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Abstract— Traffic volume is a parameter used to quantify 

demand in transportation studies, commonly collected by using 

on-road (fixed) sensors such as inductive loops, cameras, etc. The 

installation of fixed sensors to cover all roads is neither practical 

nor economically feasible, so they are only installed on a subset of 

links. Cellular-phone tracking is an emerging topic developed 

and investigated during the last few years to extract traffic 

information. Cellular systems provide alternative methods to 

detect phones in motion without the cost and coverage limitations 

associated with those infrastructure-based solutions. Utilizing 

existing cellular systems to capture traffic volume has a major 

advantage compared with other solutions, since it avoids new and 

expensive hardware installations of sensors, with a large number 

of cellular phones acting as probes. This research proposes a set 

of models for inferring the number of vehicles moving from one 

cell to another by means of anonymous call data of phones. The 

models contain in their functional form terms related to the 

users’ calling behavior and other characteristics of the 

phenomenon such as hourly intensity in calls and vehicles. A set 

of inter-cell boundaries with different traffic background and 

characteristics were selected for the field test. The experiment 

results show that reasonable estimates are achieved by 

comparing with volume measurements collected by detectors 

located in the same study area. The motion of phones while being 

involved in calls can be used as an easily accessible, fast, and low-

cost alternative to derive volume data on inter-cell boundaries. 

 
Index Terms— Vehicle Traffic Flow, Traffic Counts, Cellular 

Phone Data. 

 

I. INTRODUCTION 

RADITIONALLY, traffic counts are one type of 

information that can be automatically collected on a 

subset of links in a network, commonly by on-road (fixed) 

sensors, such as inductive loop, magnetometer, visual camera, 

etc. Measurements of on-road sensors are available with little 

effort, but they are not sufficient due to their limited coverage 

and expensive costs of implementation and maintenance.  

 

Moreover, those sensors are subject to errors, which can 

degrade considerably the volume estimates. A complementary 

method for collecting traffic data is therefore needed. This 

paper proposes to utilize location data generated from cellular 

phones travelling along the network in order to estimate traffic 

flows, so that cellular systems appear as a complementary 

solution to fixed sensors. While this idea has its limitations, as 

 
 

discussed later in this paper, it has the potential of collecting 

data on moving travelers over a large coverage area without 

requiring expensive infrastructure investment. 

In modern societies cellular phones have reached high 

penetration rates, with many countries surpassing the 90% [1]. 

In cellular networks, such as Global System for Mobile 

Communications (GSM), the service area is covered by a set 

of base stations whose radio coverage area is called a cell. A 

cell radius depends on parameters, such as antenna type, 

power level, or even topology and surrounding buildings. It is 

smaller in urban areas – where the people density is high and 

more antennae are necessary to provide good communication 

services – than in rural areas, varying from several hundred 

meters to several kilometers. A set of adjacent cells is grouped 

into one location area (LA). Mobility management includes 

processes that automatically keep the databases updated with 

the location of phones in order for phones to make or receive 

calls or messages. In the case of a phone involved in a call, the 

cellular system always knows the base station (cell) to which 

the phone is connected. When a phone with a call in progress 

moves from one cell toward another, the call is transferred to 

the new cell by means of the handover procedure in order to 

provide an uninterrupted service. In the case of a phone that is 

turned on but not on call, for efficiency and flexibility, the 

system does not need to know the precise cell all the time, but 

rather the LA. The Location Update (LU) procedure is the 

mechanism to retain the exact LA of the phone. Then, the 

execution of either a handover or a LU procedure inserts a 

record into the databases to update them with content 

consisting of the phone identification (ID), location (LA, cell), 

or event timestamp. Based on this, the motion of phones 

travelling along the network is monitored. More technical 

details regarding cellular networks can be found in [2]. 

 

II. TRAFFIC INFORMATION FROM PHONE DATA 

A. State of the Art 

The idea of using cellular phones to collect traffic 
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Fig. 1. In-motion calls: (a) handover and (b) two calls in t1 and t2, t2-t1≤T. 



 

information is a decade old [3]–[5] and it has become 

increasingly widespread. Some works presenting analysis of 

the exploitation of cellular phones for traffic monitoring and 

reviewing the state of the practice can be found in [6] and [7]. 

Regarding the use of phone data, we can refer to simulated 

experiments carried out to evaluate the potential of using 

mobile data for estimation of travel demand [8] and for space-

based passing time estimation [9], or even studies using 

information retrieved from a software platform for the 

evaluation of urban dynamics based on the anonymous 

monitoring of phone movements [10]. In terms of volume, the 

concept of cellular phones as probes has been explored by 

various researchers by means of field tests [11]–[14]. In all 

cases, volume data would be associated with phone transit 

through a boundary area, detecting crossing rates either at the 

inter-cell boundary level (handover) or at the location area 

boundary level (the LU process). The LU procedure is 

executed by any switched-on phone to keep the system 

informed about changes in the LA. Therefore, it manages a 

large amount of sample data. Although the use of call events 

does not reach a sample size as large as in the previous case, it 

offers greater precision with regard to the location. Thus, call 

data have been utilized in this research, and most of research 

works in literature also focuses on handovers to detect phone 

transit through the boundaries between two cells. The main 

quantitative findings show that phone flow (calls) is related to 

the flow of vehicles measured by loop detectors installed in 

the network, having similarities for most of an ordinary day 

[11],[12]. Obviously, there are striking differences between 

the two flow curves, but they exhibit peaks in the morning and 

afternoon rush hours. Therefore a relationship exists between 

vehicle flow changes and phone habits. However, those 

studies concluded that accurate vehicle flows cannot be 

obtained directly from cellular phone data due to the 

characteristics of this source data. The main question is how 

the number of crossing phones is correlated with the real 

number of crossing vehicles. Volume data on inter-cell 

boundaries provided by cellular phones does not yield 

information on the complete set of vehicles crossing a 

boundary, but only a statistical sample of all the travelling 

vehicles. Some vehicles may carry either phones of other 

operators or switched-off phones; these phones are not 

detected as crossing phones. These aspects imply special 

treatment to correlate the two measures (phone counts and 

vehicle counts), which may require a calibration stage to be 

performed using vehicle volume data. In this regard, different 

works have performed procedures to bring phone counts to 

vehicle counts based on empiric transfer functions [13] or 

correction factors [14] obtained by means of loop data. In 

both, a relatively good overall fit was found but detectors 

located spatially in the same monitored section were required. 

In this paper different models to infer volumes of vehicles 

from (anonymous) cellular phone call-data are proposed in 

order to be used in transport applications. The calibration of 

these models uses volume collected by a set of loop detectors. 

After this, models work for any road crossing inter-cell 

boundaries without physical detectors.  

B. Estimation of the cellular phone count 

Given a vehicle travelling on a road with a phone involved 

in a call, the handover happens when the vehicle is moving 

from one cell to another (Fig. 1a). The handover record for the 

entry of the on-call phone into a new cell can be used to detect 

the mobility of a phone in order to count in-motion phones. 

However, the use of only handover data has certain 

limitations. If the call ends before it is handed over to the new 

cell, the handover is not performed, and hence the phone 

movement is not detected. Additional situations that increase 

the number of in-motion phones detected must be considered.  

For billing purposes, when a call occurs the system always 

inserts a record into its databases including the parameters 

related to the call such as start/end time of the call, duration, 

caller phone number, or identification of the originating cell 

(cell ID). When a phone makes two consecutive calls in 

different cells, cells A and B (Fig. 1b), within a short period of 

time, the stored records are useful to identify the phone as in-

motion one. Then, if these cells are neighboring, the inter-cell 

mobility of a phone is also detectable by analyzing those call 

records, as in the case of handover. The difference in the start 

time of these calls, called T, cannot be too large; if T is high, 

the phone may move to other cells before making the second 

call in cell B. For this field test, several periods were used to 

avoid such situations, and taking into account the average 

service area of the involved cells, finally the period of 15 

minutes was chosen. This double-call event, together with the 

handover event, increases the number of in-motion phones 

detected. The calls associated with these mobility situations 

are named in-motion calls, classified as: 

1) those in which a phone has an active call and changes 

from cell A to cell B, that is, a handover event (Figure 1a); 

2) those in which a phone makes two consecutive calls in 

cell A and cell B in the time period T (Figure 1b). 

Due to disruptive effects of cell phone conversations on 

driving [15], some countries prohibit the use of cell phones 

while driving, unless a hands-free device is employed. So any 

vehicle carrying a passenger (not driver) with a cellular phone 

or a hands-free device can be regarded as a probe when 

making in-motion calls. The analysis of call data records is 

therefore useful for detecting the transit of phones from one 

cell to another, that is, phones crossing an inter-cell boundary. 

Those phones travel on board vehicles moving along the 

roads, so that a cellular system is turned into a kind of count 

station (hereinafter so called as virtual traffic counter, VTC) to 

monitor the flow of phones at inter-cell boundaries. The map 

of intersection areas between inter-cell boundaries and roads 

has to be previously identified, for example, by using coverage 

service information obtained from the operator or by using a 

laptop equipped with special software to track down the cell 

identity and with a Global Positioning System (GPS) receiver 

to record the location coordinates.  



 

Fig. 2 illustrates possible monitored routes. For the case of 

the boundary between cell 1 and cell 2, a single roadway 

connects the two cells, so the counted phones belong to users 

travelling along route 3. The situation in which a unique 

roadway connects two cells does not occur frequently in 

mobile networks. In most cases, the road network is denser 

than the cell distribution, so multiple links connect two cells. 

For instance, two routes (1 and 2) connect cells 1 and 3; there 

are two roadways crossing the boundary between cell 1 and 

cell 3. In this case, it can only be asserted that the phone 

moves along one of the roadways crossing the inter-cell 

boundary but without identifying which one. Thus, the number 

of phones counted by the proposed approach contains those 

moving along all the routes connecting the two cells, and 

hence the volumes derived from such a number of counted 

phones are also provided in aggregate format. 

C. Monitored boundaries 

By analyzing the road network and cell layout, it is possible 

to identify the map of roadways (or routes connecting cells) 

that can be observed. This initial processing defines a set of 

boundary candidates to be monitored, then new criteria for the 

choice of “monitored boundaries” should be applied. For this 

purpose, a transport network model is used. This model is a 

simplified representation of the road network and consists 

mainly of nodes and links, which represent intersections and 

road sections, respectively. The road network shown in Fig. 2 

is simplified into a set of nodes and links in Fig. 3. According 

to this representation, there are four possible VTCs located at 

inter-cell boundaries so that only links whose starting and 

ending nodes are located in different and neighboring cells are 

taken into account when composing a monitored boundary. 

When multiple roads (links) connect two cells, the number 

of phones counted by using in-motion calls contains those 

moving along all the existing routes. The flow is measured on 

a group of links and hence flow measurements are provided in 

aggregate format for each group of links crossing inter-cell 

boundaries. However, some inter-cell boundaries might not be 

always suitable for being monitored; it is necessary for the 

starting and ending nodes of crossing links to be clearly 

located in different cells to compose a monitored boundary. 

Cellular systems are designed to have an overlap between the 

cells in order to provide a better quality of communications, 

avoiding coverage holes. Thus, cell overlap has to be assessed 

to ensure the above condition is accomplished. 

 

Cell coverage area 

The cell boundaries are not static, but dynamic to some 

extent; they depend on the number of phones, the direction of 

travel, and the network type (3G, 4G, etc.). Besides, each cell 

coverage area has an effective radius where a phone can 

communicate with a unique base station (Fig. 4a). This radius 

may vary according to certain random factors (weather, call 

load …). However, this uncertainty in radius size does not 

impact on the identification of a “monitored boundary” since 

only links whose starting and ending nodes are located inside 

the effective cell coverage area are taken into account when 

creating a valid “monitored boundary” (Fig. 4b). Fluctuations 

in cell boundaries do not affect as long as those nodes remain 

inside the effective coverage area, as can be seen in Fig. 4c. 

Additionally, when designing the cell layout for a cellular 

system, the cells overlap at the edges to prevent shadows in 

coverage. The cell overlapping area is defined as the overlap 

between adjacent cells with regard to the primary coverage. 

The size of the overlapping area is a design parameter that 

depends on measurement control parameters. According to 

standard design criteria, most network planners agree that the 

typical cell overlapping area may occupy about 20–30% [16]. 

Since the typical radius in non-urban environments is around 

1–30 km, the overlapping area between two cells is larger than 

the area covered by a transport node (e.g. intersection). 

However, when a node is located in an overlapping area (Fig. 

4d), the condition of the monitored boundary is not matched; it 

belongs to two cells, one of them being the same as where the 

other node is located. Thus, this boundary, and the associated 

links, are not valid for observation. 

 

Valid monitored boundaries 

Once feasible monitored boundaries have been identified, a 

selection process is performed to choose the set of valid ones 

among all the candidates. The selection process is aimed to 

avoid possible indeterminacies during the phone counting. The 

valid monitored boundaries are finally chosen regarding 

certain conditions such as adequate cell coverage of the 

road/link observed, absence of uncertainties regarding 

alternative roads (local roads are not included in the network 

model) or the absence of pedestrian and railway traffic.  
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Fig. 2. Inter-cell boundaries to be monitored. 
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Fig. 4. Cell coverage area. 



 

Regarding this last condition, it is necessary to highlight 

that any phone making in-motion calls can act as a probe. In 

this research, the interesting probes are those located in 

vehicles moving along a motorway (passengers with a phone 

or drivers using a hands-free device). So that the identification 

of the means of transport used by phones (pedestrian and 

vehicular users) has been deliberately excluded by 

concentrating the attention on cells whose boundaries have 

mainly vehicular traffic, neither pedestrian nor train users. 

Different approaches based on advanced algorithms have been 

developed, implemented and tested in order to identify the 

means of transport of moving phones [17],[18]. Although 

these works have reached good results, there are still certain 

problems to be solved. In this research, the phone records are 

only used for reporting movement between cells to be related 

with vehicles. After identifying the valid set of boundaries 

between cells, phones moving along routes connecting the two 

cells, that is, roadways crossing inter-cell boundaries are 

monitored by a VTC located at such boundary.  

 

III. FIELD TEST 

The absence of pedestrian and train traffic conditioned the 

choice of cells to be monitored, concentrating the attention on 

cells whose boundaries have mainly vehicular traffic. After 

combing information about cell distribution and road network, 

six points, outside of the metropolitan area of Seville, 

corresponding to roads with different traffic background and 

characteristics were selected for the field test (Fig. 5). This 

creates twelve monitored boundaries (every kilometre point 

has two monitored boundaries, each being associated with a 

crossing direction). The dataset used in this test consisted of 

all “outgoing calls” (calls initiated by the user, not received 

calls) recorded in the study area, which were provided by a 

Spanish operator. For every outgoing call, the dataset included 

the exact time of the call, the encrypted identification (ID) of 

the phone, duration, and the Cell ID to which the phone was 

connected while the call was active. Besides, an additional 

parameter is included in the collected call data which is related 

to the reason for the call drop in a cell, being one of them the 

handover event. By using this parameter the measure of 

handovers from the data was derived. The encrypted ID for 

every phone was a unique and randomized number based on 

original phone ID, in compliance with privacy regulations. 

This encryptation procedure was made directly by the 

operator. Traffic volumes measured by detectors located next 

to such boundaries were also used (provided by the Spanish 

Traffic Management Centre, DGT). These two types of data 

were collected every day for 6 weeks, but only core weekdays 

(Tuesdays to Thursdays) were extracted. The attention only 

focuses on this type of day to avoid the effects of non-working 

days on daily traffic patterns. Hence holidays (weekend days) 

and days before and after a holiday were discarded from the 

sample data. Then, the models are calibrated using historical 

data collected over 18 days of regular traffic patterns. 

Cellular phone activity strongly depends on time. It is clear 

that there are periods when users are more likely to make 

calls; for example, daytime hours as opposed to night-time 

hours. From the data collected for this research it may be 

noted that the number of calls is significantly high in the 

period from 08:00 to 21:00 hours according to the coefficient 

of variation. This means that outside this period call data have 

no statistical significance to be able to make any inferences. 

This fact is not a problem at all given that traffic flow 

estimates outside that period is not of great interest, with the 

exception perhaps of the rush-hour period between 07:00 and 

08:00 hours. Although the traffic flow starts to become 

significant in this period, the number of calls before work 

(especially before 07:30) is very low since there is less 

demand for people to call. Hence, the observed time period is 

focused on 08:00 to 21:00 hours. 

Finally, a sample was available for each day comprising the 

pair of data: the number of calls and the number of vehicles 

recorded for 13-hour periods existing in the period from 08:00 

to 21:00 hours. By virtue of the transferability of findings to 

other locations where there are no loop detectors, a larger 

sample was obtained for each point by aggregating the 18 days 

into a single sample. The sample was divided into two sets: 

calibrating data and testing data. The calibrating set was used 

to estimate the model’s parameters for the complete definition 

of the models. A significant relationship between typical 

calling behaviour and patterns of human activity is present. 

The calibrating stage aims to incorporate implicitly mobility 

patterns and call activity associated with the typical daily 

routine in the region under study (the start of working hours, 

lunch time...) in the functional form of the models with the 

purpose of application to any boundary without requiring a 

recalibration process for each one. The testing set was 

employed for the evaluation and comparison of those models. 

The notation Y(i,j,k) was used to designate the number of 

vehicles counted at kilometre point k on day i during 1-hour 

period j, and X(i,j,k) the number of calls recorded on day i 

during 1-hour period j between the cells of which the 

boundary corresponds to kilometre point k, for the purposes of 

estimating the vehicle traffic flow. Note that Spanish laws 

prohibit the use of cell phones while driving, unless a hands-

free device is employed. So, the study was developed 

assuming that the probes, that is, the phones that makes the 

"in-motion" calls detected, are those belonging to passengers 
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Fig. 5. Point location of studied roads where there are inter-cell boundaries. 



 

or drivers using a hands-free device. 

 

IV. MODEL DEFINITION 

A. Selection of variables 

The scope of this approach is to correlate the vehicular 

volume (Y) in a given road cross-sectional point with the 

number of in-motion calls (X) generated at the associated 

inter-cell boundary. A set of models is proposed for providing 

vehicle volumes based on phone data in a manner similar to 

that of classic counting stations. It is necessary to highlight 

that there is no high linear dependence between the two 

magnitudes (Pearson's correlation coefficient, R=0.34). 

However, it can be expected that an increase in call volume is 

directly proportional to the number of phone users, although 

this relationship is not constant during different hours of a 

day; for instance, the number of phone calls in the late 

afternoon may increase due to cheaper "price plans". So 

additional terms must be considered in designing models. 

Logically, volumes inferred from phone call data are strongly 

affected by the calling users’ behaviour; furthermore, there are 

periods when users are more likely to make calls. It is 

important to consider the dependence with the time period in 

the formulation of the models since the two variables 

implicated in the process, calls and vehicular flow, vary with 

time in a differentiated manner.  

Fig. 6 shows the temporal intensity variation in the number 

of calls and the number of vehicles crossing a given boundary 

on a specific day. The time periods with high intensity are 

close in time in both cases, but do not coincide. Such 

behaviour is extendable to other boundaries. In particular, 

users have differing call-making habits according to the time 

of day due to criteria such as "price plans" or admissible call-

making times. In terms of vehicular flow, this fluctuates over 

time as a function of various criteria, such as the rush hour at 

the start of the working day, lunch hours, et cetera. Vehicular 

flow starts to become significant in the 6:00–8:00 period, 

although the number of calls is relatively low due to it being 

regarded as a non-admissible call-making time (too early). 

Something similar occurs in the 14:00–16:00 interval but in 

that case it seems to be explained by the lunch break (this 

activity depends much on the country habits). Thus, the 

availability of phone call data (input data for the model) 

significantly differs at different daytime hours. In this sense 

predictions must include a term associated with such hourly 

variability of both call intensity and vehicular intensity. The 

models presented below introduce time-associated factors that 

capture temporal dependence. These factors fj and gj are 

obtained by means of the observed data X(i,j,k) and Y(i,j,k), 

aggregating for all days and boundaries, eliminating spatial 

dependence and giving rise to more versatile models.  

First, the vehicle intensity factor, fj, associated with time 

variation in the vehicular flow is defined in (1) as the ratio 

between the mean number of vehicles counted in a 1-hour 

period and the mean number of vehicles counted for the entire 

observed time period (08:00-21:00). To establish a factor 

common for typical Spanish traffic patterns, their numerical 

values are obtained using hourly traffic counts provided by the 

DGT. In particular, a total of 315 points observed 

continuously (24 hours a day, 365 days per year) were used. 
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The call intensity factor, gj, is defined in (2) as the ratio 

between the probability of a vehicle making a call in the 1-

hour period j, Pj, and the probability averaged for the entire 

observed time period. Note that the call data used come from a 

unique operator that has delivered them. So that the value of Pj 

refers not to make any call, but a call supported by the 

concrete operator. The explanation of how Pj is calculated is 

given in the next section.  
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Then, the numerical values of factors fj and gj and the 

probability Pj are used as coefficients in the functional form of 

the models. Their hourly values are shown in Fig. 7 and 8. 

Those coefficients make the volume estimations 

dimensionless for all the time periods since they weigh the 

observations of in-motion calls in each time period according 

to their relative importance within the considered time periods. 

It should be remarked that these factors fj and gj, and the 

probability Pj are obtained empirically from historical data. 

Their numerical values can be considered valid for a certain 

time (eg: 6 months, 1 year, etc.) since the characteristics of the 

sample are more or less stable. However, it would be desirable 

to perform periodically a calibration of these factors and 

probabilities in order to remodel the underlying changes in 

individual behaviour, such as travel patterns or calling 

activity. It occurs because, even within a 6-month  period, 

people may change their home or job location, car ownership 

level, income and other factors, as well as changing phone use 

styles (penetration rate, daily call volumes, market shares, 
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Fig. 6. Specific one-day sample of the numbers of calls and vehicles counted. 



 

etc.). Each of these changes requires or enables them to alter 

the factors and probabilities, which will be used in the 

functional form of models. 

B. Model formulation 

Regarding the model formulation, the existence of a 

relationship between typical call activity and traffic mobility is 

considered. The curves of phone flows (calls) and vehicle 

flows (measured by loop detectors) have similarities for most 

of an ordinary day (Fig. 6). Both curves exhibit peaks in the 

morning as well as in the afternoon rush hours (e.g. the vehicle 

flow increase in the morning precedes the increase in the 

number of calls). After analysing one of the most typical 

families, a set of models combining the coefficients fj and gj 

with the in-motion calls by means of exponential and 

polynomial functions is proposed. In all cases, the dependent 

variable is y(i,j,k), which reproduces the number of vehicles 

estimated that have crossed boundary k in the 1-hour period j 

on day i. The independent variable, X(i,j,k), is the number of 

in-motion calls observed in the hour period j on day i at 

boundary k. The following models are defined: 

M1) Cobb–Douglas Model 1( , , ) j jy i j k a f g=   
 

This model depends on the intensity factors by means of 

three parameters {a, ϕ, β}, and lacks data regarding the 

number of in-motion calls observed. It has been proposed 

for the purpose of evaluating the importance of in-motion 

calls in inferring volume. 

M2) Modulated Cobb–Douglas Model 

 2 ( , , ) ( , , ) j jy i j k a bX i j k f g= +   
  

This model with four parameters {a, b, ϕ, β} introduces a 

difference with respect to the previous one: a first-order 

dependence on the number of in-motion calls observed, 

providing a prediction of the number of vehicles moving 

from one cell to another as a function of the number of in-

motion calls observed. 

M3) Second-Order Modulated Cobb–Douglas Model. 
2

3( , , ) ( , , ) ( , , ) j jy i j k a bX i j k cX i j k f g = + +   
   

This model with five parameters {a, b, c, ϕ, β} is similar 

to the previous model; however, it establishes a second-

order dependence on the number of in-motion calls. 

In these three models, fj and gj are fixed hourly coefficients 

integrated into their functional form; the unique input variable 

is X(i,j,k). In order to study the importance of incorporating 

intensity factors fj and gj into the formulation, the following 

two models without both factors are also considered: 

M4) Linear Model 
4( , , ) ( , , )y i j k a bX i j k= + , parameters {a, b} 

M5) Quadratic Model: 2

5( , , ) ( , , ) ( , , )y i j k a bX i j k cX i j k= + + , 

parameters {a, b, c}. 

Finally, a last model has been defined based on an 

approximation of the physical phenomenon of in-motion calls. 

In this, the probability of a vehicle with a given distribution of 

passengers and phones making in-motion calls is quantified.  

M6) Physical model: y6(i,j,k) = f (X(i,j,k), Pj, Qj,k) with five 

parameters {a,b1,b2,c,d}.  

It depends on the number of in-motion calls observed, 

X(i,j,k), the probability of a vehicle making a call in the 

hour period j, Pj, and the probability of handover in the 

hour period j at boundary k, Qj,k. The detailed derivation 

of this model is developed in the next section. 

 

Model based on the physical phenomenon 

The previous models contain some of the most used 

functions in their functional form for vehicle volume inference 

by means of call data. Those models make use of terms 

introduced to capture features of the studied phenomenon such 

as the hourly variability of both call and vehicular intensity. 

However, a model that reliably represents the physical 

relationship between the number of in-motion calls and the 

number of vehicles may play an important role in achieving 

accurate estimations of vehicle volumes using such input data. 

The formulation of the physical model is founded on the 

hypothesis that a cellular phone makes an in-motion call when 

either the user makes a call in each of the two cells that form 

the boundary within a short period of time (event M, Fig. 1b) 

or the user has an active call and changes from one cell to 

another (event L, Fig. 1a). With regard to the event M, 

although it requires the making of two calls, only one is 

counted as an in-motion call. The concept of mobility is only 

associated with the phone from which the calls needed for the 

detection of movement were made. 

In view of these situations, it seems logical that the 

observations of in-motion calls are affected by the tendency to 

make calls. A typical user tends to make calls during a certain 

time periods, but does not call in others, such as late night or 

early morning. In the case of handovers, the duration of the 

calls will also affect these observations, given that the 

handover is more likely to occur as the call duration increases 

when the phone is moving. Therefore, the time dependence in 

user behaviour when making calls must be taken into account 

when formulating a model that allows the estimation of the 

number of vehicles using a given number of in-motion calls. 

In order to formulate this physical model, an expression that 

models each of the aforementioned situations is proposed. The 

nature of the cells under study, i.e. those away from urban 

environments, allows the assumption that practically all of the 
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Fig. 7. Intensity factors fj and gj, (a) and (b) respectively, at 1-hour period j. 



 

observed in-motion calls will be made by users on board 

vehicles travelling along the existing roads at that boundary. 

These users therefore constitute a sample of the vehicle 

population that has crossed the boundary k in the hour period j 

on day i, Y(i,j,k). With regard to the first type of in-motion 

call, the success probability of event M can be modelled in a 

simplified manner as Pj
2, that is, the making of two calls 

during the hour period j taking into account that Pj is defined 

as the probability of “making a call on board a vehicle, using 

the monitored operator” in the hour period j. One should bear 

in mind that the process of making a call is not independent of 

the fact of having made a previous call recently. However the 

sample does not deal with the whole population of phone 

users, but with a particular group of users: those travelling on 

board a vehicle. The calling activity patterns of this sample of 

users may be considerably different from those of the entire 

population. In order to simplify the modeling of this type of 

in-motion calls, we assume that the two calls are uncorrelated 

in spite of a bias may arise with this assumption. Having 

assumed that the population that generates the in-motion call 

is the set of vehicles crossing a boundary, Y(i,j,k), the number 

of in-motion calls generated by event M is given by: 

( , , ) ( , , )· ( , , )· · ( , , )· 2

M M j j jX i j k Y i j k P Y i j k P P Y i j k P=  =  (3) 

For the second type of in-motion call (event L), the proposal 

is similar but a term is introduced related to the likelihood that 

the call performs a handover. Thus, its probability of 

occurrence requires two terms: on one hand, Pj, the probability 

of “making a call on board a vehicle, using the monitored 

operator”, and on the other, the probability that the call 

requires a handover, so-called probability of handover, Q. 

Regarding the latter, the probability that a handover is 

performed on a call comes from the fact that its duration, td, 

exceeds the time of permanence in the cell, tp. Assuming that 

the population that generates the in-motion calls is the set of 

vehicles crossing the boundary k during the hour period j on 

day i, Y(i,j,k), the number of in-motion calls created under 

conditions associated with event L is defined as: 

( , , ) ( , , )· ( , , )· ·L L jX i j k = Y i j k P = Y i j k P Q  (4) 

After modelling the situations involving in-motion calls, the 

total number of observed in-motion calls in the time period j 

corresponds to the sum of both sets of calls, {XM and XL}. 
2 2( , , ) ( , , )· ( , , )· · ( , , )·[ · ]j j j jX i j k Y i j k P Y i j k P Q Y i j k P P Q= + = +  (5) 

In order to formulate a theoretical model, the relationship 

between the number of in-motion calls and the number of 

vehicles is represented by P(j,k), that is the probability that a 

phone makes an in-motion call (not any call), which may be of 

type 1 (associated with handover) or type 2 (associated with 

consecutive calls in different cells within a short time period). 

According to (5), the probability P(j,k) can be approximated 

by P(j,k)= Pj
2+Pj·Q, by considering certain events as 

negligible, such as the making of a call in each cell while a 

handover also occurs. Although these events are feasible, they 

did not occur on any occasion in the sample. Therefore, the 

number of vehicles that cross a boundary k during the hour 

period j on day i will be given by: 

2

( , , )
( , , ) ( , )· ( , , ) ( , , )

·j j

X i j k
X i j k P j k Y i j k Y i j k

P P Q
=  =

+
 (6) 

This expression provides a value for the volume of vehicles 

that cross the boundary between cells in terms of the detected 

in-motion calls and other variables related to the calls. The 

number of in-motion calls associated with the crossing of a 

boundary during the given time period, X(i,j,k), is obtained by 

analysing the records, provided by the network operator, of 

calls made in the cells involved in the boundary k. For the 

other terms, i.e. the probability that a vehicle makes a call and 

the probability of a handover, Pj and Q, respectively, an 

additional statistical treatment is required to take into account 

the dependence relation of time with the call characteristics. 

The following points explain in detail the method developed to 

obtain the aforementioned terms. 

 

1) Probability of making a call on board a vehicle 

According to the literature, a fair number of works has 

successfully explored the calling activity of cellular phone 

users by measuring the inter-event time distribution (phone 

calls and SMS, sent or received) [19],[20], without regard to 

the users' mobility status. However, in our context, the studied 

event is not to make any call, but a call on board a vehicle. In 

this regard, the findings documented in the literature might not 

be applicable to this particular event. So that, we preferred to 

estimate a term of probability of occurrence by an empirical 

procedure in which the assignment of the probability of the 

event is based on the observed information. Using this 

empirical focus, the probability is determined based on the 

proportion of times in which a favourable or successful event 

occurs with regard to the total number of possible results. In 

this case, the studied event was "making a call on board a 

vehicle supported by the operator providing call data".  

On one hand, as it is shown in Fig. 6b, there are periods 

when users are more likely to make a call. Therefore, the 

particular case of “making a call on board a vehicle, using the 

monitored operator”, Pj, also varies with time. On the other, in 

order to investigate possible dependencies on space (location), 

this empirical approach was performed separately for each 

pair of cells. The successful event considered takes place 

when an in-motion call occurs, being the number of in-motion 

calls directly extracted from the collected call data. Besides, 

the total number of possible results, which is related to the 

number of vehicles moving along each inter-cell boundary, is 

known by means of counting stations that were near such a 

boundary. The outcome showed that the estimated values of 

the probability Pj for each location remained within similar 

ranges for the same time period. This coincidence was 

attributed to the similarity of calling activity of users who 

travel along the associated roadways. The cells mainly support 

freeway traffic, away from sites such as residential areas, 

shopping areas, commuter hubs, etc. In these last cases, the 

behaviour of making a call drastically changes from site to site 

since each of them serves users with considerably different 

call patterns. By contrast, no significant factor of those above 

mentioned influences the calling activity of users over the 



 

studied cells, showing a regular, stable behaviour. In these 

cells the calling behaviour is not affected by the site activity, 

so that it seems reasonable to assume that the locations may be 

aggregated. Then, the process was repeated but aggregating all 

locations into a single sample. Logically, an aggregate scheme 

provokes masked errors, but this alternative was selected for 

the transferability of findings to other locations with similar 

traffic features, and for increasing the sample size. 

Finally, and bearing in mind that an in-motion call 

originating from event M implies the making of two calls from 

the handset that is travelling on board a vehicle, the 

probability of “making a call on board a vehicle, using the 

monitored operator” during the time period j is defined as: 

 
1 1

1 1

8 ,9 ,...,21

18 days

12 points

( , , ) 2 ( , , )

;

( , , )

D K

L M

i k
j D K

i k

j h h h

D

K

X i j k X i j k

P

Y i j k

= =

= =

=

=

=

+ 


= 






 (7) 

It is necessary to comment that those calls are made by only 

a sample of all the phones on board vehicles. Some vehicles 

may carry more than one phone, either from other operators or 

switched-off, although either various calls or none may be 

made from the same vehicle. This feature is already included 

in the calculation of Pj since its expression is based on the 

ratio of calls to vehicles, not phones to vehicles. The strong 

time dependence when a user making any call logically 

influences this probability of "making a call on board a 

vehicle". Fig. 8 plots the variation over time of probability Pj 

empirically obtained. This probability Pj is valid for any of the 

monitored boundaries seeing as the event “making a call on 

board a vehicle, using the monitored operator” is independent 

of the cell in which it occurs, except perhaps in zones where 

driving is difficult for making a call. Fig. 8 also reflects that 

the probability of an in-motion user (on board a vehicle) 

making a call follows the trends of daily call activity shown in 

Fig. 6b (for any user) for most of the time periods. There are 

also two pronounced peaks during rush hours. The morning 

peak centres around the same time period in both cases, while 

the evening peak for calls made by in-motion users is less 

pronounced and wider. This lower tendency may originate 

from the fact that an in-motion user only makes a call outside 

of working hours when it is necessary to do so. However, the 

tendency to make calls seems to be independent of user 

mobility during working hours. 

 

2) Probability of handover 

The likelihood of a handover being performed must be 

modelled. In order to obtain an expression for the probability 

of handover, this work assumes a simplified scenario for 

handover where a cellular system covering a road network is 

divided into regular cells. The distance that a phone travels 

within a cell before crossing the boundary of the said cell is 

modelled as a random variable with uniform distribution 

throughout the interval [0, L] metres. The permanence time of 

a cellular phone in the cell, tp, if the phone moves at a constant 

speed of V m/s will also be a random variable with uniform 

distribution throughout the interval tp [0, L/V] seconds. 

Likewise, the call duration, td, can be modelled as an 

exponential random variable of mean Tc seconds. The 

probability density functions of tp and td will be given by: 

 )
1 1

( ) ,    0, ; ( ) ,  0,
/

d

c

t

T

p p d d

c

L
f t t f t e t

L V V T

− 
=  =  + 

 
 (8) 

A call requires the execution of a handover procedure when 

its duration exceeds the permanence time of a phone in the 

cell. Thus, the probability of a handover can be calculated 

using a conditional probability. 

0

( | ) ( ) , with  ( | ) ( )

p

c

p

L
t

V
T

d p p p p d p p d d

t

Q P t t t f t dt P t t t f t dt e

 −

=   = =  (9) 

Defining a dimensionless factor α, we obtain:  

0 0

1 1
( ) 1 ,

/ ·

p p

c c

L L
t t

V V
T T

p p

c

L
Q e f t e dt e

L V V T

− −
− = = = − =  

 


 (10) 

The factor α depends on the length L, the speed V and the 

mean call duration Tc. The parameter L represents the distance 

that a phone must travel within a cell until it enters another 

cell (crosses the boundary). The smaller this distance the 

easier is that the call must execute a handover. This length 

depends on the roads within the origin cell of the boundary. 

Therefore the dependence on the distance is captured through 

this factor. Something similar occurs with the speed: the value 

depends on the type of road in question (motorway, main road, 

etc.). Although speed can vary along the same road according 

to the time period, due to the level of saturation for example, it 

will be considered uniform within the origin cell of the 

boundary. Therefore, the value of α will very much depend on 

the boundary k in terms of the length and speed associated 

with the type of road that runs through the origin cell. 

Similarly, bearing in mind the call duration’s dependence 

relation on time, α will also depend on the analysed time 

period. The handover probability, Q, is therefore a function of 

the time period j and the boundary k; that is, Qj,k. 

In order to characterize the origin cell of each boundary k in 

terms of length L and speed V, this case study used basic 

functionalities in the cellular system that allow us to know the 

cell identifier (antenna) to which a phone is connected. With 

the help of a GPS and a simple application implemented from 

mobile devices, a correspondence between the position on the 

road and the cell that provides it with service was established. 

Based on this, the length of the road along which a phone 

travels within a cell was found. However, this measure can be 

directly provided by the operator, using a GIS tool and its 

coverage information. For the speed V, the average speed for 

each observed road were considered. Finally, it is possible to 

obtain empirically the call duration through the analysis of call 

data provided by the operator, determining a mean value of 

call duration according to the considered time period, Tc(j). 
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Fig. 8. Prob. of making a call on board a vehicle with the monitored operator. 



 

This duration, which depends on time period j, and the values 

of speed and length that correspond to the road that passes 

through the origin cell of the boundary, allow the definition of 

the handover probability as a function that is variable over 

time j and the boundary k, Qj,k. Fig. 9 shows the temporal 

distribution of the probability of handover calculated using 

(10) for the characteristics of L and V at a specified boundary. 

This plot reveals that there are periods when calls are more 

likely to perform handover. These periods are generally 

associated with larger call duration due to cheaper "price 

plans" or higher speed due to the lack of traffic congestion. 

By substituting the expression of Qj,k, the equation (6) can 

now be written as: 

2 ( , )

( , , )
( , , ) , ( , )

1 · ( )
1

( , )

k

j k k c
j j

X i j k L
Y i j k j k

V T j
P P e

j k

−

= =

 +  − 






 (11) 

where α(j,k) introduces the mean characteristics of the 

highways related to inter-cell boundary k − average speed, Vk, 

distance travelled in the cell, Lk, and average call duration in 

interval j, Tc(j) − into the functional form. Finally, the 

expression of the physical model is obtained by introducing a 

set of parameters ϕ={a,b1,b2,c,d} to address the 

indeterminacies introduced by the hypotheses required to 

generate the model, being formulated as: 

2

6
( , )2 1

( , , )
( , , )

1
( , )

b j k

j j

a X i j k
y i j k d

b
P P e c

j k





− 


= +

 +  − + 

 (12) 

The term Pj is the fixed hourly coefficient associated with 

the probability of “making a call on board a vehicle, using the 

monitored operator” at time period j, determined by (7), and 

α(j,k) is a coefficient related to the probability of handover in 

the hour period j at boundary k, Qj,k. Details of the formula 

derivation may be seen in [21]. 

C. Parameter estimation 

Once the models proposed to infer vehicle volumes have 

been formulated, a calibrating stage is carried out for the 

parameter estimation. The calibration process uses only the 

sample data corresponding to the calibration set  

{(X1,Y1), ..., (XN,YN)}. Another subset of the data, so-called 

testing dataset, is reserved for the contrast of the models. 

There are different procedures for estimating the parameters 

that define each model. The adjustment criterion based on the 

principle of minimization of the sum of the absolute relative 

error between the observed and the modeled values has been 

utilized, by solving the following optimization problem for 

each model:  where Yi is the observed volume, yi=f(Xi; Φ) is 

the modeled one using observed in-motion calls, Xi, and 

Φ={a,b1,b2,c,d} is the set of the model parameters. 

Subsequently, the models were evaluated and compared in 

order to select those providing accurate estimates of vehicles 

crossing a boundary, Y, as a function of the known value of X 

(in-motion calls at the said boundary). After estimating model 

parameters, the models were completely defined. 

 

V. MODEL SELECTION 

A set of six models has been proposed to estimate vehicle 

volume using phone call data. The estimates from all models 

for a number of observed in-motion calls were evaluated using 

real vehicle volumes measured by detectors, whose values are 

contained in the "testing dataset". The assessment was carried 

out on the basis of different criteria, such as error measures 

expressed in absolute values, percentiles, and correlation 

between the volumes estimated by each model and the 

observed by a detector that were near such a boundary. Next, 

the models were compared between them for selecting those 

that produced the best results. The most appropriate models 

were those providing the best balance between all the criteria. 

Table I shows the measurements achieved for each model. The 

mean absolute error and the mean absolute relative error, MAE 

and MARE respectively, allow a comparison between the 

estimates and the real values using a classical error analysis. 

Absolute values are used in order for the prediction error to 

have the same significance either upwards or downwards. 

Based on these measures, the best models are 6, 2, and 3, 

seeing as the ranges are of the same order in all three. Another 

criterion examined is the cumulative distribution function of 

the absolute relative error using percentiles. A percentile is the 

value of a variable below which a certain percentage of 

observations fall. The best models are those that show the 

smallest values for each one of the percentiles. The achieved 

percentiles also show that models 6, 3, and 2 are better than 

the others. The 50th percentile or median of the absolute 

relative error (MedARE) shows error levels around 17%. 

Another criterion evaluated is the correlation between the 

estimates and the real volume values. For this purpose, the 

linear correlation coefficient, or Pearson coefficient, and the 

Spearman rank correlation coefficient were studied. The 

Pearson coefficient is the most widely used measure of linear 

relationship between two variables, while the Spearman rank 

correlation coefficient is a measure of the monotone 

association between two variables using the relationship 

between ranks (e.g. a positive Spearman coefficient 

corresponds to an increasing monotonic trend between 
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Fig. 9. Probability of handover for a specific boundary in each 1-hour period. 

TABLE I 

ERROR MEASUREMENTS FOR EACH MODEL 

 M1 M2 M3 M4 M5 M6 

MAE 237.2 210.66 210.02 223.98 223.24 203.6 

MARE 0.23 0.20 0.20 0.22 0.22 0.20 
MedARE 0.20 0.17 0.17 0.18 0.18 0.16 

RC  0.25 0.51 0.51 0.40 0.40 0.57 

LC  0.28 0.47 0.48 0.34 0.35 0.53 

RC: Rank Correlation (Spearman); LC: Linear Correlation (Pearson) 



 

variables). In terms of rank correlation, models 6, 2, and 3 

clearly stand out from the others, especially model 6, which 

achieved high values for the sample size examined. A similar 

ranking is achieved using the linear correlation coefficient. 

Consequently, models 1, 4, and 5 are discarded for 

inference purposes. Model 1 depends exclusively on the 

factors related to time variability in the intensity of calls and 

vehicles. No information about the number of in-motion calls 

appears in the functional form, losing information regarding a 

proportion of vehicles crossing a boundary. Something similar 

occurs for models 4 and 5 but losing significant information 

on time variability due to the absence of intensity factors. 

Thus, models 2, 3, and 6 are regarded as the most suitable for 

the estimation of vehicle flow using the number of in-motion 

calls. The graphical comparison between the vehicle flows 

observed and estimated for these three models at various inter-

cell boundaries is shown in Fig. 10. The plot reveals that the 

estimates follow the peaks and valleys of the observed flow 

curve within an admissible error level (MARE<20%, 

MedARE<17%). The three models show very similar estimates 

of vehicle flow for a known number of in-motion calls and the 

differences between the estimates of both models are barely 

appreciable graphically.  

Note that higher error levels are obtained from late 

afternoon/early evening. This result might be explained by 

several factors, for example, the beginning of cheaper "price 

plans". This factor has a strong effect on calling behavior 

(duration and number of calls) which fluctuates greatly in 

these time periods from day to day; hence error levels 

increase. The vehicle occupancy is another important factor 

affecting the accuracy of the estimation model. There are 

significant differences in vehicle occupancy by time of day; 

the morning peak period has lower average vehicle occupancy 

than the mid-day period and the evening peak period. The 

vehicle occupancy for going to work during the morning peak 

period is regular on a daily basis. From evening hours, aside 

from returning home, there are numerous other activities in 

which people engage on a less-than-daily basis, such as 

visiting friends or relatives, shopping, entertainment, fitness, 

and so on. People may engage in these activities alone or 

accompanied, and no stable trends exist in vehicle occupancy 

for these time periods. Since it is difficult to exactly detect the 

vehicle occupancy using only call data, the model has been 

developed using an average vehicle occupancy rate. The 

model accuracy may change when vehicle occupancy is 

drastically different from this rate. By contrast, these error 

levels decrease to 6–8% in periods when the trends in making 

calls and vehicle occupancy are more stable (9:00–14:00). 

Another aspect to be considered in selecting a model for 

inference is its complexity. The fit of any model can be 

improved by increasing the number of parameters; however, 

variance (uncertainty) increases as the number of parameters 

in a model increases. In statistics, the Bayesian information 

criterion (BIC) [22] and Akaike information criterion (AIC) 

[23] are well-known methods of assessing model fit penalized 

by the number of parameters. These criteria can be viewed as 

measures that combine fit and complexity. Then, several 

competing models may be ranked according to their AIC and 

BIC. Then, although the error measurements are of the same 

order of magnitude in those three models, the ranking reveals 

that the model 2 and 6 are the best ones. A more 

comprehensive analysis [21] shows that these models yield the 

best vehicle-flow estimates. Then, models 2 and 6 are the ones 

selected for volume inference. However, it is difficult to 

establish a clear priority between them since: 

i) model 6 reaches a slight improvement with respect to 

model 2 in terms of MAE, MARE and MedARE, although their 

values are of the same order of magnitude; 

ii) graphically, estimates from the models reflect similar 

behavior in terms of reproducing the peaks and valleys in the 

observed volume curves; 

iii) the linear and rank correlation coefficients reveal that 

model 6 reaches a better fit to the real data than model 2. 

Additionally, model 6 achieves reasonable flow estimates 

although it previously requires the boundary characterization 

in terms of the speed and length of roads running through the 

cell of origin. This model is less flexible than model 2 since it 

requires the cell-boundary characterization (average speed and 
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Fig. 10. Number of vehicles crossing boundary 6 and boundary 9 in each 1-hour period observed, and as estimated by models 2, 3, and 6. 



 

length); however, its predictive capacity, evaluated in Table I, 

also qualifies it as a suitable model. As a consequence models 

2 and 6 will be those finally selected for estimating vehicle 

flows due to their provision of the best results. 

 

VI. CONCLUSIONS 

The use of traditional on-road sensors (e.g. inductive loops, 

cameras, etc.) for collecting traffic flows is necessary but not 

sufficient because of their limited coverage and expensive 

costs of implementation and maintenance. This paper presents 

anonymous call data generated from moving phones as an 

alternative or rather complement source of high quality data 

for estimating traffic flows. In particular, the paper proposes a 

methodology for estimating vehicular volumes crossing an 

inter-cell boundary, that is, the number of vehicles moving 

from one cell to another. The main advantages of using 

cellular systems are that phone data can be acquired widely, 

and no additional implementation within the cellular network 

infrastructure as well as the phone is necessary. Besides, no 

additional costs arise, being more cost-efficient than other 

techniques such as local loop-data or video-based systems. 

These classic infrastructure techniques have limited economic 

conditions, so that only a restricted infrastructure and no area-

wide availability is established. After discussing the required 

data for this purpose, six models have been developed. The 

data permit the determination of the said volumes by 

employing i) the in-motion calls generated in each 1-hour 

period, ii) additional information associated with the 

characteristics of the vehicular traffic, iii) the call features, 

such as hourly intensity, call duration, and iv) even the 

characteristics of the highways crossing the boundary. 

Adjustment of the parameters tasked with modeling 

dependence between the variables implied has proceeded, 

seeking minimization of the sum of the absolute relative error. 

The work has been completed with a comparative analysis of 

the models using criteria such as error measurements, rank and 

linear correlation coefficients and statistical criteria for 

assessing model fit. Based on the foregoing reasoning models 

2 and 6 have finally been considered as equally viable in 

estimating vehicular flows, highlighting: 

i) the need to incorporate data in the functional form of the 

models regarding the time variability in the behavior of users 

travelling, in making calls, or other characteristics associated 

with vehicular traffic, and  

ii) the applicability of the methodology to a broad set 

boundary within admissible error levels in comparison with 

measurements provided by counting stations. 

To sum up, cellular phones can be regarded as a 

complementary solution to fixed sensors in order to enhance 

the available information for mobility monitoring. It is 

necessary to emphasize that the procedure performed to 

process the incoming data and infer volumes requires non-

negligible computing time. Hence, the models are intended to 

be used for applications in which the estimation process does 

not need to be performed in real time. In addition, the error 

levels achieved by the proposed methodology impede the use 

of these models for applications in which accurate volume 

measurements are required. For real-time applications or 

traffic management purposes such as incident detection it is 

recommended that traffic monitoring system based on cellular 

phones should be merged with other systems to get a reliable 

and complete advanced traffic information system; whereas 

cellular phones can provide accurate enough information for 

applications without real time requirements. An example is in 

the field of Origin–Destination matrix estimation.  

The most commonly used models for updating travel 

demand make use of volume data observed on links in the 

transport network and other available information (often 

contained in a prior matrix), so the prior matrix may be 

“adjusted” or “changed” to reproduce observed volumes. 

Customarily, observed volumes are expressed in terms of the 

mean number of vehicles per type of day (working, weekend, 

or even all days), which come from permanent loop detectors 

embedded in the road or vehicle identification technologies. 

The loop data have two main types of errors [24]; first, the 

detectors tend to undercount vehicles. In most cases this error 

is less than 10% of the real volume. Secondly, detectors tend 

to count vehicles in neighboring lanes in addition. In some 

cases the share of the additionally counted vehicles has a 15% 

of divergence. The standards defined are that the total traffic 

volume should not vary from reality by more than 20% [24]. 

Then, the error levels obtained using the estimation model are 

within the limits for fulfilling the standards. Moreover, 

demand matrices are studied for time periods representing one 

or two hours, usually morning peaks, and the achieved error 

levels are lower during these morning hours. So, volumes 

inferred from cellular phones may also be regarded as an 

attractive option for matrix estimation [25]. In that case, the 

usage of flow inferred from cellular phone data for updating 

the matrix requires a reformulation of the model notation to 

use volume on groups of links (the most common case using 

cellular system criteria for selecting the observed location), 

rather than on single links (the traditional format of detectors). 

Indeed, an estimation algorithm combining volume data from 

cellular phones with automatic traffic counts based on 

traditional techniques (e.g. detectors) will allow the 

achievement of more realistic matrices.  
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