h
= , where t

zH and t

zh  stand for the number of existing households and respondents of size t 

in zone  z, respectively. 

The expansion process does not guarantee that the expanded data follow the same 

patterns as reality and, while an analysis to compare certain statistical parameters of certain 

variables (i.e. age distribution, or other socioeconomic variables) may be carried out, it is a fact 

that the expanded data are severely affected by significant errors of a difficult characterization. 

Therefore the "representativeness" of the expanded data matrix, in relation to the real unknown 

matrix, is questionable (or at least limited). 

For a more precise characterization of the expanded matrix there are numerous techniques 

to refine this ”representativeness”, where confidence intervals are the most practical. This 

process of “representativeness” can be approached from the perspective of inferring confidence 

intervals for each of the terms of the OD matrices; this requires following two different paths 

according to the reliability that is given to the expansion coefficients: 

 

a) Obtaining confidence intervals from the OD matrices data sample (pre-expanded) and 

then affecting them with the expansion coefficients. 

 

b) Obtaining confidence intervals from the expanded OD matrices.  

 

The difference between these two cases is the length of the intervals inferred. Those obtained by 

the first procedure are more conservative (large intervals) that those derived from the second 

procedure. 

This paper describes a model that estimates level of confidence of data captured for each 

OD pair and can be easily extended to its aggregated magnitudes by origin and destination. This 

objective is addressed by using the statistical technique of bootstrap to evaluate the uncertainties 

in each pair of the OD matrix estimates. The model is attractive because of two aspects. First, it 

incorporates statistics features that improve the knowledge on the data yield by the survey. 

Second, it uses confidence intervals of all available information to define bounds for the feasible 

solution space where the OD matrix estimate is sought.  
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This paper is organized as follows: Next section justifies the interest of confidence 

intervals for the definition of constraints that should be verified during the adjustment of the OD 

matrix; it introduces a concise state of the art in the derivation of confidence intervals for each 

OD trip matrix cell, and a review of analytical methods and empirical techniques devoted to 

replicated bootstrap and its implementation for the inference of confidence intervals is also 

included. The Case Study section shows the results derived from an actual practical application, 

based on previous variant b); this allows a glimpse of the interest of the methodology presented. 

The final section ends up with major conclusions and further research lines to be followed. 

 

PROBLEM DEFINITION AND FORMULATION 

 

Introduction 

For a given study area divided into o dn n+  transport zones where users can travel from each 

origin (ranging from 1 to on ) to all destinations (from 1 to dn ), 
ij =   denotes the OD trip 

matrix, where 
ij  stands for the number of trips from origin zone i to destination zone j, and 

1 1

o dn n

ij

i j

 = 
= =

 the total number of trips within the study region. 

To obtain matrix  requires the observation of all trips made in the area, both by the 

resident population and non-resident as passers-by; this is an impossible task to tackle. Instead a 

surveying process can be accomplished a number of times E, on samples taken from the 

population of transport system users who travel in the area, yielding a series of matrices 
1 2 E, ,...,T T T . These matrices represent a stochastic series in which the total number of trips eT  

is distributed among the o dn n cells according to a multinomial probability distribution of 

parameters
ij =   : 

11

11 11 11 11 11P ,..., , ,..., !( ) ... ( ) / ! ... !
ee

n no d

o d o d o d o d o d

TTe e e e e e

n n n n n n n n n nT T T T T T T T    = = =    
 

                    (1) 

where ij is the probability of detecting 
e

ijT trips in pair i-j, and where 
0

1 1

dn n
e e

ij

i j

T T
= =

= , and 

0

1 1

1
dn n

ij

i j


= =

= . 

 

Reliable estimation of the parameter matrix  requires the availability of a sufficient high 

number E of samples, and in this case the total number of trips eT follows a normal 

distribution ( , )T TN   . This approach is of a low interest because of the impracticability and 

budget restrictions to conduct multiple repeated studies to obtain more than just one matrix 1
T . 

Therefore one can accept the hypothesis that a single array 1T T , with a total travel 1T T , 

statistically characterizes the series 1 2 E, ,...,T T T . 

The generation of a large number of samples ˆ , 1,...,k k m =T , replicated by random 

samples from matrix T , allows estimating the parameters of the distribution (eq.1) as: 
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1

1

011 2

ˆ , 1,...,
ˆ , 1,..., ; 1,...,

ˆ ˆ ˆ...

k

ij ij ij

ïj ij ij dm

E T k m T T
p p i n j n

T TT T T


  =  = =    = = 
    

 
   

accepting 1T and 1

ijp  as unbiased estimates of the mean T of the total number of trips and the 

probabilities of the number of cell trips (maximum likelihood estimator), respectively. 

Under these assumptions, expression (eq.1) is particularized as:  

                      
11

* * *

11 11 11

11 11

P , P ,..., , ,...,

!( ) ... ( ) / ! ... !

o d o d o d

n no d

o d o d

n n n n n n

TT

n n n n

T T T T T T p p

T p p T T

  =  = =   

=    

T T p
                                 (2) 

the probability distribution function of all possible matrices *
T with parameters T y  ˆ

ijp= , 

where 
0

1 1

dn n

ij

i j

T T
= =

= , and 
0

1 1

1
dn n

ij

i j

p
= =

= . 

 

Confidence intervals for OD matrices 

When performing a statistical inference from a sample, the reliability of this has a decisive 

influence. Although there are several indexes to quantify this reliability, the confidence interval 

is the most widely used and accepted methodology. If s represents the parameter of interest, its 

classical confidence interval is defined as ( ) 1l uP s s s   = −  (replacing the equal sign in 

inequality   in the case of discrete variables), where ( , )l us s  represents the range within which 

the true value of s can be found with a probability of (1 )100 %−  .  

In case of a matrix T, the confidence intervals are given by either ( )ij ij ijL T U  or 

( )l u

ij ij ijp p p  , where 
ijp  stands for trip proportion ( )

ij

ij

ij

ij

T
p

T T
=

= 
. 

There are other techniques, such as the hypothesis test, to perform statistical inference 

based on statistical distributions; but as a general rule, confidence intervals are more informative 

and preferred than hypothesis tests when both are available (3).  

For certain distributions, the expressions of the confidence intervals are well defined at 

analytical or numerical level. In the case of the multinomial distribution there are different 

methods proposed in the literature, mainly depending on the desired confidence level, the length 

of the interval, or a combination of both identified by the confidence index, the size of the 

sample and the matrix covariance of the probabilities. All these methods are grouped into two 

large families: a) analytical ones, based on approximate approaches, b) empirical methods, based 

on successive extractions. The following is a brief state of the art for the case of the multinomial 

distribution. 

 

Analytical methods 

For the multinomial distribution, the problem of determining the appropriate sample size for a 

population has been addressed by several authors in the last half century (4-11). Similarly, the 

direct problem of determining the confidence interval has been treated, among others, by (12-

18). Hou et al. (19) present a review and comparison of different confidence intervals defined in 

the last 5 decades. The objective of this set of method is the determination of simultaneous 
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confidence intervals, which handle multiple parameters for the entire sample. These intervals are 

simultaneously defined for each of the variables involved and present the same level of 

confidence. 

For a multinomial distribution function (eq. 2), the interest pursued is the construction of 

a set of simultaneous confidence intervals.  Sison and Glaz (17) derive a practical and easy 

approach to use. Unfortunately the method works well when all proportions are similar for all n 

cells, there being a quasi-uniform dispersion in the number of elements in each cell. When the 

number of cells is large, the results tend to those predicted by methods based on the assumption 

of normality. Conversely, if there are cells in which the number of elements dominates over 

others, the intervals predicted turn to be unreliable (20). 

For the case where the sample size is large enough, the Central Limit Theorem allows 

some simplifying hypothesis, yielding the results derived by some authors (21-26) and Agresti 

and Caffo (27) in particular. Leemis and Trivedi (28) define an algorithm to determine 

empirically the endpoints of the interval ( , )L U for a confidence level (1 )100%−  for 

ix x such that ( ) / 2P X x L  = = , ( ) / 2P X x U  = = , in function of the empirical 

distribution function F.  

Simulation studies carried out a decade ago (20) provided results on methods developed 

in the late 60s and 80s (12,13,16) which confirm significant limitations for these analytical 

confidence intervals, such as the large length of the intervals or the limiting value of the number 

of elements in each cell and matrix size. This is the reason empirical methods have been gaining 

ground and acceptance as useful techniques from the practical perspective. 

 

Replicated empirical methods using bootstrap 

Bootstrap is a technique of replicating samples by extraction, presented in 1979 (29-30), used to 

estimate a distribution from which to extract several parameters of interest (i.e, mean, variance). 

The assumptions made by this technique are minimal and limited to the distribution, followed by 

the estimator of the draws, and reliably reflect the properties of the estimator of the starting 

sample. 

This technique involves random draws, with replacement, of subsets from the input data. 

The extractions are performed in such a way that each data item is represented identically in the 

random extraction scheme. Its characteristics differ from the Monte-Carlo method in connection 

with the sampling process. There are other variations of randomized replicating, such as the 

jackknife method, but analyzes carried out up to day do not support the superiority of one over 

the other (31).  

With the aim of simulating a process of replicating trip matrices, a random number m of 

matrix samples *
T  with on rows and dn columns are extracted. The sum of cell elements 

*T coincides with the total number of trips T of the starting data matrix. Each replicate sample 
* *

0, 1,..., ; 1,...,ij dT i n j n = = = T is obtained in T random draws, with replacement, from the 

original data set
0, 1,..., ; 1,...,ij dT i n j n = = = T . To obtain the bootstrap confidence interval, for 

each pairwise cell of the m extractions, the percentile method, for a intended coverage of  1 2−  

is obtained directly from the distribution percentiles   and1− . Therefore, to obtain the 95% 

confidence interval lower and upper limits, the 0.025 m  and 0.925 m  values are computed 

from the bootstrap ordered indexes, as m extractions are available. There are several methods to 

correct the bias in these empirically calculated intervals (30). 
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Using multiple extractions, following the bootstrap technique, the histogram can be built 

to derive the computation of percentiles. The following steps summarize the pseudo-algorithm: 

Step 1. Obtain sample parameters ˆ , 1, 2,...,i
i

n
i n

N
 =  =  ; 

Step 2. Generate M samples of size N from a multinomial distribution of parameters ˆ
i ; 

Step 3. Estimate, for each simple m, parameters ˆ 1,2,...,m

i i n  =  ; 

Step 4. For each observation i, in all M samples, the histogram is constructed 

from ˆ ; 1,2,...,m

i m M  = . 

Step 5. Compute percentiles /2 1 /2
1 ( )

2 2ˆ ˆ,
( 1) ( 1)

i iPercentil Percentil
k k

 

 
  −

   −
   = =

− −   
   

 . 

There are studies on real applications showing the superiority of this method versus those 

approximates introduced in the previous section (32, 33).  

 

OD matrix estimation approaches 

The O-D matrix is the keystone piece of information fundamental input to most transportation 

systems analysis methods. This matrix evinces the volume of traffic between all origins and 

destinations in the transportation network. The O-D matrix is difficult and often costly to obtain 

by direct methods such as carrying a home-based survey; consequently, indirect or synthetic 

techniques that seek to infer this matrix based on indirect measures such as license plate surveys 

(34), automatic vehicle identification (AVI) systems (35-36) and cell phones (37) are widely 

used.  

The problem of OD inference, estimation and prediction has been dealt with during the 

last two and a half decades (38-40). In most of the published literature, OD estimation is based 

on historical demand information provided by a prior matrix and additional information such as 

link count data and other more recent traffic surveillance technologies.  The objective of this 

problem is simulating an OD matrix close to a prior or possibly outdated matrix and which when 

assigned to the network model reproduces the observed magnitudes with a controlled error.  

Estimating the unknown OD matrix using a limited observed/measured sample data from 

the traffic system is generally an underspecified problem; the number of OD unknown variables 

to be estimated is usually greater than the number of observations from the system. Therefore a 

quite large number of feasible solutions can be obtained for the OD matrix estimate problem. In 

consequence, additional pieces of information have to be incorporated to draw a unique solution. 

Supplementary hypothesis have to be set such as a metric relating observed and modeled 

magnitudes such as (i) measured link volumes, (ii) travel times, (iii) speeds, (iv) trajectories and 

path choices, (v) either full or partial prior OD matrices, among others.  In summary, the OD trip 

matrix estimation goal is to infer the closest OD matrix to a prior matrix, such that when loaded 

to the transportation network model reproduces the observed measured data as closely as 

possible.  

Numerous metrics have been proposed in the literature: (i) Euclidean and non-euclidean 

least squares, (ii) maximum entropy (see (41) for a comprehensive review), (iii) stochastic 

methods, (iv) heuristic and metaheuristic methods, among other mixed approaches. As a 

consequence wide variations in the OD estimates are confronted.  

Beside the hypothesis assumed and the approaches followed, there are other factors that 
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impede to be certain on the quality and reliability of the OD matrix estimated (42). 

A high percentage of the effort in estimating OD matrices is concentrated in spending an 

important share of the budget on surveys to collect data to create information regarding mobility 

of people and goods.  Even though, either a shortage on economic resources or technical 

expertise may end up collecting data of dubious quality, since respondents are chosen following 

bias extractions from the whole population. This is the reason data are not fully accessible to the 

public, and are mostly aggregated just to disclose trends. Banks and Reiter (43) show a broad 

sketch of the factors that affect the final accuracy of collected data. 

To obtain a complete OD matrix by direct measurements describing the transport demand 

within a given region is an unfeasible task because of budget, manpower and time limitations. 

Therefore, OD matrices have customarily been estimated using different methodologies based on 

a) empirical methods, such as conducting a survey on a sample of individuals, applying a trip 

distribution model, or using traffic counts as measurements of link flows in a network model in 

order to adjust an existing matrix; b) analytical methods, just as applying a trip model; or c) 

empirical-analytical methods, as any mixed approach of the two previous ones. The third 

alternative is the one that has mostly been used over the past twenty-five years and a 

considerable amount of work has been documented in the literature (44); a set of traffic counts 

and a prior O–D matrix are prerequisites. The prior matrix is typically assumed to come from a 

survey using a finite data set (instead of using the whole population). The survey data need to be 

corrected, expanded, and validated in order to achieve a representative and reliable prior matrix 

to be used in matrix estimation methods (45-46) So, this prior matrix can be regarded as an 

observation (a good approximation) of the “true” O–D matrix to be estimated. However, the fact 

that a prior matrix is regarded as a “good approximation” of the “true” O–D matrix does not 

imply that it can be used directly as a result.  

A few of errors may arise during the processes of building, calibrating, and forecasting 

the prior matrix with models, such as sampling errors, measurement inaccuracies, transfer 

omissions, or aggregation errors. The prior matrix is therefore adjusted using traffic flows, which 

are one type of information that can be collected automatically on a subset of links in a network, 

not on all links (this would be impossible nowadays due to economic budgetary restrictions). In 

methods based on this third alternative, the prior O–D matrix is iteratively “adjusted” or 

“changed” to reproduce the observed traffic counts when assigned to the transportation network. 

The aforementioned errors can also be mitigated by adjusting the prior O–D matrix to satisfy the 

traffic counts. In this manner, one may obtain a “reasonable” estimate of the O–D matrix; hence, 

this alternative is the most widely used in practical applications. 

In mobility studies a vast amount of information, which should be given only a certain 

degree of reliability, is handled. Facing all available information one can observe inconsistencies 

between some data, so it is necessary to conduct a thorough analysis of the possible causes of 

such inconsistencies. A clear example corresponds to the discrepancy observed between the 

volumes of vehicles measured in reality (flows in the network) and those modeled by OD 

matrices. The usual practice in professional studies is to attribute this discrepancy solely to an 

incorrect definition of the above matrices, so one just proceeds to modify the OD matrix 

extracted from the mobility survey, the so called prior matrix. However, that matrix has been 

obtained by expensive processes based on carrying thorough surveys and it provides a fair idea 

of the distribution and magnitude of trips. Thus any excessive distortion of the information 

overrides the budget and human efforts devoted to these surveying tasks.  

The most widespread adjustment methodology is based on obtaining trip matrices, 
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expressed in equivalent vehicles, that replicate as closely as possible those observed volume 

when matrices are assigned to a reliable transport network model  by an assignment code. In 

general one can affirm that the different methods to estimate OD trip matrices based on traffic 

counts, developed in the literature, have the following generic form (47): 

                                         

( ) ( )1 2
, 

Minimize

. .  = (

1

0 ( ,  ) 1

F F

s t Assign

+

+  =

   

v T

T, T v, v

v T)

 


                                                        (3) 

where functions F1 and F2 are two metrics that measure the distance between the estimated OD 

matrix T , and the prior matrix, T , and between estimated and observed volumes in network 

links, v and v respectively. The most common accepted expressions for functions F1 and F2 are 

the maximum likelihood, generalized least squares and derivations of the principle of maximum 

entropy. Parameters α and β are the corresponding weight factors that reflect the relative 

confidence in the available data T and v . Finally, pseudo function Assign represents the 

assignment process used (48) to model link volumes from the estimated matrix.  

 

Adjusting OD matrices using confidence interval bound constraints 

The proposed formulation follows the basics of scheme (eq. 3), however to control the distortion 

of the prior matrix a set of bounded variable constraints (for each matrix cell) and functional 

restrictions (relative to the information contained in the aggregate matrix, as it is the case of 

information from aggregations of cells, called macrozones, which represent specific conditions 

between macrozones) are prescribed. This manner of proceeding pursues to keep the variation of 

the information contained in the adjusted matrix compared to prior matrix within a range 

considered to be feasible. This last set of restrictions may be due, as is the case at hand, to the 

fact that the survey the prior matrix is obtained from was designed to derive statistically 

significant results at the level of macro zones (i.e. regional). Thus, even though an OD trip 

matrix at the zone level is available, care should be taken in using the survey data in the 

estimation process of incorporating such circumstances regarding inter macrozone magnitudes. 

Based on the assumption set forth in the introduction of the problem definition, consider 

the study area partitioned into no+nd traffic zones with trips from any origin to all destinations 

and an OD trip matrix denoted by T=[Tij], its (i, j) element being the number of trips from origin 

i to destination j during a certain time period. The road network corresponding to the study area 

is abstracted into a graph model consisting of a set of regular nodes and a set of directed links. 

The service level associated with the links is given by link performance functions sa(va), which 

relate the travel time on each link to the flow across the link. Finally, the assignment of the OD 

matrix to the network model in order to obtain flow and travel time on each link is considered to 

be a deterministic (or stochastic) user-equilibrium procedure, whose behavioural principles are 

described by the two conditions usually attributed to J.G. Wardrop (48). 

Regarding the adjustment problem, the necessary volume data are inferred from collected 

data on traffic counts on certain links. The formulation proposed to adjust the prior OD matrix 

includes euclidean distance between estimated and observed volume data and distance between 

prior and estimated matrices; in addition a set of variable bounds and functional constraints 

which define admissible ranges for individual OD pairs, zonal productions and attractions, and 

total number of trips are included. These bounds are defined by the confidence intervals inferred 
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by the bootstrap technique. 

Then, a modified mathematical formulation from (eq.3) results in the bi-level 

programming approach proposed in this investigation, formulated as follows: 

 

 

( ) ( )1 2
0

Upper Level     Lower Level

Min     Min ( )

. .             = (                                          . . ,  

     

a

ij a

ij

v

a
T v

a A

a ak k

i I j J k K

F F s v dv

s t Assign s t v h a A



  

             

+          

=  



 

T, T v, v

v T)

 



               1                                                                    ,  ,

                  0 ( ,  ) 1                                                              
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k ij
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h T i O j D


+ = =   

 

 

    0  , ,
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                ,  
O D

k ij

ij ij ij
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i ij i

j D

D D
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i O
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i R j R

h k K i O j D

L T U i O j D

L T U i O

L T U j D

L T U i R j R





 

    

    

   

   

    





 

     (4) 

where the necessary mathematical conventions, to formulate the new OD matrix adjustment bi-

level approach, are summarised. 

 

Indices and sets 

i   O: origin zones (no);  j   D : destination zones (nd); a   A: network links; k   Kij : routes or 

paths from origin i to destination j. 

 

Constants 

ak : 1 if link a belongs to path k, 0 otherwise; ,ij ijU L : upper and lower bounds for (i, j) OD pair;  

,O O

i iU L : upper and lower bounds for trips generated by zone i; ,D D

j jU L : upper and lower bounds 

for trips attracted by zone j; RU , RL :upper and lower bounds for total network 

trips;  ,av a A=  v  : observed travel demand through links  a A  (observed volume); ,  : 

weights factor associated with the volume on links and OD matrix cells, respectively. 

 

Functions 

( )a as v : performance (volume-delay or cost) function of links a A . 

 

Variables 

 v , av a A=   : volume on link a; 
kh : flow on path k;  Tij: interprovincial travel demand (trips) 

from origin i to destination j, (note that it is variable for the global OD adjustment process, but 

constant for every assignment stage). 
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In addition,
O D

ij

i R j R

T
 

  stands for inter-macrozonal trips between pairs i-j, where origin i 

and destination j belong to macrozones Ro and Rd, respectively; similarly ijT represents the same 

quantity referred to the prior matrix T . As a general notation, bounds ijL and 
ijU (both with and 

without upper indexes) are identified with the endpoints of the uncertainty intervals inferred in 

formulation (eq.4). 

The lower level program stated in (eq.4), known as Beckmann’s transformation, is the 

basic model for obtaining those volumes va on all network links satisfying the user-equilibrium 

conditions for a given fixed demand Tij (49).  

In addition to the above dimensions established to control the distortion of the 

information contained in the matrices, one can set a series of maximum increments and 

decrements for those pairs of the prior matrix where no information is available (50,37). 

 

CASE STUDY 

 

A real case study has been performed to demonstrate the application of the methodology and the 

importance of incorporating confidence interval information in mobility OD matrices. 

The case analyzed corresponds to the survey of long distance mobility for people living in 

Spain. The published version (51) contains information on total aggregated trips by regions, and 

therefore statistically significant at this level. The level of aggregation used for the observations 

is the household, regardless of any demographic feature. The spatial and temporal ranges 

correspond to the nation territory and the month before the conclusion of the survey. The scope 

includes all trips of those who travel a distance exceeding 50 km and those of shorter length 

including an overnight stay outside the town of origin. The raw data of the survey presented 

information at the origins and destinations at the provincial level, not statistically significant, and 

they are used for the application of the techniques presented hereinafter. 

 

Estimate of OD matrix confidence interval by bootstrap 

The simulations carried out comply with the empirical procedure introduced in the Analytical 

methods subsection and the less conservative variant (b) from expanded matrices, discussed in 

the Introduction section. These simulations consist of the following steps: 

 

1. For the initial data set 11( ,..., )
o dn nT T , estimate the multinomial proportions 

11
11( ,..., )o d

o d

n n

n n

TT
p p

T T
= =  and assume the hypothesis that these ratios correspond to the 

"true" population proportions. 

2.  Extract 1,000 multinomial samples from the survey matrix. 

3. Obtain confidence intervals for each cell sample, based on the drawn subset 

corresponding to each cell, with a nominal confidence level (1 ) 0.95− = . 

4. Assess the average length of intervals as the difference between the upper and lower 

limits of each interval. 
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The computer program was coded in Matlab. The simulated multinomial samples were generated 

by the subroutine MNRND. All simulation studies were performed on a 12 core Intel Xeon 

E5645 personal computer using parallel computing. 

Confidence interval lengths inferred versus trip nominal values for all OD matrix cells are 

depicted in Figure 1. The solid curve is the regression curve, obtained by a least-squares fit, with 

expression a b

ij ij ijU L e T− =  where parameters 2.0995,  0.5009a b= − =  with a t-statistics of -349 and 

1159 respectively.  

The coefficient of determination of this adjustment, 2 0.998R = , is sufficiently high to ensure the 

goodness of fit. 
 

Adjusting mobility matrices 

Figure 2 shows a summary of the results achieved in the assignment process of the prior matrix 
1

T T and the adjusted one T using the network model. In the case of the prior matrix the 

determination coefficient between observed and modeled volumes is 2 0.70R = (Figure 2a), while 

the assignment of the adjusted matrix gives rise to a value of 0.8 for the same coefficient, (Figure 

2b). The assessment of the methodology in terms of distortion of the information contained in the 

adjusted matrix in relation to the prior one, provides a high correlation value due to the bound 

constraints imposed (Figure 3). The determination coefficient between both matrices is 
2 0.99R = . 

The solid straight line is the linear regression line, obtained by a least-squares fit, with 

expression 2422.74 0.9833ij ijT T= − + . 

The control in the OD estimation, containing the level of distortion between both prior 

and undated matrices, utilizing the information incorporated by the cell confidence interval, 

guarantees reliability and brings a certain degree of soundness to the final results regarding the 

OD matrix obtained. 

It is trivial and stated (50) that relaxing the constraints derived from the cell confidence 

intervals would both (i) increase the determination coefficient between observed and modeled 

volumes (unconstraint optimization yields more optimum values of the objective function than 

constraint optimization) and (ii) would deteriorate the correlation between prior and adjusted OD 

matrices; therefore a comparison in this terms does not offer valuable information worth to 

analyze. 

 

 

CONCLUSIONS 

 

A general methodology for the development, treatment and incorporation of additional 

information sources to the problem of OD matrix estimation, based on the definition of 

confidence intervals for the trip matrix cells, is presented. This approach is based on the 

definition of confidence intervals for the matrix cells extracted by a travel survey. The approach 

has been applied to the real case of the wide annual interprovincial mobility in Spain. 

The experimental validation of the proposed models has shown evidence that the 

bootstrap technique is an alternative that may be considered for the determination of confidence 

intervals of the volume of trips between OD pairs. This allows defining an acceptable measure of 

the magnitudes to be imposed in the process of adjusting OD matrices. The consequences of this 

finding are significant, particularly for the generation of OD matrices that compel with real 

uncertainty in data collected by a survey, diminishing the level of uncertainty involved in this 
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extremely underspecified problem  

To ensure the widespread professional application of this technique it will be necessary to 

further perform validation on large scale real cases in order to outline the degree of robustness, 

efficiency and numerical stability of outcomes.  
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FIGURE 1 Confidence interval length vs. cell trips. 
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(a) Prior matrix assignment    (b) Adjusted matrix assignment 

FIGURE 2 Relationship between measured and modeled volumes using the prior matrix 

(a) and the adjusted matrix (b). 
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FIGURE 3 Correlation between prior and adjusted OD matrices.  

 

 


