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Abstract—In this paper we propose a novel Bayesian solution
for nonlinear regression in complex fields. Previous solutions
for kernels methods usually assume a complexification approach,
where the real-valued kernel is replaced by a complex-valued
one. This approach is limited. Based on results in complex-
valued linear theory and Gaussian random processes we show
that a pseudo-kernel must be included. This is the starting point
to develop the new complex-valued formulation for Gaussian
process for regression (CGPR). We face the design of the covari-
ance and pseudo-covariance based on a convolution approach
and for several scenarios. Just in the particular case where
the outputs are proper, the pseudo-kernel cancels. Also, the
hyperparameters of the covariance can be learnt maximizing
the marginal likelihood using Wirtinger’s calculus and patterned
complex-valued matrix derivatives. In the experiments included,
we show how CGPR successfully solve systems where real and
imaginary parts are correlated. Besides, we successfully solve the
nonlinear channel equalization problem by developing a recursive
solution with basis removal. We report remarkable improvements
compared to previous solutions: a 2-4 dB reduction of the MSE
with just a quarter of the training samples used by previous
approaches.

Index Terms—Gaussian processes, regression, complex-valued
processes, kernel methods.

I. INTRODUCTION

NOWADAYS complex-valued signals model a vast range
of nowadays systems in science and engineering such

as telecommunications, optics and acoustics among others.
Complex-valued signal processing allows to natively pro-
cess complex-valued sequences, like electromagnetic signals.
Hence, complex-valued signal processing is of fundamental in-
terest. Signal processing for complex-valued signals has been
widely studied in the linear case, see [1] and references therein.
The nonlinear processing of complex-valued signals has been
addressed from different points of view, such as complex-
valued nonlinear adaptive filtering [2], neural networks [3],
[4] and, recently, using reproducing kernel Hilbert spaces
(RKHS) [5]. Some complex kernel-based algorithms have
been lately proposed for classification [6], regression [7], [8],
[9] and mainly for kernel principal component analysis [10].
Regarding regression, in [11] the authors propose a complex-
valued kernel based on the results in [6] and face the derivative
of cost functions by using Wirtinger’s derivatives. Same kernel
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is adopted in [7]. In [9] the authors review the kernel design
to improve the previous solutions. These previous approaches
have been developed in the framework of kernel least-mean-
square (KLMS). In the framework of kriging some complex-
valued scenarios have also been addressed [12], [13], [14].

The methods above proposed for regression deal with
complex-valued inputs and outputs by either 1) learning the
real and imaginary parts independently; 2) using a straight-
forward adaptation of a real-valued approach; or, 3) learning
a vector with the real and imaginary parts stacked in an
augmented vector. The first approach is suboptimal for systems
where the real and imaginary parts are not independent. The
straightforward adaptation of real-valued versions is limited to
proper systems, as strictly linear approaches [1]. Complexifica-
tion of real RKHSs [15] lies within this group. For non-proper
systems widely linear solutions are needed. The last option
fits any scenario, but the complex valued formulation is lost,
which limits the native interpretation of the complex sequence
and applicability of this procedure. Furthermore, the design of
the kernel between the real and the imaginary parts remains
an open problem. To the best of our knowledge, except for
[8], where an augmented version is discussed for the KLMS,
there is no general complex-valued formulation of a nonlinear
regression algorithm based on kernels or covariances. In this
paper, we propose a new complex-valued algorithm working
both for proper and non-proper systems.

The Gaussian process (GP) [16] is a Bayesian nonparamet-
ric framework for inference. It has has attracted increasing
attention from the machine learning community for its many
applications, such as in regression, classification [17], [18],
adaptive control [19], multitask learning [20], or data associ-
ation [21], among others. Gaussian processes for regression
(GPR) [16], [22], [23] are kernel methods that provide a full
conditional statistical description for the predicted variable.
The covariance matrix of the GPR plays the role of the
kernel. In [24] we developed complex-valued GPR for proper
systems. A proper complex random signal is uncorrelated with
its complex conjugate [25], and hence the pseudo-covariance
cancels. The solution in [24] can be described as a straight-
forward adaptation of a real-valued approach as in [5], [7],
[8], [9]. In this paper we include the pseudo-covariance of a
Gaussian process into GPR to develop a novel approach for
complex-valued systems, hereafter denoted as complex GPR
(CGPR). With this result we prove that another kernel matrix is
needed to properly model any given system, including all non-
proper ones. We also tackle the maximization of the marginal
likelihood in the complex-valued scenario. Since it depends
on a complex Hermitian matrix, generalized complex-valued
derivatives are used [26].

The design of a good covariance and pseudo-covariance
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function is crucial for CGPRs to provide accurate nonlinear
solutions. Under the Gaussian process regression point of view,
the covariance function measures similarity between inputs
[16]. The construction of the imaginary part quite depends
on the system model. We propose to apply the convolution
approach [27], [28] to generate a covariance and pseudo-
covariance that explain the case where real and imaginary parts
are correlated, even when shifted or displaced. This includes
the proper case where the cross covariance between the real
and the imaginary parts is either null or skew-symmetric.

As benchmark we propose the nonlinear channel equal-
ization problem in digital communications. The authors in
[11], [8] propose to build KLMS adaptive filtering of complex
signals. We face this problem from the CGPR point of view.
The statistical properties of the to-be-learned outputs in the
channel equalization problem are taken into consideration in
the selection of the model and a recursive version with basis
removal criterion is adapted [29]. Compared to the solutions
in [11], [8], [9] the CGPR exhibits a 2-4 dB gain with
only a quarter of the training samples used by state-of-the-art
approaches. Other experiments are also included to analyze
other scenarios.

The paper is organized as follows. Next section includes
the definition of the CGPR, including the derivation of the
proper case for CGPR in Subsection II-C. Section III is
devoted to the analysis of the structure of the complex-valued
covariance and pseudo-covariance. We develop in Section IV
the optimization procedure to set the kernel hyperparameters
applying Wirtinger’s calculus and patterned complex-valued
matrix derivatives. We show the experimental results in Sec-
tion V and conclude the paper in Section VI.

The notations used in the paper are as follows. For matrix
A, det A is its determinant, Tr(A) is its trace, [A]l,q is its
(l, q) entry, A> represents the transpose, AH the Hermitian
transpose, A∗ represents the complex conjugate of its entries,
and A−∗ = (A∗)−1. To denote the i-th sample of a vector
we use ai. The real and imaginary parts are denoted by
subindices r and j, respectively, i.e. a = ar + jaj, with
j =
√
−1. E[·] refers to expectation. To denote the complex

Gaussian distribution with mean vector µ, covariance matrix
K and pseudo-covariance matrix K̃ we use N

(
µ,K, K̃

)
.

The augmented covariance matrix, K, is given by

K =

[
K K̃

K̃∗ K∗

]
. (1)

II. COMPLEX GAUSSIAN PROCESS REGRESSION

A. Complex-valued Gaussian process

GPR can be presented as a nonlinear regressor that expresses
the input-output relation through function f(x), known as
latent function. This latent function follows a GP and underlies
the regression problem

y = f(x) + ε, (2)

where the error, ε, in the estimation of a real-valued output, y,
is modeled as additive zero-mean Gaussian noise. In this paper,
we consider that both inputs and outputs are complex-valued.

The simpler real-valued input and complex-valued output case
can be easily solved from the results herein. Each input at time
i is a complex-valued column vector of dimension d, xi ∈ Cd.
For any input set X = [x1, ...,xn] the latent function in (2)
provides a multidimensional Gaussian complex-valued random
vector f = [f(x1), ..., f(xn)]>, where f(xi) ∈ C. A complex
random Gaussian vector f is characterized not only by its mean
vector µ and covariance matrix K = E[(f −µ)(f −µ)H], but
also by its complementary covariance or pseudo-covariance
matrix K̃ = E[(f − µ)(f − µ)>], [1]. These matrices can be
defined by kernels, [K]l,q = k(xl,xq)and [K̃]l,q = k̃(xl,xq),
respectively. The Gaussian process prior becomes

p(f |X) = N
(
µ,K, K̃

)
=

1

πn
√

det K
exp

(
−1

2
(f − µ)HK−1(f − µ)

)
, (3)

where f = [f> fH]> is the augmented vector for f , µ =
[µ> µH]> is the augmented mean vector, and K is the
augmented covariance matrix (1). Without loss of generality,
we consider zero-mean processes, µ(x) = 0.

B. Complex GP for Regression

In the learning process we condition the output of the
GPR for some new observation x′, given the training set
D = {X,y}, where the outputs y = [y1, ..., yn]

> for a given
set of observations X are known. First, we compute the joint
distribution as follows. We assume that the additive noise ε in
(2) follows an i.i.d. complex Gaussian distribution with zero
mean, variance σ2

ε and pseudo-covariance ρσ2
ε , with ρ being

a complex number. The samples in the training set are i.i.d.,
hence the likelihood for the latent function at the training set
is given by the factorized model

p (y|f) =

n∏
i=1

p(yi|f(xi)), (4)

where p(yi|f(xi)) = N (f(xi), σ
2
ε , ρσ

2
ε )1. Therefore, the like-

lihood is a complex multidimensional Gaussian p(yn|f) =
N (f , σ2

ε In, ρσ
2
ε In). This likelihood and the prior in (3) yield

the marginal likelihood or evidence

p (y|X) =

∫
p (y|f) p(f |X)df = N

(
0,C, C̃

)
, (5)

where C = K+σ2
ε In and C̃ = K̃+ρσ2

ε In. Given a test input
vector x′, the joint distribution of the training outputs y and
f ′ = f(x′1) is [

y
f ′

]
∼ N

(
0,Λ, Λ̃

)
, (6)

with

Λ =

[
C k(X,x′)

kH(X,x′) k(x′,x′)

]
, (7)

Λ̃ =

[
C̃ k̃(X,x′)

k̃>(X,x′) k̃(x′,x′)

]
(8)

1If the likelihood were not Gaussian, we can resort to Wrapped Gaussian
processes [30], [31].
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where k(X,x′) = [k(x(1),x′), · · · , k(x(n),x′)]> and
k̃(X,x′) = [k̃(x(1),x′), · · · , k̃(x(n),x′)]>.

The conditional distribution of f ′ given y, i.e. the estimated
output, yields the Gaussian distribution p (f ′|x′,X,y) =
N (µf ′ , σf ′ , σ̃f ′), where

µ
f ′ =

[
µf ′

µ∗f ′

]
= KH(X,x′)C−1y, (9)

Σf ′ =

[
σf ′ σ̃f ′

σ̃∗f ′ σf ′

]
= K(x′,x′)−KH(X,x′)C−1K(X,x′),

(10)

and

K(x′,x′) =

[
k(x′,x′) k̃(x′,x′)

k̃∗(x′,x′) k∗(x′,x′)

]
, (11)

K(X,x′) =

[
k(X,x′) k̃(X,x′)

k̃∗(X,x′) k∗(X,x′)

]
. (12)

C is the augmented covariance matrix of the augmented
observations y = [y> yH]>. By using the matrix-inversion
lemma

C−1 =

[
C C̃

C̃∗ C∗

]−1
=

[
P−1 −C−1C̃P−∗

−C−∗C̃∗P−1 P−∗

]
,

(13)

where P = C − C̃C−∗C̃∗. Therefore, the mean, covariance
and pseudo-covariance of the prediction yield, respectively,

µf ′ =
[
kH(X,x′)− k̃>(X,x′)C−∗C̃∗

]
P−1y

+
[
k̃>(X,x′)− kH(X,x′)C−1C̃

]
P−∗y∗, (14)

σf ′ = k(x′,x′)

−
[
kH(X,x′)− k̃>(X,x′)C−∗C̃∗

]
P−1k(X,x′)

−
[
k̃>(X,x′)− kH(X,x′)C−1C̃

]
P−∗k̃∗(X,x′), (15)

σ̃f ′ = k̃(x′,x′)

−
[
kH(X,x′)− k̃>(X,x′)C−∗C̃∗

]
P−1k̃(X,x′)

−
[
k̃>(X,x′)− kH(X,x′)C−1C̃

]
P−∗k∗(X,x′). (16)

C. Proper Complex GPR

When the pseudo-covariance matrix cancels, a complex
Gaussian random vector is regarded as proper [25], [32]. In
the zero-mean proper case, the prior (3) simplifies to

p(f |X) = N (0,K,0) =
1

πn det K
exp

(
−fHK−1f

)
, (17)

and the marginal likelihood (5) to p(y|X) = N (0,C,0),
so that y is also proper Gaussian. Furthermore, y and f are
cross-proper, i.e., the complementary cross-covariance matrix
E[yf>] = 0. Hence, y and f are jointly proper [1], i.e., the
composite complex random vector [y>, f>]> is proper Gaus-
sian. Now, given a test input vector x′, the joint distribution
of the training outputs y and f ′ is:[

y
f ′

]
∼ N (0,Λ,0) . (18)

The estimated probabilistic output is the conditional distribu-
tion of f ′ given y:

p (f ′|x′,X,y) = N (µf ′ , σf ′ ,0) , (19)

which is the conditional proper complex Gaussian distribution
described with the following mean vector and covariance
matrix

µf ′ = kH(X,x′)C−1y, (20)

σf ′ = k(x′,x′)− kH(X,x′)C−1k(X,x′). (21)

Notice that this result is the straightforward adaptation of the
real-valued GPR to complex-valued signals, where transpose
is changed to Hermitan transpose.

III. COMPLEX COVARIANCE FUNCTIONS

Under the GPR point of view, the covariance function
should measure similarity between inputs [16], [23]. A usual
option is to consider that training points that are near to a
test point are informative about the prediction at that point. In
other kernels, e.g., polynomial kernels, similarity is measured
in a different way. Covariance matrices should also be semi-
definite positive. We next develop these issues for the complex-
valued case, where we have the covariance and pseudo-
covariance matrices. Given a zero-mean complex Gaussian
vector f = fr + jfj, with fr its real part and fj its imaginary
part:

K = E
[
ffH
]

= Krr + Kjj + j (Kjr −Krj) , (22)

K̃ = E
[
ff>
]

= Krr −Kjj + j (Kjr + Krj) , (23)

where Krr = E[frf
>
r ] ∈ Rn×n+ and Kjj = E[fjf

>
j ] ∈ Rn×n+

are the covariance matrices of the real and imaginary parts
of f , respectively, and Krj = E[frf

>
j ] = K>jr ∈ Rn×n is

the cross-covariance matrix of the real and imaginary parts.
Matrix K must be Hermitian positive semidefinite while K̃
must be symmetric. From the augmented point of view, the
Schur complement of the augmented covariance matrix K
must be positive semidefinite [1].

In the design of these matrices we may proceed as follows.
On the one hand, we can directly construct complex-valued
functions that produce matrices as (22) and (23) with the
properties described above, i.e., K must be Hermitian positive
semidefinite and K̃ must be symmetric. Those complex-
valued functions should be carefully selected in order to fairly
represent the covariance and pseudo-covariance properties of
the complex-valued process being modeled. On the other
hand, we may try to design their real and imaginary parts.
In this second method, we can resort to three real functions
krr(x,x

′), kjj(x,x
′) and krj(x

′,x) of the complex inputs x,
that are used to write out the three real matrices Krr, Kjj and
Kjr = K>rj . Again, the resulting covariance matrix K must
be Hermitian positive semidefinite and K̃ must be symmetric,
and meeting these conditions from the design of their parts
is not straightforward. However, this second option provides
one important advantage: known correlation properties of the
real and imaginary parts can be translated directly into the
covariance and pseudo-covariance functions.
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One important example is when it is known that the real
and imaginary parts are uncorrelated and have null cross-
covariance matrix. In such a case we should set krj(x

′,x) = 0
and the covariance and pseudo-covariance functions yield real
functions. Also, any information about stationarity, periodicity,
etc. of the real part can be modeled in krr(x,x

′), and the same
can be said about the imaginary part and kjj(x,x

′). Further-
more, in the particular case of a proper complex Gaussian
vector the pseudo-covariance matrix (23) nulls and we can
resort to proper complex GPR. Hence, Krr = Kjj and Kjr =
K>rj = −Krj, i.e., Krj is a skew-symmetric cross-covariance
matrix. In this case, the covariance matrix (22) simplifies
to K = 2Krr − 2jKrj, and the following properties for the
three proposed real functions hold: krr(x,x

′) = kjj(x,x
′) and

krj(x,x
′) = −krj(x

′,x). Also, as the covariance matrix must
be Hermitian positive semi-definite, it follows that krr(x,x

′)
and krj(x

′,x) are interrelated.
Finally, the way that similarity is measured in the covariance

and pseudo-covariance functions is another important issue
to take into account when selecting them for complex-valued
GPR and the similarity must be measured in the complex field.

A. Examples of complex-valued kernels and covariances func-
tions

We first recall some examples of complex-valued kernels
functions found in the literature.

1) Complex-valued Gaussian kernel: The first example
is the complex-valued Gaussian kernel [6], [11]. It is an
extension of the real Gaussian kernel defined as

kC(x,x′) = exp
(
−(x− x′∗)

>
(x− x′∗)/γ

)
, (24)

with kernel hyperparameter γ. If we separate the real and
imaginary parts of the kernel

kC(x,x′) = exp
(
−|xr − x′r|2/γ

)
exp

(
|xj + x′j |2/γ

)
·
(
cos(2(xr − x′r)

>(xj + x′j)/γ)

−j sin(2(xr − x′r)
>(xj + x′j)/γ)

)
, (25)

where | · | is the `2-norm. Note that this kernel gives rise
to a covariance matrix with skew-symmetric cross-covariance
matrix Krj. Hence, it fits in the proper case with a null pseudo-
covariance. This kernel does not provide its maximum when
x = x′, but when x = x′∗, i.e., it measures similarities be-
tween the real parts of the inputs, while measures dissimilarity
between imaginary ones. The value it provides when x = x′

is not constant but depends on the imaginary part of x as
exp(|2xj|2/γ). Also, it is not stationary, it has an oscillatory
behavior and may also cause serious numerical problems in the
learning algorithms, as is later discussed in the Experiments
section.

2) Independent kernel: In [9] the following kernel was
proposed:

kind(x,x
′) = κR (xr,x

′
r) + κR

(
xj,x

′
j

)
+ j
(
κR
(
xr,x

′
j

)
− κR (xj,x

′
r)
)
, (26)

where κR is a real kernel of real inputs, in particular, they
propose the real Gaussian kernel. Notice that this is an example

of a design using real-valued functions, krr(x,x
′), kjj(x,x

′)
and krj(x

′,x), but with two simplifications. First, the three
functions are the same real function κR. Second, the inputs
of the function are not complex, but real, i.e., the real part or
the imaginary part of x. Because of this simplifications, the
independent kernel provides a high value when the inputs have
equal real parts, xr = x′r, although the imaginary parts are very
different. We have the same behavior for the imaginary part.
Also, note that this kernel gives rise to a covariance matrix
with skew-symmetric cross-covariance matrix Krj. Hence, it
also could be used in the proper case as covariance.

3) Spectral kernels: Finally, there have also been some
proposals to create an imaginary part from the real part of
the covariance function in kriging [12], [13] for a multiple
output learning framework. However, these proposals are for
stationary random fields of just real inputs, i.e., k(x−x′), with
x ∈ Rd, and do not provide a pseudo-covariance function. In
[12], they propose to obtain a covariance matrix starting from a
given function. However, it is unclear what the function should
be for the covariance matrix to have some given properties.
In [13] the proposed covariance function exhibits a sinusoidal
behavior in its real and imaginary parts that is in general not
suitable for the application at hand.

B. Convolution approach

We propose to follow the convolutional approach [27], [28]
as a link between the two points of view in the design of
the covariance functions. The idea is to generate a complex
random process as the sum of the outputs of linear filters
driven by real white noises. The starting point is the selection
of functions that provide the desired measures of similarity
and modeling for the covariances. Those functions are used
as filters to generate a random process. The calculation of
the covariance and pseudo-covariance of the process provides
the covariance and pseudo-covariance functions. This way we
ensure that the resulting covariance and pseudo-covariance
functions are valid, i.e., generate a valid hermitian K and a
valid symmetric K̃. Then, the design of the filters conditions
the properties of the kernels and the associated similarity
between pairs of inputs.

Let U(x) be the complex process written as the output of
linear filters:

U(x) = (h1(x) + jh2(x)) ? Sr(x)

+ (h3(x) + jh4(x)) ? Sj(x) (27)

where hm(x), m ∈ {1, 2, 3, 4} represent the filters and ? de-
notes the convolution operation. Sr(x) and Sj(x) are indepen-
dent real white noises with zero mean and unit variance. The
inputs are complex-valued vectors x ∈ Cd. The covariance of
U(x) for two different inputs is used as covariance function,
k(x,x′) = CU (x,x′) = E [U(x)U∗(x′)], and the pseudo-
covariance is used as pseudo-covariance function, k̃(x,x′) =
C̃U (x,x′) = E [U(x)U(x′)]. Details of the calculations of
CU (x,x′) and C̃U (x,x′) can be found in Appendix A. The
complexity here lies in the selection of the filters, hm(x). They
are designed to model the system under study. In the following
we propose as measure of similarity the inner product dH

xdx
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of the difference between complex-valued inputs dx = x−x′,
and use parameterized exponential filters to yield an isotropic
and time invariant covariance function. Some examples are
provided in the following subsection. This procedure can be
applied with other types of filters to model different properties:
periodicity, other measures of similarity between the inputs,
etc.

1) General case: As the first example, we propose to
generate the stationary process using filters h1(x) = h3(x) =
vr exp (−xHx/γr) and h2(x) = h4(x) = vj exp (−xHx/γj),
where vr, γr, vj and γj are filter parameters, and the inputs are
x ∈ Cd. The covariance and pseudo-covariance of the process
yield the following functions:

k(x,x′) = 2v2r

(πγr
2

)d
exp

(
−dH

xdx

2γr

)
+ 2v2j

(πγj
2

)d
exp

(
−dH

xdx

2γj

)
, (28)

k̃(x,x′) = 2v2r

(πγr
2

)d
exp

(
−dH

xdx

2γr

)
− 2v2j

(πγj
2

)d
exp

(
−dH

xdx

2γj

)
+ 4jvrvj

(
πγrγj
γr + γj

)d
exp

(
− dH

xdx

γr + γj

)
. (29)

The three real functions krr(x,x
′), kjj(x,x

′) and krj(x
′,x)

of the complex inputs x ∈ Cd are easily identified in this
example. Note that the covariance (28) is real-valued while
the pseudo-covariance (29) is complex-valued. This is due to
the fact that Kjr = K>rj = Krj for the second order stationary
process generated with the filters.

2) Independent real and imaginary parts: In this scenario
the cross-covariance between real and imaginary parts is null,
Krj = 0, and we should set krj(x

′,x) = 0. We can use
the same filters proposed for the general case but with the
following change of sign: h4(x) = −h2(x). Therefore, the
covariance function remains as in (28), while the pseudo-
covariance function is as in (29) but with the imaginary part
equal to zero.

3) Proper case with krj(x
′,x) = 0: In the proper case

k̃(x,x′) = 0 and if in addition krj(x
′,x) = 0, we use the

function in (28) that yields a simple real covariance function:

k(x,x′) = v exp
(
−dH

xdx/γ
)
. (30)

4) Proper case with krj(x
′,x) 6= 0: This scenario arises

when Kjr is skew-symmetric. The kernel functions in (24) and
(26) could be used in this case. However, the first one involves
some quite particular similarity properties with exponential
growth for some pair of points. The second assumes constant
similarity for distant points as long as they have same real and
imaginary parts. We develop a complex-valued function k to
model a correlation between the real part of the process and
a displaced or translated imaginary part, with displacement
given by µ ∈ Cd,µ 6= 0. Kjr is skew-symmetric if there
is also a correlation between the real part and a displaced
imaginary part when the displacement is given by −µ, and
this correlation has the same value with opposite sign. To

model this behavior, we propose now filters h1(x) = h3(x) =
vr exp (−dH

xdx/γ), h2(x) = vj exp (−(x− µ)H(x− µ)/γ),
and h4(x) = −vj exp (−(x + µ)H(x + µ)/γ). The covari-
ance function yields

k(x,x′) = vA exp

(
−dH

xdx

2γ

)
+ jvB

(
exp

(
− (dx − µ)H(dx − µ)

2γ

)
− exp

(
− (dx + µ)H(dx + µ)

2γ

))
, (31)

where vA = 2
(
v2r + v2j

) (
πγ
2

)d
and vB = 2vrvj

(
πγ
2

)d
. The

pseudo-covariance yields

k̃(x, x′) = 2
(
v2r − v2j

) (πγ
2

)d
exp

(
−dH

xdx

2γ

)
. (32)

By setting vr = vj we get the proper case.

IV. HYPERPARAMETERS ESTIMATION

A major advantage of GPR is that the hyperparameters can
also be estimated by maximizing the marginal likelihood [16].
From the marginal likelihood (5) we can compute the log
marginal likelihood

L(θ) = log p (y|X) = −1

2
yHC−1y − 1

2
log det C− n log π.

(33)

The augmented covariance matrix C = C(θ) can be param-
eterized in terms of the hyperparameters θi, which are the
parameters of the covariance and pseudo-covariance functions
and the noise variance and pseudo-covariance. L (θ) is a real
function of a complex-valued Hermitian matrix. Therefore, in
the maximization of (33), we must seek generalized complex-
valued matrix derivatives [26], [33]. The result for the gradient,
as developed in Appendix B, is as follows,

∂L

∂θi
= Tr

((
C−1y yHC−1 −C−1

) ∂C

∂θi

)
. (34)

In the proper case, when C̃ = 0, the gradient simplifies to

∂L

∂θi
= 2Tr

((
C−1yyHC−1 −C−1

) ∂C

∂θi

)
. (35)

V. EXPERIMENTS

We include three experiments. First, we evaluate the full
CGPR solution against the simpler proper CGPR. Then we
illustrate the performance of the proper CGPR in an scenario
where the covariance is complex-valued. Finally, we face the
equalization of nonlinear channels to compare to previous
solutions. In this last experiment, we use the recursive version
of the proper CGPR.
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Fig. 1: Real part of the sample function f(x) of the process
(top) and real part of the mean estimation (14) (bottom) versus
the real and imaginary parts of the input, xr and xj . The
training samples are depicted as blue circles.

A. Full CGPR

We generate a sample function of a non-proper complex-
valued Gaussian process as described in Subsection III-B-
1). The inputs in this experiment are complex-valued
scalars, i.e., x = x ∈ C, to easily represent the sam-
ple function of the process in a figure. We have set
h1(x) = h3(x) = 0.1 exp (−x∗x/0.6) and h2(x) =
h4(x) = 0.05 exp (−x∗x/1.5). The covariance function is
given by (28), k(x, x′) = 0.006π exp (−(d∗xdx)/1.2) +
0.0038π exp (−(d∗xdx)/3), while the pseudo-covariance func-
tion is as in (29), k̃(x, x′) = 0.006π exp (−(d∗xdx)/1.2) −
0.0038π exp (−(d∗xdx)/3) + j0.0086π exp (−(d∗xdx)/2.1). As
an example, the real part of a sample function obtained,
f(x), is shown in Fig. 1. The imaginary part is shown in
Fig. 2. Gaussian noise with variance σ2

ε and pseudo-variance
ρσ2

ε is added to represent measurement uncertainty, where
ρ = 0.8 exp(j3π/2) and σ2

ε is set to be 25 dB below the
variance of the sample function (signal-to-noise ratio, SNR =
25 dB). Then, we randomly choose n = 500 noisy training
samples and learn the sample function of the process by using
the predictive mean (14), variance (15) and pseudo-variance
(16). The training samples used are marked as circles in Figs.
1 and 2. The real part of the predictive mean is shown in
Fig. 1 (bottom) while the imaginary part is shown in Fig. 2
(bottom). The mean squared error (MSE) of the estimation is
10 log10(MSE)= −8.2 dB, computed for 104 inputs in this
example.

The predictive capability of the complex GPR in (14) is
compared with that of the proper case in (20). The mean
squared error (MSE) of the estimation for the proper case
is 10 log10(MSE)= −4.67 dB in this example. We show in
Figs. 3 and 4 randomly chosen slices of the sample function
in Figs. 1 and 2. The imaginary part of the input was fixed
to xj = −0.1515. In Fig. 3 we include the real part of the
prediction in (14) and the grey shaded area that represents
the point-wise mean plus and minus two times the standard
deviation. The mean of the prediction for the proper case
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Fig. 2: Imaginary part of the sample function f(x) of the
process (top) and real part of the mean estimation (14)
(bottom) versus the real and imaginary parts of the input, xr
and xj . The training samples are depicted as blue circles.
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Fig. 3: Real parts of the sample function of the process f(x),
the predictive CGPR mean (14), and the predictive mean for
the proper CGPR case (20), versus the real part of the input
xr, for xj = −0.1515.
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Fig. 4: Imaginary parts of the sample function of the process
f(x), the predictive CGPR mean (14), and the predictive mean
for the proper CGPR case (20), versus the real part of the input
xr, for xj = −0.1515.
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Fig. 5: Averaged 10 log10(MSE) versus the number of training
samples for the predictive CGPR mean (14) and the proper
CGPR case (20). Solid line: SNR = 25 dB. Dashed line: SNR
= 10 dB.

in (20) is plotted as a dashed line. In Fig. 4 we include
the imaginary part. The general CGPR prediction is always
closer to the actual value of f(x) than the prediction for
the proper case, as expected, since the general CGPR also
uses the information of the pseudo-covariance. This prediction
improvement is highlighted in Fig. 5, where we compare the
mean squared error for both estimations along the number
of training samples. A higher noise case (SNR = 10 dB) is
also included. Results are the average of 100 simulated trials
for each case in this example. The proposed complex GPR
performs better than the proper CGPR, with a remarkable
reduction in the number of training samples. We achieve the
same MSE of −10 dB with a sizable reduction in the number
of training examples, i.e. from 1500 to 500 for an SNR of 25
dB.

B. Proper CGPR

To illustrate the performance of the hyperparameter estima-
tion we face the learning of a proper complex Gaussian process
with complex-valued covariance function. In this scenario Kjr
is skew-symmetric. Again, the inputs in this experiment are
complex-valued scalar, i.e., x = x ∈ C, for representation
purposes. We use the covariance function in (31), with vA = 2,
vB = 1, γ = 1.125 and µ = 2 + 2j, to generate a sample
function of the process, f(x). The real part of the sample
function is shown in Fig. 6, while the imaginary part is
depicted in Fig. 7. Circular complex Gaussian noise with
σε = 0.1 is added to represent measurement uncertainty and
n = 200 training noisy samples are randomly chosen as
training data. The maximization of the log marginal likelihood
in (33) using (35) yields the following estimated values of the
hyperparameters: v̂A = 2.1169, v̂B = 1.1425, γ̂ = 1.1373,
µ̂ = 1.9371 + j1.9983, and σ̂ε = 0.0968. Then, the mean
(20) and variance (21) of the predictive distribution are found
using the training samples and the estimated values of the
hyperparameters. The real part of the predictive mean (20)
is depicted in Fig. 6 (bottom), while the imaginary part is
depicted in Fig. 7 (bottom). The MSE of the estimation is
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Fig. 6: Real part of the sample function f(x) of the process
(top) and real part of the mean estimation (20) (bottom) versus
the real and imaginary parts of the input. The training samples
are depicted as blue circles.
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Fig. 7: Imaginary part of the sample function f(x) of the
process (top) and imaginary part of the mean estimation (20)
(bottom) versus the real and imaginary parts of the input. The
training samples are depicted as blue circles.

−13.8807 dB. We include in Figs. 8 and 9 randomly chosen
slices of the sample function. Fig. 8 shows the real part of
the sample function and the real part of the prediction (20)
versus the real part of the input, for xj = 3.4684. Fig. 9 shows
the imaginary part of the sample function, and the imaginary
part of the prediction (20) versus the real part of the input,
for xj = −5.4430. The training samples are depicted as blue
circles. Also, four instances of the posterior are plotted in both
Figs. 8 and 9.

To complete the analysis we show in Figs. 10 and 11 the
MSE of the estimation for each hyperparameter by maximizing
the log marginal likelihood in (33) using (35) under different
settings. Fig. 10 shows the MSE versus the SNR for a fixed
number of training samples n = 200, while Fig. 11 shows the
MSE versus the number of training samples for a fixed SNR
of 16 dB. The MSE is the averaged value for 100 independent
trials. Finally, we compare in Fig. 12 the MSE of the learning
when these estimated hyperparameters are used to calculate
the prediction (20) with the prediction calculated with the
true hyperparameters. In Fig. 12 (top) the number of training
samples was fixed to n = 200, while in Fig. 12 (bottom) the
SNR was fixed to 16 dB. The MSE curves are very close in
both cases.
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Fig. 8: Real parts of the output and the predictive mean (20)
versus the real part of the input xr for xj = 3.4684. Training
samples are depicted as blue circles. Four instances of the
posterior are also plotted.
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Fig. 9: Imaginary parts of the output and the predictive mean
(20) versus the real part of the input xr for xj = −5.4430.
Training samples are depicted as blue circles. Four instances
of the posterior are also plotted.
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Fig. 10: Hyperparameters learning curve versus the SNR using
200 training samples.

We include in Figs. 10 and 11 the MSE of the estimation of
the ratio vA/vB . This ratio is more important than the actual
value of vA or vB for the estimation of the mean in (20). The
ratio vA/vB and σε are responsible for the amplitude accuracy
of the estimation. As shown in Figs. 10 and 11 the MSE for
v̂A/v̂B and σ̂ε are low and, therefore, the MSE of the function
estimation is low, as shown in Fig. 12.
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Fig. 11: Hyperparameters learning curve versus the number of
training samples for SNR = 16.
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Fig. 12: Predictive MSE versus the SNR for 200 training
samples (above), and Predictive MSE versus the number of
training samples for SNR = 16 (below).

C. Nonlinear channel equalization

The performance of the proposed complex GPR is tested
in the context of the nonlinear channel equalization task in
[11] and [8]. Two nonlinear channels are considered. Both
channel models consist of a linear filter t(n) = (−0.9 +
0.8j) · s(n) + (0.6− 0.7j) · s(n− 1) and a nonlinear function.
The linear filter represents a communication channel with
memory, while the nonlinear function represents the effect
of nonlinear circuits, such as amplifiers. The nonlinearity is
q(n) = t(n) + (0.1 + 0.15j) · t2(n) + (0.06 + 0.05j) · t3(n)
for the first case (labeled as soft nonlinear channel), and
q(n) = t(n) + (0.2 + 0.25j) · t2(n) + (0.12 + 0.09j) · t3(n)
for the second case (labeled as strong nonlinear channel). The
input signals are s(n) = 0.70(

√
1− ρ2X(n) + jρY (n)), and

X(n) and Y (n) were Gaussian random variables. The input
signals are circular for ρ = 1/

√
2 and highly noncircular if

ρ approaches 0 or 1. At the receiver end of the channel, the
signal q(n) was corrupted by additive white circular Gaussian
noise with a SNR of 16 dB, as in [11].

The aim of the channel equalization task is to construct
an inverse filter, which acts on the received signal r(t) and
reproduces the original input signal s(n) as close as possible.
To this end, the inputs to the equalizer are the sets of samples
x(n) = [r(n+D), r(n+D−1), · · · , r(n+D−L+1)]>, where
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Fig. 13: Averaged MSE along n for NCKLMS2, ANCKLMS,
iCKLMS, the recursive proper CGPR and the recursive proper
CGPR with M=500 basis for the soft nonlinear channel
equalization problem and the circular input case.

L > 0 is the filter length and D is the equalization time delay.
Experiments are conducted as in [11] and [8], where L = 5
and D = 2, on a set of 5000 samples of the input signal
considering both the circular and the noncircular (ρ = 0.1)
cases and the (soft and strong) nonlinear channels. In all cases
the results are averaged over 500 trials where the input signal
samples s(n) and noise are randomly generated.

The performance of our proposal is compared with the
NCKLMS2 algorithm in [11], the ACKLMS algorithm in [8]
and the iCKLMS in [9]. Both the NCKLMS2 and ACKLMS
algorithms use the complex Gaussian kernel in (24). The
iCKLMS is as the NCKLMS2 algorithm but using the in-
dependent kernel (26) with κR being the real Gaussian kernel.
We use the code available in [34] to run these algorithms. All
the parameters required for the NCKLMS2 and the ACKLMS
algorithms (γ in kernel and step update parameter) are set to
the values described in [11] and [8], except for the strong
nonlinear channel noncircular case, where in order to ensure
convergence we increase γ to γ = 400 for both algorithms.
For the iCKLMS, γ = 25 and the step update parameter is
1/8 (except for the strong nonlinear channel noncircular case,
where it is reduced to 1/16), tuned for the best possible result.
For the three algorithms the novelty criterion [35], [36] is used
for the sparsification with δ1 = 0.15 and δ2 = 0.2, as in [34].

We design a CGPR solution as follows. The CGPR outputs
here are the signals s(n). Note first that the real and the
imaginary parts of s(n) are generated independently and
therefore have null cross-covariances, Krj = 0. In such a
case, K = Krr + Kjj in (22) and K̃ = Krr − Kjj in (23),
and it is not necessary to use complex-valued covariance
functions, as it was explained in Section III. Both Krr and
Kjj can be obtained from a real kernel as in (30). Also, in this
equalization application, when trying to set the values of the
hyperparameters, we found that independently of the factor
ρ the best solution is achieved with Krr = Kjj. Therefore,
in this scenario the general case, the full CGPR, reduces
to the proper CGPR, as we can set K̃ = Krr − Kjj = 0.
Hence, the proper version of the CGPR in (20) suffices and
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Fig. 14: Averaged MSE along n for NCKLMS2, ANCKLMS,
iCKLMS, the recursive proper CGPR and the recursive proper
CGPR with M=500 basis for the strong nonlinear channel
equalization and the noncircular input case (ρ = 0.1).
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Fig. 15: MSE along n for NCKLMS2 and ANCKLMS for
the strong nonlinear channel equalization problem for the
noncircular input case (ρ = 0.1).
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Fig. 16: MSE along n for iCKLMS, the recursive proper
CGPR and the recursive proper CGPR with M=500 basis
for the strong nonlinear channel equalization problem for the
noncircular input case (ρ = 0.1).

we propose a real-valued covariance function as the one in
(30). However, since both the NCKLMS2 and the ACKLMS
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are online sequential algorithms we have to use an online
algorithm for the proper CGPR also, in order to provide a fair
comparison. In [29], the authors provide a Bayesian derivation
for the kernel recursive least-squares algorithm and a criterion
to remove the least relevant basis (the set of inputs at which
the joint posterior is available, i.e., the training samples in our
setting). Since the pseudo-covariance cancels, the method in
[29] can be easily adapted to the proper CGPR case in order
to yield a recursive proper CGPR. The objective is to infer the
conditional distribution p (fn+1|D,x′, y′) of fn+1 = [f>n , f

′]>

given the training set D = {[x1, ...,xn], [y1, ..., yn]>} and a
new input x′ = x(n + 1) with corresponding output y′ =
y(n + 1), where f ′ = f(x′). We apply the recursive proper
CGPR with basis removal criterion using M = 500 bases
where the first 250 samples were used for the hyperparameters
estimation by maximizing the log marginal likelihood in (33)
using (35). As reference we also include the recursive proper
CGPR solution without basis removal criterion with 1000
randomly chosen samples among the total of 5000 used to
find a better estimation of the hyperparameters. Note that
the number of bases used by the NCKLMS2, ACKLMS or
iCKLMS algorithms with the novelty sparsification criterion
grew above 2000 in these experiments, and therefore the
choice of M = 500 bases is far below that number.

We show in Figs. 13 and 14 the averaged MSE along the
input samples for the NCKLMS2, the ACKLMS, the iCKLMS
and the two recursive proper CGPR algorithms (with and
without basis removal criterion), for the soft nonlinear channel
circular and the strong nonlinear with ρ = 0.1 cases. The
MSE value depicted for each sample is the averaged MSE
for all previous outputs, as in [11], [34]. It can be observed
in the figures the remarkable good results of the recursive
proper CGPR in all cases, even with only 250 bases used for
the hyperparameters estimation and M = 500 bases used for
the prediction, with the additional advantage of the estimation
of the hyperparameters from the samples, avoiding cross-
validation. This solution is very close to the proper CGPR
approach used as reference. The raw MSE, i.e., not averaged,
for the soft nonlinear channel circular and the strong nonlinear
with ρ = 0.1 cases are shown in Figs. 15 to 18.

By using the proposed solution we avoid convergence prob-
lems found in the learning process of both the NCKLMS2 and
ACKLMS algorithms. These problems can be observed if the
MSE is not averaged for the previous outputs. As examples,
we provide in Fig. 15 the same results that were included
in Fig. 14 for the NCKLMS2 and ACKLMS algorithms, but
now the MSE is not averaged. Notice that those algorithms
are not able to provide a good prediction for some outputs,
with MSE peak values above 5 dB. This is not the case for the
iCKLMS and the recursive proper CGPR, as can be observed
in Fig. 16. We believe that the NCKLMS2 or ACKLMS
algorithms fail to provide a good prediction for some outputs
because of the kernel they use. The independent kernel in the
iCKLMS algorithm seems a better choice than the complex
Gaussian kernel. However, the proper CGPR with the real
kernel provides, by far, the best solution.
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Fig. 17: MSE along n for NCKLMS2 and ANCKLMS for the
soft nonlinear channel equalization problem for the circular
input case.
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Fig. 18: MSE along n for iCKLMS, the recursive proper
CGPR and the recursive proper CGPR with M=500 basis for
the soft nonlinear channel equalization problem for the circular
input case.

VI. CONCLUSIONS

Regression in the complex-valued case has been addressed
by dealing with real and imaginary parts independently, using
a straightforward extension of the real case or learning a
vector with real and imaginary parts stacked. However, in these
approaches the design of the kernels remains an open problem
and the complex-valued formulation is lost. On the other hand,
the straightforward adaptation of the real case to the complex
one corresponds to the proper case, and is not able to deal
with any scenario. In this paper we present a new approach
based on the results for complex-valued Gaussian processes.
To the best of our knowledge this is the first tool working in
the complex field, suitable for any scenario.

We exploit the GPR framework to provide a full statisti-
cal description of the general complex-valued solution. We
highlight the importance of the pseudo-covariance term, and
the mean and covariance of the posterior are developed. Only
when the pseudo-covariance cancels, the method simplifies to
the proper case. We develop the optimization of the marginal
likelihood to estimate the hyperparameters, by taking into
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account generalized complex-valued matrix derivatives. The
selection or design of the covariance function or kernel is also
an important issue that we deal with in this paper. We analyze
the terms in the real and imaginary parts of the covariance and
pseudo-covariance functions, and their symmetries. We review
some previous proposals, and the way these kernels measure
similarity between the complex-valued inputs. We propose a
more general method to design the covariance and pseudo-
covariance functions from filters. We highlight the importance
of focusing on the properties of the covariance and pseudo-
covariance for the problem at hand to get the simplest solution
needed. In particular, when the function we would like to fit
does not have null pseudo-covariance, then the general CGPR
formulation provides better results. On the other hand, if the
pseudo-covariance is null, the simpler proper CGPR is enough.
Two experiments are included to illustrate these facts, showing
the learning of non-proper and proper models, along with
the learning of the hyperparameters. Also, when the cross-
covariance between the real and imaginary parts is symmetric
or null, there is no need for a complex-valued covariance
function. These developments are in the line of solving the
equalization of nonlinear channels in the experiments section,
where we propose a real-valued covariance function while
previous solutions use a complex-valued one. We apply a
recursive version of the proper CGPR with a basis selection
criterion and compare the results to previous approaches. The
recursive proper CGPR yields a remarkable reduction of the
MSE, up to 4 dB, and with a number of bases that is less than
25% of the number required for previous approaches. Also, the
proper CGPR approach allows us to learn the hyperparameters
from the data, so there is no need to set them by extensive
search or cross-validation techniques.

APPENDIX

A. Design of a Complex Covariance Function
We follow here a procedure similar to that in [27]. Consider

two independent, real, Gaussian white noise processes, with
zero mean and unit variance, Sr(x) and Sj(x), where x ∈ Cd,
producing an output U(x) defined by the sum of convolutions

U(x) = (h1(x) + jh2(x)) ? Sr(x) + (h3(x) + jh4(x)) ? Sj(x)

=

4∑
m=1

λmhm(x) ? Sm(x), (36)

where λ1 = λ3 = 1 and λ2 = λ4 = j, S1(x) = S2(x) =
Sr(x), and S3(x) = S4(x) = Sj(x).

The covariance of U(x) is derived as follows:

CU (x,x′) = E [U(x)U∗(x′)]

= E

[
4∑

m=1

∫
Cd

λmhm(α)Sm(x−α)ddα

·
4∑

n=1

∫
Cd

λ∗nh
∗
n(β)Sn(x′ − β)ddβ

]

=

4∑
m=1

4∑
n=1

{∫
Cd

∫
Cd

λmλ
∗
nhm(α)h∗n(β)

· E [Sm(x−α)Sn(x′ − β)] ddαddβ
}
. (37)

Processes Sm(x−α) and Sn(x′ − β) covary only if m,n ∈
{1, 2} or m,n ∈ {3, 4}, and (x − α) = (x′ − β). In such
cases, E [Sm(x−α)Sn(x′ − β)] = δ(α − (x − x′ + β)) =
δ(α− (dx + β)), where δ(·) is the Dirac delta function, and
the integrals in (37) yield

fmn(dx) =∫
Cd

∫
Cd

λmλ
∗
nhm(α)h∗n(β)δ(α− (dx + β))ddαddβ

=

∫
Cd

λmλ
∗
nhm(β + dx)h∗n(β)ddβ. (38)

Hence,

CU (x,x′) =

2∑
m=1

2∑
n=1

fmn(dx) +

4∑
m=3

4∑
n=3

fmn(dx). (39)

The pseudo-covariance of U(x), C̃U (x,x′) = E [U(x)U(x′)]
is derived in a similar way, and its calculation involves terms
as

gmn(dx) =

∫
Cd

λmλnhm(β + dx)hn(β)ddβ. (40)

One general example is to set the filters as parameterized
exponentials, hi(x) = vi exp(−(x − µi)

H(x − µi)/γi), so
(38) yields

fmn(dx) =

λmλ
∗
nvmvn exp

(
− (dx − µm + µn)

H
(dx − µm + µn)

γm + γn

)

·
(∫

Cd

exp

(
− (γm + γn)(β − β̂)H(β − β̂)

γmγn

)
ddβ

)

= λmλ
∗
nvmvn

(
πγmγn
γm + γn

)d
· exp

(
− (dx − µm + µn)

H
(dx − µm + µn)

γm + γn

)
= λmλ

∗
nf̄mn(dx), (41)

where β̂ = (µnγm − (dx − µm)γn)/(γm + γn), and

f̄mn(dx) = vmvn

(
πγmγn
γm + γn

)d
· exp

(
− (dx − µm + µn)

H
(dx − µm + µn)

γm + γn

)
.

(42)

Analogous calculations yield

gmn(dx) = λmλnf̄mn(dx). (43)

If, as an example, µm = µn = 0 for all posible values of
m or n, after some simple mathematical manipulations,

CU (x,x′) =

4∑
m=1

f̄mm(dx), (44)

where f̄mm(dx) simplifies to

f̄mm(dx) = v2m

(πγm
2

)d
exp

(
−dH

xdx

2γm

)
. (45)
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And the pseudo-covariance is

C̃U (x,x′) =
(
f̄11(dx) + f̄33(dx)

)
−
(
f̄22(dx) + f̄44(dx)

)
+ j
(
2f̄12(dx) + 2f̄34(dx)

)
, (46)

where f̄mm is given in (45), and f̄mn now simplifies to

f̄mn(dx) = vmvn

(
πγmγn
γm + γn

)d
exp

(
− dH

xdx

γm + γn

)
. (47)

Notice that in this example the covariance function
k(x,x′) = CU (x,x′) is real-valued while the pseudo-
covariance k̃(x,x′) = C̃U (x,x′) is complex-valued. This is
due to the fact that Kjr = K>rj = Krj for the process generated
with the filters in this example. The examples in (28)-(29) are
derived from (44)-(46) when v1 = v3 = vr, γ1 = γ3 = γr,
and v2 = v4 = vj , γ2 = γ4 = γj .

In order to yield a complex covariance function, we need
Kjr = K>rj 6= Krj. An example arises when Kjr is skew-
symmetric; Kjr = K>rj = −Krj. In such a case the pseudo-
covariance is real while the covariance is complex. In order
to get a skew-symmetric Kjr there must be is a correlation
between the real part and a displaced or translated imaginary
part, with displacement given by µ ∈ C,µ 6= 0, while there
is also a correlation between the real part and a displaced
imaginary part when the displacement is given by −µ, and
this correlation has the same value with the opposite sign. This
is achieved with the following parameter values. For h1(x) =
h3(x) we set µ1 = µ3 = 0, γ1 = γ3 = γr and v1 = v3 = vr.
For h2(x) we set µ2 = µ, v2 = vj and γ2 = γj . And for
h4(x) we set µ4 = −µ, v4 = −vj and γ4 = γj . In this case,
the covariance and pseudo-covariance yield

CU (x,x′) = 2f̄11(dx) + 2f̄22(dx)− j2
(
f̄12(dx) + f̄34(dx)

)
,

(48)

C̃U (x,x′) = 2f̄11(dx)− 2f̄22(dx), (49)

where f̄mn is given in (42).
The example in (31)-(32) is derived from (48)-(49) when the

inputs are complex-valued scalars x ∈ C, the displacement is
also a complex-valued scalar µ ∈ C, and γr = γj = γ.

B. Gradient Descent of the Marginal Likelihood

The log marginal likelihood L(θ) in (33) is a function of
a complex-valued Hermitian matrix C(θ). Therefore, for its
maximization we must seek generalized complex-valued ma-
trix derivatives [26], [33]. We start by defining the following
function

g(Ĉ, Ĉ
∗
) = −1

2
yHĈ

−1
y − 1

2
log det Ĉ (50)

where Ĉ is a matrix with independent components, i.e., not
Hermitian. The unpatterned matrix input variables Ĉ and Ĉ

∗

should be treated as independent when finding complex-valued
matrix derivatives of the function g(Ĉ, Ĉ

∗
). We can find the

derivatives of L(θ) in (33) with respect to C and C∗ as follows
[33]

∂L

∂C
=

∂g(Ĉ, Ĉ
∗
)

∂Ĉ
+

(
∂g(Ĉ, Ĉ

∗
)

∂Ĉ
∗

)>
Ĉ=C(θ)

, (51)

and

∂L

∂C∗
=

∂g(Ĉ, Ĉ
∗
)

∂Ĉ
∗ +

(
∂g(Ĉ, Ĉ)

∂Ĉ

)>
Ĉ=C(θ)

. (52)

Here the problem simplifies since ∂g(Ĉ, Ĉ
∗
)/∂Ĉ

∗
= 0. The

derivative of L(θ) in (33) with respect to the hyperparameters
is found by using the chain rule

∂L

∂θi
= Tr

((
∂L

∂C

)>
∂C

∂θi
+

(
∂L

∂C∗

)>
∂C∗

∂θi

)

=2Tr


 ∂g(Ĉ, Ĉ

∗
)

∂Ĉ

∣∣∣∣∣
Ĉ=C(θ)

> ∂C

∂θi

. (53)

The derivative of the first term of g(Ĉ, Ĉ
∗
) with respect to Ĉ

yields

∂

∂Ĉ

(
−1

2
yHĈ

−1
y

)
=

1

2
(Ĉ
>

)−1
(
y yH

)>
(Ĉ
>

)−1. (54)

The derivative of the second term of g(Ĉ, Ĉ
∗
) with respect to

Ĉ yields

∂

∂Ĉ

(
−1

2
log det Ĉ

)
= −1

2
(Ĉ
>

)−1. (55)

Substitution of (54) and (55) in (53) yield (34).
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