EFFECTS OF VELOCITY LOSS DURING BODY MASS PRONE PULL-UP TRAINING ON STRENGTH AND ENDURANCE PERFORMANCE

Running title: Effects of velocity loss during pull-up training

Physical Performance and Sports Research Center, Universidad Pablo de Olavide, Seville, Spain

Miguel Sánchez-Moreno^{1,2}, Pedro Jesús Cornejo-Daza¹, Juan José González-Badillo¹, Fernando Pareja-Blanco¹

- 1. Physical Performance and Sports Research Center, Pablo de Olavide University, Seville, Spain.
- 2. Department of Physical Education and Sport, University of Sevilla, Sevilla, Spain.

Adress for correspondence:

Miguel Sánchez-Moreno

Department of Physical Education and Sport, University of Sevilla, C/Pirotecnia s/n, C.P. 41013, Seville, Spain.

Email: msmoreno@us.es

Tel + 34 651 9171 516, Fax: +34 954 348 659

EFFECTS OF VELOCITY LOSS DURING BODY MASS PRONE PULL-UP TRAINING ON STRENGTH AND ENDURANCE PERFORMANCE

ABSTRACT

 This study aimed to analyze the effects of two pull-up (PU) training programs that differed in the magnitude of repetition velocity loss allowed in each set (25% velocity loss "VL25" *vs.* 50% velocity loss "VL50") on PU performance. Twenty-nine nine 7 strength-trained men (age = 26.1 ± 6.3 years, body mass = 74.2 ± 6.4 kg, 15.9 ± 4.9 PU 8 repetitions to failure) were randomly assigned to two groups: VL25 ($n = 15$) or VL50 (n $9 = 14$) and followed an 8-week (16 sessions) velocity-based body mass (BM) prone PU training program. Mean propulsive velocity (MPV) was monitored in all repetitions. Assessments performed at Pre-training and Post-training included: estimated one- repetition maximum (1RM); average MPV attained with all common external loads used 13 during Pre-training and Post-training testing (AV_{inc}) ; peak MPV lifting one's own BM 14 (MPV_{best}); maximum number of repetitions to failure lifting one's own BM (MNR); and average MPV corresponding to the same number of repetitions lifting one's own BM 16 performed during Pre-training testing (AV_{MNR}) . VL25 attained significantly greater gains than VL50 in all analyzed variables except in MNR. Additionally, VL25 improved significantly (P<0.001) in all the evaluated variables while VL50 remained unchanged. In conclusion, our results suggest that once a 25% velocity loss is achieved during PU training, a further increase does not elicit further gains and can even blunt the improvement in strength and endurance performance.

 Keywords: velocity-based resistance training, training volume, movement velocity, athletic performance, strength training

INTRODUCTION

 Controlling and monitoring the training load undertaken by athletes during resistance training (RT) is a complex process for strength and conditioning coaches. The interaction between training intensity and volume produces what is termed a '*level of effort*', which is defined as the relationship between the repetitions completed in a set and those that could potentially be performed [\(23\)](#page-12-0). The indicators that have traditionally been used as references for quantifying the RT load (one-repetition maximum, "1RM" and maximum number of repetitions, "MNR" tests) present potential limitations, such as daily changes in the actual 1RM. Therefore, it cannot be guaranteed that the relative loads (%1RM) employed in each particular training session truly represent the scheduled ones. Another limitation is that the MNR that can be performed with a given %1RM shows a great variability between individuals [\(8,](#page-11-0)[22\)](#page-12-1). Hence, a given MNR does not necessarily represent the same %1RM for every participant.

 Velocity monitoring may provide a better quantification of the level of effort involved during RT, together with a better monitoring of training effects [\(7,](#page-11-1)[19,](#page-12-2)[23\)](#page-12-0). The validity of the velocity-based training approach (VBT) is based on: i) the strong relationship observed between movement velocity and %1RM in different exercises [\(7,](#page-11-1)[15](#page-11-2)[,24,](#page-12-3)[25](#page-12-4)[,28\)](#page-12-5), and ii) the relationship between the velocity loss induced in each set and the percentage of repetitions actually performed in each set with respect to those that could be completed [\(8](#page-11-0)[,23\)](#page-12-0). Hence, the velocity loss achieved in the set provides very accurate information about the level of effort incurred in a set, in terms of the percentage of repetitions actually performed with regard to the MNR [\(8\)](#page-11-0).

 The pull-up (PU) is a multi-joint upper-body exercise, which is considered a valid measure of weight-related muscular strength [\(21](#page-12-6)[,27\)](#page-12-7). This exercise is commonly used in sport disciplines that require upper-body pulling strength, such as canoeing [\(4\)](#page-11-3), climbing [\(9\)](#page-11-4) and kayaking [\(16\)](#page-11-5). Furthermore, it has traditionally been used as a physical fitness testing tool to assess upper-body strength and endurance in a variety of populations including the military, firefighters, and police officers [\(2\)](#page-11-6). The PU performance is generally scored by the MNR completed until muscular failure lifting subject's own body mass (BM), or by the value of 1RM.

 One of the most popular practices for training in PU exercise is to perform repetitions until muscular failure using one's own BM. However, a recent meta-analysis demonstrated that similar increases in muscular strength can be achieved with failure and non-failure RT [\(3\)](#page-11-7). To our knowledge, no study has analyzed the effect of different PU training programs on 1RM and MNR in this exercise. A recent paper reported a close 59 relationship ($r = -0.96$) between relative load and movement velocity in PU, together with 60 a strong relationship ($R^2 = 0.88$) between the velocity loss induced in a set and the percentage of MNR performed [\(28\)](#page-12-5). These findings allow us to estimate the percentage of MNR that has been completed as soon as a given percentage of velocity loss is detected during a PU set. A velocity loss of 25% in a PU set means that an individual has completed ∼50% of the MNR, whereas a velocity loss of 50% corresponds to ∼85% of the MNR, regardless of the total number of repetitions to failure that could be completed [\(28\)](#page-12-5). Pareja-Blanco et al. [\(19\)](#page-12-2) compared the effects of two squat training programs that differed in the velocity loss reached in each set: 20% vs*.* 40%. A velocity loss of 20% (which corresponded to performing approximately 50% of MNR in squat exercise) resulted in similar or even superior strength gains to a 40% velocity loss (close to muscle failure in this exercise). However, to our knowledge, no previous study has analyzed the effect of different velocity loss magnitudes on upper body exercises. Therefore, it is still unknown whether it is possible to extrapolate findings from VBT training studies carried out in lower body exercises to upper body exercises. Thus, in an attempt to gain further insight into the adaptations brought about by different velocity losses during the set in upper body exercises, we aimed to compare the effects of two PU training programs that differed in the magnitude of repetition velocity loss allowed in each set (25% vs*.* 50%).

METHODS

Experimental Approach to the Problem

 Subjects trained twice per week (72-96 h apart) over an 8-week period for a total of 16 sessions. The training program used only the prone PU exercise (**Table 1**). The two groups trained with their own BM (without external loads) in each session but differed in the maximum percent velocity loss reached in each set (25% vs. 50%). As soon as the corresponding target velocity loss limit was exceeded, the set was terminated. Sessions were performed in a research laboratory under the direct supervision of the investigators, 85 at the same time of day $(\pm 1 \text{ h})$ for each subject and under controlled environmental 86 conditions (20°C and 65% humidity). Both groups were assessed on two occasions: before and after the 8-week training intervention. Pre-training and Post-training testing sessions

 took place in one session which comprised the PU loading tests up to 1RM and the maximum number of repetitions to failure (MNR test) without added weight (performed in that order, separated by a 5 min rest, and described later in detail). Any upper body pull exercises were removed from the usual strength training during the experimental period to avoid any additive effect caused by this type of exercise.

Subjects

94 Thirty-four strength-trained men (mean \pm SD: age = 26.5 \pm 6.3 years, BM = 74.3 \pm 6.1 95 kg, height = 176.1 \pm 5.3 cm) volunteered to take part in this study. Subjects had a training 96 background in PU exercise ranging from 2 to 4 years (2-3 sessions per week; 15.9 ± 4.9) PU repetitions to failure with BM). Subjects were randomly assigned to one of two groups, which differed only in the magnitude of repetition velocity loss allowed in each 99 training set: 25% (VL25; n = 17) or 50% (VL50; n = 17). Only those subjects who complied with at least 95% of all training sessions were included in the statistical analyses. Five subjects withdrew from the study during the 8-week training period, one of them due to injury and the rest because they missed training sessions. Thus, of the 34 initially enrolled subjects, twenty-nine subjects remained for statistical analysis (VL25, n 104 = 15, age = 26.7 ± 5.5 years, BM = 74.1 \pm 4.7 kg, height = 175.8 \pm 6.0 cm vs. VL50, n = 105 14, age = 24.8 ± 6.1 years, BM = 74.3 ± 8.1 kg, height = 176.1 ± 5.0 cm). Once informed about the purpose, testing procedures and potential risks of the investigation, all subjects gave their voluntary written consent to participate. The present investigation was approved by the Research Ethics Committee of Pablo de Olavide University, and was conducted in accordance with the Declaration of Helsinki.

Testing Procedures

 All PU tests were performed on a standard stationary, horizontal bar (28 mm diameter). To be counted as a complete PU repetition, the subject lifted had to lift his body from a full-arm extension hanging position until his chin was above the bar. A self-selected width with pronated grip (approximately 150% of the biacromial distance) was used throughout the first testing session and this was recorded so that it could be repeated in the subsequent testing sessions. During each repetition of both tests (progressive loading and MNR) and all training sessions, the subjects were required to perform the eccentric phase in a controlled manner and maintain a static position for ∼1 s at the end of this phase before performing the concentric phase at maximal intended velocity upon hearing the

 command. In addition, at the end of the eccentric phase, any possible horizontal movements caused by this phase were eliminated by the researchers holding the subjects by the ankles. All repetitions were recorded using a linear velocity transducer (T-Force System, Ergotech, Murcia, Spain). This device has been found to be reliable [\(23\)](#page-12-0). All reported repetition velocities in this study corresponded to the mean propulsive velocity (MPV) [\(26\)](#page-12-8). The same warm-up protocol, which consisted of 5 minutes of jogging at a self-selected easy pace, 5 minutes of joint mobilization exercises and one set of 3 PU repetitions with no external load, was followed in all testing sessions. Strong verbal encouragement was provided during all tests to motivate subjects to give maximal effort.

Progressive loading test

 Individual load–velocity relationships and 1RM strength were determined using a progressive loading test. The test-retest reliability of this relationship in the PU exercise has been previously established [\(28\)](#page-12-5). Subjects started without additional weight and the load was gradually increased, initially in 5 kg increments until the attained MPV was 134 lower than $0.30 \text{ m} \cdot \text{s}^{-1}$, which represents at least 95% 1RM, so that 1RM could be determined [\(28\)](#page-12-5). Because subjects needed to lift their BM, 1RM was calculated as the sum of the maximum weight lifted and the subject's BM. Three repetitions were executed 137 when the MPV was higher than $0.75 \text{ m} \cdot \text{s}^{-1}$, two when the MPV was between 0.75 and $0.55 \text{ m} \cdot \text{s}^{-1}$, and only one when the MPV was less than $0.55 \text{ m} \cdot \text{s}^{-1}$. Inter-set rests were 3 139 min when the MPV was higher or equal than $0.55 \text{ m} \cdot \text{s}^{-1}$ and 4 min when the MPV was 140 less than 0.55 m·s⁻¹. This resulted in a total of 6.5 ± 2.7 increasing loads performed by each subject. Only the best repetition (fastest and executed correctly) at each load was considered for subsequent analysis. To add additional weight, a specialized belt was used which could be adjusted around the waist and allowed weights to be attached via a chain. The cable from the linear velocity transducer was fixed to the back of the belt. The following variables derived from this progressive loading test were used for analysis: a) estimated 1RM value, which was calculated from the MPV attained against the heaviest 147 load of the test (>95%1RM), as follows: %1RM = -53.472 · MPV + 110.68 (R = -0.96; SEE = 3.2% 1RM) [\(28\)](#page-12-5); b) average MPV attained against all absolute loads common to 149 Pre and Post-tests (AV_{inc}) ; and c) fastest MPV attained without additional weight 150 (MPV_{best}). The AV_{inc} value was used in an attempt to analyze the extent to which the two training interventions affected the PU load-velocity relationship [\(20\)](#page-12-9).

Maximum number of repetitions test

 During this test, subjects were required to complete the maximum number of repetitions until muscular failure, lifting their own BM from a full-arm extension hanging position (using the same width pronated grip and execution as in the progressive loading test) until the chin was above the bar. The test was considered complete when the subject was not able to raise the chin above the bar or when the subjects paused more than 2-3 s in the extended position. Test-retest reliability has been previously reported elsewhere [\(29\)](#page-12-10). The following variables derived from this test were used for analysis: a) maximal number of repetitions to failure (MNR); and b) average MPV attained against the same number of 161 repetitions to Pre-training and Post-training (AV_{MNR}) . This enabled assessment of the changes in MPV corresponding to the MNR at Pre-training.

Resistance training program

 The descriptive characteristics of the training program are presented in **Table 1**. Both groups trained using only the BM prone PU exercise (no external load). The technical execution was identical to that previously described in the Testing Procedures section. The number of sets (progressed from 2 to 4) and inter-set recovery periods (3 min) were kept identical for both groups in each training session. Instead of fixing a number of repetitions before beginning the program, we set a target fatigue level (velocity loss). Therefore, the groups differed in the degree of fatigue experienced during the exercise sets, which was objectively quantified by the magnitude of velocity loss attained in each set (25% vs. 50%) and, consequently, differed in the number of repetitions performed per set (**Table 1**) and the total number of repetitions completed during the training program (**Fig. 1**). During training, subjects received immediate velocity feedback from the measurement system while being encouraged to perform each repetition at maximal intended velocity.

Table 1 about here

Statistical analyses

179 Values are reported as mean \pm standard deviation (SD). The normality of distribution of the variables and the homogeneity of variance across groups were verified using the *Shapiro-Wilk* test and *Levene*'s test, respectively. Data were analyzed using a repeated measures ANCOVA (with baseline values as covariate) analysis with a Bonferroni post hoc

 adjustment.. Additionally, ES were calculated using *Hedge*'s *g* on the pooled SD [\(10\)](#page-11-8). Probabilities were also calculated to establish whether the true (unknown) differences were lower, similar or higher than the smallest worthwhile difference or change (0.2 x between-subject SD) (Cohen, 1988). Quantitative chances of *better* or *worse* effects were assessed qualitatively as follows: <1%, almost certainly not; 1-5%, very unlikely; 5-25%, unlikely; 25-75%, possible; 75-95%, likely; 95-99%, very likely; and >99%, almost certain. If the chances of obtaining *beneficial/better* or *detrimental/worse* were both >5%, the true difference was assessed as *unclear [\(1,](#page-11-9)[12\)](#page-11-10).* Inferential statistics based on the interpretation of magnitude of effects were calculated using a purpose-built spreadsheet for the analysis of controlled trials [\(11\)](#page-11-11). The rest of the statistical analyses were performed

using SPSS software version 18.0 (SPSS Inc., Chicago, IL).

RESULTS

 No significant differences between groups were found at Pre for any of the variables analyzed. The %1RM that represented participants' BM at Pre did not differ between 197 groups $(69.2 \pm 7.6 \text{ vs. } 66.3 \pm 10.5 \text{ %}1\text{RM}$, for VL25 and VL50, respectively). No significant changes were observed in BM for any group. The repetitions performed in different velocity ranges by each group are shown in **Fig. 1**. The VL25 group trained at a significantly faster mean velocity than the VL50 group $(0.71 \pm 0.11 \text{ vs. } 0.56 \pm 0.13 \text{ m} \cdot \text{s}^{-1})$ 201 ¹, respectively; P < 0.001), whereas VL50 performed more repetitions (P < 0.001) than VL25 (556.3 ± 121.9 vs*.* 363.0 ± 84.6 repetitions). Furthermore, VL50 completed 203 significantly ($P < 0.001$) more repetitions at slow and moderate velocities (< $0.6 \text{ m} \cdot \text{s}^{-1}$) than VL25 (**Fig. 1**). The actual mean velocity loss of the entire training program (i.e. for 205 all sessions and all sets combined) was $26.3 \pm 4.1\%$ for VL25 vs. $50.5 \pm 7.9\%$ for VL50.

Figure 1 about here

Progressive loading test

208 Significant 'group' x 'time' interactions were observed for 1RM, AV_{inc} and MPV_{best} (**Table 2**). Significant differences between groups were observed in these 3 variables at Post-training (**Table 2**). The VL50 group did not attain significant improvements in any 211 of these variables, whereas VL25 improved $(P < 0.001)$ in 1RM, AV_{inc} and MPV_{best} 212 (Table 2). Additionally, the VL25 group showed greater ESs for 1RM, AV_{inc} and MPV_{best}

-
- than VL50(**Fig. 2**).

Table 2 about here

Figure 2 about here

Test of maximum number of repetitions to failure

217 A significant 'group' x 'time' interaction was observed for AV_{MNR} (Table 2). Only the 218 VL25 group attained significant increases both in MNR and AV_{MNR} , whereas the VL50 group did not show significant improvements in any of these variables (**Table 2**). In 220 addition, VL25 showed greater ES compared to VL50 group on MNR and AV_{MNR} (Fig. **2**).

DISCUSSION

 The main finding of this study was that training with a velocity loss of 25% (VL25) in each set induced greater gains in strength (1RM as well as the velocity attained against all loads) and muscular endurance performance (MNR as well as the velocity attained 226 against the same number of repetitions) than training with a velocity loss of 50% (VL50). 227 These results were observed despite the fact that the VL50 group performed significantly more repetitions than VL25 (556 vs. 363 repetitions) during the training program. Although both groups performed a similar number of repetitions at very high $(>0.9 \text{ m} \cdot \text{s}^{-1})$ 230 $\frac{1}{2}$ and moderate velocities (0.6-0.7 m·s⁻¹), VL25 completed significantly more repetitions 231 at high velocities (from 0.7 - 0.9 m·s⁻¹) whereas VL50 completed significantly more 232 repetitions at slow velocities $(0.6\t{-}0.3 \text{ m} \cdot \text{s}^{-1})$ (Fig. 1). These training programs resulted in better strength and endurance adaptations in VL25 compared to VL50 over the 8-week program. Therefore, setting a certain percentage of velocity loss during the training program seems a plausible way to avoid performing unnecessarily slow and fatiguing repetitions that may not contribute to the desired PU training effect.

 The present findings also support previous studies that suggested the existence of an inverted U-shaped relationship between training volume and performance increase [\(5](#page-11-12)[,6](#page-11-13)[,14\)](#page-11-14). In this regard, Pareja-Blanco et al. [\(19\)](#page-12-2) observed that eight weeks of RT in squat exercise with a velocity loss of 20% (which corresponded to performing approximately 50% of MNR) resulted in similar gains in performance compared to a velocity loss of 40% (close to muscle failure in this exercise), and even greater gains in high velocity actions such as vertical jumps. In another previous study, a professional soccer team was divided into two groups: one trained at a velocity loss of 15% and the other trained at a 30% loss (VL15 vs. VL30) [\(20\)](#page-12-9). The results of this study, in which the subjects also trained using only the squat exercise, indicated that VL15 obtained results that were similar to or even better than VL30 in all physical variables by performing a considerably lower number of repetitions (60% of the repetitions completed by the VL30 group) [\(20\)](#page-12-9). The results of the present study seem to be in accordance with those observed in these previous studies [\(19,](#page-12-2)[20\)](#page-12-9), since the VL25 group attained greater gains in PU strength 251 (1RM, AV_{inc} and MPV_{best}) than the VL50 group. However, in the present study, the VL50 group showed no positive effects on PU performance (**Table 2**). The mechanisms behind this lack of a positive effect on PU performance are unknown. However, it could be hypothesized that the different muscle groups involved and manipulation of training intensity could explain the discrepancies with previous VBT studies analyzing the effect of different velocity loss magnitudes [\(19](#page-12-2)[,20\)](#page-12-9). In the present study, the training program was carried out using a prone PU exercise without external load. This implies that the relative intensity did not increase during the training program, contrary to previous studies [\(19,](#page-12-2)[20\)](#page-12-9). Moreover, VL50 performed a high number of slow repetitions (MPV $\leq 0.6 \text{ m} \cdot \text{s}^{-1}$, Fig. 1). It has been proposed that performing slow and fatiguing repetitions, as occurs in typical, to-failure training, may evoke a reduction in the IIX fiber type [\(19\)](#page-12-2) and a physiological environment that does not provide optimal conditions for improving neuromuscular performance [\(17,](#page-11-15)[18\)](#page-12-11). Therefore, in accordance with previous studies suggesting that moderate volumes produce more favorable strength gains than high volumes during a training cycle [\(5,](#page-11-12)[14\)](#page-11-14), performing a training program based solely on performing repetitions to failure with one's own BM seems to be an inadequate stimulus to maximize strength performance in PU.

 On the other hand, PU performance is generally scored on the basis of the MNR completed until muscular failure, lifting only one's own BM. For this reason, we included 270 different variables (MNR and AV_{MNR}) to assess the effect of the training program on endurance performance in PU. In line with the findings in the strength test, only the VL25 272 group attained increases both in MNR and AV_{MNR} , whereas the VL50 group showed no improvements in endurance performance (**Table 2**). This phenomenon can be explained 274 by the greater increase in MPV_{best} experienced by the VL25 group (from 0.78 ± 0.14 to 275 0.89 ± 0.14 ; **Table 2**). This means that the relative intensity representing the BM in PU 276 for this group was reduced by approximately 7% (from 70% to 63% of 1RM). It is logical to assume that the lower the relative intensity (%1RM) the higher the MNR that can be

 performed. Therefore, the greater increase experienced in MNR by the VL25 group can be explained in part by the decrease in the relative intensity that represented their BM. In 280 addition, a significant relationship ($R^2 = 0.84$) has recently been reported between the maximum number of PU and the mean velocity of a single PU repetition [\(2\)](#page-11-6). Thus, it is likely that the relative increase in muscle strength is partly responsible for the 283 improvement in local muscular endurance, assessed in this case by MNR and AV_{MNR} . Few studies have examined changes in muscular endurance following protocols with different training volume. Izquierdo et al. [\(13\)](#page-11-16) observed greater bench press muscular endurance in subjects who trained to failure without differences in the squat exercise. Furthermore, it has been shown that higher volume loads [\(31\)](#page-12-12) and eccentric intensity [\(30\)](#page-12-13) led to improved repetition to-failure performance. The discrepancy between these results and ours may be explained by the differences in the loads used to assess muscular endurance. While in the cited studies [\(6,](#page-11-13)[30,](#page-12-13)[31\)](#page-12-12) a relative intensity (75% 1RM) was used, in the present study this test was carried out with the participants' own BM, which did not change throughout the experimental period (**Table 2**). As we mentioned above, the reduction in the relative intensity that represented the BM experienced by the VL25 group may be the responsible for the greater endurance improvements achieved in this group.

 One limitation of the present study was the variability in the loading magnitude (%1RM) used during the training. However, this phenomenon is a characteristic of the PU exercise, and is inevitable when the training is performed using only the BM. Future studies should use a belt to add external load added with a belt to equalize the relative intensity represented by the BM in all subjects to confirm these results.

 In summary, a training program characterized by a low degree of fatigue (25% velocity loss) resulted in greater gains in PU strength and endurance than a training program with a greater level of fatigue (50% velocity loss), despite the fact that the VL50 group 303 performed considerably more repetitions per set than the VL25 group $(11.3 \pm 3.6 \text{ vs. } 7.3)$ ± 2.2 rep).

PRACTICAL APPLICATIONS

 This study provides important information for coaches and practitioners about training to improve performance in PU exercise. A velocity loss of about 25% during each training set, which represents completion of ∼50% of the MNR, seems to be more appropriate for improving performance (both strength and endurance) in this exercise than a velocity loss

- of 50% (close to failure). These results suggest that improvements in strength and
- endurance PU performance may be compromised by excessive repetition volume.
-

REFERENCES

- Batterham, AM, and Hopkins, WG. Making meaningful inferences about magnitudes. *Int J Sports Physiol Perform* 1: 50-57, 2006.
- Beckham, GK, Olmeda, JJ, Flores, AJ, Echeverry, JA, Campos, AF, and Kim, SB. Relationship Between Maximum Pull-up Repetitions and First Repetition Mean Concentric Velocity. *J Strength Cond Res* 32: 1831-1837, 2018.
- Davies, T, Orr, R, Halaki, M, and Hackett, D. Effect of Training Leading to Repetition Failure on Muscular Strength: A Systematic Review and Meta-Analysis. *Sports Med* 46: 487-502, 2016.
- Garcia-Pallares, J, Sanchez-Medina, L, Perez, CE, Izquierdo-Gabarren, M, and Izquierdo, M. Physiological effects of tapering and detraining in world-class kayakers. *Med Sci Sports Exerc* 42:
- 1209-1214, 2010.
- Gonzalez-Badillo, JJ, Gorostiaga, EM, Arellano, R, and Izquierdo, M. Moderate resistance training volume produces more favorable strength gains than high or low volumes during a short-term training cycle. *J Strength Cond Res* 19: 689-697, 2005.
- Gonzalez-Badillo, JJ, Izquierdo, M, and Gorostiaga, EM. Moderate volume of high relative training intensity produces greater strength gains compared with low and high volumes in competitive weightlifters. *J Strength Cond Res* 20: 73-81, 2006.
- Gonzalez-Badillo, JJ, and Sanchez-Medina, L. Movement velocity as a measure of loading intensity in resistance training. *Int J Sports Med* 31: 347-352, 2010.
- Gonzalez-Badillo, JJ, Yanez-Garcia, JM, Mora-Custodio, R, and Rodriguez-Rosell, D. Velocity Loss as a Variable for Monitoring Resistance Exercise. *Int J Sports Med* 38: 217-225, 2017.
- Grant, S, Hynes, V, Whittaker, A, and Aitchison, T. Anthropometric, strength, endurance and flexibility characteristics of elite and recreational climbers. *J Sports Sci* 14: 301-309, 1996.
- Hedges, LV, and Olkin, O. Statistical Methods for Meta-Analysis. San Diego, CA: Academic Press, 1985.
- Hopkins, WG. Spreadsheets for analysis of controlled trials, with adjustment for a subject characteristic. *Sportscience* 10: 46-50, 2006.
- Hopkins, WG, Marshall, SW, Batterham, AM, and Hanin, J. Progressive statistics for studies in sports medicine and exercise science. *Med Sci Sports Exerc* 41: 3-13, 2009.
- Izquierdo, M, Ibanez, J, Gonzalez-Badillo, JJ, Hakkinen, K, Ratamess, NA, Kraemer, WJ, French,
- DN, Eslava, J, Altadill, A, Asiain, X, and Gorostiaga, EM. Differential effects of strength training leading to failure versus not to failure on hormonal responses, strength, and muscle power
- gains. *J Appl Physiol (1985)* 100: 1647-1656, 2006.
- Kuipers, H. How much is too much? Performance aspects of overtraining. *Res Q Exerc Sport* 67: S65-69, 1996.
- Loturco, I, Pereira, LA, Cal Abad, CC, Gil, S, Kitamura, K, Kobal, R, and Nakamura, FY. Using the
- Bar-Velocity to Predict the Maximum Dynamic Strength in the Half-Squat Exercise. *Int J Sports*
- *Physiol Perform*, 11: 697-700, 2015.
- McKean, MR, and Burkett, BJ. The influence of upper-body strength on flat-water sprint kayak performance in elite athletes. *Int J Sports Physiol Perform* 9: 707-714, 2014.
- Moran-Navarro, R, Perez, CE, Mora-Rodriguez, R, de la Cruz-Sanchez, E, Gonzalez-Badillo, JJ,
- Sanchez-Medina, L, and Pallares, JG. Time course of recovery following resistance training
- leading or not to failure. *Eur J Appl Physiol* 117: 2387-2399, 2017.
- Pareja-Blanco, F, Rodriguez-Rosell, D, Aagaard, P, Sanchez-Medina, L, Ribas-Serna, J, Mora- Custodio, R, Otero-Esquina, C, Yanez-Garcia, JM, and Gonzalez-Badillo, JJ. Time Course of Recovery From Resistance Exercise With Different Set Configurations. *J Strength Cond Res*, 2018.
- doi: 10.1519/JSC.0000000000002756
- Pareja-Blanco, F, Rodriguez-Rosell, D, Sanchez-Medina, L, Sanchis-Moysi, J, Dorado, C, Mora-
- Custodio, R, Yanez-Garcia, JM, Morales-Alamo, D, Perez-Suarez, I, Calbet, JAL, and Gonzalez-
- Badillo, JJ. Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. *Scand J Med Sci Sports* 27: 724-735, 2017.
- Pareja-Blanco, F, Sanchez-Medina, L, Suarez-Arrones, L, and Gonzalez-Badillo, JJ. Effects of Velocity Loss During Resistance Training on Performance in Professional Soccer Players. *Int J Sports Physiol Perform* 12: 512-519, 2017.
- Pate, RR, Burgess, ML, Woods, JA, Ross, JG, and Baumgartner, T. Validity of field tests of upper body muscular strength. *Res Q Exerc Sport* 64: 17-24, 1993.
- Richens, B, and Cleather, DJ. The relationship between the number of repetitions performed at given intensities is different in endurance and strength trained athletes. *Biol Sport* 31: 157-161, 2014.
- Sanchez-Medina, L, and Gonzalez-Badillo, JJ. Velocity loss as an indicator of neuromuscular fatigue during resistance training. *Med Sci Sports Exerc* 43: 1725-1734, 2011.
- Sanchez-Medina, L, Gonzalez-Badillo, JJ, Perez, CE, and Pallares, JG. Velocity- and power-load relationships of the bench pull vs. bench press exercises. *Int J Sports Med* 35: 209-216, 2014.
- Sánchez-Medina, L, Pallarés, JG, Pérez, CE, Morán-Navarro, R, and González-Badillo, JJ.
- Estimation of Relative Load From Bar Velocity in the Full Back Squat Exercise. *Sports Med Int Open* 1: E80-E88, 2017.
- Sanchez-Medina, L, Perez, CE, and Gonzalez-Badillo, JJ. Importance of the propulsive phase in strength assessment. *Int J Sports Med* 31: 123-129, 2010.
- Sanchez-Moreno, M, Pareja-Blanco, F, Diaz-Cueli, D, and Gonzalez-Badillo, JJ. Determinant
- factors of pull up performance in trained athletes. *J Sports Med Phys Fitness*, 56, 825-833, 2015. Sanchez-Moreno, M, Rodriguez-Rosell, D, Pareja-Blanco, F, Mora-Custodio, R, and Gonzalez-
- Badillo, JJ. Movement Velocity as Indicator of Relative Intensity and Level of Effort Attained During the Set in Pull-Up Exercise. *Int J Sports Physiol Perform* 12: 1378-1384, 2017.
- Vanderburgh, PM, and Edmonds, T. The effect of experimental alterations in excess mass on pull-up performance in fit young men. *J Strength Cond Res* 11: 230-233, 1997.
- Walker, S, Blazevich, AJ, Haff, GG, Tufano, JJ, Newton, RU, and Häkkinen, K. Greater Strength Gains after Training with Accentuated Eccentric than Traditional Isoinertial Loads in Already Strength-Trained Men. *Front Physiol,* 7: 146, 2016.
- Walker, S, Hulmi, JJ, Wernbom, M, Nyman, K, Kraemer, WJ, Ahtiainen, JP, and Häkkinen, K. Variable resistance training promotes greater fatigue resistance but not hypertrophy versus
- constant resistance training. *Eur J Appl Physiol,* 113: 2233-2244, 2013.
- Willardson, JM, Emmett, J, Oliver, JA, and Bressel, E. Effect of short-term failure versus nonfailure training on lower body muscular endurance. *Int J Sports Physiol Perform* 3: 279-293,
- 2008.

398 **FIGURE LEGENDS**

399 **Figure 1.** Number of repetitions in the pull up exercise performed in each velocity range, 400 and total number of repetitions completed by both training groups. Data are mean \pm SD. 401 Statistically significant differences between groups: ${}^{*}P$ < 0.05, ${}^{***}P$ < 0.001. VL25: 402 group that trained with a mean velocity loss of 25% in each set (n = 15); VL50: group 403 that trained with a mean velocity loss of 50% in each set ($n = 14$).

404

405 **Figure 2.** Difference scores (90% confidence intervals) for changes from pre- to post-test 406 in body mass (BM); estimated one-repetition maximum pull up strength (1RM); average 407 MPV attained against absolute loads common to pre- and post-test in the pull up 408 progressive loading test (AV_{inc}) ; fastest MPV attained without additional weight in the 409 pull up progressive loading test (MPV_{best}) ; maximal number of repetitions to failure in 410 the pull up exercise without additional weight (MNR); and average MPV attained against 411 the same number of repetitions in pre- and post-test in the pull up maximal number of 412 repetitions test (AV_{MNR}) when comparing between groups. VL25: group that trained with 413 a mean velocity loss of 25% in each set (n = 15); VL50: group that trained with a mean 414 velocity loss of 50% in each set ($n = 14$). Gray areas represent trivial differences. The 415 probability of the effect being practically relevant in favor of VL25 compared to VL50 is 416 provided in the boxes.

417

Scheduled	Session 1	Session 2	Session 3	Session 4	Session 5	Session 6	Session 7	Session 8
Sets x VL (%)								
VL25	2x25%	2x25%	2x25%	3x25%	3x25%	3x25%	3x25%	3x25%
VL50	2x50%	2x50%	2x50%	3x50%	3x50%	3x50%	3x50%	3x50%
	Session 9	Session 10	Session 11	Session 12	Session 13	Session 14	Session 15	Session 16
Sets x VL $(\%)$								
VL25	4x25%	4x25%	4x25%	4x25%	4x25%	4x25%	3x25%	2x25%
VL50	4x50%	4x50%	4x50%	4x50%	4x50%	4x50%	3x50%	2x50%
Actually Performed	Total rep	MPV all reps $(m·s-1)$		Mean Velocity Loss (%)	Fastest MPV $(m·s-1)$	Slowest MPV $(m·s-1)$	Rep per set	All sets
VL25	$363.0 \pm 84.6***$	$0.71 \pm 0.11***$		$26.3 \pm 4.1***$	0.84 ± 0.13	$0.60 \pm 0.09***$	$7.3 \pm 2.2***$	50
VL50	556.3 ± 121.9	0.56 ± 0.13		50.5 ± 7.9	0.82 ± 0.21	0.36 ± 0.08	11.3 ± 3.6	50

Table 1. Descriptive characteristics of the velocity-based pull up training program performed by both experimental groups

Data are mean \pm SD. Only one exercise (pull-up) was used in training. VL25: Group that trained with a mean velocity loss of 25% in each set (n = 15); VL50: Group that trained with a mean velocity loss of 50% in each set (n = 14); VL: Magnitude of velocity loss expressed as percent loss in mean repetition velocity from the fastest (usually first) to the slowest (last one) repetition of each set; MPV: Mean Propulsive Velocity; Total rep: Total number of repetitions performed during the training program; MPV all reps: Average MPV attained during the entire training program; Mean Velocity Loss: Average velocity loss attained during the entire training program; Fastest MPV: Average of the fastest repetitions measured in each session (this value represents the average intensity, %1RM, achieved during the training program); Slowest MPV: Average of the slowest repetitions measured in each session; Rep per set: average number of repetitions performed in each set; All sets: total number of sets performed during the entire training program. Significant differences between VL25 and VL50 groups in mean overall values: *** P < 0.001

	Pre	Post	ES (90% CI)	Percent changes of better/trivial/worse effect		
BM-VL25 (kg)	74.1 ± 4.7	74.1 ± 5.2	0.00 (-0.10 to 0.10)	0/100/0	Most Likely Trivial	
BM-VL50 (kg)	74.3 ± 8.1	73.8 ± 8.0	-0.05 (-0.11 to 0.01)	0/100/0	Most Likely Trivial	
1RM-VL25 (kg) ⁺	108.4 ± 10.4	$114.3 \pm 8.9***$	0.54 (0.33 to 0.75)	99/1/0	Very Likely +	
1RM-VL50 (kg)	114.4 ± 20.8	115.2 ± 19.8	0.04 (-0.07 to 0.15)	1/99/0	Very Likely Trivial	
$AV_{inc} - VL25$ (m·s ⁻¹) ⁺	0.54 ± 0.07	$0.63 \pm 0.08***$	1.24 (0.79 to 1.69)	100/0/0	Most Likely +	
$AV_{inc} - VL50$ (m·s ⁻¹)	0.57 ± 0.10	0.59 ± 0.08	0.20 (-0.12 to 0.51)	50/48/2	Possibly +	
MPV _{best} -VL25 (m·s ⁻¹) ⁺	0.78 ± 0.14	$0.89 \pm 0.14***$	0.77 (0.52 to 1.02)	100/0/0	Most Likely +	
MPV_{best} -VL50 (m·s ⁻¹)	0.83 ± 0.20	0.84 ± 0.16	-0.05 (-0.23 to 0.33)	19/75/6	Unclear	
MNR-VL25 (rep)	15.6 ± 5.0	$17.9 \pm 3.9***$	0.43 (0.23 to 0.64)	97/3/0	Very Likely +	
MNR-VL50 (rep)	16.1 ± 5.0	17.1 ± 4.4	0.18 (-0.01 to 0.36)	41/59/0	Possibly Trivial	
$AV_{MNR} - VL25$ (m·s ⁻¹) ⁺	0.52 ± 0.08	$0.63 \pm 0.11***$	1.17 (0.59 to 1.76)	99/1/0	Very Likely +	
$AV_{MNR} - VL50$ (m·s ⁻¹)	0.57 ± 0.11	0.58 ± 0.09	0.10 (-0.25 to 0.45)	31/61/8	Unclear	

Table 2. Changes in selected performance variables from pre- to post-training for each group

Data are mean ± SD; ES = Effect Size within-group; CI = Confidence Interval. VL25: group that trained with a mean velocity loss of 25% in each set (n = 15); VL50: group that trained with a mean velocity loss of 50% in each set (n = 14); BM: body mass; 1RM: estimated one-repetition maximum pull up strength; AVinc: average MPV attained against absolute loads common to pre- and post-test in the pull up progressive loading test; MPVbest: fastest MPV attained without additional weight in the pull up progressive loading test; MNR: maximal number of repetitions to failure in the pull up exercise without additional weight; AV_{MNR}: average MPV attained against the same number of repetitions to pre- and post-test in the pull up maximal number of repetitions test. Significant group x time interaction: † P < 0.05. Between-groups significant differences at Post-training $* P < 0.05$. Intra-group significant differences from Pre- to Post-training: *** P < 0.001.

VL25 - VL50