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A machine learning methodology to predict alerts and maintenance 

interventions in roads 

This contribution is about predicting maintenance alerts in roads and selecting the most 

appropriate type of interventions recommended for preventing the occurrence of future 

failures. The objective is aligned with that covered by pavement maintenance decision 

support systems (PMDSS), though the methodology presented can be applied to other 

non-pavement road linear assets. 

The purpose is to summarise the main findings in the development of an approach 

based on testing the four most extended machine learning techniques (ML), namely 

Decision Trees (DT), K-Nearest Neighbourhood (KNN), Support Vector Machines 

(SVM) and Artificial Neural Networks (ANN), using data from the historical inventory 

of inspections and maintenance interventions of a case study to illustrate the potential 

that such approach can offer to road maintenance managers. The correlation process 

embodies supervised and unsupervised training of models. Despite the fact that ML 

techniques have already proved to be a serious counterpart to traditional modelling, 

their practical use in estimating maintenance alerts and ways to ascertain their reliability 

are being thoroughly investigated. The maintenance predictions of the proposed 

approach, alerts, interventions, and their severity, are presented and compared over 

various segments corresponding to the real maintenance interventions conducted on an 

existing road network of a geographical zone. This comparison showed a high 

reliability level. 

Keywords: road; predictive maintenance; machine learning; linear infrastructure 
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1. Introduction 

Research on linear-asset management has been a point of broad attention from engineering 

practitioners and academics in the last two decades; seminal publications have focused on 

specific types of linear assets, with important advances achieved in roads.  

To push forward the development of reliable prediction tools, in order to foresee and 

maximise the availability of transport networks and to optimise the resources devoted to keep 

them serviceable, is of paramount importance for society. The forecasting of maintenance 

interventions and operations, either in the short term or for strategic further scenarios, is a 

current hot subject for most transport infrastructure administrative bodies in developed 

countries, whether public or private. The Federal Highway Administration, a world leader in 

road preservation programmes, has demonstrated that an accurate knowledge of asset 

condition and a proper management and analysis of gathered data could lead to more effective 

maintenance planning that is able to extend the lifecycle of assets (e.g. pavements) from 3 to 

10 years, which means by a range between 12% and 20% (FHWA, 2006, 2008).  

Currently, from the managerial aspect, several linear-asset management professional codes 

(e.g. Maximo from IBM; Infor; Optram from Bentley) or adapted general purpose codes (e.g. 

EAM from Oracle, SAP) are on the market to address linear-asset information management 

issues; however, they either do not have any predictive and/or decision analysis 

functionalities or are just at the stage of reinforcing in this vein, even though these are prime 

strategic objectives for most of them. On roads, a set of codes (Exor from Bentley, Optram 

from Bentley, HDM-4 from HDMGlobal, HIMS, Infor, Loc8, Paver from CSU, PMS Core 

from Heller, SAP-EAM from SAP) includes applications providing some predictive 

capabilities on maintenance alerts and operations, which facilitate the forecasting tasks; 

however, they have a long way to go before reaching the desired goal and much effort is 

expected to be invested in the foreseeable future. 

The triggering of maintenance alerts/alarms regarding the condition of transport 

infrastructure assets has been customarily based on surpassing deterministic fixed thresholds 

defined by technical standards prescribed by the corresponding infrastructure 

administration/regulator. In a non-negligible percentage of cases, alerts may be triggered by 

the appearance of corrective failures, faults or malfunctioning, which have not been detected 

in advance, in many cases, due to the lack of awareness concerning the explicative features 

which govern the failure behaviour, as a result of insufficient supervisory/ monitoring actions. 

This is, for example, the case of a stretch of road in which some deterioration cannot be 

explained just by analysing the longitudinal International Roughness Index (IRI), transversal 

unevenness depth (RUT) or crocodile cracking (CT) indices in an independent manner, but by 

using a combination of those features, and in most cases incorporating other specific physical 

explanatory characteristics of the stretch. Nevertheless, the large diversity of asset typologies 

due to the appearance of new designs, construction processes, materials, and notwithstanding 

the externalities to the asset itself (e.g. service loadings, environmental conditions, other 

features associated with either the directly involved or other parent-child assets and 

influencing neighbours) make it unlikely to envisage an ideal working scenario where any 

failure can be comprehensively explained using a fixed set of measurable features and, as a 

further consequence, to get a reliable estimate of the evolution of the condition of the implied 

asset. Building systems and procedures based on identifying and using as many sufficient 

explanatory features as possible is being broadly investigated. Still, due to the difficulties of 

characterising and mapping all explanatory features, a multiplicity of procedures have 

emerged, most of them based on more or less sophisticated data analytics techniques which 

make use of past faults/failures in order to predict eventual ones and their probabilities of 

occurrence. These techniques are based on the existing knowledge of historical maintenance 

works and their corresponding asset condition encountered during the repair. In the last 
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decade, the potential of  methods in the area of artificial intelligence, machine learning, expert 

systems and other soft computing techniques has enriched the studies in this field.  

Early work on this issue has focused on quantifying the capabilities of several machine 

learning techniques in predicting maintenance interventions using a reduced set of historical 

records (Morales et al., 2017). A lateral study was conducted on defining the relevant 

information that needs to be recorded during maintenance works, regarding the asset’s 

condition just before and after being maintained, in order to provide self-learning capabilities 

to facilitate maintenance predictions (Reyes et al., 2018).  

This communication reflects a step further in this research, presenting a detailed 

description of the automated prediction scheme, the methodologies, approaches and models 

for triggering alerts/alarms associated with linear assets of road infrastructures that are in need 

of maintenance interventions. The estimated alerts are assessed according to i) the evolving 

state reflected by physical explanatory features relevant to the condition of the assets of 

interest (not presented herein), and ii) the information contained in the historical maintenance 

intervention database. The predictions (outputs) will tag each estimated alert with a level of 

severity and will rank all predicted alerts in a hierarchical listing of maintenance interventions 

and their associated probabilities of occurrence. The final purpose is to provide a procedure 

for managing all active alerts in order to optimise the management of maintenance operations. 

2. State of the art 

In the predictive maintenance sphere, there was a major leap forward in the years 1940–60 

with the introduction of the concept of reliability and the use of statistics and optimization 

techniques (see Dekker, 1996), which gave rise to Reliability-centered Maintenance (see 

Moubray, 1998), one of the most widely used tools nowadays. A second step came later on 

with the use of computing data analytics for inferring models, based on empirical quantitative 

information data, with the purpose of projecting the evolving condition of particular assets 

and components. Since the appearance of automated data-based techniques (e.g. artificial 

intelligence, expert systems, statistical learning) in the '80s, the organization in a scientific 

corpus (e.g. machine learning) in the '90s and 2000s, and the recent popularization of massive 

data analysis (e.g. data mining), there has been huge interest in predicting the condition of 

transport infrastructure, with the purpose of envisaging the appropriate interventions and 

setting maintenance planning programs, according to the available resources and with the 

minimum impact on the infrastructure serviceability. 

In the road maintenance issue, since the initial development of pavement management 

systems (PMS) in the late 1960s, major efforts have been made to incorporate more prediction 

capabilities to assist agencies in selecting the procedures to maintain this type of 

infrastructure in functional conditions using different rule-based expert systems (Hajek et al., 

1987; Ritchie, 1987; Ritchie et al., 1987; Tandon & Sinha, 1987; Ross et al. 1992). Since the 

'90s this tendency has diversified in modelling the diagnosis and evolution of the state of 

specific road components (e.g. pavement, layers, sub-base, base, platform) using several 

mathematical tools, such as ML techniques and data analytics. These have become very much 

explored in an indirect manner through explanatory features and indices (e.g. roughness, 

rutting, cracking, deflection) as a function of the multiplicity of factors that affect the 

condition (e.g. traffic, climate, construction materials and processes, soil platform properties). 

Herein some works can be referenced as applying ML to estimate the forecast assessment of 

several pavement indices such as roughness, rutting and cracking (Attoh-Okine, 1994; Huang 

& Moore, 1997; Roberts & Attoh-Okine, 1998; Bosurgi & Trifiro, 2005; Thube, 2012; Kumar 

et al., 2013; Karlaftis & Badr, 2015; Ziairi et al., 2016; Gong et al., 2018), pavement 

condition assessment (Eldin & Senouci, 1995; Lin et al., 2003; Suman & Sinha, 2012; Salini 

et al., 2015; Hamdi et al., 2017), or to determine the nowcast structural condition through 
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deflections and strains (Meier & Rix, 1995; Ceylan et al., 2004b; Saltan & Terzi, 2008; 

Gopalakrishnan, 2010; Plati et al., 2016). However, as stated by Ziari et al. (2016): “finding 

an efficient model with all effective variables has hardly ever been achieved. Most of the 

existing models include only few variables and, to the best of our knowledge, none of them 

analyse all variables”. This motivates a more holistic perspective, tackled almost in parallel, 

to predict the overall condition of pavements by predicting measurable condition indices and 

maintenance interventions (Taha & Hanna, 1995; Alsugair & Al-Qudrah, 1998; Attoh-Okine, 

2001; Yang et al., 2003; Mosa, 2017; Domitrovic et al., 2018), or even inferring the best 

combined index to estimate and prioritise maintenance actions (Fwa & Chan, 1993; Goh, 

1997; Bianchini, 2012; Yang et al., 2015). For an exhaustive historical review, several 

publications are available in the literature (TRB, 1999; Sundin & Braban-Ledoux, 2001; 

Flintsch & Chen, 2004; Ismail et al., 2009; Ceylan et al., 2014a; Sharma & Gupta, 2016). All 

these pillars constitute the foundation for addressing the optimal planning of the maintenance 

management of road networks. 

The critical literature highlights the need for expert systems that integrate reliable 

information with effective multiple ML approaches motored by decision support 

architectures. In the maintenance management of assets, expert systems combined with fuzzy 

logic reasoning, using simple reports tools, were one of the first approaches tested. There 

were also prior attempts to use more sophisticated artificial intelligence systems using 

Bayesian statistics, genetic algorithms or neural networks (Fu, 1995). During the last years 

many attempts were made to improve the prediction potentiality of asset alerts and the 

efficiency of the asset management systems, and several recommendations and directions 

were indicated (Faiz & Edirisinghe, 2009; Marsh et al., 2016). At present, in the topic of asset 

alert prediction management and asset diagnosis prediction, all the data inferring-based 

disciplines (i.e. ML, data mining, statistics, big data) are working in the same direction; it is 

remarkable the numerous commercial software packages devoted to this, which evolved 

(some of them) from a statistical origin (e.g. SAS, 2014). Even so, the issue is still in an 

accelerated state of evolution. 

The scope of this paper is focused on the prediction of maintenance alerts that might 

appear in further scenarios, the most probable type of interventions required for preventing 

the forecast failures, and other similar interventions that might also restore the serviceability 

of an affected road asset. The goal does not include predicting the evolving nature of the 

explanatory variables affecting the road infrastructure, which is taken in this communication 

as external information to the developed methodological scheme. 

3. Aim, problem definition and methodology scheme 

The aim of the proposed methodology is to predict maintenance alerts and the required 

interventions for all linear assets of a road network, and to rank the interventions according to 

the forecast severity of degradation/failure of the assets (i.e. road segments) themselves in 

specific pre-selected scenarios. This methodology is founded on using the know-how derived 

from the information recorded in the historical maintenance work-orders repository in order to 

define the N-most probable candidate interventions to be conducted.  

To achieve this goal, several intermediate calculations have to be done. The methodology 

scheme is outlined in Figure 1, which shows the inputs and outputs. First of all, it is necessary 

to detect the assets with a degradation that implies the need for a maintenance intervention. 

For this, a specific approach that estimates whether a maintenance intervention is needed 

(alert) or not (no-alert) has been developed. These alerts will be associated with a severity 

level to rank them according to the expected gravity of their condition. This approach 

incorporates recorded subjective assessments of the Maintenance Managerial Body (MMB) 
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surveyed just before the maintenance interventions took place; this data is processed to be 

used in order to improve the accuracy of predictions.  
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Figure 1. Methodology scheme 

The maintenance predictions are inferred by correlating the estimated values of 

explanatory features (Xp) of the asset’s condition, in the required scenario of interest to the 

user (i.e. the MMB), with the information stored in the historical maintenance repository. This 

information refers to all historical records corresponding to any asset of the infrastructure, 

interventions performed and timestamps stored in the repository, in which several data 

sources are relevant: (a) geometrical and structural measurements, (b) endogenous and 

exogenous characteristics (i.e. traffic flow, road category, average and distribution of vehicle 

load, freezing index), (c) maintenance intervention types, (d) assessed condition just before 

and after the intervention is performed, among other relevant pieces of information. 

3.1 Prediction of alerts 

In a standard predictive maintenance plan, interventions can be programmed according to the 

knowledge gathered over time on the basis of historical failures identified in the past (i.e. 

from similar cases). These may have either a deterministic nature (e.g. one, several or a 

combination of explanatory features of the asset failure surpassing some standard threshold 

values), stochastic type (e.g. the features show certain probabilities of surpassing threshold 

values), or a hybrid deterministic-stochastic character. These thresholds are set by relevant 

standards for either design, quality or safety parameters (e.g. Normal Limit LN, Exceptional 

Limit LE). Other thresholds affecting the asset condition parameter can also be considered, as 

in the case of the Alert Limit (AL), Intervention Limit (IL) and the Immediate Action Limit 

(IAL) indicators. As defined by applicable criteria (e.g. European Standard, Road 

Administration Standard, Infrastructure Maintenance Managerial Body), the condition of the 

asset will be quantified in regard to the proximity of the forecast values to the threshold 

limits, a distance criterion named the technical severity level (TSL). Within this frame, the 

triggering of a pre-alert is through the technical severity level (TSL) associated with each 

explanatory feature. When the mentioned thresholds are consolidated on a solid experience 

(i.e. time), the predictive plan reaches an acceptable confidence level. Nonetheless, there are 

often cases in which the existing variability of presumed similar cases makes the knowledge 

insufficient to establish clear rules for identifying explanatory features and their thresholds. In 

these cases, data-driven approaches based on ML procedures can pave the way to extracting 

the hidden know-how and make the estimating of alerts, asset conditions and interventions 
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more reliable. This context is dealt with by the proposed methodology, which identifies 

whether an intervention is needed (alert) or not (no-alert). Additionally, the alerts will be 

ranked by their global technical severity level (GTSL) in terms of all the forecast features 

considered as a whole. 

The cited GTSL, calculated for each asset, is derived from the technical severity levels 

(TSL) of each explanatory feature 1[ , , , , ]T

p nX X X X . However, the global index 

(GTSL) may not be referred to any threshold, as it is hidden non-explicit information, but is 

rated as an absolute value. To proceed, all individual TSLs are normalised (TSLNi) in order to 

refer all individual features Xi to the same scale and, later, weighted by pre-set values αi 

(according to the external criteria set by the MMB to give more importance to some features 

versus others), subject to a constraint α1+ α2 + … +αn =1. Then, a generic expression for the 

GTSL follows: 

GTSL = α1·TSLN1 + … + αn·TSLNn 

The prediction of alerts is made using supervised ML techniques. The first phase of the 

ML model implies a training–testing process based on the information referred to in section 

3.3. The data repository, containing the historical maintenance regarding the monitored 

infrastructure case study, provides all interventions (i.e. raw work orders) which, after being 

retrieved, are filtered to keep only those records that are valid according to the intervention 

types relevant for the forecasting. Moreover, measurements carried out on the asset (e.g. 

auscultation, far or close, prior to the corresponding intervention was initiated and 

completed), associated with the explanatory features, have to be available. 

A concise listing of basic relevant data for training the alert-prediction model is presented 

in Table 1.  

Table 1:Data inputs for training phases (prediction of alerts).  

Data input 

Asset identification 

Values of the assumed explanatory features ( 1[ , , , , ]T

p nX X X X ) 

Maintenance intervention executed (1-0: Yes-No) 

The ML methodology estimates alerts using a classifier that correlates the values of the 

explanatory features with the need for maintenance. It consists of an automatic classification 

technique in a binary variable (1-0: Yes-No). A set of four automatic binary classification 

models are launched and tested: decision tree (DT), artificial neural network (ANN), k-nearest 

neighbours (KNN) and support vector machine (SVM), in order to choose the most suitable 

according to the information contained in the historical repository. The model that yields the 

best testing results is chosen as the estimator model. The required inputs for the training phase 

are indicated in the previous paragraph and shown in Figure 2a. 

Once the ML models are trained, the only inputs needed to detect assets where 

maintenance will be required, in a specific further scenario, are the forecast values of all the 

explanatory features, 1
ˆ ˆ ˆ ˆ[ , , , , ]T

p nX X X X (Figure 2b). 
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Figure 2. Classifier schemes of alert estimator: (a) training process and (b) prediction process. 

3.2 Prediction of subjective asset condition 

A very important piece of information to infer the know-how of the MMB is the subjective 

assessment of the condition of any asset inspected by the maintenance team before the 

intervention was carried out; in particular, the assessment of each individual explanatory 

feature ( pSX ), each combined explanatory feature ( SCX ), and a global evaluation ( SG ) of 

the condition of the whole asset. This know-how, to be extracted using again a supervised 

ML, will be used to increase the accuracy of the prediction of the most probable intervention 

recommended to be carried out on the asset. Table 2 summarises the relevant data for training 

the prediction model. 

Table 2:Data inputs for training phases (prediction of subjective asset condition).   

Data input 

Asset identification 

Values of the assumed explanatory features ( 1[ , , , , ]T

p nX X X X ) 

Subjective assessment associated with any of the individual features  

( 1[ , , , , ]T

p nSX SX SX SX ) 

Subjective evaluations associated with a combination of features ( SCX ) 

Global subjective evaluation associated with the condition of the asset as a whole (SG) 

By correlating feature measures with the subjective evaluations of the asset condition 

recorded in the repository, the system “learns” from the MMB know-how and, when a new 

prediction of explanatory features is introduced in the system, it predicts the asset condition 

without any extra monitoring/ assessment from the MMB. According to this, the inputs for 

training are the historical values of the features, and the target variables are the historical 

subjective evaluations (Figure 3a). Depending on the information provided by the historical 

maintenance database, it is possible to train the model just with either the subjective 

evaluations associated with the individual features ( 1[ , , , , ]T

p nSX SX SX SX ), the 

subjective evaluations associated with a combination of features ( SCX ) or with the global 

subjective evaluation associated with the global asset condition (SG). 

As in the previous case, once the ML models are trained, the inputs needed to predict the 

subjective asset condition, in a specific further scenario, are the forecast values of all the 

explanatory features, 1
ˆ ˆ ˆ ˆ[ , , , , ]T

p nX X X X (Figure 3b). The prediction is materialised by 

estimating a subjective assessment by the triplet ( ˆˆ ˆSX ,SCX ,SG ), where the first element is a 

multi-dimensional vector. The global asset condition estimate ( ˆSG ) can be seen as the 
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predicted overall state of the asset regarding the simultaneous contribution of all feature 

effects as a whole.  
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Figure 3. Classifier schemes of asset condition: (a) training process and (b) prediction process. 

3.3 Prediction of N-most probable interventions 

In order to estimate the most probable intervention type for a specific asset, a process is 

launched by correlating the estimated condition, together with the estimated subjective 

condition ( )ˆˆ ˆSX ,SCX ,SG , versus similar asset samples reported in the historical repository. 

This is the reason that records associated with samples contained in the historical repository 

should have assigned information relative to: (a) the nowcast subjective condition 

( )SX ,SCX ,SG  of the asset just before the historical intervention took place and (b) the 

recommended technical intervention to be conducted to restore its serviceability and 

functional condition. This last piece of information is very important due to the model 

provides predictions regarding the just-technical maintenance interventions required to be 

conducted in order to fix the alerts, but it does not provide any hint regarding the maintenance 

finally suggested/performed by the MMB considering other non-technical variables (budget, 

commercial/exploitation strategy, etc).  

The prediction of the intervention type is based on a two-phase ML scheme. The result of 

the model approach is a hierarchical listing of the most probable interventions that should be 

conducted, and their corresponding probabilities of occurrence. The first phase uses a 

clustering technique, the second one a k-nearest neighbours technique (KNN). A description 

of the techniques and implemented methodologies follows.  

Unsupervised clustering of historical data 

The data available from the historical repository are grouped into different clusters. The 

application of this approach depends on the quality of the data regarding the existence of 

more or less well-defined clusters. Assuming this hypothesis, L clusters can be inferred from 

the historical data so that samples with a similar condition (i.e. similar values for all features) 

are grouped in the same cluster. The clustering is carried out taking into account just the asset 

condition (i.e. values of features X) without the recommended technical intervention. Thus, 

the same cluster could contain different intervention types as shown in Figure 4, where only 

two features, rX and sX , are considered for the sake of clarity, although the set of 

explanatory features configures a multi-dimensional space according to the number of 

variables. For the sake of illustration, the intervention types involved are identified by 

different plotting shapes (i.e. squares, triangles and circles). Once the clustering is defined, the 

most probable type of intervention associated with a triggered alert is determined using the 

estimated values of the explanatory features ( X̂ ) as inputs to the model; the location P of the 

asset condition can determine the belonging to a specific i-cluster based on the distance to the 

centroid. From the historical intervention types of the samples implied in the specific cluster, 
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a simple rating analysis among those types yields a probability for each type to be assigned to 

the estimated alert.  
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Figure 4. Unsupervised clustering. 

To take into account the MMB’s know-how related to the subjective assessment of all 

historical samples implied in the i-th cluster, the empirical occurrence of each intervention 

type can be weighted by scores (represented by different sizes of the shapes in Figure 4). 

These weights assign more relevance to those samples whose assessment is similar to the 

predicted subjective evaluation of features ( ˆˆ ˆSX ,SCX ,SG ) of the asset implied in the triggered 

alert, as derived by the asset condition classifier (ACC). Regarding the example, Figure 4 

shows the cluster that sample P belongs to; each sample contained in the cluster carries 

information regarding the historical features subjective evaluation ( r sSX ,SX ). Those samples 

with a similar evaluation to that predicted asset will be scored with a higher weight than the 

rest.  

The above methodology has serious limitations when the data do not show a clear 

grouping; this drawback can be circumvented by using a second phase based on the k-nearest 

neighbours algorithm (KNN). In this case, the k-nearest historical samples to a given 

triggered alert are chosen to define the most probable types of intervention associated with an 

alert. The methodology is quite similar to the previous one, but restricted to k samples. This 

means that the selected samples, including P, belong to the same unique cluster in order to 

apply the technique described in the first phase. Following the same approach, the underlined 

know-how can be taken into account by giving more importance to samples with a similar 

assessment to the one predicted for sample P,( ˆˆ ˆSX ,SCX ,SG ). In the example, each sample 

occurrence (from the k-nearest cluster) is weighted by a score which depends on its subjective 

assessment, higher for samples with a similar evaluation to P than for the rest. This 

methodology is less sensitive to the data distribution than the clustering but, in general, it uses 

fewer samples to define the most probable intervention types, and some pieces of information 

can be screened out depending on the value of parameter k. 

Fusion model 

To take into account the advantages of the two single methodologies developed, clustering 

and KNN, for estimating the type of intervention, a merged technique has been built, 

summarised in the following steps: 
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i. Use a clustering technique to generate the proposed cluster model, as outlined in the 

previous section.  

ii. Compute the Euclidean distance between sample P and each of the L cluster centroids 

(ceL): (
1 2, , ,P ce P ce P ceLd d d− − −

) 

iii. Choose the k-nearest samples to triggered alert P using a criterion distance z between 

sample P and a generic sample Q belonging to the J-th cluster, ,− − −= P Q P Q P ceJz d d

where 𝑑𝑃−𝑄 stands for the Euclidean distance between P and Q. In this way, samples 

belonging to different clusters are penalised, as is the case of sample Q in Figure 5.  

The example shows the difference between applying the KNN model (broken circle) and 

the fusion model (solid closed line). As shown, the fusion model is not as dependent on the 

existence of a clear data grouping (i.e. cluster definition) and enables the value of k to be 

incremented in a guided way, in regard to samples belonging to the same cluster as P. With 

this single modelling, the MMB’s know-how can also be taken into account by giving more 

importance to samples with the same assessment as the one predicted for sample P, 

( )ˆˆ ˆSX ,SCX ,SG . 
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Figure 5. Fusion model. 

4.  Case study 

The empirical case selected is a meshed road network in the central region of Portugal, 

managed by Infraestruturas de Portugal, totalling 620 km; it includes several types of road 

categories, such as principal itineraries, complementary itineraries, national roads, regional 

roads and other road classes, which are under its jurisdiction; the pilot case does not include 

motorways or stretches with major bridges and/or tunnels. Principal and complementary 

itineraries often consist of a single carriageway with one lane for each direction but with 

additional lanes for heavy vehicles in locations with higher gradients; national and regional 

roads can show narrower cross-sections. The studied road system is classified into network 

classes, or road categories, on the basis of features such as travel speed, traffic volume, traffic 

mix and strategic relevance; each road is subdivided into road sections according to a 

multiplicity of characteristics (i.e. geometry, layout). Regarding traffic levels, the chosen 

demonstration case presents heterogeneity among the selected sub-networks (i.e. itineraries), 

with between 2,500 and 10,000 vehicles per day, and an average of 9% of heavy vehicles; it 

also includes locations with high maintenance costs or very frequent interventions. 
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The conducted maintenance strategy categorises interventions as major or routine 

maintenance. Major maintenance includes relevant works in terms of cost, length and 

complexity. It is planned on a medium-term term basis (5-year periods) and follows a 

prioritization process, annually reviewed. Routine maintenance includes smaller scale and less 

difficult works, such as pavement repairs, drainage system cleaning, shoulder treatment, 

minor works performed on bridges and any urgent repair.  

The available historical information consists of two different data type sources. The first 

one corresponds to the results of different measurement campaigns. The auscultation strategy 

achieved a network coverage of almost 50% annual reach during the period 2007–2012 and 

90% reach since 2012, collecting parameters related to cracking, surface defects (including 

ravelling, bleeding, polished aggregates and deformation), potholes, patching and rutting, 

macrotexture and front/rear imaging. The relevant features selected were the International 

Roughness Index (IRI), the rut depth (RUT) and the surface area with crocodile cracking (CT) 

expressed by the percentage of affected pavement surface area. Data was captured every 10 m 

of road and 100% of the network was monitored. The second data type source compiles the 

interventions carried out from 1933 (oldest construction record) to 2016, from which the 

period 2012–2016 has been chosen to keep the same level of consistency on maintenance 

management criteria (e.g. description of operations and interventions performed, laser-based 

auscultation capturing system).  

4.1 Model selection for estimating interventions  

This section presents the results after training a set of four ML algorithms. The techniques 

used are decision trees (DT), k-nearest neighbours (KNN), support vector machines (SVM) 

and artificial neural networks (ANN). The main objective is to build models with good 

generalization capabilities to perform well on new data (i.e. test data for which the model has 

not been trained). The model performance should be robust to over-fitting, to guarantee 

reliable predictions. Another objective is to determine the required sample size for each model 

to be capable of generalizing. The performance of these classification models is assessed by 

the learning curves and the confusion matrix (Kohavi & Provost, 1998), derived from 

counting the test records correctly and incorrectly predicted by each classification model. 

Within this scheme, the relationships between the training set size, model complexity, and 

prediction error have been analysed and identified. Two separate goals are addressed: (i) 

model selection by estimating the performance of different models in order to choose the best 

one; this action includes the calibrating of parameters until the optimal model is chosen; (ii) 

model assessment by estimating the prediction (generalised) error of the final model on new 

data. Assessment of this performance is crucial in practice, since it guides the choice of the 

ML technique, and gives a measure of the quality of the model ultimately chosen. 

To perform the optimization of the models (adjusting their complexity), a sample of 2000 

intervention records is used. The selection of this sample size is built on experience based on 

the number of model inputs and possible alerts (outputs). The sample size allowed the 

inference of models without under-fitting behaviour and which generalised well. The figures 

describing the optimization for each model are shown in Figure 6, Figure 7 and Figure 8.  

In decision tree (DT) methods, the main parameter to calibrate is the number of splits or 

branches. Figure 6 shows twelve series of cases where the number of splits ranges from 2 to 

40. The horizontal axis represents simulations of cross-validation tests with different fold 

sizes. The first and last simulations divide the sample into 5 and 10 folds, each fold consisting 

of either 20% or 10% of the sample set, respectively. Based on the results, it is concluded that 

the size of the folds does not affect the accuracy. As shown, a DT model with 40 splits 

achieves the same accuracy as one with 28 splits. Other parameters have been calibrated but 

their influence is not very noticeable. 
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Figure 6. Accuracy of decision tree method versus the number of splits (cases 40 and 28 overlap). 

 

Figure 7. Accuracy of k-nearest neighbours method versus the number of neighbours. 

For the k-nearest neighbours method, an object is classified according to the majority 

contribution of its neighbours. Figure 7 shows a total of nine cases ranging from 2 to 20 

neighbours. As in the previous figure, the horizontal axis represents different simulations of 

cross-validation with different fold sizes. It is noticeable that the structure with four 

neighbours gives the best performance in spite of the small difference of 1.5% between the 

best and worst cases. It is observed that the choice of the number of folds into which the 

sample is divided may improve the final accuracy of the method although up to a maximum 

of only 0.4%. A comparison with the DT approach shows that in both methods, DT and KNN, 

the selection of the number of folds is not determinant; there are no significant bias or 

variance issues. This is because the size of the sample is large enough and all possible sample 

diversity is collected in both the test and training sets. Therefore, any of the nine cases can be 

a good candidate. 

It has been concluded that the number of folds into which the sample is divided is not an 

influential parameter; therefore, in the next two methods only a cross-validation testing 

partitioning the sample into 7 folds is performed.  

The SVM method is mainly characterised by its kernel function. Five functions were 

tested; the accuracy is reported in Table 3, from which the 3-degree polynomial kernel 

provided the highest value, resulting in the best option (case kfold=7).  
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Table 3: Accuracy of support vector machine method versus the kernel function.   

Kernel function Accuracy 

linear 0.889 

quadratic 0.960 

polynomial of degree 3 0.969 

polynomial of degree 4 0.965 

Gaussian 0.948 

The artificial neural network (ANN) is a more complex algorithm from the calibrating 

point of view due to the number of parameters to be configured. Only the design of the 

number of hidden layers and neurons is addressed.  

 

Figure 8. Accuracy of artificial neural network method versus the number of neurons. 

Figure 8 depicts seven series of different ANN designs, whose description follows: (a) 1 h-

layer, with only one hidden layer and where the number of neurons ranges from 2 to 20; (b) 2 

h-layers [2 X], with two hidden layers, where the first hidden layer has 2 neurons and the 

second one ranges from 2 to 10 neurons; (c) 2 h-layers [3 X], with two hidden layers, where 

the first layer contains 3 neurons and the second a number of neurons from 2 to 10; and so 

forth. 

In order to compare the different ANN designs, the model complexity parameter is defined 

as the sum of the weights to be trained in each model. The model complexity increases as the 

number of neurons and/or hidden layers increases.  

As depicted in Figure 8, models with only one hidden layer (1 h-layer) achieve better 

performance. For complexity greater than 110 there are several models that reach high 

accuracy. The optimal model is one that achieves high accuracy with less complexity. The 

lower the complexity, the smaller the sample needed to train the model. The ANN model 

chosen has one hidden layer with only 6 neurons (black diamond sample in Figure 8) and a 

complexity of 78. 

Table 4 presents the accuracies achieved for all the selected models, wherein the DT model 

reaches the highest value. 

The expected testing error of each estimated model is calculated using learning curves. 

These plots illustrate the importance of assessing the ability of a learning technique to 

generalise; thus they reflect both the training and testing errors. 
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Table 4: Accuracy of selected models.  

Model Accuracy 

DT 0.989 

KNN 0.960 

SVM 0.969 

ANN 0.969 

The conducted testing procedure of each selected model follows the sequence: (i) a 

structured set of 1000 samples is generated; (ii) for a fixed training set size (e.g. 50, 100, 

150,…,700), several random extractions from the sample set are made; (iii) by following a 

Monte Carlo method, each extracted set is used for training and testing, and the training and 

testing errors for this set are obtained. In addition, for each extraction, the 20th and 80th 

percentiles are computed.  

The learning curves of the selected models are shown in Figure 9, where a total of six plots 

are depicted; the x-axis represents different training set sizes and the y-axis the error obtained. 

The two thick lines represent the average value of the training and test sets; the thin lines 

represent the 20th and 80th percentiles of the training and test sets and provide an insight on 

the variance of the predictions. 

  

  

Figure 9. Learning curves: (a) decision tree, (b) k-nearest neighbour models, (c) support vector machine and (d) 

artificial neural network models. 

As the size of the training set gets larger, the lines converge toward an asymptote 

representing the amount of irreducible error in the data. The error of the training-set 

prediction in the k-nearest neighbours model is always 0%. This is due to the fact that the 

prediction of a record is calculated from a neighbourhood wherein the record is included. A 

summary of the most relevant conclusions deduced from the learning curves shown is 

tabulated in Table 5.  

Table 5: Summary of results.  

 DT KNN SVM ANN 

Final test set average error 2.21% 7.39% 5.48% 6.01% 

Final difference between testing and training average error 1.8% 7.39% 3.62% 3.76% 

Size of training set to reach a test error < 5% 375 - - - 
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The DT model achieves the smallest error. The SVM, ANN and KNN models yielded 

similar results; none of them reduced the test set average error below 5%. Only the DT model 

reached a test set average error below 5% using a training set size of 375 records. 

Attending to the evolution of the test-set error curves, the error values are still decreasing 

over a training set size of 700. Therefore, smaller errors would be expected for larger training 

sets. Although it is clearly noticeable, the flatness of the curve trends is almost horizontal; 

pursuing an additional error decrease might need the availability of a larger set of records.  

It is worth underlining that the results presented correspond to a medium-rich data case. In 

real practice, once the models are designed, other issues arise. As a general rule, the historical 

maintenance database provides a limited valid sample set due to various causes: (a) few data 

on interventions are recorded with sufficient rigour; (b) the information stored lacks 

chronological consistency (i.e. actual interventions may not be described with the same rigour 

along time, the condition before and after interventions is not consistently assessed by 

maintenance personnel); (c) insufficient physical explanatory features are quantified. 

Therefore, it is important that the selected models achieve a low average test-set error with a 

limited number of records. In this case, the DT model is the best option, as it needs a smaller 

number of simulations to generalise the problem.  

4.2 Statistical treatment of the case study  

Once the ML models are trained, the only inputs needed for the correct functioning of the 

methodology are the forecast values of all the explanatory features, 

1
ˆ ˆ ˆ ˆ[ , , , , ]T

p nX X X X , which are IRI, RUT and CT in our case study. So far, these 

predicted features have been treated in a deterministic way; however, as predictions, they 

actually have a stochastic nature and will have associated uncertainties that quantify and 

assess the probabilities of the estimated values. 

In the methodology tested, alerts and interventions are predicted together; however, the 

inputs are not exactly the same for both if the stochastic nature of the features is taken into 

account. This is because alerts have to be identified taking into account the probability of 

failure, stating the specification of the desired level of alert reliability. However, in order to 

specify the intervention, the most probable asset condition should be handled, instead of the 

condition provided by the desired level of reliability; this is because, in general, the forecast 

asset conditions will be a more realistic and reliable piece of information. In this way, the 

alert is triggered under the condition of only permitting a pre-specified probability of failure γ, 

but the forecast interventions associated with this alert will be calculated using the most 

probable asset condition (e.g. the expected value, said mean, of the forecast feature density 

function). To clarify this issue, Figure 10 shows an example involving just one feature with an 

evolving behaviour according to two different probability density functions (“pdf 1” and “pdf 

2”). The solid line, named “Expected value”, stands for the feature value with a 0.5 

probability (in both pdfs); the middle broken line exemplifies the feature’s evolving values 

under a hypothesis of 1R = − reliability under the probability density function “pdf 1” 

(stretched bell curve); the upper broken line represents the presumed feature value under the 

hypothesis of 1R = − reliability and the “pdf 2” probability density. As shown, the 

probability density “pdf 2” (upper broken line) implies that the alert is triggered before the 

case of probability density “pdf 1” (short bell curve), for identical reliability level R, because 

the value used to define the alert is higher. This can be explained by the fact that the 

dispersion of “pdf 2” is larger and it is more probable that higher feature values come into 

play.  
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On the other hand, the MMB may design maintenance plans based on the most probable 

interventions taking place, instead of the most severe ones and it is for that reason that the 

expected value is used regardless of the probability density function. 

 

Figure 10. Example of dealing with one feature under the hypothesis of two different probability density 

functions. 

5. Results and estimations 

5.1 ML model comparison 

Once all the models were calibrated, a comparison between them was performed. The 

scenario base to compare with is a technical state (technical-based ideal maintenance plan). It 

is not possible to define a specific baseline to compare with since the final maintenance 

depends on a multiplicity of external variables taken into account by the MMB in different 

situations (e.g. budget, availability of maintenance teams, intervention time, and infrastructure 

availability time window). Currently, although any actual alert requires a specific type of 

intervention (technical-based intervention), the planner may not select such intervention on 

the basis  of the external variables. Because of this, in the case where a current maintenance 

plan is used as a baseline, many types of errors may arise in the comparison with the 

predictions provided by any predicting model, as the models provide the maintenance 

required to fix the alerts, but they do not provide any hint regarding the maintenance finally 

performed considering the external variables.  

So, the technical state used as baseline is based on the maintenance plan generated by the 

MMB relaxing some of the constraints that exist in any maintenance exploitation management 

of all transport infrastructures: 

- Limited budget constraint relaxation: Each asset will be maintained with the 

maintenance intervention type that best fixes the alert without the constraint of 

limiting/reducing costs (by aggregating several assets, for instance). 

- Intervention time constraint relaxation: Maintenance interventions can be performed 

without limitations on intervention times. 

- Infrastructure time-window constraint relaxation: Availability of the infrastructure is 

full. Any maintenance intervention can be carried out on any asset in a frame free of 

constraints affecting the availability of the infrastructure network. 
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- Limited resources constraint relaxation: The maintenance interventions can be 

proposed without taking into account the actual limitation in resources (equipment, 

material, staff…). 

The results obtained for the free-of-constraint case correspond to the optimal predictions 

from a purely technical point of view. That is, all assets will be repaired in accordance with 

the recommended predicted interventions in order to reach a health condition of the network.  

The results provided by the different models are shown below. The graphs are generated 

considering 2016 as the scenario of reference. For this year, the DT, KNN, SVM and ANN 

models have been applied and the predictions are compared with the target ideal scenario (for 

the same year). This ideal scenario is always considered as a bound for the models (the 

historical records have been labelled with the technical maintenance intervention by the MMB 

according to the previously described relaxed constraints). 

The comparison is carried out based on the false positive; in aggregate (total number of 

alerts, Figure 11) and disaggregate terms (by maintenance intervention type, Figure 12). A 

total of 1257 assets were involved. 

 

Figure 11. Model assessment: aggregate method. 

As shown in Figure 11, the DT model has a lower false-positive ratio and, because of this, 

the total number of predicted alerts is the closest to the ideal state (as the false-negative ratio 

is the same for all models and equal to 0). The ANN model, next best after DT, is the most 

accurate approach, followed by SVM and KNN. This ranking does not coincide with the 

conclusion derived by looking at the mean value of the test set error presented in the previous 

section (Figure 9). This is because the results shown in section 4.1 were obtained in the 

training process, and the results in this section were derived from applying the trained models 

to a real pilot case and they are compared with the ideal maintenance plan (technical-based) 

previously described.  

In order to check those cases where the models present lower accuracy, the total number of 

predicted alerts has been disaggregated by maintenance intervention types (Figure 11). 

According to the values in the figures, the models overestimate almost all maintenance 

interventions; this behaviour was unintentionally sought because false positives are preferred 

to false negatives. The most severe cases affect T2 and T3 types because, for all models, the 

amount of predicted interventions is larger than in the ideal case (almost all false-positives 

predictions are concentrated in these two types of interventions). This situation will be 

reduced as the system automatically learns from new data in which this type of maintenance 

intervention might be better represented. For example, for year 2016, there were only 28 

maintenance interventions of type T3 (the same proportion is presented in the whole historical 

maintenance database used for the training process). As the size of the database increases, if 

more T3-type maintenance interventions are carried out, the system will be self-adapted by 

learning. 
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Figure 12. Model assessment: disaggregate method. 

In order to characterise more deeply the selected model (DT), the methodology is applied 

to a real case of a road network comprising 1241 segments of 500 meters. In 1159 segments 

the predicted value coincides with the real one, obtaining a final accuracy of 93.4%. 

Comparing the predicted work orders (WO) and the real ones in all segments, 843 of 859 

segments are correctly predicted as T0 maintenance type, 39 out of 41 as T1, 148 out of 187 

as T2, 28 out of 30 as T3, 80 out of 93 as T3.1 and 21 out of 31 as T4. This implies that the 

main error is obtained when the model predicts T2 (only 79.1% of accuracy) and T3.1 (acc. 

86%). 

5.2 Results inferred from empirical data 

Figure 13 shows a combined colour and scale-symbol theme map that exposes the results 

obtained in the case study. The conditions, indicated with the GTSL value by the line 

thickness, of all road segments of the pilot case in 2015 and the most recommended 

intervention proposed by the methodologies (line colour) can be seen. The box contains a 

description of the different interventions managed by the MMB; case T0 indicates that no 

intervention is needed as the segment is in good condition with a low severity level; case T1 

indicates that the predicted condition of the segment presents a not null severity level, an alert 

is triggered, but the alert-prediction model recommends no intervention to be conducted; the 

rest of cases, T2 to T4, describe the interventions recommended by the model to be carried 

out. 
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Figure 13. Results obtained in the pilot case in 2015. 

¡Error! No se encuentra el origen de la referencia. Table 6 shows the predictions of 

GTSL and alerts (red cells) for road section 218174, partitioned into segments of 500 meters ; 

each segment is identified by the initial and final local kilometre points. As previously 

explained, the methodology provides GTSL values based on the values of IRI, RUT and CT. 

In parallel, the methodology generates the associated alerts for each segment of the road, 

revealing those where maintenance is needed by means of triggering alerts. As can be seen for 

the year 2012, focusing on the values of GTSL, some segments have reached an inadequate 

asset condition (triggering the corresponding alerts). As no maintenance is executed, these 

inadequate levels remain in a similar (or even worse) order of magnitude in the next year. 

Based on the new measurements for the following years (2014–2016), the methodology 

detects a maintenance intervention between years 2013 and 2014, for segments 0 to 7, since 

there are no alerts and the GTSL reflects that the asset conditions have been restored to 

adequate levels. This fact has been contrasted with the historical maintenance database and 

the detection is correct.  

Table 6: Results of GTSL and alerts for road section 218174, in time period 2012–2016.  

 Global technical severity level (GTSL) 

Segment 2012 2013 2014 2015 2016 

0 0.36 0.35 0.29 0.31 0.40 

0.5 0.37 0.65 0.29 0.32 0.34 

1 0.60 0.69 0.32 0.44 0.43 

1.5 0.74 0.65 0.45 0.66 0.60 

2 0.48 0.48 0.28 0.37 0.45 

2.5 1.14 1.05 0.19 0.21 0.23 

3 1.08 1.25 0.20 0.23 0.23 

3.5 0.80 1.05 0.27 0.35 0.41 

4 0.56 0.76 0.19 0.21 0.23 

4.5 0.34 0.59 0.16 0.17 0.19 

5 0.50 0.53 0.20 0.22 0.29 

5.5 0.97 0.56 0.17 0.19 0.20 

6 0.51 0.33 0.22 0.23 0.33 

6.5 0.38 0.29 0.21 0.22 0.23 

7 0.78 0.64 0.25 0.26 0.28 

7.5 0.48 0.93 0.72 1.04 1.06 

8 0.31 0.98 0.80 1.02 0.86 

 

T4

T3.1

T3

T2

T1

T0

Yes

Yes

Yes

Yes

Yes

No

Thick Hot-Mix Asphalt overlay (thickness > 5 cm) combined or not with milling

Surface milling with Thin Hot-Mix Asphalt overlay (thickness ≥ 5 cm)

Thin Hot-Mix Asphalt overlay (thickness ≤ 5 cm)

Microsurfacing, Surface dressing

Do nothing

No maintenance requested

Alert Description



 Page 21 

A last issue worth highlighting focuses on unattended alerts. As can be seen in the last two 

segments on the analysed road, alerts are predicted; however, they were not attended to and 

the methodology continues to generate alerts there.  

Another case derived from the results is analysed in Table 7. In this case, it is 

straightforward to see that the GTSL has significantly decreased since 2015, but no 

maintenance intervention has been reported in the historical data. After checking this point 

with the MMB, a non-reported intervention was actually detected. This was discovered by 

looking at the videos of inspections over the road. In this regard, it is necessary to clarify that 

sometimes missing/erroneous pieces of information are present in the historical maintenance 

repository and not all the maintenance/work done on each piece of road is properly reflected. 

Even though it is mandatory for major interventions to be registered, these are less numerous 

than small corrective operations as major maintenance plans are conducted in intervals of 

5–10 years; minor maintenance is also executed on roads, normally in a few meters, and 

frequently only on one of the lanes. In general, minor maintenance is executed by contractors 

under 3-year contracts for all aspects of road maintenance (not only pavement). This type of 

intervention is seldom registered in the historical data, except if there is a more significant 

extent.  

Table 7: Results of GTSL and alerts for road section 226520 in time period 2012 –2016. 

 Global technical severity level (GTSL) 

Segment 2012 2013 2014 2015 2016 

0 0.49 0.48 0.67 0.40 0.49 

0.5 0.55 0.52 0.29 0.27 0.26 

1 1.10 1.10 0.98 0.28 0.28 

1.5 1.10 1.11 0.92 0.28 0.30 

2 1.09 1.09 1.01 0.26 0.26 

2.5 0.65 0.71 0.61 0.30 0.28 

3 0.57 0.42 0.51 0.69 0.62 

3.5 1.17 1.06 1.19 0.59 0.63 

4 0.76 0.61 0.82 0.53 0.71 

4.5 0.26 0.25 0.45 0.33 0.60 

5 0.33 0.31 0.45 0.39 0.41 

There may be other situations (Table 8) where the GTSL estimates a bad road condition, 

such as the case of roads with low traffic flow (less important road), the situation when the 

IRI level is rather high but accompanied by low cracking (CT), or when the IRI is low and CT 

high. In all these cases the segments are under low-priority maintenance based on diverse 

factors (e.g. low traffic, budget restrictions, other considerations). 

Table 8: Results of GTSL and alerts for road section 226558 in time period 2012 –2016.  

 Global technical severity level (GTSL) 

Segment 2012 2013 2014 2015 2016 

0 1.23 0.99 0.97 0.65 1.10 

0.5 1.15 1.16 1.07 0.95 0.86 

1 1.19 1.30 1.23 1.17 1.36 

1.5 1.22 1.27 1.25 1.22 1.28 

2 0.63 1.11 1.07 1.10 1.15 

2.5 0.99 1.26 1.15 1.18 1.29 

6. Conclusions and prospective research lines 

This paper presents an ML scheme to predict maintenance alerts and the required 

interventions in road linear asset infrastructures in further scenarios. A road network pilot 

case was used to contrast the techniques’ capabilities by cross-checking actual conducted 

maintenance with predictions. The methodology, based on several supervised (decision tree, 

nearest neighbours, neural network and support vector) and unsupervised ML techniques, has 
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substantiated the optimum choice of the best predictive models based on historical 

intervention work-orders, asset features and measurement auscultations.  

The main predicted outcomes are: (a) the estimated intervention type for each road 

segment and the probability of occurrence, (b) a sorted listing of estimated alerts according to 

the global technical severity level. Each prediction set is referred to scenarios identified by its 

time-stamp. A cross-checking analysis is presented between actual conducted maintenance 

versus predictions.  

The developed ML scheme constitutes one of the components of a smart decision support 

tool to derive intervention plans. This step is of the utmost interest for generalising a full 

range of planning maintenance at operational, tactical and strategic level, within an expert 

intelligent scheme. 

The methodologies and results presented herein are far from being exhaustive and 

conclusive, but they pave the way towards several open research lines: (a) sensitivity to the 

quality of intervention description in the historical repository, (b) importance of the 

detailed/undetailed description of the asset condition prior to the intervention, among other 

open issues. 
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