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Abstract

CoVaR is a systemic risk measure proposed by Adrian and Brunnermeier [1] able to measure
a financial institution’s contribution to systemic risk and its contribution to the risk of other
financial institutions. CoVaR stands for conditional Value-at-Risk, i.e. it indicates the Value
at Risk for a financial institution that is conditional on a certain scenario. In this paper, two
alternative extensions of the classic univariate Conditional Value-at-Risk are introduced in a
multivariate setting. The two proposed multivariate CoVaRs are constructed from level sets
of multivariate distribution functions (resp. of multivariate survival distribution functions).
These vector-valued measures have the same dimension as the underlying risk portfolio. Several
characterizations of these new risk measures are provided in terms of the copula structure and
stochastic orderings of the marginal distributions. Interestingly, these results are consistent with
existing properties on univariate risk measures. Furthermore, comparisons between existent risk
measures and the proposed multivariate CoVaR are developed. Illustrations are given in the
class of Archimedean copulas. Estimation procedure for the multivariate proposed CoVaRs is
illustrated in simulated studies and insurance real data.

Keywords: Copulas and dependence, Level sets of distribution functions, Multivariate risk
measures, Stochastic orders, Value-at-Risk.

Introduction

A risk-based approach for supervision and regulation of the financial sector is gaining ground
in both emerging and industrialized countries. As part of this approach, regulators need to
measure, monitor, and manage market risk. Value-at-Risk (VaR) is one measure being explored
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for this purpose. One of the most important sectors in which this practice has been adopted is
the pension fund industry. As the recent financial crisis has shown, risks are generally difficult
to measure and to manage. This becomes crucial in the case of pensions, where people rely on
their savings to finance their old age. Risk is a complex notion and can take on varied forms
with diverse applications. In the context of trading firms, managing risk has been traditionally
achieved by the introduction of Value-at-Risk (VaR) thresholds on the portfolio risk accumulated
by traders. Over recent decades, this problem has been handled mostly in a univariate version.
Moreover, the risk allocation problem only involves internal risks associated with businesses in
the subsidiaries. However, the solvability of financial institutions could also be affected by exter-
nal risks whose sources cannot be controlled. These risks may also be strongly heterogeneous in
nature and difficult to diversify away. One can think, for instance, of systemic risk or contagion
effects in a strongly interconnected system of financial companies.

In the last decade, much research has been devoted to risk measures and many multidimensional
extensions have been investigated. On theoretical grounds, Jouini et al. [23] propose a class
of set-value coherent risk measures. Unsurprisingly, the main difficulty regarding multivariate
generalizations of risk measures is the fact that vector preorders are, in general, partial preorders.
In order to generalize the Value-at-Risk measure, Embrechts and Puccetti [15], Nappo and
Spizzichino [30], and Prékopa [32] use the notion of quantile curve which is defined as the
boundary of the upper-level set of a distribution function or the lower-level set of a survival
function. Cousin and Di Bernardino [6] introduce two alternative extensions of the classic
univariate Value-at-Risk in a multivariate setting. The proposed measures, which are based on
the definitions of multivariate quantiles in Embrechts and Puccetti [15], are real-valued vectors
with the same dimension as the considered portfolio of risks. This feature can be considered
relevant from an operational point of view. Both measures satisfy the positivite homogeneity
and translation invariance property. Cousin and Di Bernardino [7] propose two extensions of
the classic univariate Conditional-Tail-Expectation (CTE ) in a multivariate setting. These
multivariate extensions in Cousin and Di Bernardino [6] and Cousin and Di Bernardino [7]
are constructed from level sets of multivariate distribution functions and multivariate survival
distribution functions, respectively. This level sets approach is also used in this paper.

Another recent interesting risk measure is that of the CoVaR, which stands for Conditional
Value-at-Risk. CoVaR is a systemic risk measure proposed by Adrian and Brunnermeier [1]
that measures a financial institution’s contribution to systemic risk and its contribution to the
risk of other financial institutions. In the original unidimensional model, the CoVaR (of a
particular bank, portfolio of asset, etc.) indicates the Value-at-Risk for a financial institution
which is conditional on a certain (stress) scenario.

Assume now that Xj represents asset returns of the financial system (or bank j) and Xi repre-

sents the asset returns of bank i. The CoVaR
j|i
α can then be defined by:

P [Xj ≤ CoVaRj|i
α |Xi = VaRq(Xi)] = α, for α ∈ (0, 1), (1)

where VaRα(Xi) is the quantile function of the random variableXi at risk-level α, i.e., VaRα(Xi) =
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inf{x ∈ R : FXi(x) ≥ α}. Equation (1) implicitly defines the CoVaR of the bank j which is
conditional on bank i being at its α%-VaR level (see Adrian and Brunnermeier [1]).

CoVaR in (1) represents one of the major threads in the current regulatory and scientific discus-
sion of systemic risks. In the literature, several alternative definitions of CoVaR can be found
(see Girardi and Ergün [19] and Goodhart and Segoviano [21]). Starting from (1), we can also
consider the CoVaR given by

CoVaRj
α(X) = VaRα(L|Xj ≥ VaRα(Xj)),

where the financial system is represented via the total risk L = X1+. . .+Xd, i.e., the aggregated
total risk of the firm network and the component j of the vector X = (X1, . . . , Xd) represents
the risk exposure of the company j.

In this paper, two new multivariate generalizations of CoVaR based on the multivariate quan-
tile settings of Embrechts and Puccetti [15], Cousin and Di Bernardino [6], and Cousin and
Di Bernardino [7] are introduced. These proposed CoVaR measures can be useful in the analy-
sis of multiple financial institutions all together in the systemic context.

Several properties have been obtained. In particular, the positive homogeneity and translation
property are shown. The behaviour of the components of the proposed CoVaR vectors with res-
pect to the univariate VaR of margins and to the multivariate VaR in Cousin and Di Bernardino
[6] is also analysed. We also study how these measures are influenced by a change in marginal
distributions, by a change in dependence structure, and by a change in risk level.

Adrian and Brunnermeier [1] defined a systemic risk measure, called ∆CoVaR, as the difference
between the VaR of the institution j (or financial system) conditional on the distress of a
particular financial institution i (see (1)) and the VaR of the institution j. ∆CoVaR and other
interesting systemic risk measures are introduced and gathered in Mainik and Schaanning [24].
The in-depth study of ∆CoVaR systemic risk measures using the multivariate CoVaR proposed
in this paper goes beyond the scope of the present work. A more practical analysis on systemic
risks using multivariate ∆CoVaR measures is currently in preparation.

The paper is organized as follows. In Section 1, the piecewise-linear weighted loss function which,
can be used to generalize several risk measures, is introduced. Moreover, some notations, tools,
and technical assumptions are given. In Section 2, properties of invariance for the proposed
multivariate CoVaR are shown. Furthermore, we analyse how these multivariate measures
behave when the marginal risks or the copula structures increase with respect to stochastic orders
(see Section 3). Illustrations and properties for the Archimedean copula class are presented in
Section 4. In Section 5, estimation procedure for the multivariate proposed CoVaRs is illustrated
in simulated studies and insurance real data. Conclusion discusses open problems and possible
directions for future work.
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1. Preliminaries and Definitions

Let X be a non-negative random variable with distribution function FX and quantile function
at level ω in [0, 1] given by QX(ω) = inf{x : FX(x) ≥ ω}. Note that the quantile function is also
defined as a Value-at-Risk in the economics literature and denoted as VaRω(X) (see also (1)).
Let L1(Ω,A, P ) be the set of all random variables with finite expectations. Assuming that X is
a random variable of L1, the Weighted Loss function (WL) is defined by

LX(x;ω) = ω E[(X − x)+] + (1− ω)E[(X − x)−] for all x ∈ R and ω ∈ [0, 1], (2)

where x+ = max{x, 0} and x− = max{−x, 0}.
Note that if X is a non-negative random variable, then LX(x;ω) = ωE[X] for all x < 0. This
function has a key role in an actuarial context. Indeed, it represents the expected cost for the
reinsurance company, called net premium, where X denotes the risk for the insurance com-
pany. If the insurance company prefers not to bear all the risk, passes on parts of the risk to
a reinsurance company. The part retained by the original insurance company is usually called
the retention. A stop-loss contract establishes a fixed retention x (see Section 8.3 in Müller and
Stoyan [29]). This means that the maximum risk for the insurance company is x. Thus, if X > x
then, the reinsurance company will take over X − x. This class of contracts is useful to protect
companies from insolvency due to excessive claims. In an actuarial context, the threshold x is
often called the deductible or priority (see Section 1.7.1 in Denuit et al. [11]).

Certain interesting properties of the WL function in (2) are now recalled. The properties (P1)-
(P6) are trivially obtained by the same arguments as those used by Muñoz Pérez and Sánchez-
Gómez [27] to prove the properties of the dispersion function.

(P1) It holds that

LX(x;ω) = ω

∫ +∞

x
F̄ (t) dt+ (1− ω)

∫ x

−∞
F (t) dt.

(P2) Let CF denote the set of continuity points of FX and X ∈ L1. Then

FX(x) = L
′
X(x;ω) + ω, ∀x ∈ CF and x ≥ 0

where L′X is the derivative of LX with respect to x.

(P3) The WL function is differentiable and its derivative has, at most, a countable number of
discontinuity points.

(P4) LX(x;ω) is a convex function on R+.

(P5) limx→+∞ L
′
X(x;ω) = 1− ω; and limx→−∞ L

′
X(x;ω) = 0.

(P6) limx→+∞[LX(x;ω)− (1− ω)x] = −(1− ω)E[X].
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(P7) Finally,

VaRω(X) = arg min
x∈R+

LX(x;ω), for w ∈ [0, 1],

with VaR0(X) = xF− and VaR1(X) = xF+ , where xF+ and xF− are, respectively, the
right and left endpoints of F , such that xF+ = sup{x ∈ R : F (x) < 1} and xF− = inf{x ∈
R : F (x) > 0}.

It is easy to see that Properties (P1)-(P7) uniquely characterize a WL function, i.e., if LX(x;ω)
is a function that satisfies Properties (P1)-(P7) above, then there exits a unique distribution
function which has LX(x;ω) as its WL function. Therefore, it uniquely determines a probability
measure PF on B (the σ-field of Borel set on R).

An interesting interpretation of the WL function is that 2LX(x; 1/2) is the L1-distance between
FX and Fx, where Fx is the distribution function of the degenerate random variable at the point
x ∈ R (Muñoz Pérez and Sánchez-Gómez [27]). It is also interesting to remark that LX(x; 1) is
the well-known stop-loss function of X, and that LX(x; 0) could be interpreted as the stop-gain
function of X. Consequently, the WL function is a weighting of both functions in terms of
x. Now, let X = (X1, . . . , Xd) be a non-negative d-dimensional random vector1. Cousin and
Di Bernardino [6] defined, under certain regularity conditions, the multivariate Lower-Orthant
Value-at-Risk at probability level α as the d-dimensional vector

VaRα(X) = E[X |F (X) = α], for α ∈ (0, 1),

where F is the distribution function of X. Particularly, the i-th component of this vector trivially
verifies

VaRi
α(X) = LXi|F (X)=α(0; 1). (3)

Using Property (P7), our purpose is now to give a new multivariate approach of the classic
Conditional Value-at-Risk model (see CoVaR in (1)) which, as introduced previously, is defined as
the VaR of a financial institution, conditional on a certain scenario (see Adrian and Brunnermeier
[1]). In this case, the approach is based on the conditional scenario being a restriction for both
financial institutions. Thus, in general, no relationship exists between the two CoVaRs.

From now on, assume that X = (X1, . . . , Xd) is a non-negative absolutely-continuous random
vector (with respect to Lebesgue measure λ on Rd) with distribution function F and survival
function F . Furthermore, the multivariate distribution function F is assumed to be partially
strictly-increasing2 such that E(Xi) <∞ for i = 1, . . . , d. Such F is said to verify the regularity

1We restrict ourselves to Rd+ because, in our applications, components of d−dimensional vectors correspond
to random losses and are then valued in R+.

2A function F (x1, . . . , xn) is partially strictly-increasing on Rd+\0 if the function of one variable g(·) =
F (x1, . . . , xj−1, ·, xj+1, . . . , xd) are strictly-increasing.
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conditions. Note that if F is the survival function of X, and F verifies the regularity conditions,
then F is a partially strictly-decreasing function. Unless stated otherwise, the dimension of the
vectors is d, and the null vector of dimension d will be denoted by 0, and the unity vector of
dimension d by 1. Therefore, the order ≤ between vectors will be considered component-wise.
Throughout the paper, given a random variable or a vector X and any event A, X|A is denoted
as the random variable or vector whose distribution is the conditional distribution of X given

A. Eventually, the equality in law is given by
d
=.

Several useful definitions of stochastic orders are now recalled. Further details, equivalent defi-
nitions and applications may be found in Shaked and Shanthikumar [37], Müller [28], and Joe
[22].

Definition 1.1. Let X and Y be two random variables with distribution functions FX and FY
respectively. X is said to be smaller than Y in the usual stochastic order, denoted by X ≤st Y ,
if

FX(x) ≥ FY (x), for all x ∈ R.

Definition 1.2 (Supermodular function). A function f : Rd → R is said to be supermodular if,
for any x, y ∈ Rd, it satisfies

f(x) + f(y) ≤ f(x ∧ y) + f(x ∨ y),

where the operators ∧ and ∨ denote coordinate-wise minimum and maximum respectively.

Definition 1.3 (Supermodular Order). Let X and Y be two d−dimensional random vectors.
X is said to be smaller than Y with respect to the supermodular order (denoted by X ≤sm Y) iff

E(f(X)) ≤ E(f(Y)),

for all supermodular functions f : Rd → R, provided the expectations exist.

In Definition 1, from the discussion above, a multivariate generalization of the CoVaR measure
is now introduced.

Definition 1 (Multivariate Lower-Orthant CoVaR). Consider a random vector X which satisfies
the regularity conditions. For α ∈ (0, 1), we define the multivariate lower-orthant CoVaR at
probability level α by

CoVaRα,ω(X) = VaRω(X|X ∈ ∂L(α)) =

 VaRω1(X1|X ∈ ∂L(α))
...

VaRωd(Xd|X ∈ ∂L(α))

 , (4)
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where ω = (ω1, . . . , ωd) is a marginal risk vector with ωi ∈ [0, 1], for i = 1, . . . , d, and ∂L(α) is
the boundary of the set L(α) := {x ∈ Rd+ : F (x) ≥ α}. Therefore,

CoVaRα,ω(X) =

 VaRω1(X1|F (X) = α)
...

VaRωd(Xd|F (X) = α)

 . (5)

In a similar way, the multivariate upper-orthant CoVaR can be defined.

Definition 2 (Multivariate Upper-Orthant CoVaR). Consider a random vector X which satis-
fies the regularity conditions. For α ∈ (0, 1), we define the multivariate upper-orthant CoVaR
at probability level α by

CoVaRα,ω(X) = VaRω(X|X ∈ ∂L(α)) =

 VaRω1(X1|X ∈ ∂L(α))
...

VaRωd(Xd|X ∈ ∂L(α))

 , (6)

where ω = (ω1, . . . , ωd) is a marginal risk vector with ωi ∈ [0, 1], for i = 1, . . . , d, and ∂L(α) is
the boundary of the set L(α) := {x ∈ Rd+ : F (x) ≤ 1− α}. Therefore,

CoVaRα,ω(X) =

 VaRω1(X1|F (X) = 1− α)
...

VaRωd(Xd|F (X) = 1− α)

 . (7)

Remark 1.1. Using the same notation and framework of Definitions 1 and 2, we can also
consider a modified version of the multivariate upper and lower CoVaR proposed in Equations
(4) and (6). Indeed, consider a financial institution Xi and the firm network without Xi, i.e.,
(X1, . . . , Xi−1, Xi+1, . . . , Xd) := Xd−1. The following modified version of the lower CoVaR in
Definition 1 can therefore be proposed:

CoVaRi
α,ω(X) = VaRωi(Xi|F (Xd−1) = α),

where Fd−1 is the (d− 1)-dimensional distribution function associated to the vector Xd−1. Ana-
logously, a modified version of the upper CoVaR in Definition 2 can be :

CoVaR
i
α,ω(X) = VaRωi(Xi|F (Xd−1) = 1− α),

where F d−1 is the survival (d − 1)-dimensional distribution function associated to the vector
Xd−1. It should be borne in mind that, using this modified versions, when d = 2 and ωi = α,
CoVaRα,ω(X) and CoVaRα,ω(X) become the classic CoVaR in (1).

7



The following interpretation of our measures can be considered. The ith component of multi-
variate lower-orthant CoVaR of X (resp. multivariate upper-orthant CoVaR of X) corresponds
to the point x∗ that minimizes the WL function of the associated ith marginal given that X
stands in the α−level curve of its multivariate distribution function (resp. multivariate survival
distribution function).

It is worth mentioning that under regularity conditions, ∂L(α) (resp. ∂L(α)) is the α-level curve
(resp. (1 − α)-level curve) of F (resp. F ) (see for instance Di Bernardino et al. [12], Cuevas
et al. [8]). This means that there is no plateau in the graph of F for each level α. Therefore,
regularity conditions guarantee that the minimizer x∗ is unique for each component i = 1, . . . , d.

Trivially, given that our CoVaRs are the minimizers of suitable expected losses (see (P7)), they
therefore verify the elicitability property. This property was studied by Gneiting [20], while
Bellini and Bignozzi [4] suggested a slightly more restrictive definition. Recently, Embrechts
and Hofert [13] stated that elicitability is a very important property of a risk measure since
it provides a natural methodology to perform backtesting. Ziegel [41] has also studied the
connections between elicitability and coherence properties of risk measures.

Moreover, the solvency of an insurance company depends on the frequency of large claims. One
of the advantages of working with the quantile function is that this function is more robust to
extreme values than other central tendency measures.

2. Properties of the multivariate CoVaR

In this section, the aim is to analyse the lower-orthant and upper-orthant CoVaR introduced
in Definitions 1 and 2 in terms of classic suitable properties of risk measures (see, for instance,
Artzner et al. [2], Denuit et al. [11]).

We focus on invariance properties (see Section 2.1). Furthermore, in Section 2.2, the relationships
between our CoVaR, the univariate VaR, and the multivariate VaR introduced by Cousin and
Di Bernardino [6] are analysed. In Section 2.3, some comonotonic dependence properties for our
measures are investigated.

2.1. Invariance properties

The following results (Proposition 2.1 and Corollary 2.1) are now introduced, which will be
central in proving invariance properties of our risk measures.

Proposition 2.1. Let the function h be such that h(x1, . . . , xd) = (h1(x1), . . . , hd(xd)). Let ω
be a vector in [0, 1]d and α ∈ (0, 1).

(1) If h1, . . . , hd are non-decreasing functions, then, for i = 1, . . . , d,

CoVaRi
α,ω(h(X)) = VaRωi(hi(Xi)|F (X) = α).
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(2) If h1, . . . , hd are non-increasing functions, then, for i = 1, . . . , d,

CoVaRi
α,ω(h(X)) = VaRωi(hi(Xi)|F (X) = α).

Proof. By Definition 1,

CoVaRi
α,ω(h(X)) = VaRωi(hi(Ti))

= arg min
x∈[hi(VaRα(Xi)),+∞)

{
ωi E[(hi(Ti)− x)+] + (1− ωi)E[(hi(Ti)− x)−]

}
,

where hi(Ti) = [hi(Xi)|Fh(X)(h(X)) = α], for i = 1, . . . , d.

Since

Fh(X)(y1, . . . , yd) =

{
F (h−11 (y1), . . . , h

−1
d (yd)) if h1, . . . , hd are non-decreasing functions,

F (h−11 (y1), . . . , h
−1
d (yd)) if h1, . . . , hd are non-increasing functions,

then

CoVaRi
α,ω(h(X)) =

{
VaRωi(hi(Xi)|F (X) = α) if h1, . . . , hd are non-decreasing functions,

VaRωi(hi(Xi)|F (X) = α) if h1, . . . , hd are non-increasing functions.

As in Proposition 2.1, a similar result can also be obtained for the multivariate upper-orthant
CoVaR, by interchanging F with F . From Proposition 2.1, one can trivially obtain the following
property which links the multivariate upper-orthant CoVaR and lower-orthant CoVaR.

Corollary 2.1. Let h be a linear function such that h(x1, . . . , xd) = (h1(x1), . . . , hd(xd)). Let
ω be a vector in [0, 1]d and α ∈ (0, 1).

(1) If h1, . . . , hd are non-decreasing functions, then

CoVaRα,ω(h(X)) = h(CoVaRα,ω(X)) and CoVaRα,ω(h(X)) = h(CoVaRα,ω(X)).

(2) If h1, . . . , hd are non-increasing functions, then

CoVaRα,ω(h(X)) = h(CoVaR1−α,1−ω(X)) and CoVaRα,ω(h(X)) = h(CoVaR1−α,1−ω(X)).

The following result proves the positive homogeneity and invariance translation properties for
risk measures in Definitions 1 and 2.
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Proposition 2.2. Consider a random vector X with a distribution function, which satisfies the
regularity conditions. Let ω be a vector in [0, 1]d and α ∈ (0, 1). The multivariate lower-orthant
and upper-orthant CoVaR satisfy the following properties:
Positive Homogeneity: ∀ c = (c1, . . . , cd) ∈ Rd+,

CoVaRα,ω(cX) = cCoVaRα,ω(X) and CoVaRα,ω(cX) = cCoVaRα,ω(X),

where c X = (c1X1, . . . , cdXd).
Translation Invariance: ∀c ∈ Rd+,

CoVaRα,ω(c + X) = c + CoVaRα,ω(X) and CoVaRα,ω(c + X) = c + CoVaRα,ω(X).

The proof is trivially obtained from Corollary 2.1.

2.2. Relationships between our CoVaR and other risk measures

The relationships between the marginal components of multivariate lower-orthant CoVaR(resp.
multivariate upper-orthant CoVaR) and the univariate VaR are given in Proposition 2.3. Fur-
thermore, Proposition 2.4 provides a comparison between the multivariate VaR introduced by
Cousin and Di Bernardino [6] and our corresponding multivariate CoVaR.

Proposition 2.3. Consider a random vector X with distribution function F , which satisfies the
regularity conditions. Let ω be a vector in [0, 1]d and α ∈ (0, 1). Therefore,

CoVaR
i
α,ω(X) ≤ VaRα(Xi) ≤ CoVaRi

α,ω(X), for i = 1, . . . , d.

Proof. From Definitions 1 and 2,

CoVaRi
α,ω(X) = VaRωi(Ti)

= arg min
x∈[VaRα(Xi),+∞)

{
ωi E[(Ti − x)+] + (1− ωi)E[(Ti − x)−]

}
,

and

CoVaR
i
α,ω(X) = VaRωi(T i)

= arg min
x∈(−∞,VaRα(Xi)]

{
ωi E[(T i − x)+] + (1− ωi)E[(T i − x)−]

}
,

where Ti = [Xi |F (X) = α] and T i = [Xi |F (X) = 1 − α], for i = 1, . . . , d. Hence, the
result is trivially verified since VaRα(Xi) is the lower and upper bound of the domain for the
corresponding WL function, respectively.

Proposition 2.4. Let α be a fixed risk level in (0, 1). Let us denote by VaRi
α(X) and VaR

i
α(X)

the multivariate lower and upper VaR defined by Cousin and Di Bernardino [6]. Given a level
ω∗ ∈ [0, 1]d such that CoVaRi

α,ω∗(X) = VaRi
α(X), for any i ∈ {1, . . . , d}, then
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CoVaRi
α,ω(X) ≥ VaRi

α(X), for all ω ≥ ω∗.

Given a level ω∗ ∈ [0, 1]d such that CoVaR
i
α,ω∗(X) = VaRi

α(X) for any i ∈ {1, . . . , d}, then

CoVaR
i
α,ω(X) ≥ VaR

i
α(X), for all ω ≥ ω∗.

The proof is based on the increasing property of the quantile function. An illustration of Propo-
sition 2.4 in the Clayton copula case is given in Example 4.4.

2.3. Comonotonic dependence properties

Recall that a non-negative random vector X is said to be a comonotonic random vector if there

exists a random variable Z and d increasing functions g1, . . . , gd such that X
d
= (g1(Z), . . . , gd(Z))

(see Proposition 5.16 in McNeil et al. [25]). The following property of the multivariate CoVaR
of a comonotonic random vector can be shown.

Proposition 2.5. Consider a comonotonic random vector X with distribution function F , which
satisfies the regularity conditions. Let ω be a vector in [0, 1]d and α ∈ (0, 1). Therefore,

CoVaRi
α,ω(X) = VaRα(Xi) = CoVaR

i
α,ω(X) for i = 1, . . . , d.

Proof. Let α ∈ (0, 1). Therefore

E[(Xi − x)+|F (X) = α] = E[(Xi − x)+|min{g−11 (x1), . . . , g
−1
d (xd)} = VaRα(Z)]

= E[(Xi − x)+|g−1i (xi) = VaRα(Z)]

= E[(VaRα(Xi)− x)+], for all x in the support of Xi.

In the same way, E[(Xi− x)−|F (X) = α] = E[(VaRα(Xi)− x)−], for all x in the support of Xi.

In addition,

VaRωi(Xi|F (X) = α) = arg min
x∈[VaRα(Xi),+∞)

{
ωi E[(VaRα(Xi)− x)+] + (1− ωi)E[(VaRα(Xi)− x)−]

}
= arg min

x∈[VaRα(Xi),+∞)
(1− ωi) {x−VaRα(Xi)}

= VaRα(Xi), for i = 1, . . . , d.

By using similar arguments to the lower CoVaR and taking into account that FZ(u1, . . . , ud) =
FZ(maxi=1,...,d ui), the result for the upper CoVaR is obtained.

The additivity of the multivariate CoVaR for π-comonotonic couple of random vectors is now
proposed. From Puccetti and Scarsini [33], a couple (X,Y) of d-dimensional random vectors is
a π-comonotonic random vector if there exists a d-dimensional random vector Z = (Z1, . . . , Zd)
and non-decreasing functions f1, . . . , fd, g1, . . . , gd such that
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(X,Y)
d
= ((f1(Z1), . . . , fd(Zd)), (g1(Z1), . . . , gd(Zd))).

Thus, one can prove the following result.

Proposition 2.6. Let (X,Y) be a π-comonotonic couple of random vectors. Therefore, for
ω ∈ [0, 1]d and α ∈ (0, 1),

CoVaRα,ω(X + Y) = CoVaRα,ω(X) + CoVaRα,ω(Y),

CoVaRα,ω(X + Y) = CoVaRα,ω(X) + CoVaRα,ω(Y).

Proof. Let X and Y be two π-comonotonic random vectors. There exists a random vector
Z such that, for any i = 1, . . . , d, Xi = fi(Zi) and Yi = gi(Zi), where fi and gi are non-
decreasing functions. Let f be the function defined by f(x1, . . . , xd) = (f1(x1), . . . , fd(xd)), g
be the function defined by g(x1, . . . , xd) = (g1(x1), . . . , gd(xd)), and h be the function defined
by h(x1, . . . , xd) = (h1(x1), . . . , hd(xd)), where hi := fi + gi, i = 1, . . . , d. Since the function hi,
i = 1, . . . , d is a sum of non-decreasing functions, hi is a non-decreasing function for i = 1, . . . , d.
Furthermore, X + Y = h(Z). From Proposition 2.1, it follows that

CoVaRi
α,ω(X + Y) = VaRωi(hi(Zi)|FZ(Z) = α)

= VaRωi(fi(Zi)|FZ(Z) = α) + VaRωi(gi(Zi)|FZ(Z) = α),

where FZ denotes the distribution function of Z. Consequently,

VaRωi(fi(Zi)|FZ(Z) = α) = VaRωi(fi(Zi)|Ff(Z)(f(Z)) = α) = CoVaRi
α,ω(X),

and

VaRωi(gi(Zi)|FZ(Z) = α) = VaRωi(gi(Zi)|Fg(Z)(g(Z)) = α) = CoVaRi
α,ω(Y),

which concludes the proof for the lower-orthant CoVaR. Similar arguments can be used for the
upper-orthant CoVaR .

2.4. Behaviour of multivariate CoVaR in terms of risk levels

Trivially, due to the increasing property of the quantile function, the components of the multi-
variate risk measures CoVaR and CoVaR are increasing functions of the risk levels ωi ∈ [0, 1].

A property of the monotony of the CoVaR for the risk level α is now given. The increasing
behaviour of CoVaR in terms of level α means that the measures increase with the dangerousness
of the stress scenarios considered.

This monotony is based on the concept of positive regression dependence. Recall that a bivariate
random vector (X,Y ) is said to admit positive dependence with respect to X, PRD(Y |X), if
[Y |X = x1] ≤st [Y |X = x2], ∀x1 ≤ x2, where ≤st denotes the usual stochastic order (see Shaked
and Shanthikumar [37]).

From now on, we denote Ui = FXi(Xi), U = (U1, . . . , Ud), Vi = FXi(Xi), and V = (V1, . . . , Vd).
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Proposition 2.7. Consider a d-dimensional random vector X, which satisfies the regularity
conditions, with marginal distributions FXi, for i = 1, . . . , d, copula C and survival copula C.

(1) If (Ui, C(U)) is PRD(Ui|C(U)) then, for ω ∈ [0, 1]d, CoVaRi
α,ω(X) is a non-decreasing

function of α.

(2) If (Vi, C(V)) is PRD(Vi|C(V)) then, for ω ∈ [0, 1]d, CoVaR
i
α,ω(X) is a non-decreasing

function of α.

Proof. If α1 ≤ α2, then [Ui|C(U) = α1] ≤st [Ui|C(U) = α2] and [Vi|C(V) = 1 − α2] ≤st
[Vi|C(V) = 1 − α1] hold. By using Theorem 1.A.3.a from Shaked and Shanthikumar [37], it is
verified that

[F−1Xi
(Ui)|C(U) = α1] ≤st [F−1Xi

(Ui)|C(U) = α2],

and
[F
−1
Xi (Vi)|C(V) = 1− α2] ≥st [F

−1
Xi (Vi)|C(V) = 1− α1].

Thus, CoVaRi
α1,ω(X) ≤ CoVaRi

α2,ω(X) and CoVaR
i
α1,ω(X) ≤ CoVaR

i
α2,ω(X), for any α1 ≤ α2

which proves that CoVaRi
α,ω(X) and CoVaR

i
α,ω(X) are non-decreasing functions of α.

Assumptions of Proposition 2.7 are automatically satisfied by the large class of Archimedean
copulas. This result will be proved in Corollary 4.3.

3. Comparing CoVaR using stochastic orders

The comparison of risks is an important topic of actuarial sciences, especially in insurance busi-
ness. The behaviour of multivariate CoVaR risk measures is studied under different stochas-
tic ordering conditions. The results below compare the multivariate CoVaR risk measures for
random vectors with the same copula by assuming that margins change in the sense of some
particular stochastic order.

Proposition 3.1. Let X and Y be two d-dimensional random vectors, which satisfy the regu-
larity conditions and with the same copula C. If Xi ≤st Yi, then

CoVaRi
α,ω(X) ≤ CoVaRi

α,ω(Y),

and
CoVaR

i
α,ω(X) ≤ CoVaR

i
α,ω(Y),

for α ∈ (0, 1) and ω ∈ [0, 1]d.
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Proof. Let us denote the i-margins of X and Y by FXi and FYi respectively. Since Xi ≤st Yi,
then F−1Xi

(u) ≤ F−1Yi
(u), ∀u ∈ [0, 1]. Using Sklar’s Theorem (see Theorem 2.3.3 in Nelsen [31]),

the random variables Ui
d
= FXi(Xi), for i = 1, . . . , d, are uniformly distributed and their joint

distribution is equal to C. Similarly, the random variables U ′i
d
= FYi(Yi), for i = 1, . . . , d.

Therefore,

[Xi |C(U) = α]
d
= [F−1Xi

(Ui) |C(U) = α], and [Yi |C(U′) = α]
d
= [F−1Yi

(U ′i)|C(U′) = α],

for i = 1, . . . , d. Observe that [Ui |C(U) = α]
d
= [U ′i |C(U′) = α]. From Theorem 1.A.2

in Shaked and Shanthikumar [37], [Xi |C(U) = α] ≤st [Yi |C(U′) = α] holds. Hence, the
statement for the lower-orthant CoVaR is verified. The proof of the second statement is also
verified using the same arguments.

The result in Proposition 3.1 will be illustrated in the Archimedean case in Example 4.5.

Corollary 3.1. Let X and Y be two d-dimensional random vectors satisfying the regularity

conditions and with the same copula C. If Xi
d
= Yi, then, for α ∈ (0, 1) and ω ∈ [0, 1]d,

CoVaRi
α,ω(X) = CoVaRi

α,ω(Y), and CoVaR
i
α,ω(X) = CoVaR

i
α,ω(Y).

Finally, some results are provided for the behaviour of our CoVaR measures with respect to a
variation of the copula structure, with unchanged marginal distributions.

Proposition 3.2. Let X and X∗ be two d-dimensional continuous random vectors, which satisfy
the regularity conditions with joint distribution functions F and G, and with the same margins
FXi and FX∗i , for i = 1, . . . , d. Let C (resp. C∗) be the copula function associated with X (resp.

X∗) and C (resp. C
∗
) the survival copula function associated with X (resp. X∗).

(1) Let Ui = FXi(Xi), U
∗
i = FXi∗(X

∗
i ), U = (U1, . . . , Ud) and U∗ = (U∗1 , . . . , U

∗
d ).

If [Ui |C(U) = α] ≤st [U∗i |C∗(U∗) = α], then

CoVaRi
α,ω(X) ≤ CoVaRi

α,ω(X∗) for α ∈ (0, 1), ωi ∈ [0, 1], i = 1, . . . , d.

(2) Let Vi = FXi(Xi), V
∗
i = FXi∗(X

∗
i ), V = (V1, . . . , Vd) and V∗ = (V ∗1 , . . . , V

∗
d ).

If [Vi |C(V) = 1− α] ≤st [V ∗i |C
∗
(V∗) = 1− α], then

CoVaR
i
α,ω(X) ≥ CoVaR

i
α,ω(X∗) for α ∈ (0, 1), ωi ∈ [0, 1], i = 1, . . . , d.

Proof. By using (P2) and (P7), trivially it holds that

ωi = FX∗i |FX∗ (X
∗)=α(CoVaRi

α,ω(X∗)) = FXi|FX(X)=α(CoVaRi
α,ω(X)), for i = 1, . . . , d. (8)

14



On the other hand, since F−1Xi
(u) for u ∈ [0, 1] is a non-decreasing function, and since Xi and

X∗i have the same distribution, then from Theorem 1.A.3.a in Shaked and Shanthikumar [37],
it is verified that

FF−1
Xi

(U∗i ) |C∗(U
∗)=α(u) ≤ FF−1

Xi
(Ui) |C(U)=α(u), ∀u ∈ [0, 1]. (9)

Therefore, from (8) and (9), CoVaRi
α,ω(X) ≤ CoVaRi

α,ω(X∗).

Following the above development for Xi |FX(X) = 1 − α and X∗i |FX∗(X
∗) = 1 − α, and by

using the survival quantile function F
−1
Xi (u) for u ∈ [0, 1], the result for upper-orthant CoVaR

holds.

An application of Proposition 3.2 in the case of Archimedean copulas is given in Corollary 4.4.

4. Multivariate CoVaR for Archimedean copulas

Interestingly, one can readily show that when the random vector X follows an Archimedean
copula then the analytical expression for the CoVaR can be easily computed, in a similar way to
that used in Cousin and Di Bernardino [6] to compute their multivariate Value-at-Risk. Indeed,
Archimedean copulas have useful relationships between their generator and the probability asso-
ciated to their level curves L(α) and L(α) (see the notion of multivariate probability integral
transformation in Genest and Rivest [18], Barbe et al. [3] and references therein). Furthermore,
the results and properties, which were previously proved in this paper, can easily be applied in
the large class of Archimedean copulas.

Note that a d-dimensional Archimedean copula with generator φ and its inverse φ−1 is defined
by

C(u1, . . . , ud) = φ−1(φ(u1) + . . .+ φ(ud)), for all (u1, . . . , ud) ∈ [0, 1]d.

McNeil and Nešlehová [26] obtained an important stochastic representation of Archimedean
copulas, recalled in Proposition 4.1 below.

Proposition 4.1 (McNeil and Nešlehová [26]). Let U = (U1, . . . , Ud) be distributed according
to a d-dimensional Archimedean copula with generator φ, then

(φ(U1), . . . , φ(Ud))
d
= RS,

where S = (S1, . . . , Sd) is uniformly distributed on the unit simplex
{
x ≥ 0|

∑d
k=1 xk = 1

}
and R

is an independent non-negative scalar random variable which can be interpreted as the radial part
of (φ(U1), . . . , φ(Ud)) since

∑d
k=1 Sk = 1. The random vector S follows a symmetric Dirichlet

distribution, whereas the distribution of R
d
=
∑d

k=1 φ(Uk) is directly related to the generator φ
through the inverse Williamson transform of φ−1.
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As a result, any random vector U = (U1, . . . , Ud) which follows an Archimedean copula with
generator φ can be represented as a deterministic function of C(U) and an independent random
vector S = (S1, . . . , Sd) uniformly distributed on the unit simplex, i.e.,

(U1, . . . , Ud)
d
= (φ−1(S1φ(C(U))), . . . , φ−1(Sdφ(C(U)))). (10)

Corollary 4.1. Let X be a d-dimensional random vector with an Archimedean copula with
generator φ and α ∈ (0, 1). Therefore,

CoVaRi
α,ω(X) = VaRωi

[
F−1Xi

(φ−1(Siφ(α)))
]
, for i = 1, . . . , d, (11)

where ω ∈ [0, 1]d and Si is a random variable with Beta(1, d− 1) distribution.

Proof. Note that X is distributed as (F−1X1
(U1), . . . , F

−1
Xd

(Ud)), where U = (U1, . . . , Ud) follows
an Archimedean copula C with generator φ. Consequently, each component i = 1, . . . , d of the
multivariate risk measure introduced in Definition 1 can be expressed as

CoVaRi
α,ω(X) = arg min

x∈[VaRα(Xi),+∞)

{
ωi E[(Ti − x)+] + (1− ωi)E[(Ti − x)−]

}
,

where Ti = [F−1Xi
(Ui)|C(U) = α]. Moreover, from representation (10), the following relation is

verified
[U|C(U) = α]

d
= (φ−1(S1φ(α)), . . . , φ−1(Sdφ(α))), (12)

since S and C(U) are stochastically independent. The result comes from the fact that the
random vector S follows a symmetric Dirichlet distribution.

Note that, by using (12), the marginal distributions of U given C(U) = α can be expressed in
a very simple way, that is,

P (Uk ≤ u |C(U) = α) =

(
1− φ(u)

φ(α)

)d−1
for 0 < α < u < 1, and any k = 1, . . . , d. (13)

Corollary 4.2. Let X be a d-dimensional random vector with an Archimedean survival copula
with generator φ and α ∈ (0, 1). Therefore,

CoVaR
i
α,ω(X) = VaRωi

[
F
−1
Xi (φ

−1(Siφ(1− α)))
]

for i = 1, . . . , d, (14)

where ω ∈ [0, 1]d and Si is a random variable with Beta(1, d− 1) distribution.

The proof is similar to Corollary 4.1 and is therefore omitted here.

From (11) and (14), analytical expressions of the lower-orthant and the upper-orthant CoVaR
for a vector X = (X1, . . . , Xd) with a particular Archimedean copula are now derived. Assume
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that Xi is uniformly-distributed on [0, 1], for i = 1, . . . , d. Since Archimedean copulas are
exchangeable, the components of CoVaRα,ω(X) (resp. CoVaRα,ω(X)) are equal in the case
where ω1 = . . . = ωd. Furthermore, it is also possible to obtain expressions for the upper-
orthant CoVaRα,ω for X̃ = (1−X1, . . . , 1−Xd) since, by using Corollary 2.1:

CoVaR
i
α,ω(X̃) = 1− CoVaRi

1−α,1−ω(X).

4.1. Analytical expressions of CoVaR measures for Archimedean copulas

In the following, Corollary 4.1 is illustrated for some commonly used Archimedean copula families
(see Example 4.1, 4.2, 4.3).

Example 4.1 (Bivariate Clayton family). In Table 1 (left), the bivariate random vector (X,Y )
is considered with uniform marginal distributions and a Clayton copula with parameter θ ≥ −1
is considered. One can readily show that

∂CoVaR1
α,ω

∂θ ≤ 0 and
∂CoVaR

1
α,ω

∂θ ≥ 0, for θ ≥ −1, α ∈ (0, 1) and ω ∈ [0, 1].

Hence, the components of the multivariate CoVaR (resp. CoVaR) are decreasing (resp. in-
creasing) functions of the dependence parameter θ. Interestingly, in the comonotonic case, both
multivariate risk measures CoVaR and CoVaR correspond to the vector composed of the univari-
ate VaR at level α associated with each component. These properties are illustrated in Figure
1 where upper and lower CoVaR are plotted as functions of the risk level ω for different values
of dependence parameter θ and for a fixed level α. Note that, when the parameter θ increases,
the lower CoVaR tends to decrease. Conversely, the upper bound for the upper CoVaR is repre-
sented by the perfect positive dependence case. The latter empirical behaviours will be formally
confirmed in the following (see Corollary 4.4).

θ CoVaR1
α,ω,θ(X,Y )

(−1,∞)
(
1 +

(
1
αθ
− 1
)

(1− ω1)
)−1/θ

−1 1− (1− ω1)(1− α)

0 α1−ω1

1 α
(1−α)(1−ω1)+α

∞ α

θ CoVaR1
α,ω,θ(X,Y )

[−1, 1) 1−θ(
1−θ(1−α)

α

)(1−ω1)−θ
0 α1−ω1

Table 1: CoVaR1
α,ω(X,Y ), for a bivariate Clayton copula (left) and a bivariate Ali-Mikhail-Haq copula (right).
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Figure 1: Behaviour of CoVaR1
α,ω(X,Y ) (left) and CoVaR

1
α,ω(1−X, 1− Y ) (right) with respect to the risk level

ω for different values of dependence parameter θ and for α = 0.7. Here, (X,Y ) is a bivariate random vector with
uniform marginal distributions and a Clayton copula with parameter θ ≥ −1.

Example 4.2 (Bivariate Ali-Mikhail-Haq family). Table 1 (right) illustrates the analytical ex-
pressions of CoVaR for the first component of a bivariate random vector with uniform marginal
distributions and a Ali-Mikhail-Haq copula, for θ ∈ [−1, 1).

Recall that bivariate Archimedean copulas can be extended to d−dimensional copulas, with
d > 2, on the condition that the generator φ is a d−monotone function in [0,∞) (see McNeil
and Nešlehová [26]). The bivariate Gumbel family can be generalized in dimension d, for θ ≥ 1
(see Example 4.25 in Nelsen [31]).

Example 4.3 (3−dimensional Gumbel family). In this case, analytical expressions of the first
component of lower CoVaR of a 3−dimensional random vector (X1, X2, X3) with uniform marginal
distributions and a Gumbel copula, for θ ≥ 1 are provided in Table 2.
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θ CoVaR1
α,ω,θ(X1, X2, X3)

[1,∞) α(1−√ω1)1/θ

1 α(1−√ω1)

∞ α

Table 2: CoVaR1
α,ω(X1, X2, X3) for a 3−dimensional Gumbel copula.

4.2. Illustrations of some properties for Archimedean copulas

In the following, some theoretical properties presented in Section 2 are illustrated in the large
class of d−dimensional Archimedean copula. Firstly, using Corollary 4.1, an illustration of
Proposition 2.4 in the Clayton copula case is provided.

Example 4.4. Assume that X is a bivariate random vector with uniform marginal distributions
and Clayton copula. The distribution function of X is therefore given by:

F (x1, x2) =
[
max{x−θ1 + x−θ2 − 1, 0}

]−1/θ
, for θ ∈ [−1,∞)\{0} and (x1, x2) ∈ [0, 1]2.

Then, by straightforward computation, one can obtain, for α ∈ (0, 1) and ω1 ∈ [0, 1],

VaR1
α(X) = θ

θ−1
αθ−α
αθ−1 , and CoVaR1

α,ω(X) =
[
1 +

(
1
αθ
− 1
)

(1− ω1)
]−1/θ

,

where VaR1
α(X) is the first-component lower VaR proposed by Cousin and Di Bernardino [6].

Consequently, both measures coincide in

ω∗ =

(
α−θ −

(
θ
θ−1

αθ−α
αθ−1

)−θ)
[α−θ − 1]−1.

For a fixed α = 0.6 we obtain the results gathered in Figure 2. VaRα(X) represents the case
that the complete risk of the insurance company is reinsured by another company (x = 0) (see
Cousin and Di Bernardino [6]). The insurance company gives the total weight to the expected
cost of the reinsurance company, that is, establishes ω = 1. By contrast, CoVaR defines the
minimum retention of the insurance company given a weight ω ∈ [0, 1] for the expected cost of the
reinsurance company. For instance, for θ = 2, it can be observed in Figure 2 that VaR1

0.6(X) =
0.75 and the cut-off point is ω∗ = 0.56. Similarly, analytical expressions for multivariate upper
CoVaR and comparisons with the associated VaRα(X) (see Cousin and Di Bernardino [6]) can
be obtained.

Corollary 4.3 proves that assumptions of Proposition 2.7 are automatically satisfied in the large
class of d-dimensional Archimedean copulas.
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Figure 2: VaR1
α(X) and CoVaR1

α,ω(X). Here, (X,Y ) is a bivariate random vector with uniform marginal distri-
butions and a Clayton copula with parameter θ ≥ −1, and α = 0.6.

Corollary 4.3. Consider a d-dimensional random vector X, which satisfies the regularity con-
ditions, with marginal distributions FXi, for i = 1, . . . , d, copula C and survival copula C.

(1) If C is a d-dimensional Archimedean copula, then CoVaRi
α,ω(X) is a non-decreasing func-

tion of α with ω ∈ [0, 1]d.

(2) If C is a d-dimensional Archimedean copula, then CoVaR
i
α,ω(X) is a non-decreasing func-

tion of α with ω ∈ [0, 1]d.

Proof. Let Ui = FXi(Xi), U = (U1, . . . , Un), Vi = FXi(Xi) and V = (V1, . . . , Vn). Since C
is the copula of X, then U is distributed as C. If C is an Archimedean copula, from (13),
P (Ui > u|C(U) = α) is a non-decreasing function of α. Similarly, P (Vi > u|C(V) = 1 − α)
is a non-decreasing function of α. The results are therefore trivially derived from Proposition
2.7.

In the following, an illustration of Proposition 3.1 is provided in the Archimedean case.

Example 4.5. Three different random vectors (X,Yi), for i = 1, . . . , 3 are considered with the
same bivariate Clayton copula with dependence parameter 2, such that

X ∼ Exp(1), Y1 ∼ Exp(2), Y2 ∼ Burr(5, 1), Y3 ∼ Fréchet(4).

Since Y1 ≤st Y2 ≤st Y3, from Proposition 3.1, then

CoVaR2
α,ω(X,Y1) ≤ CoVaR2

α,ω(X,Y2) ≤ CoVaR2
α,ω(X,Y3),

20



for any ω ∈ [0, 1]2 and α ∈ (0, 1). The results are gathered in Figure 3. It should also be
emphasised that, by Corollary 3.1, the first components of the multivariate lower-orhant CoVaR
and upper-orthant CoVaR for the four vectors coincide.
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Figure 3: Left: Distribution functions of random variables Yi, for i = 1, . . . , 3, with Y1 ∼ Exp(2), Y2 ∼ Burr(5, 1)
and Y3 ∼ Fréchet(4). Right: CoVaR2

α,ω(X,Yi) for i = 1, . . . , 3, with the same copula Clayton with parameter 2,
X ∼ Exp(1), Y1 ∼ Exp(2), Y2 ∼ Burr(5, 1), Y3 ∼ Fréchet(4) and α = 0.8.

The following remark will be useful in Corollary 4.4.

Remark 4.1. Let U and U∗ be two random vectors with copula C and C∗, respectively, and
with uniform marginal distributions. It is easy to prove that U ≤sm U∗ implies C(u) ≤ C∗(u),
for u ∈ [0, 1]d (Section 6.3.3 in Denuit et al. [11]). In addition, for Gumbel, Frank, Clayton, and
Ali-Mikhail-Haq families, it can be shown that an increase of θ yields an increase of dependence
in the sense of the supermodular order (see examples in Wei and Hu [39], Joe [22]). As a
consequence, in these cases,

θ ≤ θ∗ ⇒ C(u) ≤ C∗(u), for u ∈ [0, 1]d. (15)

Corollary 4.4. Let X be a d−dimensional random vector satisfying the regularity conditions
with copula C and survival copula C.

If C is a d−dimensional Archimedean copula that satisfies Property (15) in Remark (4.1), each
component of CoVaRα,ω(X) is a decreasing function of θ, with α ∈ (0, 1) and ω ∈ [0, 1]d.

If C is a d−dimensional Archimedean copula that satisfies Property (15) in Remark (4.1), each
component of CoVaRα,ω(X) is a increasing function of θ, with α ∈ (0, 1) and ω ∈ [0, 1]d.

It should be noted that, for instance for Gumbel, Frank, Clayton and Ali-Mikhail-Haq families,
assumptions of Corollary 4.4 are satisfied. The reader is referred, for instance, to the behaviour
of the lower and upper CoVaR with respect to the copula parameter θ presented in Figure 1.
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Proof. We consider two Archimedean copulas of the same family, Cθ (associated to vector U)
and Cθ∗ (associated to vector U∗) with generator φθ and φθ∗ such that θ ≤ θ∗. By Proposition
3.2, we have to prove that [U∗i |Cθ∗(U∗) = α] ≤st [Ui|Cθ(U) = α] holds for i = 1, . . . , d. On the
other hand, from Eq. (13), it is readily obtained that

[U∗i |Cθ∗(U∗) = α] ≤st [Ui|Cθ(U) = α] for any α ∈ (0, 1)⇔ φθ∗

φθ
is a decreasing function.

Finally, by taking into account Remark 4.1 for Clayton, Frank, Gumbel and Ali-Mikhail-Haq
families, the function φθ∗

φθ
is decreasing when θ ≤ θ∗. Therefore, from Proposition 3.2, an increase

of the parameter θ yields a decrease in each component of CoVaRα,ω(X). The second statement
is obtained trivially using the same arguments.

4.3. A weak subadditivity tail property in the Archimedean cases

The additivity of our CoVaR is provided in Section 2.3 in a comonotonic dependence vectorial
case (see Proposition 2.6 for π-comonotonic vectors). In the following, the aim is to study the
condition for a copula to obtain subadditivity inequalities for our lower CoVaR .

To this end, as in the univariate case (see Dańıelsson et al. [9]), we focus on the tails of the
considered multivariate distribution.

In the following, two notions of regular variation are applied. A measurable function U : R→ R

is regularly varying at ∞ with index ρ (denoted by U ∈ RVρ), if it holds that lim
t→∞

U(tx)

U(t)
= xρ,

for any real number x > 0. Also, a random vector X with joint distribution function F is said to
be multivariate regularly varying (X ∈MRV ) if there exists a Radon measure ν on [0,∞]\{0},
such that

lim
t→∞

1− F (tx)

1− F (t1)
= ν([0,x]c),

for all points x ∈ [0,∞)\{0}, which are continuity points of the function ν([0, ·]c). Observe also
that for any non-negative MRV random vector X, its non-degenerate univariate margins Xi

have regularly varying right tails, that is,

F i(t) := t−βL(t), t ≥ 0,

where β > 0 is the marginal heavy-tail index and L(t) is a slowly varying function, i.e.
L(x t)/L(t) → 1 as t → ∞ for any x > 0. Further details about regular variation can be
found in Resnick [34], Resnick [35] and Embrechts et al. [14]. Therefore in this setting, the
following result can be obtained.

From now on, the following notation is considered. Let X be a bivariate random vector with
distribution function F , Archimedean copula C and with same margins FXi , i = 1, 2. Let us
denote Ti = [Xi|F (X) = α], for α ∈ (0, 1), i = 1, 2.

Theorem 4.1. Assume that φ is twice differentiable and that (φ ◦ FX1) ∈ RV−β, β > 0. Then
T := (T1, T2) ∈MRV .
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Proof. Firstly, the copula of random vector T is computed. Note that

F (x1, x2) = φ−1(φ(FX1(x1)) + φ(FX2(x2))).

For simplicity, the univariate random variable F (X1, X2) is denoted by V . Similarly to Theorem
1 in Wang and Oakes [38], we obtain

P[V ≤ α,X1 ≤ x1, X2 ≤ x2] =

{
α− φ(α)

φ′(α) + φ(F (x1,x2))
φ′(α) , if 0 < α ≤ F (x1, x2);

0, if α > F (x1, x2).
(16)

By straightforward calculation, it can be shown that the distribution function of T is defined as

FT(x1, x2) =

{P[V=α,X1≤x1,X2≤x2]
P (V=α) , if 0 < α ≤ F (x1, x2);

0, if α > F (x1, x2),

=

{
1− φ(F (x1,x2))

φ(α) , if 0 < α ≤ F (x1, x2);

0, if α > F (x1, x2),
(17)

where P (V = α) is the density in α of random variable V .

On the other hand, for i = 1, 2,

FTi(xi) =

{
1− φ(FXi (xi))

φ(α) , if α ≤ FXi(xi);
0, if α > FXi(xi),

and

F−1Ti
(wi) =

{
(φ ◦ FXi)−1(φ(α)(1− wi)), if 0 < wi ≤ 1;

0, if wi = 0.

Therefore, the copula of the random vector T is

CT(u1, u2) = FT(F−1T1
(u1), F

−1
T2

(u2)) =

{
u1 + u2 − 1, if u1 + u2 ≥ 1;

0, otherwise.

It is now shown that T ∈MRV by Theorem 3.2 in Weng and Zhang [40]. Therefore, conditions
(C1) and (C2) of Theorem 3.2 in Weng and Zhang [40] are proved. As a result of that (φ◦FX1) ∈
RV−β, β > 0, we trivially obtain F T1 ∈ RV−β, β > 0 (C1).

In addition, since X has the same margins then,

lim
t→∞

F T2(t)

F T1(t)
= 1,
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that is, F T1 and F T2 have equivalent tails. (C2)

Finally, the lower tail dependence function of the survival copula of T,

λ2(u1, u2) = lim
t→0+

CT(tu1, tu2)

t
,

is equal to 0. Due to that and considering (C1) and (C2), by Theorem 3.2 in Weng and Zhang
[40], T ∈MRV .

Remark 4.2. Note that, if (φ ◦FX1) ∈ RV−β, β > 1, by applying Theorem 4.1 and Proposition
1 in Dańıelsson et al. [9] for T, then the VaR of T is subadditive sufficiently deep in the tail
regions. In this case, a weak subadditivity of the proposed multivariate lower CoVaR is obtained,
that is, since VaRω(Ti) = CoVaRi

α,ω(X), then

VaRω(T1 + T2) < CoVaR1
α,ω(X) + CoVaR2

α,ω(X) (18)

sufficiently deep in tail regions.

Now, an illustration of Remark 4.2 is presented (see Figure 4 and Example 4.6 below).
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Figure 4: CoVaR1
α,ω(X) + CoVaR2

α,ω(X) and VaRω(T1 + T2) for X with X1 ∼ X2 ∼ Pareto(2) and a Gumbel
copula with θ = 2, as in Example 4.6, for α = ω (left panel) and for α = 0.75 (right panel).

Example 4.6. In this example, a bivariate random vector, X, with X1 ∼ X2 ∼ Pareto(2) and
a Gumbel copula, θ = 2, is considered. Analytical expressions of CoVaRi

α,ω(X), i = 1, 2 are
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obtained. In addition, VaRω(T1 + T2) is calculated by numeric approximation. The obtained
results are gathered in Figure 4: for ω = α ∈ (0, 1) (see Figure 4, left) and for α = 0.75,
ω ∈ (0, 1) (see Figure 4, right). It can be easily observed that (18) is verified for large ω.

5. Estimation

Semiparametric estimators by assuming Archimedean copula for the proposed multivariate Co-
VaRs are given in this section. Moreover, illustrations with simulated and insurance real data
are provided.

Firstly, let assume that X has an Archimedean copula structure. The generator of an Archi-
medean copula depends on the dependence parameter θ of the copula (see, e.g., Table 4.1. in
Nelsen [31]). Consequently, a semiparametric estimator of the generator is obtained by conside-
ring a maximum pseudo-likelihood estimator of the dependence parameter θ associated with this
generator. Following these considerations and using Equation (11), we introduce a semiparame-
tric estimator for the multivariate lower CoVaR (see Definition 5.1) by using a semiparametric
estimation for θ and the empirical quantile estimation.

Definition 5.1. Let X be a d−dimensional random vector with Archimedean copula with ge-
nerator φθ and α ∈ (0, 1). A semiparametric estimator of the i−component of the multivariate
lower CoVaR is defined as

ĈoVaR
i

α,ω(X) = V̂aRωi

[
F̂−1Xi

(φ−1
θ̂n

(Siφθ̂n(α)))
]
, for i = 1, . . . , d, (19)

where ω ∈ [0, 1]d, Si is a random variable with Beta(1, d − 1) distribution, V̂aRω(X) is the
empirical estimator of VaRω(X), φθ̂n is the semiparametric estimator of φθ and F̂−1Xi

is the

empirical estimator of F−1Xi
for i = 1, . . . , d.

Secondly, let assume that X has an Archimedean survival copula structure. From Equation
(14), we introduce a semiparametric estimation of multivariate upper CoVaR (see Definition
5.2) using the semiparametric estimation of the generator of the Archimedean survival copula
and the empirical estimation of the quantile functions.

Definition 5.2. Let X be a d−dimensional random vector with Archimedean survival copula with
generator φθ and α ∈ (0, 1). A semiparametric estimator of the i−component of the multivariate
upper CoVaR is defined as

ĈoVaR
i

α,ω(X) = V̂aRωi

[
F̂
−1
Xi (φ

−1
θ̂n

(Siφθ̂n(1− α)))

]
, for i = 1, . . . , d, (20)

where ω ∈ [0, 1]d, Si is a random variable with Beta(1, d− 1) distribution, V̂aRω(X) is the em-

pirical estimator of VaRω(X), φθ̂n is the semiparametric estimator of φθ and F̂
−1
Xi the empirical

estimator of F
−1
Xi for i = 1, . . . , d.
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The estimator of the dependence parameter θ considered in Definitions 5.1 and 5.2 is obtained
by a pseudo-likelihood estimation procedure. Genest et al. [17] investigate the properties of the
semiparametric estimator for θ and study the efficiency, consistency and asymptotic normality of
θ̂n. Proposition 2.1 in Genest et al. [17] shows that, under regularity conditions, θ̂n is consistent
and n1/2(θ̂n − θ) converges in distribution to a normal distribution with known variance. The
regularity conditions of Proposition 2.1 in Genest et al. [17] are satisfied, among others, by
Archimedean copulas. Therefore, since φθ is a continuous function, φθ̂n is consistent from

Proposition 2.1 in Genest et al. [17]. On the other hand, empirical quantile estimator F̂−1Xi
(p)

is consistent if quantile F−1Xi
(p) is unique (see Serfling [36] page 75). The empirical quantile

estimator F̂−1Xi
(p) is also asymptotically normal if FXi possesses left- or right-hand derivative in

the point F−1Xi
(p) (see Serfling [36] page 77). However, due to Definitions 5.1 and 5.2, CoVaRs

estimators are the quantiles of non-independent observations. Consequently, consistency and
asymptotic normal properties of these estimators need a supplementary study, by using the
above results in Genest et al. [17] and in Serfling [36], which is beyond the scope of this paper.
Actually, a new research in this line is now being developed by the authors.

5.1. Simulated data

The aim of this section is to evaluate the performance of the estimators introduced before. In
particular, we focus on Definition 5.1 (the multivariate upper CoVaR estimator could similarly
be studied). For this purpose, several simulated cases of the bivariate lower CoVaR estimator
are studied. Although we restrict ourselves to the bivariate case, these illustrations could be
adaptable in any dimension.

In the following, the ratio ĈoVaR
1

α,ω(X,Y )/CoVaR1
α,ω(X,Y ) is considered for different values of

α and ω and two different sizes of the sample: n = 600 (Figures 5 and 7) and n = 1000 (Figures
6 and 8). We generate our simulated data from the following two models: Ali-Mikhail-Haq
copula with θ = 0.5 and uniform marginals (Figures 5 and 6), and Gumbel copula with θ = 2
and Pareto marginals with location parameter 1 and shape parameter 2 (Figures 7 and 8, Tables
3, 4 and 5).

We analyse misspecification model error, in order to study the bias and the variance of the
estimation when the parametric form of the copula is not appropriate to the data. To this
aim we use Clayton, Gumbel and Frank copula in Figures 5 and 6; Joe, Clayton and Frank
copula in Figures 7 and 8. Obviously, the true model is included in the boxplot analysis, i.e.,
Ali-Mikhail-Haq copula in Figures 5 and 6 and Gumbel copula in Figures 7 and 8.

Remark in Figures 5 and 6 that boxplots associated to Ali-Mikhail-Haq, Clayton and Frank
copulas are similar in terms of bias and variance. Conversely, the Gumbel boxplot is obviously
the worst one. This is clearly related to the domain of attraction (in the upper tails) of these
copula structures (asymptotically dependence structure for Gumbel copula, asymptotically in-
dependence structure for Ali-Mikhail-Haq, Clayton and Frank copulas, see Remark 5.1).
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In Figures 7 and 8 the Gumbel copula is the true (best) model. Joe copula behaves asymptoti-
cally similar to Gumbel one. Conversely, Frank and Clayton copulas are clearly different.

Remark 5.1. Recall that a copula has upper tail dependence if the upper tail dependence pa-
rameter λU for this copula is in (0, 1]. If λU = 0, the copula is no upper tail dependence, that
is, independent in the tail. Clayton, Frank and Ali-Mikhail-Haq copulas are independent in the
tail (i.e., λClaytonU = λFrankU = λAMH

U = 0). Gumbel and Joe copulas are upper tail dependence
copulas (i.e., λGumbelU = λJoeU = 2− 21/θ). For more details see Nelsen [31].

Finally, for both Ali-Mikhail-Haq with uniform marginals and Gumbel copula with Pareto
marginals, the larger sample size n is, the better the estimation is.
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Figure 5: (X,Y ) follows a bivariate Ali-Mikhail-Haq copula with parameter θ = 0.5 and uniform marginals. Box

plot for the ratio ĈoVaR
1

α,ω/CoVaR1
α,ω for n = 600 with α = 0.75 and ω = 0.9 (left panel); α = 0.9, and ω = 0.95

(right panel). Theoretical values are CoVaR1
0.75,0.9 = 0.9698 and CoVaR1

0.9,0.95 = 0.9946. We take M = 500
Montecarlo simulations.

In the following we denote ĈoVaRα,ω(X,Y ) =
(

ĈoVaR
1

α,ω(X,Y ), ĈoVaR
2

α,ω(X,Y )
)

the mean

(coordinate by coordinate) of ĈoVaRα,ω(X,Y ) on M Montecarlo simulations (M = 500 in this
section).

From now on, the empirical standard deviation (coordinate by coordinate) is defined as σ̂ =
(σ̂1, σ̂2) with

σ̂1 =

√√√√ 1

M − 1

M∑
j=1

(
ĈoVaR

1

α,ω(X,Y )j − ĈoVaR
1

α,ω(X,Y )

)2

.
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Figure 6: (X,Y ) follows a bivariate Ali-Mikhail-Haq copula with parameter θ = 0.5 and uniform marginals. Box

plot for the ratio ĈoVaR
1

α,ω/CoVaR1
α,ω, for n = 1000 with α = 0.75 and ω = 0.9 (left panel); α = 0.9 and ω = 0.95

(right panel). Theoretical values are CoVaR1
0.75,0.9 = 0.9698 and CoVaR1

0.9,0.95 = 0.9946. We take M = 500
Montecarlo simulations.
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Figure 7: (X,Y ) follows a bivariate Gumbel copula with parameter θ = 2 and Pareto marginals with location

parameter 1 and shape parameter 2. Box plot for the ratio ĈoVaR
1

α,ω/CoVaR1
α,ω for n = 600 with α = 0.75

ω = 0.9 (left panel); α = 0.9 and ω = 0.95 (right panel). Theoretical values are CoVaR1
0.75,0.9 = 3.3911 and

CoVaR1
0.9,0.95 = 6.5535. We take M = 500 Montecarlo simulations.
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Figure 8: (X,Y ) follows a bivariate Gumbel copula with parameter θ = 2 and Pareto marginals with location

parameter 1 and shape parameter 2. Box plot for the ratio ĈoVaR
1

α,ω/CoVaR1
α,ω for n = 1000 with α = 0.75

and ω = 0.9 (left panel); α = 0.9 and ω = 0.95 (right panel). Theoretical values are CoVaR1
0.75,0.9 = 3.3911 and

CoVaR1
0.9,0.95 = 6.5535. We take M = 500 Montecarlo simulations.

RMSE = (RMSE1, RMSE2) corresponds to the relative mean square error (coordinate by
coordinate) with

RMSE1 =

√√√√√ 1

M

M∑
j=1

 ĈoVaR
1

α,ω(X,Y )j − CoVaR1
α,ω(X,Y )

CoVaR1
α,ω(X,Y )

2

,

where M is the number of Montecarlo simulations. Similarly, RMSE2 and σ̂2 are defined.

RMES1 and σ̂1 in terms of ω (resp. α) with α = 0.7 fixed (resp. ω = 0.75 fixed) for Gum-
bel copula with parameter θ = 2 and Pareto marginals with location parameter 1 and shape
parameter 2 are shown in Table 3 (resp. Table 4). It can be observed that, the more α and
ω increase, the more RMES1 and σ̂1 increase. Similarly, for Gumbel copula with parameter
θ = 2 and Pareto marginals with location parameter 1 and shape parameter 2, RMES1 and σ̂1
in terms of the sample size n for α = 0.9 and ω = 0.98 fixed are given in Table 5. As expected,
RMES1 and σ̂1 decrease when the sample size increases.

5.2. Insurance real data

The estimators of the multivariate CoVaRs measures proposed in Definitions 1 and 2 are now
calculated in an insurance real case: Loss-ALAE data (in the log scale). Considered data set
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ω Gumbel Joe Clayton Frank

0.70 0.034 (0.081) 0.039 (0.078) 0.253 (0.145) 0.095 (0.098)

0.75 0.037 (0.091) 0.044 (0.084) 0.304 (0.175) 0.116 (0.122)

0.80 0.037 (0.096) 0.049 (0.088) 0.369 (0.210) 0.144 (0.134)

0.86 0.043 (0.122) 0.060 (0.111) 0.491 (0.333) 0.211 (0.207)

0.90 0.046 (0.140) 0.069 (0.122) 0.618 (0.437) 0.280 (0.264)

0.95 0.059 (0.212) 0.097 (0.173) 0.914 (0.864) 0.464 (0.503)

0.98 0.080 (0.360) 0.135 (0.281) 1.394 (2.040) 0.812 (1.248)

0.99 0.106 (0.559) 0.169 (0.415) 1.911 (3.900) 1.188 (2.831)

Table 3: (X,Y ) follows a bivariate Gumbel copula with parameter θ = 2 and Pareto marginals with location
parameter 1 and shape parameter 2. Evolution of RMSE1 and σ̂1 (in parenthesis) in terms of ω for α = 0.7 fixed.
We take 500 Montecarlo simulations.

α Gumbel Joe Clayton Frank

0.75 0.038 (0.105) 0.049 (0.094) 0.324 (0.219) 0.153 (0.154)

0.80 0.045 (0.138) 0.059 (0.126) 0.338 (0.286) 0.190 (0.212)

0.85 0.051 (0.183) 0.065 (0.161) 0.372 (0.376) 0.251 (0.320)

0.90 0.068 (0.298) 0.079 (0.259) 0.403 (0.591) 0.315 (0.510)

0.95 0.086 (0.538) 0.099 (0.471) 0.428 (1.172) 0.380 (1.094)

0.98 0.149 (1.477) 0.152 (1.315) 0.458 (2.893) 0.442 (2.839)

0.99 0.211 (2.985) 0.197 (2.625) 0.575 (6.076) 0.582 (6.234)

Table 4: (X,Y ) follows a bivariate Gumbel copula with parameter θ = 2 and Pareto marginals with location
parameter 1 and shape parameter 2. Evolution of RMSE1 and σ̂1 (in parenthesis) in terms of α for ω = 0.75
fixed. We take 500 Montecarlo simulations.

n Gumbel Joe Clayton Frank

500 0.196 (1.590) 0.215 (1.097) 1.862 (9.903) 1.636 (9.030)

1000 0.137 (1.124) 0.187 (0.754) 1.732 (7.838) 1.447 (6.210)

1500 0.108 (0.885) 0.173 (0.576) 1.643 (5.754) 1.402 (4.827)

2000 0.103 (0.843) 0.171 (0.560) 1.651 (5.177) 1.388 (4.203)

2500 0.084 (0.684) 0.170 (0.472) 1.622 (4.610) 1.369 (3.918)

3000 0.074 (0.611) 0.163 (0.412) 1.564 (3.932) 1.363 (3.479)

5000 0.059 (0.482) 0.162 (0.360) 1.599 (3.392) 1.356 (2.741)

Table 5: (X,Y ) follows a bivariate Gumbel copula with parameter θ = 2 and Pareto marginals with location
parameter 1 and shape parameter 2. Evolution of RMSE1 and σ̂1 (in parenthesis) in terms of the size of the
sample n for α = 0.9, ω = 0.98 fixed. We take 500 Montecarlo simulations.

contains n = 1500 observations. Each claim is composed of an indemnity payment (the loss, X)
and an allocated loss adjustment expense (ALAE, Y ). ALAE are insurance company expenses
like the fees paid to lawyer and other experts to defend the claims. This data set is deeply
studied in Frees and Valdez [16].

In Table 6 and 7, the ĈoVaRα,ω(X,Y ) and ĈoVaRα,ω(X,Y ) for Loss ALAE data are pre-
sented by considering different risk levels α, ω and different Archimedean copula models Cθ.
Frees and Valdez [16], using the AIC criterion, proposed for Loss-ALAE data a Gumbel copula

with parameter θ̂ = 1.453. Then, in Table 6, we provide the ĈoVaRα,ω(X,Y ) estimators for
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(α, ω) Clayton (0.51) Frank (3.07) Ali-Mikhail-Haq (0.79) Gumbel (1.453) Joe (1.64)

(0.75, 0.90) (12.42, 10.96) (12.43, 10.95) (12.48, 11.01) (11.92, 10.61) (11.84, 10.53)

(0.90, 0.95) (13.12, 11.94) (13.13, 11.99) (13.13, 11.98) (12.95, 11.50) (12.82, 11.27)

(0.95, 0.98) (13.81, 12.82) (13.82, 12.78) (13.81, 12.94) (13.56, 12.17) (13.12, 12.07)

Table 6: Coordinates of risk measure ĈoVaRα,ω for Loss ALAE data, using different copula structures and risk

levels (α, ω). θ̂ for each copula is in parenthesis.

(α, ω) Clayton (0.78) Frank (3.07) Ali-Mikhail-Haq (0.96) Gumbel (1.37) Joe (1.39)

(0.75, 0.90) (10.31, 9.37) (10.31, 9.38) (10.31, 9.36) (10.31, 9.34) (10.31, 9.33)

(0.90, 0.95) (11.48, 10.14) (11.44, 10.13) (11.46, 10.14) (11.43, 10.13) (11.41, 10.13)

(0.95, 0.98) (12.03, 10.72) (11.99, 10.69) (12.03, 10.72) (12.00, 10.69) (12.00, 10.70)

Table 7: Coordinates of risk measure ĈoVaRα,ω for Loss ALAE data, using different survival copula structures
and risk levels (α, ω). θ̂ for each copula is in parenthesis.

Loss-ALAE data using the Gumbel model by Frees and Valdez [16] (bold column). Further-

more, ĈoVaRα,ω(X,Y ) from other Archimedean models are displayed in Table 6. Estimated
parameters θ are obtained using R function fitCopula. Analogously for the survival structure
of Loss-ALAE data the Ali-Mikhail-Haq copula with parameter θ̂ = 0.96 is chosen. Hence,

the ĈoVaRα,ω(X,Y ) using Ali-Mikhail-Haq copula (bold column) and some other Archimedean
models are gathered in Table 7.

Loss-ALAE data in the log scale, the respective semiparametric estimated α-level sets (∂L(α)
and ∂L(α)), the univariate empirical quantiles of Loss-ALAE data, and the estimators of
multivariate CoVaRs measures are displayed in Figure 9. The univariate empirical quan-
tiles of Loss-ALAE data are: V̂aR0.75(X) = 10.46, V̂aR0.9(X) = 11.51, V̂aR0.95(X) = 12.05,

V̂aR0.75(Y ) = 9.44, V̂aR0.9(Y ) = 10.16 and V̂aR0.95(Y ) = 10.74. It can be observed that the

ĈoVaRα,ω (star) is in the level set L(α) due to the convexity. By contrast, ĈoVaRα,ω can not be

in the set L(α) since this is a concave set. Furthermore, from Proposition 2.3, ĈoVaR
1

α,ω(X,Y ) ≤

V̂aRα(X) ≤ ĈoVaR
1

α,ω(X,Y ), and ĈoVaR
2

α,ω(X,Y ) ≤ V̂aRα(Y ) ≤ ĈoVaR
2

α,ω(X,Y ).

Conclusion

In this paper, two multivariate extensions of the classic CoVaR are provided for continuous
random vectors. These two risk measures are constructed by using the level set approach used
in Embrechts and Puccetti [15], Cousin and Di Bernardino [6] and Cousin and Di Bernardino
[7]. Since defined CoVaR are the minimizers of suitable expected losses (see (P7)), then they
verify the elicitability property, which provides a natural methodology to perform backtesting.
Moreover, since the two proposed measures are based on the corresponding quantile functions,
they are more robust to extreme values than any other central tendency measures.
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Figure 9: Loss ALAE data in log scale, boundary of estimated level sets (∂L(α), red line), boundary of estimated
level sets (∂L(α), blue line), empirical quantile of Loss data (dotted black line), empirical quantile of ALAE

data (dotted black line), ĈoVaRα,ω (stars) and ĈoVaRα,ω (solid circles) with (α = 0.75, ω = 0.9) (left panel);
(α = 0.9, ω = 0.95) (center panel); (α = 0.95, ω = 0.98) (right panel).

The positive homogeneity and translation invariance properties are shown for the two proposed
multivariate CoVaR. The relations between the univariate VaR and our CoVaR are also analysed
as well as the relations between the multivariate VaR proposed by Cousin and Di Bernardino
[6] and our multivariate CoVaR. Interestingly, both multivariate CoVaRs coincide with the uni-
variate VaR when a comonotonic random vector is considered, and they verify the additivity
property under π-comonotonic conditions. The behaviour of the multivariate CoVaR with res-
pect to the risk level, the usual stochastic order of marginal distributions, and the dependence
structure are studied. Unsurprisingly, the effect in the multivariate lower CoVaR (resp. upper
CoVaR) with respect to a change in the risk level, a change in the dependence structure, or the
usual stochastic order of marginal distributions, tends to be the same as for the multivariate
lower VaR (resp. upper VaR) proposed in Cousin and Di Bernardino [6]. Important results
and analytical expressions for our multivariate risk measures are obtained for random vectors
with Archimedean copulas. In particular, certain subadditivity inequality is presented in the
Archimedean case under regular variation conditions. Moreover, under Archimedean copula
condition, estimators of the two proposed multivariate CoVaRs are provided in simulated data
and insurance real data.

In a future perspective, quantile regression estimations in extreme theory for the two multivariate
CoVaRs can be studied by adapting the works by Di Bernardino et al. [12] and by Daouia
et al. [10]. Another approach could involve the evaluation of the proposed measures in certain
multidimensional portfolios and the comparison between the results for these measures and
the results for multivariate existent measures (see Cousin and Di Bernardino [6], Cousin and
Di Bernardino [7] and Cai and Li [5]).
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[27] Muñoz Pérez, J. and Sánchez-Gómez, A. (1990). A characterization of the distribution function: The
dispersion function. Statistics & Probability Letters, 10(3):235 – 239.

[28] Müller, A. (1997). Stop-loss order for portfolios of dependent risks. Insurance Math. Econom., 21(3):219–223.

[29] Müller, A. and Stoyan, D. (2002). Comparison Methods for Stochastic Models and Risks. Wiley Series in
Probability and Statistics. John Wiley & Sons Inc.

[30] Nappo, G. and Spizzichino, F. (2009). Kendall distributions and level sets in bivariate exchangeable survival
models. Information Sciences, 179:2878.

[31] Nelsen, R. (2006). An Introduction to Copulas. Springer Series in Statistics. Springer.
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