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Traffic flow continuum modeling by hypersingular 
boundary integral equations 

 

Equation Chapter (Next) Section 1Luis M. Romero, Francisco G. Benitez 

Transportation Engineering, University of Seville, Spain 

Summary 
 

The quantity of data necessary in order to study traffic in dense urban areas through a traffic 

network, and the large volume of information that is provided as a result, causes managerial 

difficulties for the said model. A study of this kind is expensive and complex, with many 

sources of error connected to each step carried out. A simplification like the continuous 

medium is a reasonable approximation and, for certain dimensions of the actual problem, 

may be an alternative to be kept in mind. The hypotheses of the continuous model introduce 

errors comparable to those associated with geometric inaccuracies in the transport network, 

with the grouping of hundreds of streets in one same type of link and therefore having the 

same functional characteristics, with the centralization of all journey departure points and 

destinations in discrete centroids and with the uncertainty produced by a huge 

origin/destination matrix that is quickly phased out, etc. In the course of this work, a new 

model for characterizing traffic in dense network cities as a continuous medium, the 

diffusion–advection model, is put forward. The model is approached by means of the 

boundary element method, which has the fundamental characteristic of only requiring the 

contour of the problem to be discretized, thereby reducing the complexity and need for 

information into one order versus other more widespread methods, such as finite differences 

and the finite element method. On the other hand, the boundary elements method tends to 

give a more complex mathematical formulation. In order to validate the proposed technique, 

three examples in their fullest form are resolved with a known analytic solution.  
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INTRODUCTION 
 

The modeling of regional or zonal traffic currently requires the zone studied to be discretized 

by means of a discrete network, concentrating on the journeys generated and attracted by 

each of the transport zones into points or nodes, and the road sections to be modeled as links 

between the nodes. Each of the links has some characteristics, which specify its functional 

behavior, assigned to it – the time or generally the cost of travelling the said link, which will 

be dependent on the intensity of the circulating traffic flow. This network is given a 

departure-point/destination matrix that constitutes the network demand, the journeys running 

through the network that are distributed between the links in keeping with the principle of 

user equilibrium, thereby resolving the problem of assignment. The number of parameters 

involved in this model is as high as the process needs in order to calibrate a network, perhaps 

over a period of several years, and even then the results will never be one hundred percent 

reliable and hence the process will require continual revision. In a large number of cases, the 

obtained results yield a pattern of flows with an excessive level of detail, which, at times, 

makes it difficult to interpret the results qualitatively. Consequently, if the actual network of 

lines of communication is very complex, the methods involved in the network theory may be 

an inadequate tool. The errors themselves made in a network model (routes not taken into 

account, lost interconnections, undefined crossovers, inappropriate parameters ...) will 

introduce a large level of inaccuracy into the results obtained in resolving problems in 

accordance with the given model. However, increasing the level of accuracy of the model of 

the network may render the said model unpractical from the point of view of calculation. In 

such cases, a different form of analysis, such as one based on the continuum theory of traffic 

flow, will be more convenient, at least in the initial stage of planning where general patterns 

of the distribution of journeys and changes to them in response to different transport policies 

are looked at. 

Over the last 25 years, various researchers have put forward different methods of working 

with traffic distribution in dense urban areas. Most of these methods could only be applied to 

simple geometries and were far from being practical when used, although they provided a 

basis for future research (see [1] and [2]). It is also worth mentioning the pioneering work by 

Taguchi and Iri [3] of using the finite element method for solving a real transportation 



problem, and the published work of Yang, Yagar and Iida [4] on the problem of assigning 

traffic in a congested city comprising many departure points and a single journey destination. 

The model used shows a typical discrete network for modeling the system of main routes and 

a continuum model for the network of secondary streets. In the aforementioned work, the 

continuous model is resolved by applying the finite elements method. Wong [5] took this 

line, studying a more complex case with multi-commodity traffic in the network. In this 

paper, a new continuous model is put forward and the finite elements method is replaced by 

the boundary elements method. 

In traffic theory, a dense network is defined as a route network that is sufficiently compressed 

for it to be presumed that the space between the route sections and their longitude is small by 

comparison with a dimension characterizing the region under consideration. In this case, the 

course of the roads can be considered as a continuum; the vehicles can circulate at any point 

( , )x y=x  of the area to be studied that occupies an area E2, where E2 is a Euclidian, two-

dimensional space. In reality, there will be a discrete number I of feasible directions at each 

point x with direction cosines ( , )i i
x yu u . Thus, if the discrete set contains practically any 

direction, the said zone can be considered as a zone with an isotropic layout, while if the 

roads are preferably orientated in two directions, where I = 2, it can be considered as having 

an orthotropic layout. Generally speaking, any spatial area can be divided up, in accordance 

with the orientation and density of its streets or roads, into different zones with different 

isotropic, orthotropic, or anisotropic zones. Here, only isotropic zones will be considered. 

It will be normal, during the course of this paper, to distinguish between different types of 

vehicle. Sometimes, this distinction can be made on the basis of the actual type of the vehicle 

(light or heavy vehicles, motorbikes ...), although, in most cases, this distinction will be made 

in accordance with the point of departure and the destination. Here, only those vehicles 

having the same point of departure and traveling to the same destination are considered to be 

vehicles of the same kind, herein referred to as a specific commodity. The methodology put 

forward in this paper is based on the hypothesis that there is just one commodity circulating 

for the continuous medium. Romero [6] develops the method generalization put forward here 

into multiple commodity traffic, thereby enabling the modeling of situations that are more 

realistic than the case of a single item. 

 



BASIC TRAFFIC FLOW CONCEPTS. DIFFUSION–ADVECTION 
TRAFFIC MODEL 
 

The models dealt with in this section are framed in macroscopic flow dynamics theory, 

considering traffic flow to be similar to that of a fluid, without taking the behavior of separate 

vehicles into account; they are also deterministic in that they do not consider random 

variables in order to describe a phenomenon as complex as traffic, very dependent, as it is, on 

human behavior. 

The two-dimensional model comes from a traffic conservation equation, the simple 

continuous model, introducing a change, which has been criticized in the one-dimensional 

case because it may require a violation of the anisotropic nature of the traffic in specific 

traffic conditions, but which will be duly justified for the two-dimensional case. Another 

basic difference of the model put forward, with regard to the simple, continuous model, is 

that, in the proposed model, it is not necessary to know any traffic intensity–density 

relationship in advance in order to close it, as may be required in the simple continuous 

model. 

One-Dimensional Models 
 

Lighthill and Whitham [7] formulated a continuous model for traffic flow starting only with a 

conservation equation, which, in a one-dimensional space, will have the form: 

 ( , ) ( , ) ( , )x t F x t x t
t x

φ ρ∂ ∂
+ =

∂ ∂
 (1) 

where ( , )x tφ  is the traffic density or concentration, ( , )F x t  is the net vehicle flow and 

( , )x tρ  the vehicle generation function. 

This model, known as the simple model, is clearly very limited since it does not allow 

variations in speed in relation to equilibrium values, and allows the appearance of shock 

waves that mean instantaneous changes in speed. 

The rising of shock waves threatens the continuity and unicity of solutions. Characteristics’ 

intersections imply multi-evaluated points, corresponding to shock waves. There are different 

approaches to dealing mathematically with problems of shock waves. One of them makes use 

of the weak solution concept, which admits solutions with discontinuity in the shock wave 



variable; in order to guarantee the unicity of the solution, the Ansorge entropy condition [8] 

has to be imposed. A second method to ensure unicity, proposed in [9], is to consider an 

artificial diffusion term, ( )q Q k k xμ= − ∂ ∂ , knowing a priori the existence of a unique 

solution, and later setting the limit 0μ →  to eliminate the effect of this term. 

Since then, and up until the present time, a large number of models have been put forward, 

although the one most frequently used has been Payne’s model [10], which introduces a new 

equation in which speed is one more unknown magnitude: 

 eV VV VV
t x T T x

φ
φ

−∂ ∂ ν 1 ∂
+ = −

∂ ∂ ∂
 (2) 

where V and Ve stand for speed and equilibrium speed, respectively, T is the reaction time 

and ν is an anticipation coefficient. 

Whitham [9] subsequently introduced a diffusion term into the traffic-flow expression, such 

that:  

 1( ) , ( )f F v V
x x
φ φφ μ φ μ

φ
∂ ∂

= − = −
∂ ∂

 (3) 

accompanied by the reaction time, giving rise to a model that is very similar to that of Payne, 

and hence many references are to what is termed the PW (Payne–Whitham) model. 

These models, known in the literature as second-order methods, were postulated in order to 

try to improve the simple continuous model, but even like this they do not resolve its 

problems and they introduce new errors, postulated in [11] and [12], such as allowing for the 

possibility of negative speeds in the face of high-density gradients and for wave velocities 

that are greater than vehicle speeds, implying that impact waves would speed vehicles up. 

Such vehicle behavior is a breach of the anisotropic property of traffic circulation, established 

by [12], which, in essence, states that drivers basically only react to frontal stimuli. In 

general, a fast vehicle cannot force a slow vehicle to speed up, particularly in dense, one-lane 

traffic where the slower driver does not have enough front spacing to speed up. The fast 

vehicle has to slow down when it catches up with a slow vehicle. However, it is shown in 

[13] how non-anisotropic waves can arise in multi-lane traffic even when the flow in each 

lane behaves anisotropically.  

The publication of a couple of works, [11] and [12], jeopardized the use of second-order 

approaches. Finally, these concerns only supposed a short interruption in their use to take a 



step back and define a set of properties to be fulfilled for any acceptable model. New refined 

second-order models appeared, verifying the consistency properties ([13] - [17]). 

Two-Dimensional Models 
 

Generalization of the expression (1) to two dimensions is immediate: 

 ( , ) ( , ) ( , )x t t t
t

φ∂
+∇ ⋅ =

∂
f x ρ x  (4) 

where ( , )tf x  is the traffic flow vector, ( , )tφ x  the traffic density and ( , )tρ x  the traffic 

generation function (notation is particularized for the two-dimensional case). 

Allowing that the traffic circulation at point x at instant t not only depends on traffic density 

and speed at this point and at this instant, but also depends on the density gradients as 

observed physically, it can be written that: 

 ( , ) ( , ) ( , ) ( , )t x t u x t x tμ φ φ= − ∇ +f x  (5) 

where, in this case, speed is a vector of components ux and uy  (velocity).  

Incorporating a diffusive component into expression (5) is equivalent to the two-dimensional 

version of the variation of the simple continuous model put forward by Whitham [9], 

expression (3), rejected by Daganzo [12] because it allowed for negative speeds in the face of 

high-density gradients. In a one-dimensional case, where the vehicles always circulate in one 

lane, it is inadmissible that a driver should react to a traffic jam ahead, given that that driver 

has no other option than the given lane, for making his journey. However, in the two-

dimensional case, the driver can react in the face of a high concentration of vehicles, 

changing his route towards zones in which there are fewer vehicles and, hence, in this case, 

negative speed components are no breach of the actual behavior of the physical problem.  

This dependence on the gradient looks like a violation of the anisotropic property of the 

traffic flow, an undisputed characteristic of one-lane traffic but questionable in other types of 

flows. It has been proved, i.e. [13], that the said property is not valid for multi-lane traffic 

flow, even being valid for each lane independently. Drivers know roughly the zone traffic 

conditions, either through any intelligent transport system (ITS) that informs of the real-time 

situation or by reckoning the usual traffic patterns. Due to these factors, it is feasible that the 

driver not only takes into account the space available in front of him in the lane he is 

circulating along, but that he also considers an additional, more global, variable related to the 



zone he is located in as the difference from vehicle densities between zones closer to his 

location.  

Expression (3) supposes that the decrements/increments of circulation are given not only as a 

result of decrements/increments in velocity and/or density, but also in response to 

increments/decrements in the density gradient. The level of variation of traffic flow in 

relation to the density gradient is defined in the model by the scalar parameter µ, which is 

dependent on all the usual urban traffic factors (the town planning policy, the design of 

routes, atmospheric conditions, drivers’ behavior, etc.). The magnitude of parameter μ  plays 

an important role in the modeling. Its weight in traffic behavior has not been clarified as no 

conclusive experimental studies have been carried out. 

Given that the spatial variation of velocity in relation to an equilibrium velocity is small, we 

can write: 

 ( , ) ( ) ( , )u x t u t u x t= + . (6) 
Substituting expressions (5) and (6) in (4), we obtain: 

 ( )2 ( , )( , ) ( ) ( , ) ( , ) ( , ) ( , )x tx t u t x t x t u x t x t
t

φμ φ φ ρ φ∂
∇ − ⋅∇ = − +∇

∂
 (7) 

an equation that defines the diffusion–advection model already known to describe other fluid 

mechanics problems. 

  

 



 

THE BOUNDARY ELEMENTS METHOD APPLIED TO THE 
DIFFUSION–ADVECTION TRAFFIC MODEL 
 

The strategy followed to solve a problem ruled by an equation simpler than (7), the 

convection–diffusion equation, with neither the traffic generation nor the divergence terms, 

has already been published [18]. In the following, the methodology needed to apply the BEM 

to equation (7) is presented.   

Diffusion–Advection Integral Equation 
 

Multiplying equation (7) by ( , , )tψ x ξ  and integrating within the domain ( ) ( )η ηℜ ≡ℜ−B , 

where ( )ηB  is a ball centered on ξ  and having a radius η , with 0η → ,  we obtain 

 
( )

( )
( )

2 ( , ) ( ) ( , ) ( , , )

( , ) ( , ) ( , ) ( , ) ( , , )

x

x

x t u t x t x t d

x t x t u x t x t x t d
t

η

η

μ φ φ ψ ξ

φ ρ φ ψ ξ

ℜ

ℜ

⎡ ⎤∇ − ⋅∇ ℜ =⎣ ⎦

∂⎡ ⎤− +∇ ℜ⎢ ⎥∂⎣ ⎦

∫

∫
 (8) 

where ( , , )tψ x ξ  corresponds to the fundamental solution defined by the equation: 

 ( )2 ( , , ) ( ) ( , , )x t u t x tμ ψ ξ ψ ξ δ ξ∇ + ⋅∇ = − . (9) 

The main advantage of the boundary elements method by comparison with other methods is 

its capacity to provide a complete solution to the problem solely using information on the 

boundary. For this, the domain integrals of equation (8) must be transformed into integrals 

concerned with the boundary. To do this with the integrals of the first member, it suffices to 

integrate by parts, and apply the Gauss theorem and expression (9), obtaining: 

 

2

( )

2

( , ) ( ) ( , ) ( , , ) ( ) ( , )

( , , ) ( , )( , ) ( , , ) ( , , )

x

x x

x t u t x t x t d c t

x t x tx t x t d x t d
n n

η η

η

μ φ φ ψ ξ ξ φ ξ

ψ ξ φφ μ ψ ξ μ ψ ξ

ℜ

∂ℜ ∂ℜ

⎡ ⎤∇ − ⋅∇ ℜ = +⎣ ⎦

∂ ∂⎡ ⎤+ ∇ + Γ − Γ⎢ ⎥∂ ∂⎣ ⎦

∫

∫ ∫
 (10) 

An initial restriction of the boundary elements method is that the fundamental solution to the 

original, differential equation is required in order thereby to obtain the boundary integral 

equation. Another is the inclusion of domain integrals in the problem formulation. The dual 

reciprocity method deals with this problem by using a simpler fundamental solution, 

expanding the remaining terms of the original equation as a series using some global 



approximate functions. The following approximation is used for each of the terms of the 

second member of equation (8) that are represented generically as ( , )x tχ : 

 
1

( , ) ( ) ( )
M

k k
k

x t t f xχ α
=

≈ ⋅∑  (11) 

where the approximate functions, ( )kf x , the same for each one of the terms of the second 

member of equation (8), verify that: 

 ( )2 ( , , ) ( ) ( , , )k k kx t u t x t fμ ς ξ ς ξ ξ∇ + ⋅∇ = −  (12) 
while the coefficients kα  are given by the solution to the equations system:  

 
1

( , ) ( ) ( ),    with 1,...,
M

i k ik
k

x t t f x i Mχ α
=

= ⋅ =∑        

which means demanding that the approximation (11) is exactly verified at the M points used 

for it. There is abundant literature on choosing the aforementioned approximate functions 

([18] and [19]). 

With all of this, equation (8) is transformed into the following equation, now with integrals 

only within the boundary: 

 [
1

( , , )( ) ( , ) ( , ) ( , , )

( , )( , , ) ( ( ) ( ) ( )) ( ) ( , )

( , , ) ( , )( , ) ( , , ) ( , , )

n x

M

x k k k k
k

k
k n x k x

x tc t x t x t u d
n

x tx t d t t t c t
n

x t x tx t x t u d x t d
n n

η

η

η η

ψ ξξ φ ξ φ μ ψ ξ

φμ ψ ξ α β γ ξ ς ξ

ς ξ φφ μ ς ξ μ ς ξ

∂ℜ

=∂ℜ

∂ℜ ∂ℜ

∂⎡ ⎤+ + ⋅ Γ −⎢ ⎥∂⎣ ⎦

∂
− Γ = + + ⋅ +

∂

∂ ∂⎡ ⎤+ + ⋅ Γ − Γ⎢ ⎥∂ ∂⎣ ⎦

∫

∑∫

∫ ∫

 (13) 

The coefficient of the free term in the above expression, c(ξ), is only a function of the internal 

angle θ , generally specified by ( ) 2c θ π=ξ , such that expression (13) is valid when the 

collocation point ξ is defined both in the boundary ∂ℜ  and within the domain ℜ . The 

expressions relative to the fundamental solution can be found in [18]. 

The boundary integrals are solved by the discretization of the boundary in which we define 

some natural coordinates. Within the elements, the geometric values like those of any other 

type of function are approximated by means of the nodal values of the said functions. With 

this discretization, the expression (13), in vectorial form, becomes: 



 

( ) ( ){ } { } ( ){ }

( ){ } [ ] ( ){ }

{ } [ ]{ }1

1

( )

( ) ( )

( , ) ( , ) ( ) ( , )

T T

T T
k

NP

p p
p

c h g

c h g

tF t t
t

φθ φ φ

ζζ ζ

φ φ ψ−

=

∂⎧ ⎫+ ⋅ − ⋅ =⎨ ⎬∂⎩ ⎭
⎛ ∂ ⎞⎡ ⎤= + − ⋅⎜ ⎟⎢ ⎥∂⎣ ⎦⎝ ⎠

⎛ ∂ ⎞⎧ ⎫⎡ ⎤⋅ − + ∇ ⋅ +⎨ ⎬⎜ ⎟⎣ ⎦ ∂⎩ ⎭⎝ ⎠
∑

ξ ξ ξ
n

ξ ξ ξ ξ
n

x ρ x u ρ x ξ

 (14) 

where pρ  represents NP discrete traffic generation sources and means that, in order to 

simplify formulation, the same M points and the same approximate functions have been used 

for the dual reciprocity approximation of the terms { }( , )t tφ∂ ∂x , { }( , )tρ x  and [ ]{ }φ∇ ⋅ u . 

Defining the vector { }τ  as 

 { } ( ){ } ( ){ } [ ] ( ){ } 1( ) [ ]
T TT Tc h g Fζτ θ ζ ζ −⎛ ∂ ⎞⎡ ⎤= + ⋅ − ⋅⎜ ⎟⎢ ⎥∂⎣ ⎦⎝ ⎠

ξ ξ ξ
n

 (15) 

equation (14) remains  

 
( ) ( ){ } { } ( ){ }

{ } { } [ ]{ }
1

( )

( , ) ( , ) ( ) ( , )

T T

NP
T

p p
p

c h g

t t t
t

φθ φ φ

φτ φ ψ
=

∂⎧ ⎫+ ⋅ − ⋅ =⎨ ⎬∂⎩ ⎭
⎛ ∂ ⎞⎧ ⎫= − + ∇⋅ +⎨ ⎬⎜ ⎟∂⎩ ⎭⎝ ⎠

∑

ξ ξ ξ
n

x ρ x u ρ x ξ
 (16) 

 

Hypersingular Equation of the Diffusion–Advection Gradient 
 

Multiplying equation (7) by ( , , )x tξψ ξ∇  and integrating the domain ( )ηℜ , carrying out 

transformations similar to those performed for equation (10), we obtain the following 

expression in which the symbol =∫ represents a hypersingular integral: 



*

*
*

*

1

*

( , )( ) ( , ) ( ) ( , ) ( , )

( , )( , ) ( , )

( , )( ( ) ( ) ( )) ( ) ( , ) ( ) ( , ) ( , )

( ,( , )

M

k k k
k

tt t d

t d

tt t t t t d

t

η

η

φφ φ μ φ

φφ μ φ

φα β γ φ φ μ φ

φφ μ

∂ℜ

= ∂ℜ

∂
+ − ⋅ ⋅ Γ +

∂

⎡ ⎤⎛ ⎞∂
+ = ⋅ + ⋅ Γ =⎢ ⎥⎜ ⎟∂⎝ ⎠⎣ ⎦

⎡ ∂
⎢+ + ⋅ + − ⋅ ⋅ Γ +

∂⎢⎣

∂
+ = ⋅

∫

∫

∑ ∫

ξ

nξ ξ

ξ

ξ

xa ξ ξ E ξ ξ x ξ
n

x ξx x ξ v
n

xa ξ ξ E ξ ξ x ξ
n

xx

∇ ∇

∇ ∇

∇ ∇

∇ *) ( , ) dφ
⎤⎡ ⎤⎛ ⎞

+ ⋅ Γ⎥⎢ ⎥⎜ ⎟∂ ⎥⎝ ⎠⎣ ⎦ ⎦
∫ nξ

ξ x ξ v
n

∇

(17) 

where η∂ℜ  stands for the region domain excluding the collocation point ξ . In (17), the 

coefficients of the free terms, the vector a(ξ) and the matrix E(ξ), are given by the expressions  

[ ]( )

2

1

( )
4

1( )
2

with

sin(2 ) cos(2 )1
cos(2 ) sin(2 )2

γ

γ

ξ
πμ

ξ θ
π

γ γ
γ γ

⋅
= −

= +

−⎛ ⎞
= − ⎜ ⎟

⎝ ⎠

M

I M

M

va

E
 (18) 

Discretizing the boundary into elements and expressing the integrals as the sum of the 

integrals of the elements, on the basis of the nodal values, the vector form is obtained:  

 
( ) ( ) ( ) { } ( )

( ) { } [ ]{ }
1

( ) ( )

( , ) ( , ) ( ) ( , )
NP

p p
p

D h g

t t t
t

φθ φ θ φ φ

φτ φ ψ
=

∂⎧ ⎫+ + ⋅ − ⋅ =⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎨ ⎬⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ∂⎩ ⎭
⎛ ∂ ⎞⎧ ⎫− + ∇ ⋅ +⎡ ⎤ ⎨ ⎬⎜ ⎟⎣ ⎦ ∂⎩ ⎭⎝ ⎠

∑

a ξ ξ ξ ξ
n

xξ ρ x u ρ x ξ

∇ ∇

∇

∇

∇
 (19) 

which is an equation of a hypersingular nature, the solution to which requires special 

treatment, presented in [18], where, similarly, the expressions relative to the gradient of the 

fundamental solution can be found. A new unknown ( , )tφ ξ∇  appears in each equation of 

this kind. 

 



 

SOLVING THE DIFFUSION–ADVECTION TRAFFIC MODEL  

Equations 
 

The equations system obtained agrees with the integral density equation, expression (16), and 

the integral equation of the density gradient, expression (17).  

By the boundary conditions, either the traffic density φ  or its flow φ∂ ∂n  is known for each 

point of the boundary or district, and therefore each point brings with it an unknown 

concerning the primary variables of the problem. If the point is an interior one, no boundary 

condition is imposed on it and its unknown will always be the traffic density φ . Furthermore, 

each point, whether internal or boundary, gives the traffic density gradient as an additional 

unknown, hence the need to state simultaneously the equation systems resulting from 

applying equations (16) and (17) to each point used. However, there are terms in the equation 

systems requiring special treatment in order for the problem to be closed, as discussed in the 

following paragraphs. 

 

Temporal Derivative 
 

An appropriate integration scheme for relating variables between two consecutive time steps, 

m and m+1, is used for dealing with the temporal derivative, as follows: 

 

{ } ( ){ } { }

( )

{ } { }

1

1

1

1

1

( , )

m m

m m

q q

m m
t

t t

φ φφ θ φ θ φ

φ φ φθ θ

φ φφ

+

+

+

= − +

∂ ∂ ∂⎧ ⎫ ⎧ ⎫ ⎧ ⎫= − +⎨ ⎬ ⎨ ⎬ ⎨ ⎬∂ ∂ ∂⎩ ⎭ ⎩ ⎭ ⎩ ⎭

−∂⎧ ⎫ =⎨ ⎬∂ Δ⎩ ⎭

n n n

x

 (20) 

In order to simplify the way the equations are shown, it will be assumed that qφθ θ θ= = , and 

the same weight θ  is used for all the variables. 

Introducing the outline expressed by (18) into equation (16), and dividing by the weight θ , 

with  0θ ≠ ,  we obtain: 



 
( ) ( ){ } { } ( ){ }

{ } { } { } [ ]{ }

1
11

11 1 1

1

 ( )

1 ( ) ( , )

m
T Tmm

NPmT m m m m
p p

p

c h g

d
t

φθ φ φ

τ φ φ ψ
θ

+
++

++ + +

=
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where the vector md  has been defined as an independent term that includes all the values 

associated with previous time steps, mt . 

Introducing the outline expressed in (20) and dividing by the weight θ  in equation (19), we 

obtain: 
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where the vector md∇  has again been defined as including the values corresponding to 

previous time steps, mt . 

 

Dealing with Divergence 
 

This section will deal with the term [ ]{ }φ⋅ u∇  of equations (21) and (22). Applying the 

product rule, the term can be broken down in accordance with the following expression: 

 [ ]{ } [ ]{ } [ ]{ }φ φ φ⋅ = ⋅ + ⋅u u u∇ ∇ ∇  (23) 
In expression (23), the second member has two terms in which the density φ  and the density 

gradient φ∇  appear, given that they already appear in the problem equations and therefore 

do not give new unknowns. It is necessary to deal with u  and [ ]⋅ u∇  sufficiently to process 

the term  [ ]{ }φ⋅ u∇  without including new unknowns in order to close the problem. 

The actual speed is a quantity known at certain points of the network through the 

corresponding measurements used for this purpose. The available information on velocities 

will be used in order to carry out an interpolation by means of dual reciprocity for the 

velocity at the remaining points. This approximation makes it possible to extract the velocity 

of the set of problem variables, without the need to determine a hypothesis of the behavior of 



the problem by way of a fundamental  ( )φ=u u  diagram. The approximation expression has 

the form:  
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( , ) ( , ) ( ) ( ) ( )
M

k k
k

t t t t s
=

= − ∑u x u x u α x  (24) 

As is usual in the dual reciprocity method, the coefficients ( )k tα  are obtained by requiring 

that the approximation be verified exactly at the M points used: 

 { } { }1[ ]T TS −= ⋅α u  (25) 
Calculating the expression (24), we obtain: 
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( , ) ( )
M

k k
k

t s
=

⋅ = ⋅∑u x α x∇ ∇  (26) 

That, in matrix form, and using (25), is 

 { } { }1[ ] [ ] TS S−⋅ = ⋅u u∇ ∇  (27) 
Once the approximate functions have been chosen by means of the expressions (24) and (26), 

we obtain the expressions of ( , )tu x  and ( , )t⋅u x∇  on the basis of values known at some 

specified points. In short, it is necessary to know the said magnitudes at the M points used in 

the dual reciprocity approximation of the overall problem. ⋅u∇  is obtained at the M dual 

reciprocity points by means of (25). 

Substituting (27) in expression (23), we have:  

 [ ]{ } { } [ ]{ }1[ ] [ ] TS Sφ φ φ−⋅ = ⋅ + ⋅u u u∇ ∇ ∇  (28) 

Method 
 

Resolution of the diffusion–advection model in a traffic problem consists solely of 

simultaneously stating the equations systems (19) and (20), substituting the term [ ]{ }φ⋅ u∇  

of both equations by means of expression (28). The resulting equations system is a linearly 

independent algebraic equations system with the same number of equations as unknowns and 

is easily solved using any standard method. The accuracy and convergence of the method are 

related to the choice of the dual reciprocity approximating functions (see [20]).  

The difficulty in applying the model may appear when compiling the data needed to apply the 

presented methodology. A brief summary of the data concerned is given below. 



Data Needed in Order to Apply the Model 
Next, the data needed to solve the problem are summarized.  

 

– Geometric discretization of the urban zone to be examined. The coordinates of the different 

nodes to be used to discretize the boundary can be obtained by means of adequate 

cartography and a Geographic Information System (GIS). The nodes concerned will form the 

elements that discretize the real boundary.  

 

– Boundary conditions at the points used in discretizing the boundary and its corresponding 

evolution with time. Either the traffic density φ  or its flow φ∂ ∂n  needs to be known for 

each point. This information is needed for all of the time period in question. 

 

– Traffic generation data ρ , defined at the generation nodes to model either the entries to 

and exits from a ring-road motorway network or a higher road hierarchy network that is not 

modeled by means of the continuous medium hypothesis, and the continuous generation of 

traffic to model, for example, the departure of vehicles from a residential area in the morning 

rush hour or the attraction of employment centers. 

 

– Measured actual velocity data, at a series of points in the region (domain). By means of this 

information, the velocity and velocity gradient will be determined, by means of the dual 

reciprocity approximation, at any point in the area studied. 

 

– Definition of the approximate functions, both for the basic unknowns of the problem and for 

velocity. 

 

– Specification of an average velocity, present in the fundamental solution. 

 

– Specification of parameters that characterize the time integration: 

• The time interval of the study ( 0t , ft ). 

• Integration weights, generally φθ  and qθ . 



• The integration step or time increment tΔ . 

 

Empirical Application 

The One-Dimensional Stationary Case 
A first example of an analytic solution put forward for the case of diffusion convection is 

outlined. Here, it is a one-dimensional problem in which the velocity is functionally 

dependent on the x coordinate that is involved. 

 

 

 

 

 

 

 

 

 

 

 

 

Its geometry is that of a square of unit-length sides, with zero flow on the horizontal sides of 

the square, and 0q =  when y = 0 and when y = 1 and φ  is constant on the vertical sides; aφ  

is at 0x =  and bφ  is at 1x = ; with a bφ φ> , as shown diagrammatically in Figure 1. 

The resulting analytic density expression is as follows: 
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while velocity meets the expression:  
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FIGURE 1  Boundary geometry and conditions 



The specific values of the constants taken for this example were 1 2k =  and 2 100k = , with 

30aφ =  and 10bφ = , values with which the magnitudes obtained behave compatibly with an 

example of traffic. The said behavior, in the range within which the problem is defined, can 

be summarized by the graph shown in Figure 2. This problem has a moderate value of the 

Peclet number, Pe ≈ 10. 

 

 

 

 

 

 

 

 

 

 

 

 

Calculating equation (29), we obtain the analytic expression of the gradient: 
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 (31) 

In order to solve the problem using the boundary elements method, 10 discontinuous 

parabolic elements have been used on each side of the square, using the nodes on the lower 

side ( 0,y =  0 1x< < ) as dual reciprocity points. 
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FIGURE 3 Density and gradient results along the x-axis 



 

 

Figure 3 shows the result obtained for density, by applying the stated technique, which, as 

can be seen, coincides with the analytic solution. Figure 3b also shows the density gradient 

results to be sufficiently in agreement with the analytic solution. The density gradient results 

are shown in order to highlight that it is necessary to obtain the gradient as a whole in order 

to calculate the traffic density. 

The Two-Dimensional Stationary Case 
The example that follows is a two-dimensional case. The velocity depends on the x and y 

coordinates, and its analytical expression is:  
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(32) 

The domain is an ellipse centered on the origin, of size 1 and 0.5 for the semimajor and 

semiminor axes, respectively. Figure 4 shows the velocity field in the region of study. 

 
 
 
 
 
 
 
 
 
 
 
 

 
The density scalar field is also functionally dependent on the x and y coordinates:  
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 (33) 

It simulates a continuous generation of traffic responding to the expression: 
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FIGURE 4 Velocity field of a two-dimensional stationary case 



 ( )2( , ) ( , ) ( , ) ( , )x t x y x y x yρ μ φ φ= − ∇ +∇ v  (34) 
Figure 5 depicts density and traffic generation in the domain of study. The case has a Peclet 

number of the order 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
The contour geometry is discretized using 34 discontinuous elements. The computation time 

is of the order of 30 minutes to evaluate numerical integrals, and seconds for the resolution of 

the equation systems. The convergence of the method depends on the approximate functions 

used in the dual reciprocity scheme. In this example, radial basis functions were used. Figure 

6 shows the numerical results obtained in the lower side of the ellipse. 

 

 

 

 

 

 

 

FIGURE 5 (a) Density and (b) generation of traffic in the domain of the two-dimensional case
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FIGURE 6 Numerical results versus analytical density values 
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The Transitory Case 
Romero [6] outlines various examples of a known analytic solution in order to validate the 

proposed method. A one-dimensional example with the density and the velocity varying with 

time and the x coordinate is shown below. The geometry of the problem is defined in Figure 

7, while the analytic solution and the boundary conditions are determined by the expression 
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In this case, the velocity is given by: 
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Moreover, a continuous generation of traffic was modeled, meeting the expression: 
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FIGURE 7 Density value in a transitory example 
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The particular values of the constants that were taken for this example were 1 2k =  and 

2 3 100k k= = , with 30aφ =  and 10bφ = , values with which one obtains magnitudes that 

behave compatibly with those expected in a traffic example, with velocities that are positive 

and rise as the density of the traffic is reduced. For this case the Peclet number is also 

moderated (Pe ≈ 10) as expected in traffic flow situations.  

In order to solve the problem using the boundary elements method, a discretization of the 

geometry comprising 10 discontinuous, parabolic elements has been used on each side of the 

square, using the nodes on the lower side ( 0,y =  0 1x< < ) as dual reciprocity points. The 

time interval studied was from t = 0 to t = 10 with integration weights 0.9qφθ θ= =  and an 

integration step of time increment 5 100tΔ = .  

Figure 7 shows the results of the density along the x-axis, within the range in which the 

problem is defined. The curves corresponding to different time instants are shown, indicating 

the perfect matching of theoretical data with those obtained numerically. 

The examples given in this document serve to confirm the technical accuracy of the proposed 

solution. It remains to validate the methodology in real scenarios. The model’s complexity 

lies above all in the theoretical formulation developed over the course of this investigation 

and brought together in this document. Applying it requires a lot of information, though 

mainly within the boundary of the zone to be studied. Collecting this quantity of information 

in a zone that is sufficiently wide to be dealt with by means of this technique may be a 

difficult task. To avoid this, it is possible to make use of the latest technological advances in 

mobile-telephone user data-capture and infer from it the parameters that define the mobility 

for the zone [21]. In this way, the density and flow data necessary for applying the proposed 

method can be obtained.  

 

CONCLUSION 
 

This investigation has developed new modeling of traffic flow in two-dimensional areas. 

Mathematical modeling introduces many simplifications with regard to the actual physical 

problem, the most obvious being the hypothesis of the continuous medium that, in short, 

means the elimination of the road from the modeling, treating traffic as a fluid, and hence 



eliminating the individual vehicle aspect. As a result, the proposed method represents a 

complementary alternative to other numerical schemes such as finite differences and the 

finite element method. In this work, the technique has been tested with three cases that, 

though simplistic, validate the proposed scheme. All cases tested have a low-moderate Peclet 

number, in accordance to the nature of the problems dealt with. For high-value Peclet 

numbers, of scarce interest in the traffic application, numerical refinements techniques (i.e. 

finer mesh [22, 23]) should be investigated. 

 

REFERENCES 
 

[1] Newell, G.F. Traffic Flow in Transportation Networks. MIT Press, Cambridge, MA, 

USA, 1980. 

[2] Vaughan, R. Urban Spatial Traffic Patterns. Pion Ltd, London, 1987. 

[3] Taguchi, A; Iri, M. Continuum approximation to dense networks and its application to 

the analysis of urban road networks. Mathematical Programming Study, Volume 20, 

178–217, 1982. 

[4] Yang, H; Yagar, Y; Iida, Y. Traffic assignment in a congested discrete/continuous 

transportation system. Transportation Research Part B, Volume 28, 161–174, 1994. 

[5] Wong, S.C. Multi-commodity traffic assignment by continuum approximation of 

network flow with variable demand. Transportation Research Part B, Volume 32, 567–

581, 1998. 

[6] Romero, L.M. Modelizacion del trafico mediante el metodo de los Elementos de 

Contorno. PhD Thesis. Faculty of Engineering. University of Sevilla, Spain, 2007. 

[7] Lighthill, M.J.; Whitham, G.B. On kinematic waves: A theory of traffic flow on long 

crowded roads. Proceedings of the Royal Society, Series A, 229, 317–345, 1955. 

[8] Ansorge R. What does the entropy condition mean in traffic flow theory? 

Transportation Research Part B, Volume 24, Issue 2, 133–143, 1994. 

[9] Whitham G.B. Linear and Nonlinear Waves, Pure and Applied Math. Wiley 

Interscience, New Cork, 1974. 

[10]  Payne, H.J. Models of Freeway Traffic and Control. Simulation Councils Inc., La 

Jolla, CA, USA, 1971. 



[11]  Del Castillo, J.M.; Pintado, P.; Benitez, F.G. The reaction time of drivers and the 

stability of traffic flow. Transportation Research Part B, Volume 28, 35–60, 1994. 

[12]  Daganzo C. Requiem for second-order fluid approximation to traffic flow. 

Transportation Research Part B, 29, 277–286, 1994. 

[13]  Zhang H.M. Anisotropic property revisited—does it hold in multi-lane traffic? 

Transportation Research Part B, Volume 37, Issue 6,  561–577,  2003. 

[14]  Zhang H.M. A non-equilibrium traffic model devoid of gas-like behavior. 

Transportation Research Part B, Volume 36, Issue 3, 275–290, 2002. 

[15]  Zhang H.M. Driver memory, traffic viscosity and a viscous vehicular traffic flow 

model. Transportation Research Part B, Volume 37, Issue 1, 27–41, 2003. 

[16]  De Angelis E., Nonlinear hydrodynamic models of traffic flow modelling and 

mathematical problems. Mathematical and Computer Modelling, Volume 29, Issue 7, 

83–95, 1999. 

[17]  Aw A.; Rascle M. Resurrection of “second order” models of traffic flow. SIAM 

Journal on Applied Mathematics, Volume 60,  Issue 3, 916–938, 2000. 

[18]  Romero L.M., Benitez, F.G. A boundary element numerical scheme for the two-

dimensional convection-diffusion equation. International Journal for Numerical 

Methods in Engineering, Volume 76, Issue 13, 2063–2090, 2008. 

[19]  Patridge, P.W.; Brebbia, C.A.; Wrobel, L.C. The Dual Reciprocity Boundary Element 

Method. Computational Mechanics Publications, Southampton, UK, 1992. 

[20]  Yamada, T.; Wrobel, L.; Power, H. On the convergence of the dual reciprocity 

boundary element method. Engineering Analysis with Boundary Elements, Volume 13, 

291–208, 1994. 

[21]  Caceres N.; Wideberg J.P.; Benitez F.G. Deriving origin–destination data from a 

mobile phone network. IET Intell. Transp. Syst., Volume 1, 15–26, 2007.  

[22]  Gupta, A.; Chan, C.L.; Chandra, A. BEM formulation for steady-state conduction–

convection problems with variable velocities. Numerical Heat Transfer, Part B: 

Fundamentals, Volume 25, 4, 415–432, 1994. 
 

[23] DeSilva, S.J.; Chan, C.L.; Chandra, A.; Lim, J. Boundary element method analysis for 

the transient conduction-convection in 2-D with spatially variable convective velocity. 

Applied Mathematical Modelling, Volume 22, 81-112, 1998. 


