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Abstract

Linear models constitute the primary statistical technique for any experimental science.

A major topic in this area is the detection of in�uential subsets of data, that is, of

observations that are in�uential in terms of their e�ect on the estimation of parameters

in linear regression or of the total population parameters. Numerous studies exist on

radiocarbon dating which propose a value consensus and remove possible outliers after

the corresponding testing. An in�uence analysis for the value consensus from a Bayesian

perspective is developed in this paper.

AMS Subject Classi�cation 2010: 62J20, 62P25

Key words and phrases: Conditional Bias, In�uence Analysis, Outliers, Predictive

Approach, Radiocarbon Dating.



1 Introduction

Radiocarbon dating is vital in the establishment of time lines for many archaeological

studies. The calibration curves necessary to map radiocarbon to calendar ages were orig-

inally estimated using only measurements on known age tree-rings. The types of records

available for calibration have since diversi�ed and a large group of scientists (known

as the IntCal Working Group) from a wide range of backgrounds has come together

to create internationally-agreed estimates of the calibration curves (for more details see

Blackwell and Buck, 2008, and the references therein). The radiocarbon community has

participated in a number of interlaboratory checks over the last thirty years (see Hedeyat

et al., 2008, for details about statistical scoring procedures to laboratory performance

evaluation). The most ambitious project to date was launched by the Glasgow group and

supported by over 50 radiocarbon laboratories. This three-stage study was completed

and the results published in 1990 (Aitchison et al., 1990; Cook et al., 1990; Scott et al.,

1990). The latter two studies have highlighted di�culties in the comparability of 14C lab-

oratories, and have quanti�ed excess variability in the results. The Fifth International

Radiocarbon Intercomparison (VIRI) continued the tradition of the TIRI (third) and

FIRI (fourth) intercomparisons (Scott, 2003) as a 14C community project, with samples

provided by participants and a substantial participation rate. Scott et al. (2010) gave

the �nal results of the VIRI where some outliers were detected and consequently omitted

from the sample in order to compute the consensus value. In this paper, an in�uence

analysis on a �nite population from a Bayesian perspective is developed to contribute

further information to the study of Scott et al. (2010). This in�uence analysis is based on

the in�uence analysis in linear models from a frequentist viewpoint (see Muñoz-Pichardo

et al., 2000).

Linear models constitute the primary statistical technique for any experimental science.

A major topic in this area is the detection of in�uential subsets of data, that is, of ob-

servations that are in�uential in terms of their e�ect on the estimation of parameters in

linear regression or of the total population parameters. The in�uence on a model is con-

sidered through the examination of the variation that results from perturbing the model

formulation. From among these variations, case-deletion is the most popular method
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for the indenti�cation of in�uential observations due to the intuition and simplicity in-

volved. For correlated data, Preisser and Qaquish (1996) propose deletion diagnostics

via generalized estimating equations. Banerjee and Frees (1997) developed partial in�u-

ence diagnostics for longitudinal data in linear mixed models, based on the omission of a

subject. Langford and Lewis (1998) explore techniques in terms of deviances, leverages

and residuals to handle outliers for multilevel data.

Johnson and Geisser (1983) consider the problem of in�uential observations using a

Bayesian approach and derive methods both for the estimation of parameters and the

prediction of future observations. The approach involves the comparison of the posterior

(predictive) distribution of the parameters (future observables) with and without the set

of observations whose in�uence is to be determined. Geisser (1985) presents some results

in predictive and estimative in�uence functions, data consistency, and model checking.

The objective is the detection of those observations that are most in�uential with regard

to decision making and inference, either in the estimative or predictive mode or both.

Bayesian case-in�uence statistics have also been developed, for example, Johnson and

Geisser (1982, 1983, 1985) discuss predictive in�uence; the in�uence of cases on predictive

distributions. Kass et al. (1989) use an asymptotic approach to assess in�uence on point

estimates.

Chambers (1986) considers the problem of robust estimation of a �nite population total

given sample data containing representative outliers, that is, sample elements with a

value that has been correctly recorded and with a large random error generated by the

model under consideration. He identi�ed sample outliers as sample elements with values

that have been correctly recorded and that cannot be assumed to be unique. Chaloner

and Brant (1988) develop an approach for the detection of outliers in a Bayesian linear

model where an outlier is de�ned as an observation with a large random error, generated

by the linear model under consideration. If the parameters of the model are unknown,

the posterior distribution can be used in the calculation of the posterior probability

that any observation is an outlier. Weiss (1996) discusses marginal in�uence assessment

procedures and Weiss and Cho (1998) give formulae for case deletion in�uence diagnostics

in normal linear regression for joint and marginal posterior distributions using several

divergence measures.
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Bayesian procedures in �nite population sampling are covered in Bolfarine and Zacks

(1992), Ghosh and Meeden (1997) and Mukhopadhyay (2001). Fernández-Ponce and

Infante-Macías (2005) study the in�uence diagnostics in superpopulation models in a

simple example, whereby formulae for case deletion in�uence diagnostics in prediction

theory are given.

The purpose of this paper is to apply the concept of Bayesian Conditional Bias for real

data of radiocarbon dating. The paper is organized as follows. First, in Section 2, the

concept of the Bayesian Conditional Bias (BCB) is shown, by using the Conditional

Bias given in Muñoz-Pichardo et al. (2000), as seen in Fernández-Ponce and Infante-

Macías (2005). An expression for the BCB of a statistic T that does not depend on

the parameter is proved and a su�cient and necessary condition to obtain the Bayes

estimator of the conditional bias of a statistic T is given. Some results of in�uence

analysis from a Bayesian viewpoint are shown in Section 3. The BCB for predictors of

population quantities, such as the total, and for the unknown variance of the random

errors under the model are obtained. In Section 4, the results of the previous sections are

applied in a radiocarbon dating problem to study the in�uence on the consensus value

estimated by Scott et al. (2010). Finally, conclusions and new ideas for future work are

discussed in Section 5.

2 The Bayesian Conditional Bias

The concept of Conditional Bias is used by Muñoz-Pichardo et al. (2000) as a tool in the

study of the variation in an analysis that results from perturbing the problem formulation,

and is applied to the general linear model from a frequentist point of view. These authors

propose several in�uence measures for the linear general model based on the concept of

conditional bias. For simplicity, the univariate case is assumed, that is, let Y1, · · · , Yn
be a random sample from a random variable Y, T = T (Y1, · · · , Yn) be a statistic de�ned

on the sample, y1, · · · , yn be a realization of the sample, and let I = {i1, · · · , im} be a

collection of subindices. The conditional bias of T, given the set of observations indexed
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by I, is de�ned as

S (yI ;T ) = E (T |Yi1 = yi1 , · · · , Yim = yim)− E(T )

where yI = {yi1 , · · · , yim}. Since S (yI ;T ) is the average deviation from E(T ), which

provokes the set of observations indexed by I, it can be considered as a measure of the

joint in�uence of yI on T. This approach does not presuppose any particular hypotheses

on the distribution of the variables, and its theoretical foundation does not need any

perturbation pattern. Using in�uence measures based on the conditional bias, Muñoz-

Pichardo et al. (2000) carry out an application to the multivariate analysis of covariance.

In this paper, a Bayesian approach to the conditional bias based on the corresponding

frequentist concept is given together with an application in radiocarbon dating.

A family of distribution functions {Gθ, θ ∈ Θ} is now considered, where Θ is a subset

of R. Let Y (θ) denote a random variable with distribution function Gθ. For any random

variable θ with support in Θ, and with distribution function π, let Y denote a random

variable with distribution function H given by

H(y) =

∫
Θ

Gθ(y)dπ(θ), y ∈ R.

Henceforth, F π(θ|yI) is denoted as the distribution function of θ ∈ Θ ⊆ R, given the

observations yI , when the prior distribution of θ is π(·), and E(Y ) is denoted as the

expectation of the random variable Y, that is, E(Y ) =
∫
R ydH(y). This expectation can

be considered as the overall expectation for Y (θ). Note that this model can easily be

generalized when Y (θ) is a multivariate random variable with �nite dimension and when

Θ is a subset of Rk. Our aim is now to de�ne the concept of Conditional Bias when prior

information is given by a parameter either explicitly or implicitly and this information

is used as part of the model.

It is now assumed that Y1, · · · , Yn is a random sample of the random variable Y (θ) where

θ ∼ π(·) and θ ∈ Θ ⊆ R. Let T = T (Y1, · · · , Yn) be a real-valued statistic de�ned on

the sample, let y1, · · · , yn be a realization on the sample, and let I = {i1, · · · , im} be a

collection of subindices. The BCB of T, given the set of observations indexed by I, is

de�ned as

SB(yI ;T ) = E(T |yI)− E(T ). (2.1)
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The BCB of T is not necessarily the Bayes estimator of the conditional bias using the

squared error-loss function. As can be seen in Fernández-Ponce and Infante-Macías

(2005), the BCB of T is the Bayes estimator of the conditional bias using the squared

error-loss function if, and only if the observations yI are invariant observations with

respect to the overall expectation of the statistic T .

By using the expression for the BCB of q-valued statistic T which is given in Fernández-

Ponce and Infante-Macías (2005), it is obtained for q = 1 that

SB(yI ;T ) = E(T − T(I)|yI). (2.2)

Consequently, we propose the following measure to quantify the Bayesian in�uence:

QI = |SB(yI ;T )|.

3 In�uence analysis in the model

Let U denote a �nite population which consists of N units labelled 1, 2, · · · , N. It will be

assumed that these labels are known and that they can often contain certain information

about the units. Attached to unit i, let yi be the unknown value of certain characteristics

of interest. Let y = (y1, · · · , yN)t be the unknown state of nature or parameter. It is

assumed that y belongs to Y , a subset of n-dimensional Euclidean space RN . A subset

s of {1, · · · , N} is called a sample. Let n(s) denote the number of elements belonging

to s, and unless otherwise stated, it will be assumed that it is n, and let S denote the

set of all possible samples. A (non-sequential) sampling design is a function p de�ned

on S whereby p(s) ∈ [0, 1] for every nonempty s ∈ S, and
∑

s∈S p(s) = 1. In many

problems in �nite population sampling there are additional known characteristics or

variables associated with each unit. Let X denote the collection of these vectors for

the entire population. The superpopulation or Bayesian framework for inference on the

quantities of interest of the �nite population can be provided by the knowledge of some

random process that could generate the values of the characteristics associated with each

unit of the population. A purely Bayesian model for a �xed �nite population assumes a

speci�c (prior) distribution of y and can be considered as a superpopulation model with a
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single element of a speci�ed parametric family F . Thus, in general, let F = {Fψ;ψ ∈ Ψ},

where ψ is a parameter in a speci�ed parametric space Ψ. The Bayes Superpolutation

model imposes a prior distribution of ψ, ζ(ψ|φ),on the family F where φ is a known

parameter. By considering the model

y = Xβ + ε

ε ∼ N(0,V)

 (3.1)

denoted as ψ(β,V), where X = (xkj, k = 1, · · · , N, j = 1, · · · , p), xkj is the value of the

auxiliary variable xj on unit k, ε = (ε1, · · · , εN)t, β = (β1, · · · , βp)t is a p × 1 vector of

unknown regression coe�cients, and V = σ2W with unknown σ2, and W is a known

diagonal matrix of dimension N . By considering a non-informative prior distribution on

(β, σ2) :

ζ(β, σ2) ∝ 1

σ2
and E(β) = b is a parametric vector. (3.2)

The model ψ(β,V) in (3.1) together with the prior (3.2) is henceforth denoted as ψR.

The BCB as an in�uence measure is now studied via the superpopulation model. Like-

wise, it is assumed that the sampling design is non-informative. That is, if p(s) is

independent of the model ψR, where s ∈ S. Accordingly, if the sampling design is non-

informative, the conditionality principle (Basu, 1975) implies that the in�uence on ψ

should be based only on the observed part of y, ys, and the model ψ which is the link

between ys and yr. After the sample s is selected, the partitions of y, X and V are as

follows

y =

 ys

yr

 , X =

 Xs

Xr

 , V =

 Vs Vsr

Vrs Vr

 .

Prediction of linear quantities gL(y) = lty where l = (lts, l
t
r)
t is a vector of constants is now

considered. Moreover, it is assumed that some speci�c information about the unknown

values yr is obtained. This information will be noted as a random event A which belongs

to the sigma-algebra generated by yr, A ∈ σ(yr). It is known (see Theorem 3.3.3 in

Mukhophadyay, 2001) that

ĝBL = ltsys + ltrE (yr|ys, A) (3.3)
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is the Bayes predictor under the squared error-loss, and under any ψR model for which

Var(yr|ys, A) exists. Given a collection of subindices I = {i1, · · · , im} ⊂ s ⊂ {1, · · · , N},

the m-vector composed of the components of ys subindicated by I is now denoted by

yI . Similarly, the matrix formed by the rows of X corresponding to the collection I is

denoted by XI . Likewise, the omission of the observations indexed by I in the sample

is indicated by the subindex s − I. Additionally, the predictive sample for the sample

subset yI , denoted by y∗s,I , is de�ned as the vector of dimension s× 1:

y∗s,I =

 yI

E(ys−I |yI)

 .

Following Bolfarine and Zacks (1992) (see eq(1.3.14), p. 16), it is obtained that

β̂I = (Xt
IV
−1
I XI)

−1Xt
IV
−1
I yI

is the least-squares estimator of β based on XI and yI , for the case where the matrix

(Xt
IV
−1
I XI)

−1 exists. The following establishes the BCB of ĝBL given the observations

yI when the matrix (Xt
sV
−1
s Xs)

−1 exists. Consequently, (3.3) can be expressed as

ĝBL = ltIyI + lts−Iys−I + ltrE(yr|yI , ys−I , A).

Thus,

E (ĝBL|yI , A) = ltsy
∗
s,I + ltrE [E(yr|ys, A)|yI ] .

Prediction of linear quantities gL(y) = lty is now considered, where l = (lts, l
t
r)
t is a vector

of constants. It is assumed that A = [yr > c], where c is a vector of known constants,

and consequently

ĝBL = ltsys + ltrE (yr|ys,yr > c) . (3.4)

Hence,

ĝBL = ltsys + ltrzr (3.5)

where zr is a vector whose i− th component is

zr,i =

∫ +∞
ci

xf(x)dx

P (yr,i > ci)
(3.6)

7



where f(x) is the corresponding normal density function under the model and by taking

into account that it is conditioned to ys. Consequently, an estimator of the Bayesian

Conditional Bias of g by using (2.2) is

ŜB(yI ; g) = ĝBL − ĝBL(I)

where ĝBL(I) is the linear predictor through omission of the subsample I of s, and the

corresponding in�uence measure is

QI = |ŜB(yI ; g)|. (3.7)

In this case, the Bayesian Risk (BR) has the following expression:

BR = ltrV ar [yr|ys,yr > c] lr. (3.8)

Furthermore, V ar [yr|ys,yr > c] is an r × r matrix, henceforth denoted by S, since the

sij element is

sij = E [yr,iyr,j|ys,yr > c]− E [yr,i|ys,yr > c]E [yr,j|ys,yr > c] .

Speci�cally,

E [yr,iyr,j|ys,yr > c] =

∫∞
ci

∫∞
cj
ztf(z, t)dzdt

P (yr,i > ci, yr,j > cj)
(3.9)

where f(z, t) is the density function of the yr,i, yr,j|ys vector which can easily be obtained

from the normal conditional densities by taking into account the value of the corre-

sponding covariances. This BR depends on the unknown covariance-variance matrix in

(3.8) and is estimated by using the corresponding approximation for the integral and the

probability which appear in (3.9). These computations have been developed by using the

R language for statistical computing, version 2.14.0. The adapt and mtvnorm packages

have been used.

By using Theorem 3.1.1 from Bolfarine and Zacks (1992) and by incorporating the fact

that the non-informative prior of β is obtained as the limit of N(b,B), when B−1 → 0

and A = Rr, it is easy to show that

E(ys−I |yI , A) = Xs−I β̂I ; E(yr|ys, A) = Xrβ̂s; E(yr|ys−I , A) = Xrβ̂s−I
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and E (ĝBL|A) = ltXb.

Thus, by using (2.1),

SB(yI ; ĝBL) = ltIyI + lts−IXs−I β̂I + ltrXr(X
t
sV
−1
s Xs)

−1Xt
sV
−1
s y∗s,I − ltXb. (3.10)

Consequently, this BCB depends on b and it should be estimated by using (3.7). Note

that, under the ψR-model, sample subset sizes can exist whose Bayesian In�uence cannot

be computed. This fact depends on the existence of the inverse of the (Xt
IV
−1
I XI) and

(Xt
sV
−1
s Xs) matrices. Furthermore, the BR is given by

E [ĝBL − g]2 = σ2
[
ltrWrlr + ltrXr(X

t
sW

−1
s Xs)

−1Xt
rlr
]

(3.11)

where Vs = σ2Ws and Vr = σ2Wr. It is known (see Bolfarine and Zacks, 1992, pg. 62)

that an unbiased estimator of the prediction variance is obtained by replacing V with

σ̂2W where

σ̂2 =
1

n− p

(
ys −Xsβ̂s

)t
W−1

s

(
ys −Xsβ̂s

)
.

Thus, the estimated BR is expressed as

B̂R = σ̂2
[
ltrWrlr + ltrXr(X

t
sW

−1
s Xs)

−1Xt
rlr
]
.

In�uence on the variance σ2 can also be established and analyzed (see Fernández-Ponce

and Infante-Macías, 2005).

4 An example in radiocarbon dating

The radiocarbon community has participated in a number of interlaboratory checks over

the last thirty years. The latter two studies have highlighted di�culties in the compa-

rability of 14C laboratories, and have quanti�ed excess variability in the results. Not all

laboratories that had previously participated in Phase 1 participated in Phase 2, since

bone is not a routinely measured sample in all laboratories. A total of 42 laboratories

reported results on various bone samples (see Table 1 in Scott et al., 2010), which are

used in this paper, are about di�erent bone samples. The sample called E in Scott et

al. (2010) is of mammoth bone from a site called Quartz Creek, Dawson City, Yukon
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Territory. The bone is a portion of the pelvis of a Mammuths sp. specimen (for more

details see Scott et al., 2010). In our study, Sample E is analyzed in a di�erent way since

it has �ve censored values. These missing values are predicted by using the information

of the data of the same laboratory.

Scott et al. (2010) gave a report for the consensus values for the samples following the

procedure in Scott (2003). The exculsion of individual results from the �nal calculation

was based on two criteria: 1) the absolute value; 2) the size of the quoted error. The

consensus values were calculated as a weighted average of the remaining results. In this

paper, an in�uence analysis from a Bayesian perspective is developed. This analysis

permits a measure for the outliers to be established by quantifying the degree of e�ect

of their omission on the �nal calculation of the consensus value. It is shown that the

consensus value obtained is smaller than that proposed in Scott et al. (2010). This

circumstance is not strange in this kind of analysis (for a similar case see Xu et al.,

2010).

In an initial test of the sample of mammoth bones, 0.58 g of collagen was recovered from

5 g of bone. The percentage of carbon of this collagen sample was 41%. For this sample,

a small number of laboratories reported this �gure as a minimum age. In this paper,

our purpose is to predict the ages by using the information of corresponding laboratories

and study the degree of in�uence on the consensus values when known data is omitted.

Given that the quoted error for the bounded data is unknown, it is estimated by the

median of quoted error for the corresponding dating technique. Bear in mind that the

value of the quoted errors for the sample data might in�uence the �nal consensus value.

All computations are made by using R software for statistical computing and graphics

(v. 2.14.0). The consensus value is given by g(y) = lty where

li =
1/e2

i∑n
i=1 1/e2

i

and ei is the quoted error which can be seen in Table 2a (the fourth column) in Scott et

al. (2010). The in�uence measure (3.7) of g is plotted in Figure 1. As it can be seen,

there exists a data with the highest in�uence. This data corresponds to an outlier which

was detected in Scott et al. (2010) (the 24th item of data in Table 2a in Scott et al.,

2010) which corresponds to LSC with an estimation of 22810 yr BP. The e�ect of the
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Figure 1: In�uence on the consensus value in the Mammoth bone sample

omission of this data on the total quantity g is estimated at approximately 577 years.

The value of the remaining in�uences can be seen in Table 1. The estimation of the BR

is denoted as B̂R.

Table 1: In�uence on the consensus value.

Observation number In�uence Measure (years) ĝ(i) sqrt(B̂R)

24 577.36 36484.08 45.02

38 175.07 36081.79 51.55

7 163.52 36070.23 47.19

25 134.23 35772.49 48.03

16 128.75 35777.97 46.92

54 116.62 35790.10 47.42

50 112.20 36018.92 47.20

13 103.51 35803.21 46.50

21 103.24 35803.48 46.29

27 100.37 36007.09 45.43

55 95.78 36002.50 44.73

37 92.25 35998.97 51.69
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Table 2: Prediction for the censored data.

Observation number Censored data Predicted value

8 > 41000 43992.55

30 > 42000 44375.6

52 > 35300 37378

57 > 25400 30470.5

58 > 37200 41263.28

The �rst column in Table 1 is the same as that in Table 2a of Scott et al. (2010).

Note that the censored data has been removed in order to compute the in�uence of the

data since this data is predicted by using the information of remaining the data and the

corresponding model developed in this paper. Consequently, there are 55 items of data

for the mammoth bones. The greatest twelve in�uences are represented in the second

column of Table 1 in decreasing order. It is also interesting to note that there are three

outliers among these twelve data; the 24th item of data from LSC with a value equal

to 22810; the 7th observation from LSC with a value equal to 25530; and the 27th item

of data from LSC with a value equal to 24300. Two outliers which were detected by

Scott et al. (2010), (the 29th observation from LSC with a value equal to 26550 and

the 55th observation from LSC with a value equal to 21684), have an in�uence on the

consensus value of less than 100 years apiece. Thus, these outliers are not considered as

an in�uence on the consensus value. The estimation of the consensus value by omitting

the ith corresponding observation (ĝ(i)) and the square root of the estimated BR is also

added in Table 1. By using the equation (3.6), the prediction for the missing values in

sample E are given in Table 2. The same analysis is now carried out but with the 24th

element removed from the data set since it is the data with the greatest in�uence. The

in�uence measure (3.7) of g, by removing the element with greatest in�uence, is plotted

in Figure 2. Note that the corresponding case for the data is represented along the OX

axis. In this case, it can be said that there are no elements with a signi�cantly high

in�uence (see Table 3).
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Figure 2: In�uence on the consensus value in the Mammoth bone sample

Table 3: In�uence on the consensus value on removing the 24th observation.

Observation In�uence Measure (years) ĝ(i) sqrt(B̂R)

38 273.58 36757.66 50.34

7 182.92 36667.00 45.07

37 175.47 36659.55 50.61

50 143.30 36627.38 45.93

27 119.09 36603.17 46.51

16 118.13 36365.95 45.72

25 114.71 36369.37 46.92

55 112.35 36596.43 44.71

54 103.36 36380.72 46.27

13 97.28 36386.80 45.28

21 93.40 36390.68 45.32
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Table 4: In�uence on the consensus value.

Observation In�uence Measure (years) ĝ(I) sqrt(B̂R)

- - 35906.72 46.06

24 577.36 36484.08 45.02

24, 38 850.94 36757.66 50.3

24, 38, 7 1068.13 36974.85 50.35

24, 38, 7, 25 958.17 36864.89 52.94

24, 38, 7, 25 ,16 823.82 36730.54 53.99

24, 38, 7, 25, 16, 54 698.96 36605.68 55.74

No rules exist which establish the best consensus value from solely observing Table 3, since

in�uence analysis is not concerned with what data has to be removed. The consensus

value and the BR (see Table 4) when data of great in�uence is sequentially removed

are also shown, following the decreasing order in Table 1. Thus, by analyzing Table

4, the proposed consensus value in this paper is 36975 ± 50 yr BP for the mammoth

bone sample. That is, the 24th, 38th and 7th observation have been removed from the

sample in order to propose a consensus value since these 3 observations have the greatest

in�uence. Table 5 lists the summary statistics for the complete sample E, (including the

size, mean, median, IQR and range) for 14C and for various laboratories. Table 6 lists

the same statistics but omitts the outlier cases of the 24th and 7th observations.

Table 5: Summary statistics for complete sample E.

n Mean Median ST dev Q1 Q3 Min Max

AMS 40 38950 39870 2654.26 36740 40730 33020 43990

GPC 6 38360 37820 4494.64 35580 41530 32570 44380

LSC 11 30190 30470 6206.02 24920 35420 21680 38350

Overall 57 37200 38350 5057.39 35500 40450 21680 44380
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Table 6: Summary statistics for sample E with the omission of two outliers.

n Mean Median ST dev Q1 Q3 Min Max

AMS 40 38920 39870 2621.45 36740 40710 33020 43510

GPC 6 38300 37820 4392.39 35580 41530 32570 43990

LSC 9 31850 34150 6117.39 26550 35500 21680 38350

Overall 55 37700 38630 4376.05 35620 40470 21680 43990

Similar results are obtained if the bounded data is assumed with unknown values. In

this case, the equations (3.5) and (3.7) are used to estimate the Bayesian In�uence and

(3.11) to estimate the BR. It is concluded that the three most in�uencial observations

are the 24th and 7th, which are both outliers in Scott's analysis (see Scott et al., 2010),

and the 38th item of data, in that order. Table 7 lists the summary statistics for the

complete sample E (including the size, mean, median, IQR and range) for 14C and for

various laboratories. Table 8 lists the same statistics but omitts the outlier cases of the

24th and 7th observations.

Table 7: Summary statistics for complete sample E.

n Mean Median ST dev Q1 Q3 Min Max

AMS 40 38660 39470 2530.17 36720 40460 33020 42500

GPC 6 37330 36930 3420.69 35580 39510 32570 42060

LSC 11 29190 28420 5732.31 24920 34740 21680 38350

Overall 57 36690 37960 5024.20 35340 40320 21680 42500

Table 8: Summary statistics for sample E with the omission of two outliers.

n Mean Median ST dev Q1 Q3 Min Max

AMS 40 38660 39470 2530.17 36720 40460 33020 42500

GPC 6 37330 36930 3420.70 35580 39510 32570 42060

LSC 9 31160 32270 5673.01 26550 35340 21680 38350

Overall 55 37290 38180 4258.02 35520 40320 21680 42500
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Table 9: In�uence on the consensus value without bounded information.

Observation In�uence Measure (years) ĝ(I) sqrt(B̂R)

- - 35699.59 96.16

24 608.59 36308.18 89.05

24, 38 864.4 36564.09 99.03

24, 38, 7 1094.72 36794.31 96.74

24, 38, 7, 25 974.83 36674.42 101.26

24, 38, 7, 25, 16 833.74 36533.33 100.77

24, 38, 7, 25, 16, 54 702.21 36401.8 105.69

Obviously, descriptive measures with the bounded data (see Tables 5 and 6) are higher

than the corresponding descriptive measures without this bounded information (see Ta-

bles 7 and 8). Table 9 lists in�uence measures when is the data items are omitted in a

decreasing order following a similar process to that of Table 4. As can be seen, the same

in�uence data is obtained. In this case, the proposed consensus value is 36794 ± 97 yr

BP for the mammoth bone sample. Note that the di�erence between the above case and

is not signi�cant although the resulting consensus value is approximately 2500 yrs less

than that proposed in Scott et al. (2010).

5 Conclusions

The preliminary analysis of results from Phase 2 of VIRI (see Scott et al., 2010) high-

lighted the general and broad agreement amongst laboratories but also underlined the

persistent problem presented by outlying data values from a relatively small number of

laboratories. In this paper, an in�uence analysis on the consensus value is added to the

analysis developed in Scott et al. (2010). As can be seen in this paper, some previous

detected outliers are now viewed as in�uence data on the consensus value. Not only must

this in�uence have to be interpreted as the e�ect of omitting each value or set of values

on the consensus value but also on the predicted value for certain missing values given

which should have been supplied by the laboratories. Likewise, this in�uence analysis
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is based on a non-informative a priori distribution for the parameters in the model. It

would be interesting to study the e�ect on the prediction values and the consensus value

by taking into account a variety of a priori distributions in accordance with the a pri-

ori information. It is interesting to note that the Bayesian risk is not great since there

are only �ve values to predict in our sample. Additionally, the forward search and our

technique can be used jointly as a forward deletion formulae. However, these topics are

beyond the scope of the current study and will be studied in future work.
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