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Abstract

Let T; := [X;| X € 0L(a)], for i = 1,...,d, where X = (X1,...,X4) is a risk vector and
OL(a) is the associated multivariate critical layer at level o € (0,1). The aim of this work
is to propose a non-parametric extreme estimation procedure for the (1 — p,)-quantile of T;
for a fixed a and when p,, — 0, as the sample size n — +o0o. An extrapolation method
is developed under the Archimedean copula assumption for the dependence structure of X
and the von Mises condition for marginal X;. The main result is the Central Limit Theorem
for our estimator for p = p, — 0, when n tends towards infinity. A set of simulations
illustrates the finite-sample performance of the proposed estimator. We finally illustrate
how the proposed estimation procedure can help in the evaluation of extreme multivariate

hydrological risks.
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1 Introduction

Multivariate extreme events and multivariate critical layers In hydrology, phenomena
are usually characterized by extreme events, and quantification of the risk of the occurrence of a
specific extreme event is gaining attention in environmental sciences (e.g., see Hochrainer-Stigler,
and Pflug (2012)). The classic univariate measure in environmental sciences is that of the return
level. This quantity represents the magnitude of an event that occurs at a given time and at a
given site. More precisely, the return level is the quantile x, which expresses the magnitude of
the event that is exceeded with a probability equal to p, with p = 1/T" (T is called the return
period). Environmental risks frequently involve several variables that are often correlated. For
instance, a flood can be described by the volume, the peak and the duration (see Chebana and

Ouarda) (2011alb))). It is therefore crucial to identify extreme risks in a multivariate setting.

The notion of multivariate return level is not univalent (Vandenberghe et al.| (2012)) and several
definitions can be found in the recent literature. Since different combinations of probabilities
may produce the same return period, a multivariate return level is inherently ambiguous. Events
that have equal probability of exceedance define iso-hyper-surfaces, otherwise known as critical

layers. Salvadori et al.| (2011) provide the following definition.

Definition 1.1. Let X = (Xy,...,Xy) be a random risk vector with joint distribution function

F. For a € (0,1) and d > 2, the critical layer OL(c) at level o is defined as OL(a) = {x € R :



F(z) = o).

Definition provides a partition composed of three probability regions: dL<(a) = {x € R? :
F(x) < a} (the sub-critical region); 0L(«) (the critical region where all the events have a
constant F); and 0L~ (a) = {z € R?: F(x) > a} (the super-critical region).

In practice, at any occurrence of the phenomenon, only these three mutually exclusive events
may occur (see Belzunce et al. (2007)). The multivariate return level can be defined with respect
to one of the above three areas. For instance, in hydrology, the sub-critical region may be of
interest if droughts are to be investigated, while the study of floods may require the use of super-
critical regions (Salvadori et al.| (2012))). |Chebana and Ouardal (2011b)) propose a parametric
estimator for the critical layer and apply it to a bivariate flood real data-set. An estimation for
the bivariate critical layers OL(cv,) by assuming o, — 1, as n — 00, is presented in de Haan
and Huang| (1995)). In the last decade, Embrechts and Puccetti (2006, Nappo and Spizzichino
(2009)), Prékopay (2012)), and |Cousin and Di Bernardino| (2013) have used the notion of critical
layers (i.e., multivariate quantile curves) to generalize the notion of univariate return level in

the multivariate setting.

Conditional distribution on critical layers and considered multivariate extreme re-
turn levels We now introduce the conditional random variable X; on the critical layer 0L («)
fori=1,...,d, that is,

T; = [X;| X € 0L(a)], for a € (0,1), (1)



where 0L («) is as in Definition and the associated conditional distribution function is given
by Fi(z|a) =P[X; <z|X € 0L(a)]. One can interpret the random variable T; in Equation
as the contribution (or the responsibility) of the marginal risk X; in the case where the whole risk
vector X belongs to the multivariate stress scenario represented by the critical layer 0L («), for
some suitable level a € (0,1). It should be borne in mind that Equation can also be written
by using the Multivariate Probability Integral Transformation (MPIT) Z := F(Xy,...,Xy).
Indeed, under regularity conditions on F', one can write T; := [X; | Z = «], for a € (0,1) (see,

e.g.,|Cousin and Di Bernardino| (2013)), Nelsen| (2006), |Genest and Rivest| (2001))).

Using the above notation, in this paper we consider the multivariate return level, based on the
critical layers, that was recently proposed by Di Bernardino et al. (2015). This risk measure is

defined by the (1 — p)-quantile of the random variable 7; in , that is,

, 1
x, = Ur, <p> , forpe(0,1), (2)

where Ur,(t) := Ff(1 — 1|a) for t > 1, and F/ (-|a) denotes the left-continuous inverse

of Fi(-|a).

Proposal of the present work The goal of this paper is to estimate the multivariate extreme

return levels x;n defined by Equation . To this end, two problematic points can be identified:

i) [Di Bernardino et al.|(2015) analyse this measure and introduce a semi-parametric estima-
tion procedure. However, the aforementioned semi-parametric estimation and empirical

quantile estimators perform well only if the threshold is not too high. These methods



cannot handle extreme events, that is p, < 1/n, which are specifically required for hydro-

logical and environmental risk measures.

ii) As pointed out before, the considered conditional random variable T; relies on the latent
MPIT Z, which is not observed. Therefore, in order to apply a quantile estimation proce-
dure, Z has to be previously estimated. This type of plug-in procedure increases the varia-
nce of the final estimation and introduces statistical difficulties (see, e.g., |Di Bernardino

et al. (2013)).

In order to overcome the drawback outlined in item i), in the present work we provide an
estimator of x;n in Equation , for a fixed o and when p, — 0, as n — 400, by using Extreme
Value Theory. In order to model the dependence structure of the multivariate risk vector X, we
consider Archimedean copulas. Recall that Archimedean copulas can be written as

Colut, ..., uq) = ¢~ (p(w1) + ... + d(ug)), for all (uy,...,uq) € [0,1]%, where the function ¢
is called the generator of the copula, and ¢ is a continuous, strictly decreasing function from
[0, 1] to [0, oo] such that ¢(1) = 0 and ¢(0) = oo (see, e.g., Definition 2 in |McNeil and Neslehova
(2009))). Furthermore, the generator of an Archimedean copula also satisfies several additional
d—monotony properties ( for further details, see Theorem 2.2 in McNeil and Neslehova (2009)).
The rationale for employing Archimedean copulas is motivated by the fact that under this
assumption the distribution of 7; and its tail index can be easily obtained (see Proposition
2.1). Furthermore, in this framework, one can avoid having to previously estimate the latent

variable Z (see item 7)). Indeed, the proposed estimator procedure is only based on quantities



that can be directly estimated by using the observed d-dimensional independent and identically

distributed (i.i.d.) sample of (X;), for j =1,...,n (see Equation (g])).

We remark that Archimedean copulas play a central role in the understanding of dependencies
of multivariate random vectors (see Nelsen (2006)), McNeil and Neslehové| (2009)), Durante and

Salvadori| (2010))).

Frequently, hydrological phenomena are characterized by upper tail dependence described by
Gumbel-Logistic models (e.g., see |[Fawcett and Walshaw| (2012)), (Chebana and Ouardal (2011a),

de Waal et al.| (2007)).

Following these considerations, under a regular variation condition for the generator ¢ and the
von Mises condition for the marginal X;, we develop an extreme extrapolation technique in order

to estimate z, (see, e.g.,|Cai et al,|(2015)).

Organization of the paper In Section [2.1] we derive the tail index of the distribution of T;.

i

b, 18 obtained, for a
n

Under suitable assumptions, a non-parametric estimation procedure for x
fixed level @ and when p,, — 0, as n — 400 (Section . The main result is the asymptotic
convergence of our estimator with p = p, — 0, as n — oo (Section . In Section |4}, the
performance of the estimator f;n is illustrated on simulated data. Finally, Section |5 concludes

with an application to a 3—dimensional rainfall data-set in order to illustrate how the proposed

estimation procedure can help in the evaluation of multivariate extreme return levels.



2 Proposed extreme estimator for the multivariate return level :13;
2.1 Tail index for T;
In this section, we aim to study the tail behaviour of T;, for : = 1,...,d. We assume the

existence of the limit in [1, 00| of

— —lim %
p= lsTl ¢(8) .

(3)
Equation is equivalent to regular variation of ¢ at 1 with index p, that is, ¢ € RV,(1) (see
Charpentier and Segers (2009) for details). Furthermore, p > 1 due to the convexity of ¢. When
p > 1, the upper tail of the copula exhibits asymptotic dependence, while if p = 1, then the

upper tail exhibits asymptotic independence. Under condition for the generator ¢, we now

study the maximum domain of attraction (MDA) of T;, for i = 1,...,d.

Proposition 2.1 (The von Mises condition for T;). Let (X1,...,Xgq) be a random vector with
Archimedean copula with twice differentiable generator ¢. Assume that ¢ € RV,(1), with p €
[1,400]. Leti € {1,...,d} and F; be the twice differentiable distribution function of X;. Assume
that F; verifies the von Mises condition with index ~v; € R. Let T; be as in with distribution

function Fi(-|a).

i) If p € [1,+00), then F;(-|a) wverifies the von Mises condition with tail index v = %.

Specifically, T, € MDA (y7).

i) If p = +oo, then Fi(-|a) verifies the von Mises condition with tail index 47 = 0. In

particular, T; € MDA (0).



The proof and illustrations of Proposition [2.I] are given in the Supporting Information. Fur-
thermore, the von Mises condition and the explicit form of the distribution Fj(-|a) can also be

found in the Supporting Information.

Remark 2.1. Note that v depends on neither the risk level o nor on the dimension d. How-
ever, yIi depends on the domain of attraction of the respective margin X; and on the reqularly
varying index p of the gemerator of the Archimedean copula considered. It should be borne in
mind that assumptions of Proposition [2.1] can be easily satisfied . Indeed, in Table 1 in|[Char-
pentier and Segers (2009), various copula models with associated p index can be found and the
von Mises condition is verified for a large class of marginal distributions F; (see illustrations in

the Supporting Information).

The relationship between the quantile functions Ur, and Uy, is established in the following

result. The proof of Proposition [2.2]is given in the Supporting Information.

Proposition 2.2 (Relation between Ur, and Ux,). Let (X1,...,X4) be a random vector with
Archimedean copula with generator ¢. Assume that ¢ € RV,(1), with p € [1,+00]. Let T; be as

in with distribution function F;(-|a). Let k = k(n) — oo, k/n — 0, as n — oo, and

)\ /-1
ky(n) :=n {1 — ¢! !(1 - <1 - k(n)> ) ¢(a)] } . (4)

i) ky(n) is an intermediate sequence, that is, ky(n) — oo, ky/n — 0 as n — oo.

Therefore,

it) Ur, (%) = Uy, (%) , where Ux; is the marginal quantile function, that is, Ux,(t) := F;~(1—

1/1).



2.2 Proposed estimator using an extrapolation method

Henceforth, we will focus on the case: 7; > 0 and p € [1,400) (in particular, this implies
7Ti > 0). This choice is motivated by our applications in hydrology and in particular in real
rainfall data-sets. Indeed, in these real-life applications, we can easily observe heavy tailed
distributions (see, for instance, Pavlopoulos et al.| (2008]) and Papalexiou et al.| (2013))). For the

marginal distribution X;, we therefore assume that there exists v; > 0 such that for all z > 0,

UXi (t.CL‘)

— Y
B Tem )

In this case, Propositions 2.1 and [2.2] yield, as n — oo,

i 1 n k il P n k 7t
Tpn = U, <pn>“UXi (k> <p> = Ux, (k> <p> ’ (©)

where ki is as in Equation (4) and k = k(n) — oo, k(n)/n — 0, as n — oo.

Let (X1,...,Xy) be a d-dimensional random vector with continuous distribution function F' and
Archimedean copula with generator ¢. The goal is to estimate :L';n in @ based on d-dimensional

i.i.d. observations, (X;), for j =1,...,n, from F, where p, — 0, as n — 4o00. Let ij be

*I_kUJ,TL
the (n — |ky])-th order statistic of (X?,..., X}). Therefore, the natural estimator of Uy, (%)

is its empirical counterpart, that is, XZL_UCU I (e.g., see [de Haan and Ferreira| (2006])).

From Equation @, in order to define the estimator of xfgn , it thus remains to estimate ; and

p. We estimate ~; with the Hill estimator (see Hill (1975)):

ki1—1

~ 1 ‘ ’

%= > log X ;, —log X} 4 . @)
j=0



where ki is an integer sequence such that ki(n) — oo, ki/n — 0, n — oo, and that X! ,
is the intermediate order statistic at level n — k1. In addition, the regularly varying index p is
estimated by taking into account the estimator of the upper tail dependence coefficient proposed

by [Schmidt and Stadtmiuller| (2006) (for details, see the Supporting Information).

Let 717 := %. We can therefore estimate x;n in @ by

~T:

I E T
Ty, =X lkylm (npn) : (8)

Remark 2.2. Notice that the proposed estimator in Equation does not rely on the latent
MPIT Z .= F(Xy,...,Xy4), which is not directly observed. Under assumptions of Proposition
the application of the proposed extrapolation technique precludes the necessity to previously
estimate Z. Indeed, the estimator Eﬁif,n i Equation is only based on quantities that can be
directly estimated by using the observed d-dimensional i.i.d. sample (X;), for j =1,...,n. In
Section [f, we provide a comparison with an empirical quantile estimation of T; constructed by

using the empirical multivariate distribution function F,(X;) (see Equation (10)).

3 Asymptotic normality

In order to prove the asymptotic normality of ;f;n, we need to quantify the rate of convergence

in Equation . We therefore assume the following second-order regularity condition.

Assumption 3.1 (2RV condition on Uy,). There exist 7; < 0 and an eventually positive or

negative function A; such that, ast — oo, A;(tx)/Ai(t) — ™ for all x >0 and

SUpy~q |27 U;}ﬁ;) — 1| = O(4;(t)), (see Condition (3.2.4) in|de Haan and Ferreiral (2000)).

10



For the sake of brevity, the auxiliary results necessary to obtain Theorem [3.1] are presented
in the Supporting Information. In the following, our main result is presented: the asymptotic

normality for the estimator 7;, in Equation .

Theorem 3.1 (Asymptotic normality of i:\;n in the upper tail dependence case, p > 1). Let
(X1,...,Xq) be a random vector with Archimedean copula with twice differentiable generator ¢.
Assume that ¢ € RV,(1), with p € (1,+00). Let i € {1,...,d} and F; be the twice differentiable
distribution function of X;. Assume that F; verifies the von Mises condition with index ; > 0.

Let T; be as in with distribution function Fi(-|a). Assume:

1. For (X;, Xj), with i # j, the upper tail copula Ay exists, has continuous partial derivatives,
and satisfies the second-order condition in Equation (10) in the Supporting Information

with auziliary function Ap(-).
2. Ux, satisfies Assumption [3.1) with auziliary function A(-), v > 0 and 7; < 0.

3. k=k(n) = o0, k/n — 0, n = oo such that Theorem 2.1 in the Supporting Information is

satisfied.
4. k1 =ki(n) — oo, k1/n — 0, and Vk1A;(n/k1) = A\, n — oo.
5. ko = ka(n) — 00, ka/n — 0, and VkoA,(n/ke) — 0, n — co.

Vk1(n) vV ku (n)log(dn)

/ : 1! :
r’ = lim and r" = lim
/7]62 (n) ’ n——+o0o k1 (n) n——+00

vV ku (n)log(dn) with

Let r = limy, 400 e

r, ' and r" € [0, ).

Hence, as n — oo, if r < 1 and lim,_, 1o logk(d(")) =0, then
1(n

11



zt B+17'(014+1r09), 1 <1;
min (%, \/E > (1:1.7" —1) i>

log(d x?
B{dn) bn LIB+01+70;, 1 >1,

and, if r > 1 and lim,_, 1 log(dn) _ 0, then

\ k2(n)

7 B+1"(10140,), 1" <1;
min (x/kU,l\/k»Z> (CE?” — 1) L\

og(d
g( n) %B + %@1 + @2, > 1,

where dp, = k/(np,), B ~ N(0,4%), ©1 ~ N(u/vi,1) with u = N (1 — ) and Oy ~

2
N(0,02/p?), with 0* = o, <(27)\U;?§$)(27/\U)> , Av = A(1,1) the upper tail dependence coeffi-

2
cient and 0% = A+ (2 Ay (1, 1))2+<8%AU(1, 1)) 2Ny ((%AU(L 1) - 1) <8%AU(1, 1) — 1) - 1> .
The proof of Theorem is presented in the Supporting Information.

Remark 3.1 (Asymptotic consistency of ff;n in the upper tail independence case, p = 1).

Notice that, if p =1 (i.e. tail copula Ay =0), then the asymptotic variance 012] in Theorem

vanishes (see the Supporting Information). However, in the upper tail independence case, the
o~

consistency of the proposed estimator T, can be obtained. To be precise, if ¢ € RV1(1) and the

second, third, and fourth conditions of Theorem hold, then izﬂ LN 1, for n — oo.

Pn

4 Simulation study

The aim of this section is to evaluate the performance of ’f]ion in finite-size samples. Although

we restrict ourselves to a 3-dimensional case in this study, these illustrations could be adapt-

12



able in any dimension d. The performance of our extreme estimator 7, is also compared

. - . _pseud . : .
with a pseudo-empirical estimator (denoted Z5:“““), an empirical estimator (Zp, *) and a semi-

parametric empirical estimator (5:\;”) The construction of these three competitor estimators
is now described. In order to attain Z5°°"%, it is assumed that the distribution function of
T; is known (see Lemma 2.1 in the Supporting Information). We can then sample from the
random variable T; by using the fact that T; 4 F! {o7t[(1- Ul/(dfl)) ¢(a)] }, where U is a

uniform random variable. Finally, the pseudo-empirical estimator fgie“do can be defined as the

(n — |npn|)-th order statistic of the sample obtained from Tj,

U:C\giGUdO = TT’LL— [npn|,n: (9)

On the other hand, an empirical estimator (7, ") can be proposed without the need for any
information about 7;. To this end, we sample from the latent random variable T; = [X;|F(X) =
a] by using the empirical multivariate distribution function. Let (X;), j = 1,...,n, be a d-
dimensional 7.i.d. sample of X. For all t € R?, the d-dimensional empirical distribution function
of X is defined as F,(t) := %Z?:l 1ix;<t)- T; is then obtained by collecting the points (X;),
for j =1,...,n, such that F,,(X;) € [@ — h,a + h] for a positive sufficiently small value h. The
quantity h is adjusted to each considered model and each sample size. The competitor estimator
Zp? is given by

T =Tl (10)

Finally, from Definition 5.1. in Di Bernardino et al.| (2015)), a semi-parametric empirical com-

petitor estimator is presented, denoted as :?;n. Let Bi = X fs In be the s-th order statistic of X;

13



with s =n qb@:nl(Si ¢g, ())) where S; is a random variable with Beta(1,d — 1) distribution. Bear
in mind that ¢§n is the semi-parametric estimator of the generator of the copula ¢¢ obtained by
considering the maximum pseudo-likelihood estimator of the parameter 6 associated to ¢y (e.g.,

see (Genest et al. (1995)). The competitor semi-parametric empirical estimator is given by

Ty = Bl (11)

We now consider the following 3-dimensional distributional models:

1. Joe copula and Fréchet margins: Fj(t) = exp{—t—?}, i = 1,2,3, and Cy(uy,uz,u3) =
1—[1—exp{log(1— (1 —u1)?) +log(1 — (1 —uz)?) +1log(1 — (1 —u3)?)}]*/?. In this section,
we take the dependence copula parameter 6 = 3 and the marginal parameter g = 3. Bear
in mind that the assumptions of Theorem are satisfied. Indeed, ¢ € RV3(1) and Uk,
satisfies Assumption with v; = 1/3 and 7, = —1, for ¢ = 1,2,3. In addition, the
associated tail-logistic model is given by Ay (z,y) = x+y— (2® —|—y3)1/3, which satisfies the

second-order condition in Equation (10) in the Supporting Information, and Ay = 0.74.

2. Independence copula with Fréchet margins: F;(t) = exp{—t~"},i = 1,2, 3, and Cy(u1, u, u3) =
uj uguz. In this case, ¢ € RVi(1) and the upper tail copula is given by Ay = Ay = 0.

However, using Remark the consistency of 37 and @n is illustrated in this section.

3. Gumbel copula with Pareto margins: F(t) = 1—(8;/(t+81))%, i = 1,2, 3, and Cy(uy, ug, uz) =
exp {— ((—log(u1))? + (—log(u2))? + (— log(U3))9)1/9}. In the simulation study we take
the dependence copula parameter # = 2 and the marginal parameters §; = 1 and dy = 2.

Bear in mind that the assumptions of Theorem are satisfied. Indeed, ¢ € RV,(1) and

14



Ux, verifies the 2RV condition with v; = 1/2 and 7 = —1/2, for i = 1,2, 3. Furthermore,

Ay (z,y) =z +y — (22 + y?)'/? verifies the second-order condition in Equation (10) in the

Supporting Information, and Ay = 0.59.
Various sample sizes are taken and we consider p, = 1/n and p,, = 1/2n, the critical layer level
a = 0.9, and 500 Monte Carlo simulations. Note that specific values for auxiliary sequences of
our procedure (k1, ko, and k) are chosen for each sample size as indicated in the figures. In
order to choose ki, the estimator of ~; is plotted against various values of k;. By balancing
the potential estimation bias and variance, a common practice is to choose ki from the first
stable region of the plots (see e.g., |Cai et al. (2015))). Finally, in order to gain stability in the
estimates, the obtained values are averaged in this region. A similar procedure is developed for
the auxiliary sequence ko (for the estimation of p). The sequence k is selected by observing the

stability of the final ratio T), /), .

Boxplots of ratio 77¢/7”i In Figure [l we present the boxplots of ratio A7¢ /¢ for the three

distributional models considered, and for different sample sizes.

[Figure 1 about here.]

Boxplots of ratio Zv\;n / x;n Using Remark an illustration of the consistency of the pro-
posed estimator is provided in the independent copula case. In Figure [2| the obtained boxplots

7
Pn

for the ratio 2! /x

o are presented for p, = 1/n and p, = 1/2n for n = 150 (left panel) and

~pseudo

n = 1000 (right panel). For p, = 1/n, we also provide the boxplots of the ratios z},  /x

i
Pn?
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~emp '3
[ Lpps

Lpp, P

@, and , respectively.

and 7, / with empirical competitor estimators previously defined in Equations

[Figure 2 about here.]

In Figure [3, the obtained boxplots for the ratio Z /x are presented for p, = 1/n and

pn = 1/2n, in the Joe (first row) and Gumbel copula model (second row). For p, = 1/n,

the comparison with the empirical competitor estimators is also provided.
[Figure 3 about here.]

In Figures [2| and [3] it can be noticed that the empirical (Z5), pseudo-empirical (Z5:°“%) and

semi-parametric empirical (5:\;”) competitor estimators underestimate the conditional quantile

x’L

», and are consistently outperformed by the proposed EVT estimator #! . In addition, the

Pn
empirical estimators are not applicable for p < 1/n. Furthermore, the behaviour of the EVT

estimator 5:\;” remains stable when p,, changes from 1/n to 1/2n.

Asymptotic normality Finally, the asymptotic normality in Theorem is illustrated in

Figure [ for the Joe copula model. The Q-Q plots in Figure [4] gather the sample quantiles of

min (kg @, v/ “pn _ 1) versus the theoretical normal quantiles for various sample
log(dn)’ log(dn) / \ 2},

sizes with p, = 1/n. Since the scatterplots line up on the line in Figure |4} this indicates that the
sample quantiles coincide largely with the theoretical quantiles from the asymptotic distribution.

Hence, Theorem provides an adequate approximation for finite sample sizes.

16



[Figure 4 about here.]

Behaviour of ratio fc\;n in terms of a In Figure the boxplots of ratio ?E;)" / $;n are presented
for a Joe copula with 6§ = 4 and Fréchet margins with § = 4 by considering different values of
the critical layer level . Note that the convergence rate ky in Proposition (see Equation

(4])) satisfies akgio(la) < 0, for fixed values of sample size n and dimension d. Therefore, as can be

observed in Figure [5], the performance of the proposed estimators decreases when « increases.

[Figure 5 about here.]

5 Multivariate and univariate extreme return levels: an illus-

tration for hydrological data-set

In this section, we focus on estimating the risk of a flood in the Biévre region in the south of
Paris (France) by using both the proposed multivariate extreme return level (see Equation (2)))

and the classic univariate return level (see the Introduction section).

Presentation of the hydrological data-set The data-set contains the monthly mean of the
rainfall measurements recorded in 3 different stations of the Biévre region, from 2003 to 2013.
The unit of measurement is mm. The size of the data-set is n = 125. The localization of the 3
stations is presented in Figure @ and the data-set is represented in Figure (7] (left panel). Let X;

denote the temporal series of the monthly mean of the rainfall measurements for station i, for

17



i=1,2,3. Station 1 is called Geneste (denoted X), station 2 Loup Pendu (X2), and station 3
Trou salé (X3). The data-set considered was provided by the SIAVB (Syndicat Intercommunal
pour l’Assainissement de la Valle de la Biévre, see http://www.siavb.fr/). |Di Bernardino and
Prieur (2014)) discussed the plausibility of the temporal independence assumption for these 3-

dimensional monthly rainfall measurements.
[Figure 6 about here.]

For the sake of completeness, a test of exchangeability is developed (e.g., see|Genest et al.| (2012)))
for the three pairs (Xi, X32), (X1, X3), and (X2, X3): we obtain p—values of 0.511, 0.206 and
0.181, respectively. The test is performed with the function exchTest of the R package copula
and suggests exchangeability for all pairs (see Figure (7| left panel). Furthermore, by using a
goodness-of-fit test for various parametrical multivariate distributions, |[Di Bernardino and Prieur
(2014) proposed for this data-set a 3-dimensional Gumbel copula with dependence parameter
0 = 3.93. The critical layers OL(«) of this data-set for different values of « are displayed in

Figure [7| (right panel).

[Figure 7 about here.]

Univariate versus multivariate return levels Given the temporal series X; of the monthly
mean of the rainfall measurements for station i, one can define the classic univariate return level

with associated probability p as the quantity:

x;’univ = UXZ (%}), for ¢ = 172737

18



where p = 1/T and T is called the return period. As proposed by [Salvadori et al. (2011)),
the return level associated to the three stations can be obtained by considering the vector

?gm” = (:cp’“mv, xpy "M, xp’“m”), that is, the aggregation of univariate quantiles.

However, ?gm” does not take into account the dependence structure between the three temporal
series. As discussed in the introduction section, while the return level in the univariate setting is
usually identified without ambiguity (see, for instance, Corbella and Stretch| (2012) and Salvadori
et al. (2011)), in the multivariate setting, it is a troublesome task (Vandenberghe et al. (2012),

Gréler et al.| (2013)).

In this present paper, a possible procedure is proposed for the identification of the contribution
of the margins to the global (regional) multivariate risk. As mentioned in the introduction
section, the information concerning the dependence structure of the three considered rainfall
measurements is integrated in order to calculate the associated multivariate return levels. We
consider ac; =Ur, (%), for i = 1,2,3, where T; := [X; | (X1, X2, X3) € 0L(«)], with a € (0,1)
(see Equation ), and we define our multivariate return level as 7,) = (:Ull),:vz,mf;). In this

case, IL‘; represents the return level associated to the i-th station conditioned to the fact that

the 3-dimensional rainfall data-set belongs to the iso-surface OL(«).
Estimation procedure and obtained results In the following, the return levels xf}umv and

x; on the considered rainfall data are estimated, for ¢ = 1, 2, 3. We consider here o« = 0.9.

To estimate x;, firstly we deal with the estimation of 7% for each station. In Figure [§] (left

panel), the Hill estimator 7; is presented versus k; for each station; ky € [7,27] is chosen since
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this window is the first stable region of this plot. Similarly, the stable region chosen for the
considered p corresponds to ks € [25,50] (see Figure[8] centre panel). Furthermore, the adaptive
sequence Z:U(n) is estimated as described in the Supporting Information. In addition, the stable

region chosen for Z!

b, 18 k € [38,80] (see Figure |8} right panel). Finally, to gain stability, the

estimations 7;, p and i?:,i,n are averaged in the chosen stable regions (see also (Cai et al. (2015))).

The obtained extreme estimation for ?p is presented in Table (1| for different probability levels p.

In Table the empirical estimator fi’/e?p given in Equation is also included. Unsurprisingly,

~1,emp

Ty underestimates the risk (see also the simulation study in Section . Furthermore, using

the extreme quantile estimator proposed in Theorem 4.3.8 in de Haan and Ferreira (2006)), the

univariate return level 25" is estimated for different probability levels p (see Table .
[Figure 8 about here.]

Note that in Table [1, 7; > 0 (i.e., the monthly mean of the rainfall measurements for each
station ¢ belongs to the Fréchet MDA) and p > 1 (i.e., upper tail dependency). Values gathered
in Table [1| (resp. in Table [2)) represent the estimated multivariate return levels (resp. univariate
return levels) in mm with an associated return period of around 10 years (for p = 1/n), 20 years

(for p =1/2n), 52 years (for p = 1/5n) and 105 years (for p = 1/10n).
[Table 1 about here.]

[Table 2 about here.]

In Tables [1| and |2, a major contribution of the second station (i.e., X2) can be observed. One
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can interpret that the manager of the Bicvre region needs to pay more attention to this station
since it contributes towards producing a flood in the region to a greater degree, both in the

univariate and multivariate return level cases.

Conclusions The proposed multivariate return level approach in the present paper has the
advantage of using a mathematically consistent way of defining the multivariate probability of
dangerous events by relying on the iso-curves d0L(«). However, there is no universal choice of
an appropriate approach to all real-world problems (see also the introduction section). It is
necessary to address to the problem from a probabilistic point of view and to be aware of the

practical implications of the approach chosen.

It is also evident in our hydrological study, but not necessarily the case, that the more vari-
ables/information included, the smaller the design quantiles become (see multivariate and uni-
variate return levels in Tables|1| and . Indeed, marginal components of the multivariate levels

(Le., 2}

AT, UNTV
ie., ), )

) are considerably lower than the corresponding univariate return levels (i.e., Ty
(see Tables 1| and . This fact can be intuitively interpreted: the probability of an extreme
event which simultaneously exceeds a return level in all margins is liable to be much lower than
the probability of an event which exceeds the same level in any one of the margins considered
alone. Therefore, the univariate levels xfj“mv should be much higher to obtain the same small
exceedance probability p. Salvadori and De Michele| (2013)) discuss this dimensionality paradoz

and provide a theoretical explanation. The interested reader is also referred to Salvadori et al.

(2011) and |Gréler et al. (2013) for analogous considerations.
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In particular, in our study, the large discrepancy between the estimated Z, and 5™ depends
on the considered parameter setting (o = 0.9, p, = %, %, %, ﬁ, with n = 125) and on the
theoretical properties of the considered multivariate return level x;. For further details about

the properties of this risk measure, the interested reader is referred to Propositions 2.3-2.5 and

Corollary 4.4 in Di Bernardino et al.| (2015]).

Furthermore, one should also be aware of the fact that our T;-quantile approach (see Equation
(2)) is only applied to variables that are positively associated and with a focus on extremes in
terms of large values. In all other cases, adaptations should be made in order to operate in the
correct area of the copula (such as the directional multivariate return levels proposed by [Torres

et al.| (2015)).

From a practical perspective, it is impossible to provide a general suggestion for an appropriate
approach to estimate multivariate design events applicable to a vast set of design exercises.
Hitherto, many applications have been based on the concept of univariate return level, since the
concept of multivariate return level has a different meaning and is potentially less conservative

(as can be observed by comparing Tables [I{ and .

On the other hand, when the analyst estimates the extension of flood inundation, a joint return
period approach could prove appealing. Indeed, an ensemble of equally rare scenarios (i.e. those
with the same return probability p) could be used to assess the variability of the flood maps

obtained due to the selection of a single design event.

Additional information and supporting material for this article is available online on the journal’s
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website.
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Figure 1: Boxplots of the ratio 77*/yi: for Joe copula with # = 3 and Fréchet margins with
B = 3 (left panel); for Independence copula and Fréchet margins with § = 3 (centre panel);
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Figure 4: Joe copula with parameter ¢
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ratio Zl, /a}, with p, =1/n, n = 150 (left panel) and n = 500 (right panel). Different values of
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Figure 6: Localization of the three stations in the Biévre region (in the south of Paris, France).
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Figure 7: Left panel: Scatterplot of the 3-dimensional hydrological data-set considered. Right
Panel: Associated critical layers 9L(«), for a = 0.75 and 0.9.
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A

~

i | Station %o P 311721 ! Lim 7 /2n 7 [5n 2 /10n

1 | Geneste 0.227 | 4.852 | 52.33912 | 53.82129 | 55.59621 | 58.03267 | 59.94646
2 | Loup Pendu | 0.239 | 4.852 | 58.55755 | 59.98556 | 62.07613 | 64.95194 | 67.21560
3| Trousale | 0.222 | 4.852 | 41.49933 | 54.04171 | 55.78875 | 58.18519 | 60.06618

Table 1: Estimated extreme multivariate return level 55;”, for different values of p,. Hill estima-
tor 7; is calculated by taking the average for k; € [7,27]; p is obtained by taking the average for
kg € [25,50]; 2, are calculated by taking the average for k € [38,80]. The empirical estimator

~t,emp .

Ty D Equation is also displayed.
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. ALUNIY ALUNIY AL UNIY ALUNIY
Station T T T T
1/n 1/2n 1/5n 1/10n

Geneste | 71.6323 | 83.84691 | 103.24705 | 120.85247
Loup Pendu | 81.12761 | 95.79985 | 119.34466 | 140.92860
Trou Salé | 72.41996 | 84.51017 | 103.64423 | 120.94719

O | DO — | —-

Table 2: Estimated extreme univariate return level Z5*"", for different values of p,,.
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