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Expectation Propagation as Turbo Equalizer in ISI
Channels

Irene Santos, Juan José Murillo-Fuentes, Rafael Boloix-Tortosa, Eva Arias-de-Reyna, and Pablo M. Olmos

Abstract—In probabilistic equalization of channels with inter-
symbol interference, the BCJR algorithm and its approximations
become intractable for high order modulations, even for moder-
ate channel dispersions. In this paper we introduce a novel soft
equalizer to approximate the symbol a posteriori probabilities
(APP) where the expectation propagation (EP) algorithm is used
to provide an accurate estimation. This new soft equalizer is
presented as a block solution, denoted as block-EP (BEP), where
the structure of the matrices involved is exploited to reduce the
complexity order to OpLN2q, i.e., linear in the length of the
channel, L, and quadratic in the frame length, N . The solution
is presented in complex-valued formulation within a turbo equal-
ization scheme. This algorithm can be cast as a linear minimum-
mean-squared-error (LMMSE) turbo equalization with double
feedback architecture where constellations being discrete is a
restriction exploited by the EP that provides a first refinement of
the APP. In the experiments included, the BEP exhibits a robust
performance, regardless of the channel response, with gains in
the range 1.5-5 dB compared to the LMMSE equalization.

Index Terms—Expectation propagation (EP), BCJR, complex-
valued, turbo equalization, ISI.

I. INTRODUCTION

SOFT or probabilistic channel equalization [1] is a tech-
nique to mitigate the interference between symbols (ISI)

provoked by the dispersive nature of the channel [2], [3].
It provides the posterior probabilities of the estimated trans-
mitted symbols given the observation, from which nowadays
decoders highly benefit [4]. These two tasks, equalization
and decoding, were initially considered separately, but the
performance was remarkably improved by joining them into a
turbo equalization scheme [5]–[7]. In turbo equalization, an
equalizer and a decoder exchange information in terms of
log-likelihood ratios (LLRs). After one or more iterations, the
channel decoder generates the LLRs which are delivered back
to the equalizer as updated a priori information.

The optimal BCJR algorithm [8] computes the a posteri-
ori probability (APP) for each transmitted symbol providing
maximum a posteriori (MAP) probabilistic decisions. It works
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on a trellis representation, assuming perfect knowledge of the
channel impulse response (CIR) and a channel with finite
memory [9]. The BCJR complexity is proportional to the
number of trellis branches, ML, increasing with the number
of taps of the channel, L, and the size of the constellation
used, M . The BCJR memory requirements per step also grow
with the number of states. Therefore, for a few taps and a
multilevel constellation the complexity becomes intractable.

To reduce the complexity of the BCJR some suboptimal
algorithms, based on performing a simplified trellis search
with only Me states, have been proposed in the literature.
They can be divided into two different families. The first one
consists in reducing the effective length of the CIR, such as
the reduced-state BCJR (RS-BCJR) algorithm [10], which is
based on the reduced-state sequence detection (RSSD) [11]–
[13]. The key idea is to cancel the final channel taps, by
truncating the memory of the channel, to reduce the number
of states. On the other hand, other algorithms only keep the
states with highest APP, i.e., unlike the previous algorithms,
they perform a reduced search on the original full trellis,
instead of a full search on a reduced-state trellis. This is
the case of the M-BCJR algorithm [14]. Some approaches
try to join both families to improve the results. We mention
the M*-BCJR in [15], that outperforms both RS-BCJR and
M-BCJR algorithms. These approaches have some important
limitations. A first issue is that they are usually designed
for some types of channels [10], [14], [15]. Secondly, they
are unable to merge the paths determined by forward and
backward trellises, since these paths generally do not match in
both procedures. To overcome these problems, a variation of
the M-BCJR algorithm is proposed in [16], where the authors
use a different active state selection criterion. In [17] the
channels are equalized differently according to their minimum,
maximum or mixed phase nature [18]. Depending on the
channel realization, they resort to the forward recursion or
forward-trellis, backward-trellis or an optimized mixture of
them. This approach is referred to as nonzero (NZ) completion.
Thirdly, all approximated methods above ignore some paths
in the trellis, which means that the explored paths tend to be
considered much more reliable than they really are. To reduce
this overestimation, the NZ with output saturation (NZ-OS)
is proposed in [17]. The above issues can be mitigated with
channel shortening approaches, such as [19], where the authors
perform a full search over an optimized and reduced trellis.
However, it is important to remark that the performance of
this approach and approximated BCJR solutions degrades if
the number of survivor paths, Me, does not grow accordingly
with the total number of states. Hence they are computationally
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unfeasible for large trellises and equalizers of the MMSE type
are preferred [20].

Message passing approaches have been also investigated,
see [21]–[25] and references therein. In [21], an equalizer
based on the belief propagation (BP) algorithm is developed to
reduce the inference complexity in sparse channels. However,
the complexity of the method still grows exponentially with
the size of the modulation and the number of nonzero channel
interferers. In [24] the graphical model of the system is rewrit-
ten to end with a graph with loops equal or larger than 6, and
the loopy BP is then applied. Its output is an approximation
reported to provide good results in ISI channel equalization
for BPSK modulations, although the method can be applied
to other modulations. Its complexity scales linearly with the
frame length and the channel memory, but quadratically with
the constellation order. A different approach is proposed in
[23], where a successive interference canceler applied to
equalization is developed by considering the interference plus
noise as Gaussian distributed. In [22] the authors develop an
approach that introduces expectation propagation (EP) approx-
imate inference [26]–[28] to incorporate into the BP algorithm
the information from the BPSK symbol estimates coming from
the channel decoder. In [25] the authors develop a different
EP implementation for the equalizer in [22]. These two works
develop particular instances of EP to project the BP messages
into the right distribution (Gaussian/discrete), allowing feasible
updates of the BP messages. The main difference between the
EP method proposed by [22] and [25] is the procedure to
tackle numerical instabilities during the EP updates related
to variance parameters taking extremely small values or even
negative ones. While in [22] the authors introduce a damping
approach, in [25] negative variance parameters are replaced by
their absolute values. At this point it is important to remark
that [22], [23], [25] consider BPSK transmissions and the EP
is just used to better approximate messages from the decoder
to the equalizer.

Soft linear equalization, such as the linear minimum-mean-
squared-error (LMMSE) [29], is a suboptimal but low-cost
alternative. Its complexity is dominated by the inversion of
a matrix of size N when all observations are processed in a
block or batch approach. When no turbo scheme is used the
complexity can be reduced to OpN logNq by exploiting the
circulant nature of the involved matrix and the fast Fourier
transform (FFT). However, after the feedback in the turbo
equalization the matrix is no longer circulant and we can not
use the FFT, yielding a cubic complexity in N [30]. In [31],
some approximations are introduced to lower the complexity.
Some windowed versions have also been developed in order
to reduce this complexity. Specifically, in [32] a sliding
window LMMSE algorithm is proposed and in [33] these
results are improved by replacing the sliding window with an
extending window. In [5], [32], [34] the authors also propose
some approximated windowed solutions to further reduce the
complexity.

In this work we focus on a novel block solution to im-
prove the equalization algorithms above when dealing with
multidimensional constellations, with linear complexity in the
constellation size and for any channel realization. We present

an EP-based algorithm that approximates the joint posterior
probability of the transmitted bits in a centralized manner,
i.e., we do not use EP to project the BP messages into
a different distribution, as [22], [25] would do. EP has
been already successfully applied to multiple-input multiple-
output (MIMO) detection [35]–[37], low-density parity-check
(LDPC) channel decoding [38], [39], tracking of flat-fading
channels [40] and equalization of BPSK transmissions with
message passing BP approaches [22], [25]. We exploit the
key idea in [36], where compared to [35] the EP is used to
better approximate the full posterior rather than to improve
message passing algorithms at some points. Preliminary results
for equalization of real-valued systems were discussed in
[41]. In this paper we propose a turbo equalization scheme
where we implement EP to obtain a complex-valued Gaussian
approximation to the probability of the transmitted symbols
conditioned to the received signal. We denote this approach
as turbo BEP equalizer (T-BEP). We discuss the interpretation
of this T-BEP as a double turbo LMMSE equalizer, where the
discrete nature of the transmitted symbols is used as a first
feedback. To deal with negative variance we avoid updates
whenever EP provides negative variance. The computational
complexity per step of the T-BEP is dominated by the inversion
of an N -dimensional banded covariance matrix, which has
exactly the same structure as in the turbo LMMSE scheme
[30]. We exploit the structure of the matrices to reduce it
to OpLN2q, i.e., quadratic complexity in N and independent
of M . In addition, we address the estimation of the mutual
information between the detected and transmitted symbols to
explain the obtained gain. Finally, we compare it to the most
relevant approximated BCJR approaches discussed above. As a
result, at low dimensional scenarios we achieve a performance
close to the optimal BCJR solution, regardless of the channel
realization. For multilevel constellations the BEP outperforms
the turbo LMMSE equalizer (T-LMMSE). This performance
is further improved with the T-BEP. Gains in the 2-5 dB range
are reported for 16 and 64-QAM constellations.

The paper is organized as follows. We first describe in
Section II the structure and model of the communication
system at hand and review the formulation for the block
LMMSE turbo equalizer. In Section III the EP algorithm
is introduced. Section IV is devoted to describe the novel
proposed T-BEP equalizer and develop its formulation for
complex numbers. We also study the convergence of the
algorithm to propose values for the parameters of the EP
equalizer and exploit the structure of the matrices involved
to propose efficient computations. In Section V, we include
several experiments to show the good performance of the T-
BEP. We end with some conclusions.

The following specific notation is used throughout the paper.
If u is a vector, ui:j refers to a column vector with the entries
of vector u indexed by the set ti, i ´ 1, i ´ 2, ..., ju. We use
u˚ to denote the complex conjugate of u. To denote a normal
distribution of a random proper complex vector u with mean
vector µ and covariance matrix Σ we use CNpu : µ,Σq.
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Fig. 1: System model and turbo equalization.

II. SYSTEM MODEL AND LMMSE SOLUTION

A. System model

In Fig. 1 we represent the discrete-time communication sys-
tem with turbo equalization. It can be divided into four parts:
transmitter, channel model, equalizer and turbo equalization.

1) Transmitter: A block of K message bits, m “
rm1, ...,mKsJ, is encoded with a rate R “ K{V into the
codeword b “ rb1, ..., bV sJ and permuted with an interleaver
to c “ rc1, ..., cV sJ. An M -ary modulation is considered
to obtain N “ rV { log2M s symbols, in u. Then, the block
frames u “ ru1, ..., uN sJ “ Rpuq`jIpuq are transmitted over
the channel, where each component uk “ Rpukq`jIpukq P A.
Hereafter, A denotes the set of symbols of the constellation
of order |A| “ M . The mean transmitted symbol energy and
energy per bit are denoted by Es and Eb, respectively.

2) Channel model: The channel is completely specified by
the CIR, i.e., h “ rh1, ..., hLsJ, where L is the length of
the CIR, and the noise variance σ2

w, that we assume known
at the receiver. The received signal y “ ry1, ..., yN`L´1sJ P
CN`L´1 is given by

»
—————–

y1

...

yN`L´1

fi
ffiffiffiffiffifl
“

»
———————–

h1 0
...

. . .

hL
. . . h1
. . .

...
0 hL

fi
ffiffiffiffiffiffiffifl

»
—————–

u1

...

uN

fi
ffiffiffiffiffifl
`

»
—————–

w1

...

wN`L´1

fi
ffiffiffiffiffifl

(1)
or

y “ Hu`w (2)

in matrix form, where

yk “
Lÿ

l“1

hluk´l`1 ` wk “ hJuk:k´L`1 ` wk, (3)

uk “ 0 for k ă 1 and k ą N , and w „ CN
`
w : 0, σ2

wI
˘
. In

this case, it is circular complex AWGN due to its zero mean
[42].

3) Equalization: Given the model above, the posterior
probability of the transmitted symbol vector u yields

ppu|yq “ ppy|uqppuq
ppyq 9 CN

`
y : Hu, σ2

wI
˘ Nź

k“1

IukPA, (4)

where IukPA is the indicator function that takes value one if
uk P A and zero otherwise. The optimal equalizer to estimate
ppuk|yq, k “ 1, . . . , N , is the BCJR algorithm, unaffordable
for multilevel constellations when the channel memory, L,
grows.

4) Turbo Equalization: The key point of turbo equalization
is the iterative exchange of information between the equalizer
and the decoder for the same set of received symbols [5], [7],
[34]. Given the extrinsic log-likelihood ratios (LLR) from the
equalizer to the decoder, LEpbt|yq, the latter computes (after
one or more iterations) an estimation of the information bits,
m̂, and an extrinsic LLR on the coded bits

LDpbtq “ log
ppbt “ 0|LEpb|yqq
ppbt “ 1|LEpb|yqq´LEpbt|yq. (5)

These LLRs are mapped again and delivered back to the
equalizer as updated a priori probability, with a slight abuse
of notation we denote it by pDpuq. This process is repeated
iteratively for a given maximum number of iterations, T , or
until convergence.

B. Turbo LMMSE Equalization Algorithm

We include next the description of the turbo equalization
with LMMSE, that we denote by T-LMMSE, since we will
use it as benchmark and its structure is a good starting
point to develop our solution. Given the CIR, the posterior
approximation provided by the LMMSE equalizer is obtained
by replacing the discrete uniform prior ppuq in (4) by a product
of independent Gaussian distributions with mean Eruks P C
and variance Vruks P R`,

qMMSEpuq “ CN
`
y : Hu, σ2

wI
˘ Nź

k“1

CNpuk : Eruks,Vruksq .
(6)

This distribution is a proper complex Gaussian [42]

qMMSEpuq “ CNpu : µMMSE ,ΣMMSEq (7)

where

ΣMMSE “
`
σ´2
w HHH`Σ´1

u

˘´1
, (8)

µMMSE “ ΣMMSE

`
σ´2
w HHy `Σ´1

u µu

˘
(9)

and µu “ rEru1s, ...,EruN ssJ, Σu “
diag pVru1s, ...,VruN sq. The complexity of this solution
is dominated by the matrix inversion in (8). For the first
iteration, we set Eruks “ 0 and Vruks “ Es, and the matrix
yields a circulant matrix whose inverse can be computed
with complexity of order OpN logNq by means of the FFT.
Then, the symbol probability of each entry is computed by
independently deciding on each component.

In turbo equalization, the extrinsic information is passed
to the channel decoder. The extrinsic information for symbol
k is computed from (7), assuming equally probable symbols
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for the a priori information of the k-th one. By using this
turbo scheme in the receiver, the equalizer is fed back with
the statistics Eruks and Vruks, which are obtained from the
updated a priori probability pDpukq in Fig. 1 as

Epukq “
ÿ

uPA
u ¨ pDpuk “ uq, (10)

Vpukq “
ÿ

uPA
pu´ Eruksq˚ pu´ Eruksq ¨ pDpuk “ uq. (11)

At this point, it is important to remark that since the variances
are no longer equal, the matrix to invert in (8) is not circulant.
Therefore, the complexity of its inversion is of order OpN2Lq,
as discussed later in this paper.

III. EXPECTATION PROPAGATION

Expectation propagation [26]–[28], [43] is a technique
in Bayesian machine learning to approximate an intractable
probability distribution, in which inference is unfeasible, by
exponential family distributions. Suppose we are given some
statistical distribution with hidden variables x and observables
D that factors as

ppx|Dq 9 fpxq
Iź

i“1

tipxq, (12)

where fpxq belongs to an exponential family F with sufficient
statistics Φpxq, and tipxq are nonnegative factors that do
not belong to F , making direct inference over (12) not
possible. EP provides a feasible approximation to ppx|Dq by
an exponential distribution qpxq from F which factorizes as

qpxq 9 fpxq
Iź

i“1

t̃ipxq, (13)

where factors t̃ipxq P F are optimized to achieve an accu-
rate global approximation qpxq Ð ppx|Dq, which optimally
satisfies EqpxqrΦpxqs “ Eppx|DqrΦpxqs. This is known as the
moment matching solution. A feasible algorithm to approxi-
mate this solution is the sequential EP algorithm [26], [27],
which optimizes each factor t̃ipxq in turns independently in
the context of all of the remaining factors. A sketch of the
EP algorithm is given in Algorithm 1 where qr`spxq is the
approximation to qpxq in (13) at iteration `.

IV. BLOCK-EP TURBO EQUALIZER

The EP is endowed with a great flexibility, given by the
model in (13). In order to improve the accuracy of the EP
solution, it is important to retain as much structure as possible
from the true distribution and separate it from the latent (un-
known) factors, tipxq [26]. Bearing this in mind, we develop
an EP approximation to (4), namely the posterior distribution
of the transmitted symbols given the channel outcome y.

A. The BEP equalizer
The following Gaussian exponential family will be consid-

ered to find a suitable approximation to (4):

qpuq 9 CN
`
y : Hu, σ2

wI
˘ Nź

k“1

exp pu˚kγk ` γ˚kuk ´ Λku
˚
kukq,

(15)

Algorithm 1 The EP algorithm

Initialize approximating factors t̃ipxq and then qpxq in (13).
repeat

for i “ 1, ..., I do
1) Compute the distribution

p̃ipxq 9 tipxqqr`szipxq “ tipxqqr`spxq{t̃r`si pxq (14)

and its moments, where qr`szipxq is the so called cavity
function.
2) Compute the refined factor t̃ r``1s

i pxq by setting the
moments of the distribution t̃ r``1s

i pxqqr`szipxq equal to
the moments of p̃ipxq.

end for
until convergence (or stopped criterion)

where the product of indicator functions is replaced by a
product of univariate proper complex Gaussians, each param-
eterized by a pγk,Λkq pair, k “ 1, . . . , N . For any value
γk P C and Λk P R`, qpuq is also proper complex Gaussian
CNpu : µ,Σq with

Σ “ R´1 “ pσ´2
w HHH` diagpΛqq´1, (16)

µ “ Σpσ´2
w HHy ` γq, (17)

exhibiting a similar structure to the LMMSE in (7). Based
on these definitions in mind, we adapt the EP algorithm in
Algorithm 1 to our setting. We denote the resulting algorithm
block-EP (BEP) soft equalizer, and it can be found in Algo-
rithm 2. A few remarks:

‚ Step 1) is the “LMMSE” step of the algorithm, as it
requires computing Σ and µ in (16) and (17) for the
current configuration of pΛ,γq. Note that this step is
equivalent to the LMMSE method in (10) and (11).

‚ Steps 2.1)-2.3) can be done in parallel for k “
1, . . . , N . They can be seen as a refinement to the
estimate computed at Step 1) by enforcing a dis-
crete distribution. Given the factorization in (15),
marginal qr`spukq, k “ 1, . . . , N is proportional to
exp pu˚kγk ` γ˚kuk ´ Λku

˚
kukq. This term is canceled out

in p̂r`spukq and the“true” discrete factor is introduced. Pa-
rameters canceled are recomputed by moment matching
in (22)-(23). Eqn. (22) and (23) are proposed following
the guidelines in [36, Eq. 35-36]. The parameter update in
(22) may return a negative value for some k’s. For those
k’s, we keep the values from the previous iteration. We
introduce a smoothing parameter β P r0, 1s and a small
constant ε. To avoid numerical instabilities, constant ε
is the minimum allowed variance at each iteration, i.e.,
σ
2r`s
pk “ maxpε, σ2r`s

pk q.
A block diagram of the BEP equalizer is included in Fig. 2

(a). The LMMSE block corresponds to Step 1). The grey block
represents the refinement of the current marginals qr`spukq
through projection over discrete alphabet, whose output is fed
back to the LMMSE block.
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uk P A Channel
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Inner Turbo Equalizer (BEP)

Outer Turbo Equalizer
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Fig. 2: In (a), BEP equalizer block diagram. In (b), Turbo BEP block diagram.

B. The Turbo BEP equalizer
The BEP equalizer can be further improved by using a turbo

scheme. The resulting proposed equalizer, denoted as T-BEP,

Algorithm 2 Block-EP equalizer (BEP)

Input: pγr1sk ,Λ
r1s
k q initialization.

for ` “ 1, ..., S do
1) Calculate the moments of qr`spuq in (15) for the current
values of γk Ð γ

r`s
k and Λk Ð Λ

r`s
k .

for k “ 1, ..., N do
2.1) Compute the k-th marginal of the distribution
qr`spuq, denoted as qr`spukq “ CN

´
uk : µ

r`s
k , σ

2r`s
k

¯
,

and the distribution

qr`szkpukq “ qr`spukq
exp

´
u˚kγ

r`s
k ` γr`sk

˚
uk ´ Λ

r`s
k u˚kuk

¯ ∼

∼ CN
´
uk : z

r`s
k , v

2r`s
k

¯
, (18)

namely cavity marginal function, where

v
2r`s
k “ σ

2r`s
k

1´ σ2r`s
k Λ

r`s
k

, z
r`s
k “ v

2r`s
k

˜
µ
r`s
k

σ
2r`s
k

´ γr`sk

¸
.

2.2) Obtain the distribution p̂r`spukq 9 qr`szkpukqIukPA
and estimate its mean µr`spk and variance σ2r`s

pk .
2.3) Set the mean and variance of the unnormalized
Gaussian distribution

qr`szkpukq exp
´
u˚kγ

r``1s
k,new ` γr``1s

k,new

˚
uk ´ Λ

r``1s
k,newu

˚
kuk

¯

(19)
equal to µr`spk and σ2r`s

pk . To this end, compute:

Λ
r``1s
k,new “

´
σ´2r`s
pk

´ v´2r`s
k

¯
, (20)

γ
r``1s
k,new “

´
µr`spk

σ´2r`s
pk

´ zr`sk v
´2r`s
k

¯
. (21)

2.4) Update the values as

Λ
r``1s
k “ βΛ

r``1s
k,new ` p1´ βqΛr`sk , (22)

γ
r``1s
k “ βγ

r``1s
k,new ` p1´ βqγr`sk . (23)

end for
end for
With the values γrS`1s,ΛrS`1s obtained after EP algorithm,
calculate the final distribution qpuq in (15).

Algorithm 3 Block-EP turbo equalizer (T-BEP)

0) Initialize pγr1sk ,Λ
r1s
k q “ p0, E´1

s q.
for t “ 1, . . . , T do

1) With the current initialization to pγr1sk ,Λ
r1s
k q, run BEP

equalizer in Algorithm 2.
2) Compute an estimate to the extrinsic LLRs, LEpbt|yq,
by feeding

pEpuk|yq “ qrS`1szkpukq (24)

to the demapper. Feed LEpbt|yq to the channel decoder.
3) From the channel decoder per-bit soft output, recom-
pute a probability distribution for each symbol pDpukq
from the decoder and compute its mean Eruks and
variance Vruks given by (10) and (11).
4) Re-initialize pγr1sk ,Λ

r1s
k q to pEruksVruks´1,Vruks´1q.

end for

can be easily described as the T-LMMSE in Subsection II-B
by just replacing (7) with the result of the BEP, Algorithm 2,
in (15). A detailed implementation of the T-BEP is included
in Algorithm 3. Also, a block diagram is included in Fig. 2(b).
Note that the T-BEP can actually be seen as a turbo equalizer
with two loops. First we run an inner turbo scheme, i.e. BEP.
After S iterations of the BEP iterative procedure, the extrinsic
LLR is given to the decoder in an outer loop, which is repeated
T times. We propose to approximate the extrinsic probabilities
by the cavity functions at the end of the EP algorithm, see (18).
In this second stage the restrictions from the channel coding
are exploited. The output of the channel decoder is used to
initialize the BEP iterative procedure, whose outputs are then
fed forward to the channel decoder. This is a major difference
with respect to the previous scheme used in [5], [32], [34],
where the estimates were refined only using the output of the
decoder, as shown in Fig. 1, and the proposed inner loop was
not present.

C. Efficient implementation

All pγr`sk ,Λ
r`s
k q pairs for k “ 1, ..., N can be updated in

parallel. The most involved step is the computation of an
N -dimensional inverse matrix in (16) for each `-iteration,
whose complexity is dominated by its size, i.e., OpN3q. Once
this inverse is computed, the parallel update of all pairs
pγr`sk ,Λ

r`s
k q Ð pγr``1s

k ,Λ
r``1s
k q by means of step 2 and 3 in
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Algorithm 3 has a smaller computational complexity, linear in
NM . To reduce the complexity of the matrix inversion, we
propose to exploit the banded structure of the channel matrix
along with the short length of the channel compared to N . The
matrix R in (16) is a symmetric, positive-definite and banded
matrix with bandwidth 2L ´ 1. We can decompose R using
the band Cholesky factorization [44] such that

R “ GGJ, (25)

where G is a lower triangular banded matrix with bandwidth L
that can be computed with NL2 operations. Then, the inverse
of the covariance matrix can be rewritten as

Σ “ R´1 “ G´1JG´1. (26)

We invert matrix G by Gauss-Jordan elimination. For every
diagonal element, say Gk,k, we divide row k of less than N
non-null elements by Gk,k and cancel all the L ´ 1 lower
elements of its column. Repeated for the whole diagonal yields
a complexity of OpN2Lq.

D. Convergence

Although the convergence is not guaranteed, we concluded
empirically that in about S “ 10 iterations the distribution
qpuq constructed in (15) tipically reaches a stationary value.
Experimental results show that controlling numerical insta-
bilities in the parameter updates in the turbo case (T ą 0)
is simply done by setting ε “ 10´9 and β “ 0.1. This
solution is robust regardless the constellation order, SNR or
channel realization. In the equalization case (T “ 0), we have
found that results can be improved if ε is first kept constant
to a relatively high constant (0.5) to then reduce it. More
precisely, we have used ε “ 2´maxp`´5,1q. For equalizing 64-
QAM constellations, the best performance has been reported
by setting fixed to ε “ 0.9. We have selected the previous
values after extensive experimentation as a trade off between
convergence speed and accuracy. We emphasize again that the
latter heuristics to control stability in the equalization case are
not needed if the turbo scheme is used, as the feedback loop
naturally stabilizes the BEP output. In Fig. 3, we include a
representative example of the convergence by depicting the
evolution of some components of the mean vector µ in (17)
and covariance matrix Σ in (16) along different values of S
in the low-Eb{N0 regime (specifically, Eb{N0 “ 3 dB) for
a given observation, y, with a 16-PAM modulation, L “ 4
and T “ 0. As shown in Fig. 3, approximately after S “ 10
iterations the EP equalizer reaches a stationary value for the
mean and variance, equal to the value provided by the optimal
BCJR approach.

E. Performance analysis

We compare probabilistic equalizers using the mutual in-
formation between the transmitted symbol uk and detected
symbol ûk, distributed according to the estimation of the
posterior distribution of uk given y:

Ipuk, ûkq “
ÿ

uk

ÿ

ûk

ppuk, ûkq log2

ppûk|ukq
ppûkq , (27)
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EP iteration ℓ
(a)

M
ea
n BEP

BCJR

0 5 10 15 20 25 30
7

8

9

10

EP iteration ℓ
(b)

V
a
ri
a
n
ce

BEP

BCJR

Fig. 3: Evolution of the mean (a) and variance (b) of 3 randomly
chosen entries of the approximate posterior as EP iterates with
16-PAM, L “ 4 and Eb{N0 “ 3 dB.

0 5 10 15 20 25
1

2

3

4

5

6

Eb{N0 (dB)

I
pu

k
,û

k
q

BEP
LMMSE

10 11 12 13
3

3.5

4

4.5

5

Fig. 4: Mutual information for BEP and LMMSE for 64-QAM and
random channels with L “ 7.

where note that ppuk, ûkq is the joint probability distribution
of uk and ûk after marginalizing the channel output y, the
channel impulse response (in the case we consider it random)
and the rest of symbols in the sequence u. We resort to
Monte Carlo estimates to generate samples from ppuk, ûkq and
then evaluate Ipuk, ûkq from these samples. We assume that
the channel taps are Gaussian distributed, but are perfectly
known at the receiver. First, we collect N P Z` samples
from the joint distribution of u,h,y and ûk using standard
sampling techniques in directed graphical models [43]. The
key aspect is to note that, during the sampling procedure,
ppûk|yq is dependent on the considered probabilistic detection
method. After N samples of possible puk, ûkq pairs have been
collected, we use these samples to estimate ppûkq, ppûk|ukq
and, finally, Ipuk, ûkq in (27). The higher Ipuk, ûkq is for
each probabilistic equalizer, the closer we perform to channel
capacity. In Fig. 4 we depict the mutual information in (27)
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computed for N “ 106 samples per Eb{N0 point and averaged
over all the symbols in the transmitted sequence, for the BEP
and LMMSE algorithms, considering a 64-QAM constellation
and channels of L “ 7 complex-valued taps. Observe that,
for very small Eb{N0, the noise is so large that both methods
achieve a small mutual information. On the other hand, for
very large Eb{N0 values, both methods converge to 6 bits,
i.e., the number of bits transmitted per QAM symbol. Any
probabilistic method will eventually saturate to this value.
However, the key aspect is to be able to design a probabilistic
equalizer able to improve the mutual information for interme-
diate Eb{N0 values. Observe that before the saturation, the
BEP achieves a gain w.r.t. LMMSE of around 1.5dB.

F. Computational Complexity

A detailed comparison of the complexity for the T-BEP and
the T-LMMSE is included in Table I. We also include the
computational complexity of the T-BCJR and its approximated
approaches with turbo. From the computational point of view,
as M and/or L grow, the BCJR and approximated approaches
are unaffordable.

Algorithm Complexity

T-BEP S′(LN2 +NM) + α+ S′T (LN2 + α)
T-LMMSE N logN + α+ T (LN2 + α)
T-BCJR (T + 1)(NML + α)

Approx. T-BCJR (T + 1)(NMeM + α)

TABLE I: Complexity comparison between algorithms, where S1 “
S ` 1 and α is the complexity of the LDPC decoder.

V. EXPERIMENTAL RESULTS

In this section, we illustrate the good performance of the
BEP equalizer for different scenarios. Each channel tap is i.i.d.
complex circular Gaussian distributed with zero mean and
variance equal to 1{L. The channel response is normalized.
We average the BER over 1000 random frames per channel
realization. We limit to 5 the absolute value of LLRs given
to the decoder in order to avoid very confident probabilities
which negatively affect its estimations. In the following, when
mentioning approximated BCJR algorithms we refer to the M-
BCJR [14], M*-BCJR [15], RS-BCJR [10], NZ and NZ-OS
[17] solutions. We denote by NZ the approach consisting in
running FT, BT or DT-NZ in [17] depending on the phase
of the channel. If output saturation is used we refer to them
as NZ-OS. We use a (3,6)-regular LDPC of rate 1/2, for a
maximum of 200 iterations using the belief propagation as
decoder [45], [46]. The codes were generated using the pro-
gressive edge-growth algorithm [47]. The maximum number of
iterations of the LDPC decoder is set to 100 in every iteration
of the turbo equalizer.

A. BEP soft equalizer

In Fig. 5 and Fig. 6 we show a comparison for some typical
channels found in the literature using codewords of V “ 1024
bits. In Fig. 5 we simulate the following scenario in [17]:

6.5 7 7.5 8

10´3

10´2

10´1

Eb{N0 (dB)

B
E
R

Fig. 5: BER for LMMSE (Ź), BEP (˝), BCJR (˛), M-BCJR (˝),
M*-BCJR (˚), RS-BCJR (‹), NZ (Ÿ) and NZ-OS (‚) equalizers for
BPSK and the minimum phase channel h “ 1?

140
r7 6 5 4 3 2 1sJ.

6 6.5 7 7.5 8
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10´2
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Fig. 6: BER for LMMSE (Ź), BEP (˝), BCJR (˛), M-BCJR (˝),
M*-BCJR (˚), RS-BCJR (‹), NZ (Ÿ) and NZ-OS (‚) equalizers for
BPSK and the maximum phase channel h “ 1?

140
r1 2 3 4 5 6 7sJ.

minimum phase channel h “ r7 6 5 4 3 2 1sJ{?140, BPSK
symbols and Me “ 4 states out of 64. In Fig. 6 we simulate
the maximum phase channel h “ r1 2 3 4 5 6 7sJ{?140
and BPSK symbols with Me “ 8 states for the approximated
solutions as in [17]. To study the performance for other
channels, in Fig. 7 and Fig. 8 we include the averaged BER
over 100 random channels with L “ 5 real-valued taps. We
fix to Me “ 8 the number of states for the approximated
solutions. In Fig. 7, we consider BPSK modulation, hence the
BCJR has 16 states per step, while in Fig. 8 a 4-PAM is used,
increasing the number of states to 256.

In Fig. 5 and Fig. 6 we can observe that approximated
methods M-BCJR, M*-BCJR, RS-BCJR are quite sensitive
to the channel realization. This is not only caused because
they are based on just a forward or a backward strategy, but
also because their parameters need to be tuned according to
the particular channel. For this reason, the approximations M-
BCJR, M*-BCJR and RS-BCJR fail with maximum phase
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Fig. 7: BER for LMMSE (Ź), BEP (˝), BCJR (˛), M-BCJR (˝),
M*-BCJR (˚), RS-BCJR (‹), NZ (Ÿ) and NZ-OS (‚) equalizers for
BPSK and 100 random channels with L “ 5.

10 12 14 16 18 20
10´5

10´4

10´3

10´2

10´1

Eb{N0 (dB)

B
E
R

Fig. 8: BER for LMMSE (Ź), BEP (˝), BCJR (˛), M-BCJR (˝),
M*-BCJR (˚), RS-BCJR (‹), NZ (Ÿ) and NZ-OS (‚) equalizers for
4-PAM and 100 random channels with L “ 5.

channels, as observed in Fig. 6. For averaged channels, see
Fig. 7, NZ and NZ-OS exhibit a good performance at a low
computational complexity due to the low state reduction ratio
(ML{Me). However, these solutions fail if Me does not grow
accordingly, as can be observed in Fig. 8. This means that if
the number of states, Me, is kept as a fraction of the total
number, ML, they may exhibit a good performance. But if a
large number of states is unaffordable, a fraction of it becomes
also intractable. The LMMSE in these experiments does not
fail as the approximated approaches do, but its performance
degrades significantly compared to the BER of the BCJR in
Fig. 8. Finally, the BEP exhibits a quite robust behavior, closer
to the BCJR performance. Note here that the number of states
is low, and that the BCJR can be used with optimal results at
a low complexity.

For multilevel constellations and a channel with a few taps,
the BCJR or their approximations are no longer computation-
ally affordable. In the case of large dimensions, filter-based
equalizers of the MMSE type are preferred [20]. In Fig. 9,

8 10 12 14 16 18 20 22 24

10´4

10´3

10´2

10´1

Eb{N0 (dB)

B
E
R

LMMSE

BEP

CS

Fig. 9: BER for LMMSE (Ź), BEP (˝) and CS (‹) equalizers for
16-QAM (solid lines) and 64-QAM (dashed lines) and 100 random
channels with L “ 7.

we depict the BER curves for BEP, LMMSE equalization and
the algorithm in [19] that we denote as channel shortening
(CS), considering codewords of V “ 4096 bits, 100 random
channels of L “ 7 complex-valued taps and two different
modulations: 16-QAM (solid lines) and 64-QAM (dashed
lines). The CS algorithm has been simulated with a reduced
memory ν “ 2 (ν “ 1) for the 16-QAM (64-QAM) case. We
observe in this experiment that the BEP exhibits significant
improvements with respect to the LMMSE and CS solution
for both constellations.

B. Turbo BEP

To improve the estimates the turbo-equalization can be used.
We simulate scenarios with large dimensions, where the only
computationally feasible algorithms are the BEP and LMMSE
solutions. In Fig. 10 we simulate a 16-QAM constellation,
averaging over 100 random channels with a large memory,
L “ 20 complex-valued taps and codewords of V “ 1024 bits.
We represent the first 3 iterations of the turbo scheme, since
we found no further improvement for T ě 3. In Fig. 11 and
Fig. 12, we depict the BER curves for turbo BEP and LMMSE
equalization, averaged over 100 random channels of L “ 7
complex-valued taps, 64-QAM modulation and codewords of
V “ 1024 and V “ 4096 bits, respectively, for T “ 3.

The results are remarkable. The BEP with no feedback from
the decoder is 1.5-4.5 dB away from the LMMSE equalizer
for BER=10´4, depending on the channel length, L, and the
constellation size, M . It even outperforms the turbo LMMSE
equalizer. The BEP estimation can be further improved using
the turbo scheme, in about 1 or 1.5 dB depending on the
codeword length.

VI. CONCLUSIONS

When the number of states involved in the BCJR equaliza-
tion or its approximations is high, their computational com-
plexity is unaffordable. Approximated strategies are interesting
whenever the number of states is not too high. Therefore,
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Fig. 10: BER for T-BEP (red lines, solid) and T-LMMSE (blue lines,
dashed) equalizers using the outer loop for 16-QAM and 100 random
channels with L “ 20. No feedback (˝), one loop (Ÿ), two loops (˝)
and three loops (`).

16 18 20 22 24
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Fig. 11: BER for T-BEP (red lines, solid) and T-LMMSE (blue lines,
dashed) equalizers using the outer loop for 64-QAM, 100 random
channels with L “ 7 and codewords of V “ 1024 bits. No feedback
(˝), one loop (Ÿ), two loops (˝) and three loops (`).

in the case of multilevel constellations with moderate or
large channel lengths, it is preferable to resort to MMSE
type equalizers. The turbo LMMSE equalization improves
the estimations by feeding back the output of the channel
decoder to the equalizer. In this paper we propose the EP as a
novel alternative, where the whole posterior probabilities are
approximated in a complex-valued formulation. This equalizer,
denoted as BEP, can be cast as an LMMSE with an inner
turbo scheme. The BEP exploits the fact that the transmitted
symbols belong to a known constellation to improve the
estimations. This soft equalizer outperforms the turbo LMMSE
equalization. The BEP equalization can be further improved
by exploiting the channel decoder output to propose the turbo
BEP equalizer. This can be interpreted as an outer turbo
equalization as compared to the proposed EP based inner turbo
equalization. In the included experiments, we report gains in
the range 1.5-5 dB with respect to the LMMSE. We have

16 18 20 22 24

10´4

10´3

10´2

10´1

Eb{N0 (dB)

B
E
R

T-BEP

T-LMMSE

Fig. 12: BER for T-BEP (red lines, solid) and T-LMMSE (blue lines,
dashed) equalizers using the outer loop for 64-QAM, 100 random
channels with L “ 7 and codewords of V “ 4096 bits. No feedback
(˝), one loop (Ÿ), two loops (˝) and three loops (`).

focused on block or batch solutions, to report computational
complexities of order OpN2Lq. The development of windowed
or filtered solutions remains as future research, to reduce the
computational complexity to be linear in the frame length.
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