
Supporting Information for the estimation of extreme quantiles conditioning on

multivariate critical layers

E. Di Bernardino∗and F. Palacios-Rodŕıguez†‡

1 Proofs

Proof of Proposition 2.1 in the main document

We first prove item i). Let Fi(·|α) as in Lemma 2.1 below. Since, by assumptions, ϕ ∈ RVρ(1),

ϕ′ ∈ RVρ−1(1) and Fi verifies the von Mises condition with index γi (see Definition 2.1 below),
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then,

lim
x↑xFi

(α)

(1− Fi(x|α))F ′′i (x|α)
(F ′i )

2(x|α)
= lim

z↑1

d− 2

d− 1

[(
1− ϕ(z)

ϕ(α)

)−(d−1)
− 1

]

+
ϕ(α) [(−ρ+ 1)− (γi + 1)]

(d− 1)ϕ′(z)(1− z)

[
−
(
1− ϕ(z)

ϕ(α)

)2−d
+ 1

]

−
(
−1

ρ

)
1

d− 1
[(−ρ+ 1)− (γi + 1)] .

Since ϕ(1) = 0, the first summand approaches 0 when z approaches 1. We denote C =(
−1

ρ

)
[(−ρ+1)−(γi+1)]

d−1 . For the second summand it is verified that:

lim
z↑1

ϕ(α)C

ϕ(z)

[
−
(
1− ϕ(z)

ϕ(α)

)2−d
+ 1

]
=

2ρ+ 2γi − dρ− dγi
ρ(d− 1)

.

Hence,

lim
x↑xFi

(α)

(1− Fi(x|α))F ′′i (x|α)
(F ′i )

2(x|α)
= −

(
γi
ρ

+ 1

)
.

The random variable Ti therefore verifies the von Mises condition with γTi = γi
ρ . Similar to

the proof of item i), the von Mises condition for Ti when ρ = +∞ is satisfied with γTi = 0.

Therefore item ii) is also proved. From Theorem 1.1.8 in de Haan and Ferreira (2006), others

assertions of Proposition 2.1 in the main document are shown directly. □

Proof of Proposition 2.2 in the main document

For item i), since k(n)/n → 0, as n → ∞, and ϕ−1(0) = 1, kU/n → 0 holds, as n → ∞.

Furthermore, we have the following asymptotic approximation

kU (n) ∼ n (ϕ(α)(d− 1))1/ρ
(
k(n)

n

)1/ρ

, (1)
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as n → +∞. From Equation (1), it holds that k(n)/kU (n) → 0, as n → ∞, for ρ ∈ (1,+∞].

Then, kU (n) → +∞ as n → +∞.

Since UXi(t) = F←i (1− 1/t) and using Lemma 2.1 below,

UTi

(
n

k(n)

)
= UXi

(
1

1− ϕ−1
[(
1− (1− k(n)/n)1/(d−1)

)
ϕ(α)

]) .

Therefore,

UTi

(
n

k(n)

)
= UXi

(
n

kU (n)

)
, where kU (n) = n

{
1− ϕ−1

[(
1−

(
1− k(n)

n

)1/(d−1)
)
ϕ(α)

]}
.

Therefore item ii) of Proposition 2.2 in the main document is also proved. □

Proof of Theorem 3.1 in the main document

Firstly, we provide a normality result for the ratio γ̂Ti

γTi
. Since UXi satisfies Assumption 3.1 in

the main document with γi > 0 and τi < 0, from Theorem 3.2.5 in de Haan and Ferreira (2006)

and Slutsky’s Theorem (e.g., see Serfling (1980)), it is verified that

√
k1

(
γ̂i
γi

− 1

)
d→ N (µ/γi, 1) , (2)

with µ = λ/(1−τi) and limn→∞
√

k1(n)Ai(n/k1(n)) = λ < +∞. Since the distribution function

of the random vector (X1, . . . , Xd) is given by a d−dimensional Archimedean copula Cϕ with

generator ϕ, then the distribution function of every bivariate subvector (Xi, Xj), i ̸= j, is given

by the same bivariate Archimedean copula. In addition, since under the assumptions of Theorem

3.1 in the main document, conditions of Corollary 2.1 below are satisfied, by using the Delta

Method, it is verified that √
k2

(
ρ

ρ̂
− 1

)
d→ N

(
0, σ2/ρ2

)
, (3)
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with σ2 provided by

σ2 := σ2
U

(
log(2)

(2− λU ) log
2(2− λU )

)2

, (4)

with λU := Λ(1, 1) the upper tail dependence coefficient and

σ2
U := λU+

(
∂

∂x
ΛU (1, 1)

)2

+

(
∂

∂y
ΛU (1, 1)

)2

+2λU

((
∂

∂x
ΛU (1, 1)− 1

)(
∂

∂y
ΛU (1, 1)− 1

)
− 1

)
.

We now write

γ̂Ti
γTi

=
γ̂i
γi

× ρ

ρ̂
=: M1 ×M2

and we deal with the two factors separately.

- From (2), M1 =
Θ1√
k1

+ oP

(
1√
k1

)
+ 1, with Θ1 ∼ N (µ/γi, 1).

- From (3), M2 =
Θ2√
k2

+ oP

(
1√
k2

)
+ 1, with Θ2 ∼ N

(
0, σ2/ρ2

)
.

Hence, (
γ̂Ti

γTi
− 1

)
= M1 ×M2 − 1 =

Θ1√
k1

+
Θ2√
k2

+ oP

(
1√
k1

)
+ oP

(
1√
k2

)
.

Let r = limt→+∞

√
k1(n)√
k2(n)

∈ [0,∞] and γTi := γi
ρ . Then, as n → ∞, we get

min(
√

k1,
√
k2)

(
γ̂Ti

γTi
− 1

)
d→


Θ1 + rΘ2, if r ≤ 1,

1
rΘ1 +Θ2, if r > 1.

(5)

We now write

x̂ipn
xipn

=
Xi

n−⌊kU ⌋,n

UXi

(
n
kU

) ×
(

k

n pn

)γ̂Ti−γTi

=: N1 ×N2.

From Theorem 2.1 below,

N1
d→ B√

kU
+ 1 + oP

(
1√
kU

)
, where B ∼ N(0, γ2i ). (6)
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By using the normality for the ratio γ̂Ti

γTi
in Equation (5), we can get

min(
√
k1,

√
k2)

log(dn)

(
d γ̂Ti−γTi

n − 1
)

d→


Θ1 + rΘ2, if r ≤ 1,

1
rΘ1 +Θ2, if r > 1,

where dn = k
npn

. The interested reader is also referred to the proof of Theorem 4.3.8 in de Haan

and Ferreira (2006). Consequently,

N2
d→


log(dn)√

k1
(Θ1 + rΘ2) + 1 + oP

(
log(dn)√

k1

)
, if r ≤ 1,

log(dn)√
k2

(
1
rΘ1 +Θ2

)
+ 1 + oP

(
log(dn)√

k2

)
, if r > 1.

(7)

Combining the asymptotic relations in (6) and (7), if r ≤ 1, we have

x̂ipn
xipn

− 1 =
B√
kU

+
log(dn)√

k1
(Θ1 + rΘ2) + oP

(
1√
kU

)
+ oP

(
log(dn)√

k1

)
. (8)

Similarly, if r > 1, then

x̂ipn
xipn

− 1 =
B√
kU

+
log(dn)√

k2

(
1

r
Θ1 +Θ2

)
+ oP

(
1√
kU

)
+ oP

(
log(dn)√

k2

)
. (9)

Hence, Theorem 3.1 in the main document comes down from Equations (8) and (9). □

2 Auxiliary results

In this section, some brief reminders and auxiliary results involved in the main document are

described. These are only intended to outline some notation and references, and to help in the

proofs developed in Section 1.
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2.1 The von Mises condition and the distribution of Ti

Definition 2.1 and Lemma 2.1 introduced below are crucial in the proof of Propositions 2.1 and

2.2 in the main document. In particular, Lemma 2.1 can be obtained by adapting Lemma 3.4

in Brechmann (2014) in the case of j = 1.

Definition 2.1 (the von Mises condition). Let F be a distribution function and x∗ its right

endpoint. Let F ′ and F ′′ be the first and the second derivatives of F , respectively. Suppose

F ′′(x) exists and F ′(x) is positive for all x in some left neighborhood of x∗. The von Mises

condition for F holds if

lim
t↑x∗

(1− F (t))F ′′(t)

(F ′(t))2
= − γ − 1.

Under the von Mises condition in Definition 2.1, the maximum domain of attraction (MDA) of

the distribution function F can be determined by using the tail parameter γ (e.g., see Theorem

1.1.8 in de Haan and Ferreira (2006)).

Lemma 2.1. Let (X1, . . . , Xd) be a random vector which follows an Archimedean copula Cϕ

with generator ϕ. Let Fi(x|α) = P[Xi ≤ x|X ∈ ∂L(α)]. Therefore, for i = 1, . . . , d,

Fi(x|α) =


(
1− ϕ(Fi(x))

ϕ(α)

)d−1
, if x > Qi(α);

0, if x ≤ Qi(α),

where Fi is the marginal distribution of Xi and Qi(α) is the associated quantile function at

level α ∈ (0, 1).
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Tail index and the von Mises condition for Ti In the following, certain tail indexes for

Ti are derived. The ρ indexes for the classic bivariate Archimedean copulas are collected in

Table 1 in Charpentier and Segers (2009). From this table and from Proposition 2.1 in the

main document, Table 1 below is constructed. Table 1 (left panel) contains the tail index γTi

of Ti when Xi is in the Weibull domain (i.e., γi < 0), Gumbel domain (i.e., γi = 0) and Fréchet

domain (i.e., γi > 0), for different values of ρ. In Table 1 (right panel), some specific models are

considered.

[Table 1 about here.]

2.2 Estimation of the regularly varying index ρ

We now deal with the estimation of the regularly varying index ρ of the Archimedean generator ϕ.

The corollary obtained below constitutes a major auxiliary result in the proof of Theorem 3.1

in the main document. In this paper, we use an estimator of ρ derived by the estimator of the

upper tail dependence coefficient proposed by Schmidt and Stadtmüller (2006). This procedure

is recalled in this section.

Let G be a d−dimensional distribution function with margin distributions Gi, i = 1, . . . , d. If,

for the subsets I, J ∈ {1, . . . , d}, I ∩ J = ∅, the following limit exists everywhere on Rd
+ =

[0,∞]d \ (∞, . . . ,∞)

ΛI,J
U (x) := lim

t→∞
P
[
Xi > G−1i (1− xi/t), ∀ i ∈ I |Xj > G−1j (1− xj/t), ∀ j ∈ J

]
,

then the function ΛI,J
U : Rd

+ → R is called an upper tail copula associated with G w.r. to I, J .
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Let (Xi, Xj), i ̸= j, be a bivariate random vector with distribution functions Gi and Gj . It is

said to be upper tail dependent if ΛU (1, 1) exists and

λU := ΛU (1, 1) = lim
t→1−

P [Xi > G−1i (t) |Xj > G−1j (t)] > 0.

Conversely, if λU = 0, (Xi, Xj) is called upper tail independent. Further, λU is referred to as the

upper tail dependence coefficient. If the distribution function of a random vector (X1, . . . , Xd)

is given by a d−dimensional Archimedean copula Cϕ with generator ϕ, then the distribution

function of every bivariate subvector (Xi, Xj) is given by the bivariate Archimedean copula

with the same generator. As a consequence, to estimate ρ, we focus on the bivariate subvector

(Xi, Xj). Furthermore, under our assumption, one can prove that λU = 2 − 21/ρ (e.g., see

Corollary 2.1. in Di Bernardino and Rullière (2014)). Therefore, we can consider the estimator

ρ̂ := log(2)

log(2−λ̂U )
. In this paper, we use the nonparametric rank-based estimator of λU proposed by

Schmidt and Stadtmüller (2006). Assume that (Xi, Xj), (X
(1)
i , X

(1)
j ), . . ., (X

(n)
i , X

(n)
j ), i ̸= j,

are i.i.d. bivariate random vectors with distribution function G having marginal distribution

functions Gi and Gj . The estimator of λU in Schmidt and Stadtmüller (2006) is given by

λ̂U = Λ̂U,n(1, 1), where

Λ̂U,n(x, y) :=
1
k2

∑n
w=1 1{R(w)

i >n−k2 x and R
(w)
j >n−k2 y}

,

with k2 = k2(n) → ∞, k2/n → 0, as n → ∞ and R
(w)
i =

∑n
h=1 1{X(h)

i ≤X
(w)
i } (resp. R

(w)
j =∑n

h=1 1{X(h)
j ≤X

(w)
j }) is the rank ofX

(w)
i inX

(1)
i , . . . , X

(n)
i (resp. is the rank ofX

(w)
j inX

(1)
j , . . . , X

(n)
j ),

for w = 1, . . . , n.

Under a second-order condition for the bivariate upper tail copula ΛU (x, y) (see condition in
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Equation (10)), we can obtain an asymptotic normality result for the estimator ρ̂ (see Corollary

2.1 below). The proof of Corollary 2.1 follows from Corollary 2 in Schmidt and Stadtmüller

(2006) and the Delta Method technique.

Corollary 2.1 (Asymptotic normality of ρ̂). Let G be a bivariate distribution function of

(Xi, Xj) with continuous marginal distribution functions Gi and Gj. Let Cϕ be the copula of

(Xi, Xj) with generator ϕ ∈ RVρ(1), with ρ ∈ (1,+∞). Let k2 = k2(n) → ∞ and k2/n → 0 as

n → ∞. Assume that the bivariate upper tail copula ΛU (x, y) exists and has continuous partial

derivatives. Furthermore, let Aρ : R+ → R+ be an auxiliary function such that Aρ(t) → 0 as

t → ∞ and

lim
t→∞

ΛU (x, y)− t C(x/t, y/t)

Aρ(t)
= g(x, y) < ∞, (10)

locally uniformly for (x, y)2 ∈ R2
+ for some nonconstant function g, where C represents the

survival copula. Therefore, if
√
k2Aρ(n/k2) → 0 as n → ∞, then

√
k2(ρ̂− ρ)

d→ N
(
0, σ2

)
,

where N
(
0, σ2

)
is a centred normal-distributed random variable with σ2 = σ2

U

(
log(2)

(2−λU ) log2(2−λU )

)2
and σ2

U = λU +

(
∂
∂xΛU (1, 1)

)2

+

(
∂
∂yΛU (1, 1)

)2

+2λU

((
∂
∂xΛU (1, 1)−1

)(
∂
∂yΛU (1, 1)−1

)
−1

)
.

Note that the asymptotic variance in Corollary 2.1, vanishes in the asymptotically independent

case. Therefore, in the case ΛU = 0, it is verified that λ̂U
P→ 0 (for more details see Theorem

A.1. and Corollary A.1. in Di Bernardino et al. (2013)). Consequently, ρ̂
ρ

P→ 1.
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Second-order condition for the bivariate upper tail copula ΛU (x, y) In Table 2, the

second-order condition for the bivariate upper tail copula ΛU (x, y) in Equation (10) is illustrated

for some classic Archimedean copula models with ΛU (x, y) = x+ y − (xθ + yθ)1/θ. We consider

the Gumbel copula, Joe copula, and Copulas (12), (14), (15) and (21) in Table 4.1 in Nelsen

(2006). Observe that the property in Equation (10) is not verified for Copula (2) in Table 4.1

in Nelsen (2006).

[Table 2 about here.]

2.3 Intermediate Order Statistics

In the following, we adapt in our setting the well-known Central Limit Theorem for the interme-

diate order statistics. This result follows easily from Theorems 2.4.1 and 2.4.2 in de Haan and

Ferreira (2006). Further details are given in Theorem 2.1 in Drees (1998). Theorem 2.1 below

is crucial in the proof of our main result (see Theorem 3.1 in the main document).

Theorem 2.1 (Theorem 2.1 in Drees (1998)). Let (X1, . . . , Xd) be a random vector with Ar-

chimedean copula Cϕ with twice differentiable generator ϕ. Assume that ϕ ∈ RVρ(1), with

ρ ∈ [1,+∞]. Let i ∈ {1, . . . , d}. Assume that UXi satisfies Assumption 3.1 in the main doc-

ument with auxiliary function Ai(·), γi > 0 and τi < 0. Let k = k(n) → ∞, k/n → 0,

n → ∞ such that limn→∞
√
kU Ai(n/kU ) exists and is finite with the sequence kU defined by
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kU (n) := n

{
1− ϕ−1

[(
1−

(
1− k(n)

n

)1/(d−1))
ϕ(α)

]}
. Then, it holds that, as n → ∞,

√
kU (n)

 Xi
n−⌊kU ⌋,n

UXi

(
n

kU (n)

) − 1

 d→ γiN(0, 1).

Proof of Theorem 2.1

From Proposition 2.2 in the main document, it is verified that UTi

(
n
k

)
= UXi

(
n
kU

)
, and kU (n) →

∞, kU/n → 0 as n → ∞. Since, by assumptions, UXi satisfies Assumption 3.1 in the main

document with auxiliary function Ai(·), γi > 0, τi < 0 and
√
kUAi(n/kU ) → λ′ < ∞, as n → ∞,

then from Theorem 2.4.2 in de Haan and Ferreira (2006), the result is attained. □

2.4 Adaptive version of the estimator x̂i
pn

The intermediate sequence kU (n) in Proposition 2.2 and Theorem 3.1 in the main document is

an unknown sequence which depends on the generator of the considered Archimedean copula.

In this section, a plug-in procedure based on the estimation of kU is presented. This can be seen

as an adaptive version of the results of Section 3 in the main document. For this purpose, the

notion of self-nested diagonal of a copula and the associated nonparametric estimator proposed

by Di Bernardino and Rullière (2013) are recalled in the following.

Recall that the diagonal section of a d−dimensional copula C is given by δ1(u) = C(u, . . . , u), u ∈

[0, 1], and δ−1 is the inverse function of δ1, such that δ1◦δ−1 is the identity function. From Lemma

3.4 in Di Bernardino and Rullière (2013), one can write the family of self-nested diagonals of an

Archimedean copula Cϕ at each order r ∈ R as: δr(u) = ϕ−1(d rϕ(u)), for u ∈ (0, 1), r ∈ R.
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Di Bernardino and Rullière (2013) introduce the following estimation of a self-nested diagonal

δr, by using an interpolation procedure (see also Lemma 3.6 in the aforementioned paper).

Definition 2.2 (Definition 4.2 in Di Bernardino and Rullière (2013)). Let δ̂1 be an estimator

of δ1, and δ̂−1 be an estimator of the inverse function δ−1. Estimators of δh and δ−h can be

obtained for any h ∈ N\{0} by setting



δ̂h(u) = δ̂1 ◦ . . . ◦ δ̂1(u), (h times)

δ̂−h(u) = δ̂−1 ◦ . . . ◦ δ̂−1(u), (h times)

δ̂0(u) = u.

At any order r ∈ R, an estimator of δ̂r of δr is

δ̂r(u) = z

((
z−1 ◦ δ̂h(u)

)1−η (
z−1 ◦ δ̂h+1(u)

)η)
, for u ∈ [0, 1], (11)

with η = r − ⌊r⌋ and h = ⌊r⌋ where ⌊r⌋ denotes the integer part of r, and where z is a strictly

monotone function driving the interpolation, ideally the inverse of the generator of the copula.

Several different estimators for δ1 can be found in the literature. In particular, one can propose

δ̂1(u) = FY,n(u), where FY,n(u) is the empirical distribution function of Y := max(U1, U2, . . . , Ud).

Similarly, we consider δ̂−1(u) = F−1Y,n(u), with F−1Y,n(u) the empirical quantile function of Y .

Using the self-nested diagonal family δr, we write the sequence kU (n) as: kU (n) = n (1 −

δr(n)(α)), where r(n) := log

(
1−

(
1− k(n)

n

)1/(d−1))
/ log(d) is a negative real sequence. There-

fore, using the nonparametric estimator δ̂r(n) in Definition 2.2, we introduce the estimator

k̂U (n) = n (1− δ̂r(n)(α)), for α ∈ (0, 1). (12)
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The following consistency result for k̂U (n) can now be proved.

Lemma 2.2. Let kU (n) be the intermediate sequence defined as in Theorem 2.1. Let δ̂1(u) =

FY,n(u), with FY,n(u) the empirical distribution function of Y := max(U1, U2, . . . , Ud) and δ̂−1(u) =

F−1Y,n(u), with F−1Y,n(u) the empirical quantile function of Y . Let k̂U (n) be the associated estima-

tor proposed in Equation (12) for a fixed α ∈ (0, 1) and where z is a strictly monotone function

driving the interpolation. Then,

k̂U (n)
kU (n)

P→ 1, as n → ∞.

Proof of Lemma 2.2

Firstly, we prove that δ̂h(u)
δh(u)

P→ 1, for u ∈ (0, 1) and for fixed h ∈ Z, where δh is intro-

duced at the beginning of this section and δ̂h(u) is defined in Definition 2.2. Consider that

h ∈ Z+. Since δ̂1(u) := FY,n(u), where FY,n(u) is the empirical distribution function of

Y := max(U1, U2, . . . , Ud), then from Glivenko Cantelli’s Theorem, it is verified that

supu∈[0,1] |δ̂1(u)− δ1(u)| = supu∈[0,1] |FY,n(u)− FY (u)|
P→ 0, as n → ∞.

By induction, we assume that supu∈[0,1] |δ̂m−1(u)−δm−1(u)|
P→ 0. Since C is a Lipschitz function

(see Definition 6.2.6 in Nelsen (2006)), from Theorem 1 in Kasy (2015) and from the uniformly

convergence of δ̂1(u), then supu∈[0,1] |δ̂m(u) − δm(u)| P→ 0, as n → ∞. Let h ∈ Z−. We have

δ̂−1(u) := F−1Y,n(u), where F−1Y,n(u) is the empirical quantile function of Y . From Theorem 3 in

Mason (1982),

supu∈(0,1) |δ̂−1(u)− δ−1(u)| = supu∈(0,1) |F−1Y,n(u)− F−1Y (u)| P→ 0, as n → ∞.
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By induction, we suppose that supu∈(0,1) |δ̂m(u) − δm(u)| P→ 0. Since C−1 is a uniformly conti-

nuous function in [0, 1], then from Theorem 1 in Kasy (2015) and from the uniformly convergence

of δ̂−1(u), we obtain supu∈(0,1) |δ̂m−1(u) − δm−1(u)|
P→ 0, as n → ∞. Therefore, δ̂h(u)

δh(u)

P→ 1, for

u ∈ (0, 1) and for fixed h ∈ Z. Furthermore, by using the Slutsky’s Theorem (e.g., see Serfling

(1980)), one can prove that δ̂r(u)
δr(u)

P→ 1, ∀u ∈ (0, 1) and ∀ r ∈ R fixed. Therefore, since δr is

also a continuous and bounded function in r, from Polya’s Theorem (e.g., see Section A.1.1 in

Embrechts et al. (1997)), then, for u ∈ (0, 1), supr∈R |δ̂r(u) − δr(u)|
P→ 0, as n → ∞. By using

this uniform consistency we obtain the assertion of Lemma 2.2. □

Using Lemma 2.2, it can be proved that Xi
n−⌊k̂U ⌋,n

is asymptotically as efficient as Xi
n−⌊kU ⌋,n.

To be more precise, an adaptive plug-in version of Theorem 2.1 can be obtained, i.e.,

√
k̂U (n)

 Xi
n−⌊k̂U ⌋,n

UXi

(
n

kU (n)

) − 1

 d→ γiN(0, 1), as n → ∞. (13)

Further details are given in Hall and Welsh (1985), Drees and Kaufmann (1998), and Danielsson

et al. (2001). Then, an adaptive version of Theorem 3.1 in the main document for x̂ipn can also

be provided. The proof is a slightly modified version of the proof of Theorem 3.1, by using the

result in Equation (13) instead of Theorem 2.1. Illustrations of this plug-in estimation of x̂ipn ,

by using k̂U instead of kU , can be found in Section 5 in the main document.

In particular, to estimate the adaptive sequence k̂U (n) in Section 5 of the main document, we

consider z(x) = exp(−x). This choice is recommended in Di Bernardino and Rullière (2013)

when there is positive dependence, since it is the best choice for any Gumbel copula, whatever

14



the parameter of the copula (see Corollary 3.7 in Di Bernardino and Rullière (2013)). Another

natural choice could be any estimator of the inverse of the generator of the copula. Finally,

it should be borne in mind that this function z does not change values of any δk, for k ∈ Z.

Therefore, the global shape of δr, as a function of r ∈ R, is not heavily impacted by the choice

of z. For a in-depth analysis of the weak impact of the interpolation function z in the evaluation

of δr, the reader is referred to Section 4.3.1 in Di Bernardino and Rullière (2013).

Illustrations of estimators δ̂r and k̂U In Figure 1, illustrations of δ̂r with r ∈ R are

provided for two different interpolation functions. As in Di Bernardino and Rullière (2013), a

2−dimensional Gumbel copula is generated with θ = 3 and sample size n = 2000 and n = 7000.

We consider z(x) = exp(−x) (first row of Figure 1) and z(x) = exp(−x1/θ), i.e., the inverse of

the Gumbel generator copula (see second row of Figure 1) with r = −3.5, −2.4, −1.2, 0.6, 1.2,

2.4, 3.5. As pointed out before, it can be observed that the modification of the interpolation

function z does not produce significant differences in the estimation of δr.

[Figure 1 about here.]

Finally, an illustration of Lemma 2.2 is provided in Figure 2 where the boxplots of the ratio

k̂U (n)/kU (n) are gathered for a Joe copula θ = 3 with Fréchet margins β = 3 by considering

different sample sizes, with k(n) =
√
n (left panel) and k(n) = n0.9 (right panel). In this case,

we choose z the inverse of the generator of the considered Joe copula.

[Figure 2 about here.]
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Embrechts, P., Klüppelberg, C., and Mikosch, T. (1997). Modelling extremal events for insurance and

finance. Springer. Berlin.

16



Hall, P. and Welsh, A. H. (1985). Adaptive estimates of parameters of regular variation. The Annals of

Statistics, 13(1):331—-341.

Kasy, M. (2015). Uniformity and the delta method. Harvard University Working Paper.

http://scholar.harvard.edu/kasy/publications/uniformity-and-delta-method.

Mason, D. M. (1982). Some Characterizations of Almost Sure Bounds for Weighted Multidimen-

sional Empirical Distributions and a Glivenko-Cantelli Theorem for Sample Quantiles. Zeitschrift

für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 59:505–513.

Nelsen, R. B. (2006). An Introduction to Copulas. Springer Series in Statistics. Springer.

Schmidt, R. and Stadtmüller, U. (2006). Non-parametric estimation of tail dependence. Scandinavian

Journal of Statistics. Theory and Applications, 33(2):307—-335.

Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. Wiley Series in Probability

and Mathematical Statistics. John Wiley & Sons, Inc., New York.

17



List of Figures

1 Gumbel copula with dependence parameter θ = 3. Estimation of δr(x) by con-
sidering z(x) = exp(−x) (first row) and z(x) = exp(−x1/θ) (second row) with
r = −3.5, −2.4, −1.2, 0.6, 1.2, 2.4, 3.5, for n = 2000 (left panels) and n = 7000
(right panels). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Joe copula with dependence parameter θ = 3 and Fréchet margins with β = 3.
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Figure 1: Gumbel copula with dependence parameter θ = 3. Estimation of δr(x) by considering
z(x) = exp(−x) (first row) and z(x) = exp(−x1/θ) (second row) with r = −3.5, −2.4, −1.2, 0.6,
1.2, 2.4, 3.5, for n = 2000 (left panels) and n = 7000 (right panels).

19



Boxplots of k̂U (n)/kU (n)

Figure 2: Joe copula with dependence parameter θ = 3 and Fréchet margins with β = 3.
Boxplots for the ratio k̂U (n)/kU (n) for various values of n, α = 0.9, k(n) =

√
n (left panel) and

k(n) = n0.9 (right panel). 500 Monte Carlo simulations are taken.
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ρ γi < 0 γi = 0 γi > 0

(1,+∞) γi/ρ 0 γi/ρ

1 γi 0 γi
+∞ 0 0 0

Copula U(0, 1) Exp(λ) Par(δ, 1)

Gumbel −1/θ 0 1/δθ

Ali-Mikhail-Haq −1 0 1/δ

18 0 0 0

Table 1: Left panel: The tail index γTi when (X1, . . . , Xd) follows an Archimedean copula with
ϕ ∈ RVρ(1) and Fi verifies the von Mises condition with index γi. Right panel: The tail index
γTi for some specific models.
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Copula ϕ(t) Aρ(t)

Gumbel (− log(t))θ t−1

Joe − log(1− (1− t)θ) t−θ

(12) (1/t− 1)θ t−1

(14) (t−1/θ − 1)θ t−1

(15) (1− t1/θ)θ t−1

(21) 1− (1− (1− t)θ)1/θ t−θ

Table 2: Bivariate Archimedean copula models with ρ = θ and λU = 2− 21/θ.
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