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Pedro Maŕın-Rubio
Departamento de Ecuaciones Diferenciales y Análisis Numérico

Universidad de Sevilla

C/ Tarfia s/n, 41012, Sevilla, Spain

Gabriela Planas
Departamento de Matemática
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Abstract. In this paper we analyze some regularity properties of a double

time-delayed 2D-Navier-Stokes model, that includes not only a delay force but
also a delay in the convective term. The interesting feature of the model -from

the mathematical point of view- is that being in dimension two, it behaves

similarly as a 3D-model without delay, and extra conditions in order to have
uniqueness were required for well-posedness. This model was previously stud-

ied in several papers, being the existence of attractor in the L2-framework

obtained by the authors [Discrete Contin. Dyn. Syst. 34 (2014), 4085–4105].
Here regularization properties of the solutions and existence of (regular) at-

tractors for several associated dynamical systems are established. Moreover,
relationships among these objects are also provided.

1. Introduction, statement of the problem, and previous results. Consider3

a bounded domain Ω ⊂ R2, τ ∈ R, and the following non-autonomous functional4

Navier-Stokes model5 

∂u

∂t
− ν∆u+ (u(t− ρ(t)) · ∇)u+∇p = f(t) + g(t, ut) in Ω× (τ,∞),

divu = 0 in Ω× (τ,∞),
u = 0 on ∂Ω× (τ,∞),
u(x, τ) = uτ (x) in Ω,
u(x, τ + s) = φ(x, s) in Ω× (−h, 0),

(1)
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where ν > 0 is the kinematic viscosity, u = (u1, u2) is the velocity field of the fluid,1

p is the pressure, f is a non-delayed external force field, g is another external force2

with some hereditary characteristics with memory length bounded by h > 0, ut3

denotes the delay function ut(s) = u(t+ s) where it has sense. The delay function4

ρ in the convective term is assumed to belong to C1(R; [0, h]) with ρ′(t) ≤ ρ∗ < 15

for all t ∈ R, and uτ and φ are the initial data in τ and (τ − h, τ) respectively.6

7

The study of Navier-Stokes models including delay terms –existence, uniqueness,8

stationary solutions, exponential decay, existence of attractors, and other issues– is9

initiated by Caraballo and Real [1, 2, 3], and after that, different questions have10

been addressed (e.g.,[19, 9, 13, 15, 16, 6, 7]).11

12

In particular, the inclusion of a delay term in the convective part is firstly con-13

sidered in [12] for a Burgers’ equation. Then Planas and collaborators [17, 10, 11]14

treat problem (1), the analysis of well-posedness (including uniqueness) and an15

unbounded delay case too. The asymptotic behavior in the sense of attractors in16

L2-norm is carried out in [4]. It is worth also to mention that in [20] the inclusion of17

a delay is used as an approximation to a 3D Navier-Stokes model when the length18

of the delay vanishes. Nevertheless, in the 2D case our interest in the problem is19

just mathematical, due to the difficulties arising in controlling the norm of the de-20

rivatives as cited in the abstract (see also [4]). Our goal in this paper is to improve21

the results in [4] providing regularity for both solutions and attractors.22

23

Let us first introduce some notation. As usual we will denote by H and V the24

Hilbert spaces that are the closure of V (infinitely differentiable functions in Ω with25

compact support and free divergence) in the L2 and H1 norm respectively, and26

denote their inner products and norms by (·, ·) and | · | in H, and by ((·, ·)) (product27

of gradients, thanks to the Poincaré inequality) and ‖ · ‖ in V (see [4] for more28

details). We do the identification of the Hilbert space H with its dual, so we have29

the chain of dense and compact inclusions V ⊂ H ≡ H ′ ⊂ V ′. The duality between30

elements in V ′ and V will be denoted by 〈·, ·〉. For short, we introduce the notation31

LpX = Lp(−h, 0;X), for several choices of p and X, and its norm will be denoted by32

‖ · ‖LpX . In the same sense, we denote CX = C([−h, 0];X).33

34

Recall that A : V → V ′ given by 〈Av,w〉 = ((v, w)), satisfies that Au = −P∆u
for all u ∈ D(A) (the Stokes operator), where P is the Leray-Helmholtz projector
from (L2(Ω))2 onto H. The trilinear operator b associated to Navier-Stokes model
is given by

b(u, v, w) =

2∑
i,j=1

∫
Ω

ui
∂vj
∂xi

wjdx,

for every functions u, v, w : Ω → R2 for which the right-hand side is well defined.
In particular, b is well defined on V × V × V , and therefore we can consider the
associated bilinear form

B : V × V → V ′

given by 〈B(u, v), w〉 := b(u, v, w). It is well-known (e.g., cf. [18]) that b satisfies35

the following inequalities (recall we are in dimension two) for a certain constant36
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C > 0 depending only on Ω,1

|b(u, v, w)| ≤ C|u|1/2‖u‖1/2‖v‖|w|1/2‖w‖1/2 ∀u, v, w ∈ V, (2)

|b(u, v, w)| ≤ C|u|1/2‖u‖1/2‖v‖1/2|Av|1/2|w| ∀u ∈ V, v ∈ D(A), w ∈ H. (3)

The delay operator in the right-hand side is g : R × CH → (L2(Ω))2, and we2

assume that it satisfies the following assumptions:3

(H1) for all ξ ∈ CH , the function R 3 t 7→ g(t, ξ) ∈ (L2(Ω))2 is measurable,4

(H2) g(t, 0) = 0, for all t ∈ R,5

(H3) there exists Lg > 0 such that for all t ∈ R, and for all ξ, η ∈ CH ,
|g(t, ξ)− g(t, η)| ≤ Lg|ξ − η|CH ,

(H4) there exists Cg > 0 such that for all τ ≤ t and for all u, v ∈ C([τ − h, t];H),∫ t

τ

|g(r, ur)− g(r, vr)|2dr ≤ C2
g

∫ t

τ−h
|u(r)− v(r)|2dr.

Examples of several types of delay operators can be found in [1, Section 3], [3,6

Sections 3.5 and 3.6] and [9, Section 3].7

From (H1)–(H3), for T > τ and u ∈ C([τ − h, T ];H), the function gu : [τ, T ] →
(L2(Ω))2 given by gu(t) = g(t, ut) is measurable and belongs to L∞(τ, T ; (L2(Ω))2).
By using (H4), the mapping

C([τ − h, T ];H) 3 u 7→ G(u) := gu ∈ L2(τ, T ; (L2(Ω))2)

has a unique extension to a mapping G̃ which is uniformly continuous from L2(τ −8

h, T ;H) into L2(τ, T ; (L2(Ω))2). We will still denote by g(t, ut) = G̃(u)(t) for each9

u ∈ L2(τ − h, T ;H), and therefore assumption (H4) will hold for all u, v ∈ L2(τ −10

h, T ;H).11

12

Let us consider that uτ ∈ H, φ ∈ L2
V , and f ∈ L2

loc(R;V ′).13

Definition 1. A weak solution to (1) is a function u ∈ L∞(τ, T ;H)∩L2(τ−h, T ;V )
for all T > τ, such that u(τ) = uτ , uτ = φ, and satisfies

d

dt
(u(t), v) + ν〈Au(t), v〉+ b(u(t− ρ(t)), u(t), v) = 〈f(t), v〉+ (g(t, ut), v) ∀v ∈ V,

where the equation must be understood in the sense of D′(τ,∞).14

If u is a weak solution to (1), since there exists a constant C̃ > 0 such that for
any v ∈ V,

|b(u(t− ρ(t)), u(t), v)| ≤ C̃‖u(t− ρ(t))‖‖u(t)‖1/2|u(t)|1/2‖v‖
(where we have used that b(u, v, w) = −b(u,w, v) for all u, v, w ∈ V, (2) and15

the continuous embedding of V into H), we conclude that B(u(· − ρ(·)), u(·)) ∈16

L4/3(τ, T ;V ′) and u′ ∈ L4/3(τ, T ;V ′) too. Thus, u ∈ C([τ,∞);V ′)∩Cw([τ,∞);H).17

This continuity in time in V ′ and weakly in H does not seem enough to apply18

an energy method to gain asymptotic compactness (in the study of the long time19

behavior). Somehow this indicates the border between an ill-posed and well-posed20

problems, as we recall now in a new phase-space.21

When the initial (memory) data is more regular, namely φ ∈ L2
V ∩ L∞H , we can22

improve the above estimates again using (2).23

Some existence results given in those settings (cf. [17, Theorem 2.1] and [4,24

Theorems 1 and 2]) are summarized in the following result.25
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Theorem 1. Consider f ∈ L2
loc(R;V ′), and g : R × CH → (L2(Ω))2 satisfying1

assumptions (H1)–(H4). Then, the following statements hold:2

(a) If uτ ∈ H, φ ∈ L2
V , there exists at least one weak solution u(·; τ, uτ , φ) to (1).3

(b) If uτ ∈ H and φ ∈ L2
V ∩ L∞H , then there exists a unique weak solution to

(1), u(·; τ, uτ , φ) ∈ C([τ,∞);H), with u′ ∈ L2(τ, T ;V ′) for all T > τ , and
satisfying the energy equality

|u(t)|2 + 2ν

∫ t

s

‖u(r)‖2dr

=|u(s)|2 + 2

∫ t

s

〈f(r), u(r)〉dr + 2

∫ t

s

(g(r, ur), u(r))dr ∀τ ≤ s ≤ t. (4)

Remark 1. As a by-product of the proof of the above result, it is not difficult to
check that the following estimates hold for the weak solution obtained in statement
(a) (unique under the assumptions of statement (b)) and also for suitable Galerkin
approximations (see (6) below) for any T > τ :

‖u‖2L∞(τ,T ;H) ≤ (|uτ |2 + C2
g‖φ‖2L2

H
+ ν−1‖f‖2L2(τ,T ;V ′))exp((1 + C2

g )(T − τ))

=: CL∞(H)(τ, T, u
τ , φ),

‖u‖2L2(τ,T ;V ) ≤ ν
−1(|uτ |2 + C2

g‖φ‖2L2
H

+ ν−1‖f‖2L2(τ,T ;V ′))

+ ν−1(1 + C2
g )(T − τ)CL∞(H)(τ, T, u

τ , φ) =: CL2(V )(τ, T, u
τ , φ).

Our goal in this work is to improve some previous results obtained in [4, 17],4

addressing to the existence of strong solutions and attractors in a higher norm.5

The structure of the paper is the following: in Section 2 we establish the exist-6

ence of strong solutions and the regularization effect in 2D. Estimates leading to7

continuity of involved processes and absorbing properties are obtained in Section 3.8

Section 4 is devoted to prove the asymptotic compactness via an energy method.9

In order to do that, previous uniform estimates in several spaces are deduced. The10

required computations for these results are more involved than in the non-delayed11

case due mainly to the extra difficulty of the delay in the convective term. Finally,12

in Section 5 all the previous results allow us to ensure the existence of several famil-13

ies of pullback attractors in higher norms. Several relationships between them (and14

also compared with those obtained in [4]) will be pointed out too.15

2. Regularization effect and strong solution. One can also expect to introduce16

a concept of strong solution for problem (1).17

Definition 2. A strong solution to (1) is a weak solution that also satisfies u ∈18

L∞(τ, T ;V ) ∩ L2(τ, T ;D(A)) for all T > τ .19

Remark 2. Observe that if φ ∈ L2
V ∩ L∞H and u is a strong solution for (1), from

(3) it yields that B(u(· − ρ(·)), u(·)) ∈ L2(τ, T ;H) for all T > τ. Therefore, if
f ∈ L2

loc(R;H), then u′ ∈ L2(τ, T ;H) for all T > τ , u ∈ C([τ,∞);V ), and the
following energy equality holds,

‖u(t)‖2 + 2

∫ t

s

[ν|Au(r)|2 + b(u(r − ρ(r), u(r), Au(r))]dr

=‖u(s)‖2 + 2

∫ t

s

(f(r) + g(r, ur), Au(r))dr ∀τ ≤ s ≤ t. (5)

The following regularizing effect holds for the problem.20
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Theorem 2. Consider uτ ∈ H, φ ∈ L2
V ∩ L∞H , f ∈ L2

loc(R;H), and g : R ×1

CH → (L2(Ω))2 satisfying assumptions (H1)–(H4). Then, the weak solution u to2

(1) regularizes to a strong solution in the sense that u ∈ L∞(τ + ε, T ;V ) ∩ L2(τ +3

ε, T ;D(A)) ∩ C((τ,∞);V ) for all T > τ + ε > τ .4

Moreover, if uτ ∈ V, then u is indeed a strong solution to (1), so u ∈ C([τ,∞);V )∩5

L2
loc(τ,∞;D(A)), and satisfies the energy equality (5).6

Proof. Consider a special basis of H formed by normalized eigenfunctions of the
Stokes operator, {wj}j≥1, with corresponding eigenvalues {λj}j≥1 being 0 < λ1 ≤
λ2 ≤ . . . with limj→∞ λj = ∞. Pose the approximate problems (for each k ≥ 1) of

finding uk ∈ Vk := span[w1, . . . , wk] with uk(t) =
∑k
j=1 γjk(t)wj such that

d

dt
(uk(t), wj) + ν〈Auk(t), wj〉+ b(uk(t− ρ(t)), uk(t), wj)

=(f(t), wj) + (g(t, ukt ), wj), a.e. t > τ, ∀1 ≤ j ≤ k, (6)

fulfilled with the initial conditions7

uk(τ) = Pku
τ and uk(τ + s) = Pkφ(s) a.e. s ∈ (−h, 0), (7)

where Pk is the orthogonal projector from H onto Vk.8

Multiplying each equation by λjγjk(t), summing from j = 1 to k, and taking
into account (3), we obtain

1

2

d

dt
‖uk(t)‖2 + ν|Auk(t)|2 ≤C|uk(t− ρ(t))|1/2‖uk(t− ρ(t))‖1/2‖uk(t)‖1/2|Auk(t)|3/2

+ (f(t) + g(t, ukt ), Auk(t)) a.e. t > τ.

Using the Cauchy-Schwartz and Young inequalities

d

dt
‖uk(t)‖2 +

ν

2
|Auk(t)|2 ≤C̃|uk(t− ρ(t))|2‖uk(t− ρ(t))‖2‖uk(t)‖2

+
2

ν
|f(t)|2 +

2

ν
|g(t, ukt )|2 a.e. t > τ, (8)

where C̃ = 27C4

2ν3 . Integrating in time, using (H4) and Remark 1, we deduce

‖uk(t)‖2 +
ν

2

∫ t

s

|Auk(r)|2dr ≤‖uk(s)‖2 + Ĉ

∫ t

s

‖uk(r − ρ(r))‖2‖uk(r)‖2dr

+
2

ν

∫ t

s

|f(r)|2dr +
2

ν
C2
g

∫ t

τ−h
|uk(r)|2dr (9)

for all τ ≤ s < t ≤ T, where Ĉ = C̃ max{‖φ‖2L∞
H
, CL∞(H)(τ, T, u

τ , φ)}.9

In particular, from the above, integrating again with respecto to s ∈ [τ, τ + ε]
(with τ + ε < T ), it yields

‖uk(t)‖2 ≤ε−1

∫ τ+ε

τ

‖uk(s)‖2ds+ Ĉ

∫ t

τ

‖uk(r − ρ(r))‖2‖uk(r)‖2dr

+
2

ν

∫ t

τ

|f(r)|2dr +
2

ν
C2
g

∫ t

τ−h
|uk(r)|2dr ∀τ + ε ≤ t ≤ T.
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Now, applying the Gronwall lemma we obtain that

‖uk(t)‖2 ≤
(
ε−1

∫ τ+ε

τ

‖uk(r)‖2dr +
2

ν

∫ t

τ

|f(r)|2dr +
2

ν
C2
g

∫ t

τ−h
|uk(r)|2dr

)
× exp

(
Ĉ

∫ t

τ

‖uk(r − ρ(r))‖2dr
)
∀t ∈ [τ + ε, T ].

From (7) and Remark 1 we conclude that {uk} is bounded in L∞(τ + ε, T ;V ).1

Turning back now to (9) we also obtain that {uk} is bounded in L2(τ +ε, T ;D(A)).2

Passing through the limit in k, we conclude the first claim of the theorem.3

Last claim is simpler. If uτ ∈ V, it only requires integration in (8) in [τ, t] and4

application of the Gronwall lemma. The details are omitted for brevity.5

An immediate consequence of the above is the following result.6

Corollary 1. Assume that f ∈ L2
loc(R;H) and g : R × CH → (L2(Ω))2 fulfills7

(H1)–(H4). Then, for any bounded set B ⊂ H × (L2
V ∩ L∞H )8

(i) The set of weak solutions to (1) {u(·; τ, uτ , φ) : (uτ , φ) ∈ B} is bounded in9

L∞(τ + ε, T ;V ) ∩ L2(τ + ε, T ;D(A)) for any ε > 0 and any T > τ + ε.10

(ii) Moreover, if B is bounded in V ×(L2
V ∩L∞H ), then {u(·; τ, uτ , φ) : (uτ , φ) ∈ B}11

is bounded in L∞(τ, T ;V ) ∩ L2(τ, T ;D(A)) for any T > τ.12

3. Processes and their continuity and absorbing properties. In this section13

we start recalling the biparametric families of mappings S and U defined in [4]14

through the solution to (1) given in Theorem 1, which in fact were proved to be15

continuous processes. After that, and thanks to the improved regularity we have16

several meaningful choices to restrict these mappings to others with higher norms.17

Their continuity and absorbing properties will be established.18

Recall that

S(t, τ) : H × (L2
V ∩ L∞H )→ H × (L2

V ∩ L∞H ) and U(t, τ) : L2
V ∩ CH → L2

V ∩ CH
for any t ≥ τ, given by S(t, τ)(uτ , φ) = (u(t), ut) for any (uτ , φ) ∈ H × (L2

V ∩ L∞H )19

and U(t, τ)φ = ut(·; τ, φ(0), φ) for any φ ∈ L2
V ∩CH are well-defined mappings after20

Theorem 1 (cf. [4]).21

Actually, each of these mappings form a process (see definitions in [4, Section
3]), which for short we denote

(H × (L2
V ∩ L∞H ), {S(t, τ)}t≥τ ) and (L2

V ∩ CH , {U(t, τ)}t≥τ )

respectively. They are continuous in their corresponding phase-spaces (cf. [4, Co-22

rollary 2]) under the assumptions of Theorem 1.23

Now, after Theorem 2 we may consider the corresponding restrictions (the nota-
tion for the operators will not be modified, since no confusion arises)

(V × (L2
V ∩ L∞H ), {S(t, τ)}t≥τ ), (CV , {U(t, τ)}t≥τ ), (C h̃,VH , {U(t, τ)}t≥τ ),

(V × (L2
D(A) ∩ L

∞
V ), {S(t, τ)}t≥τ ), (L2

D(A) ∩ CV , {U(t, τ)}t≥τ ),

which are well-defined processes, where C h̃,VH = {ϕ ∈ CH : ϕ|[−h̃,0] ∈ B([−h̃, 0];V )},24

being B([−h̃, 0];V ) the space of bounded functions from [−h̃, 0] into V (with h̃ ∈25

[0, h]).26

For the sake of clarity and brevity in the exposition, among all of the above27

processes we restrict ourselves to the most interesting ones, namely (V × (L2
D(A) ∩28

L∞V ), {S(t, τ)}t≥τ ) and (L2
D(A) ∩ CV , {U(t, τ)}t≥τ ).29
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In order to develop a more regular theory of attractors we start studying the1

continuity of these new processes. We have the following result.2

Proposition 1. Consider f ∈ L2
loc(R;H) and g : R × CH → (L2(Ω))2 fulfilling

(H1)–(H4), (uτ , φ) and (vτ , ψ) ∈ V × (L2
V ∩ L∞H ), and denote u = u(·; τ, uτ , φ) and

v = v(·; τ, vτ , ψ) the corresponding solutions to (1) with (respective) initial data.
Then,

‖u(s)− v(s)‖2 ≤
(
‖uτ − vτ‖2 + C̃

∫ 0

−h
‖φ(r)− ψ(r)‖2dr

+
C4

2ν2

∫ t

τ

|u(r − ρ(r))−v(r − ρ(r))|2‖u(r)‖2|Au(r)|2dr
)

× exp

[∫ t

τ

(
C̃ +

27C4

2ν3
|v(r − ρ(r))|2‖v(r − ρ(r))‖2

)
dr

]
, (10)

ν

2

∫ s

τ

|Au(r)−Av(r)|2dr ≤‖uτ − vτ‖2 +
2C2

g

ν

∫ s

τ−h
|u(r)− v(r)|2dr

+ 2

∫ s

τ

‖u(r − ρ(r))− v(r − ρ(r))‖2dr

+
C4

2ν2

∫ s

τ

|u(r − ρ(r))− v(r − ρ(r))|2‖u(r)‖2|Au(r)|2dr

+
27C4

2ν3

∫ s

τ

|v(r − ρ(r))|2‖v(r − ρ(r))‖2‖u(r)− v(r)‖2dr

(11)

for all τ ≤ s ≤ t, where C̃ = 2C2
g/(λ1ν) + 2/(1− ρ∗).3

Proof. Using the second energy equality (5) for w := u− v,

1

2

d

dt
‖w(t)‖2 + ν|Aw(t)|2 =b(v(t− ρ(t)), v(t), Aw(t))− b(u(t− ρ(t)), u(t), Aw(t))

+ (g(t, ut)− g(t, vt), Aw(t)) a.e.t > τ.

Standard manipulations in the trilinear term b yields

b(v(t− ρ(t)), v(t), Aw(t))− b(u(t− ρ(t)), u(t), Aw(t))

=− b(w(t− ρ(t)), u(t), Aw(t))− b(v(t− ρ(t)), w(t), Aw(t)) a.e. t > τ.

Now from (3) and the Young inequality,

|b(w(t− ρ(t)), u(t), Aw(t))|+ |b(v(t− ρ(t)), w(t), Aw(t))|

≤C|w(t− ρ(t))|1/2‖w(t− ρ(t))‖1/2‖u(t)‖1/2|Au(t)|1/2|Aw(t)|

+ C|v(t− ρ(t))|1/2‖v(t− ρ(t))‖1/2‖w(t)‖1/2|Aw(t)|3/2

≤C
2

ν
|w(t− ρ(t))|‖w(t− ρ(t))‖‖u(t)‖|Au(t)|+ ν

4
|Aw(t)|2

+
27C4

4ν3
|v(t− ρ(t))|2‖v(t− ρ(t))‖2‖w(t)‖2 +

ν

4
|Aw(t)|2 a.e. t > τ.
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Combining the above with the Hölder inequality and integrating, we obtain

‖w(s)‖2 − ‖w(τ)‖2 +
ν

2

∫ s

τ

|Aw(r)|2dr ≤
2C2

g

ν

∫ s

τ−h
|w(r)|2dr

+ 2

∫ s

τ

‖w(r − ρ(r))‖2dr +
C4

2ν2

∫ s

τ

|w(r − ρ(r))|2‖u(r)‖2|Au(r)|2dr

+
27C4

2ν3

∫ s

τ

|v(r − ρ(r))|2‖v(r − ρ(r))‖2‖w(r)‖2dr ∀τ ≤ s. (12)

Splitting the first integral in the RHS, that on [τ−h, s] in the initial datum part and
the evolutive solution on [τ, s], and using the Poincaré inequality and an eventual
change of variables for t− ρ(t), in particular we conclude

‖w(s)‖2 ≤‖w(τ)‖2+C̃

∫ 0

−h
‖φ(r)−ψ(r)‖2dr+

C4

2ν2

∫ s

τ

|w(r−ρ(r))|2‖u(r)‖2|Au(r)|2dr

+

∫ s

τ

(
C̃ +

27C4

2ν3
|v(r − ρ(r))|2‖v(r − ρ(r))‖2

)
‖w(r)‖2dr ∀s ≥ τ.

The Gronwall lemma gives (10). Finally, (11) follows immediately from (12).1

From the continuity of (H×(L2
V ∩L∞H ), {S(t, τ)}t≥τ ) and (L2

V ∩CH , {U(t, τ)}t≥τ )2

(cf. [4, Corollary 2]) combined with Corollary 1 and Proposition 1, we deduce3

Corollary 2. Assume that f ∈ L2
loc(R;H) and g : R × CH → (L2(Ω))2 satisfies4

(H1)–(H4). Then (V × (L2
D(A) ∩L

∞
V ), {S(t, τ)}t≥τ ) and (L2

D(A) ∩CV , {U(t, τ)}t≥τ )5

are continuous processes.6

The first of the two key ingredients to ensure the existence of attractors is the7

absorbing property. We recall from [4] several concepts, definitions and extra con-8

dition on f such that the absorbing property holds in a natural universe associated9

to problem (1). These results will be improved in the sequel, in order to gain at-10

tractors in higher norms. Namely, we start recalling an additional assumption for11

extra energy estimates.12

(H5) Assume that νλ1 > Cg, and that there exists a value η ∈ (0, 2(νλ1−Cg)) such
that for every u ∈ L2(τ − h, t;H),∫ t

τ

eηs|g(s, us)|2 ds ≤ C2
g

∫ t

τ−h
eηs|u(s)|2 ds ∀t ≥ τ.

Now we recall the estimates leading to the introduction of one universe for the13

study of pullback attractors (cf. [4, Lemma 1]).14

Lemma 1. Consider given f ∈ L2
loc(R;V ′) and g : R× CH → (L2(Ω))2 satisfying

conditions (H1)–(H5). Then, for any (uτ , φ) ∈ H × (L2
V ∩ L∞H ), the following

inequalities hold for the solution u to (1) for all t ≥ s ≥ τ :

|u(t)|2 ≤e−η(t−τ)(|uτ |2 + Cg‖φ‖2L2
H

) +
e−ηt

β

∫ t

τ

eηr‖f(r)‖2∗dr, (13)

ν

∫ t

s

‖u(r)‖2dr ≤|u(s)|2 + Cg‖us‖2L2
H

+
1

ν

∫ t

s

‖f(r)‖2∗dr + 2Cg

∫ t

s

|u(r)|2dr, (14)

where15

β = 2ν − (η + 2Cg)λ
−1
1 > 0. (15)
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In the context of pullback attractors, a universe is a family of time-dependent1

sections, i.e. family of subsets in the phase-space, that allows to establish good dy-2

namical properties, acting as basis of attraction. In [4] it was introduced DH,L
2
H

η (H×3

(L2
V ∩ L∞H )), the class of all families of nonempty subsets D̂ = {D(t) : t ∈ R} ⊂4

P(H × (L2
V ∩ L∞H )) such that5

lim
τ→−∞

(
eητ sup

(ζ,ϕ)∈D(τ)

(|ζ|2 + ‖ϕ‖2L2
H

)

)
= 0. (16)

This notion of universe is naturally related to estimate (13), where the rate of growth6

in −∞ is such that the initial data is killed by the dissipativity of the problem. Let7

us also observe that DH,L
2
H

η (H×(L2
V ∩L∞H )) is inclusion-closed, which allows certain8

advantages in the application of the theory.9

We will denote by DF (H × (L2
V ∩ L∞H )) the universe of fixed bounded sets in10

H × (L2
V ∩ L∞H ).11

Then, after the above comments and having in mind (13), we gain the first12

absorbing family (cf. [4, Corollary 3]).13

Corollary 3. Assume that g : R × CH → (L2(Ω))2 fulfills conditions (H1)–(H5)14

and that f ∈ L2
loc(R;V ′) satisfies15 ∫ 0

−∞
eηr‖f(r)‖2∗dr <∞. (17)

Then, the family D̂0 = {D0(t) : t ∈ R} ⊂ P(H × (L2
V ∩ L∞H )) defined by

D0(t) = BH(0, RH(t))× (BL2
V

(0, RV (t)) ∩BL∞
H

(0, RH(t))),

where

R2
H(t) =1 + β−1e−η(t−2h)

∫ t

−∞
eηr‖f(r)‖2∗dr,

R2
V (t) =ν−1

[
(1 + 3Cgh)R2

H(t) + ν−1‖f‖2L2(t−h,t;V ′)

]
,

is pullback DH,L
2
H

η (H × (L2
V ∩L∞H ))−absorbing for the process S on H × (L2

V ∩L∞H )16

(and therefore pullback DF (H × (L2
V ∩ L∞H ))−absorbing too), and D̂0 belongs to17

DH,L
2
H

η (H × (L2
V ∩ L∞H )).18

As additional universe for the study of the problem in [4, Definition 5] it was19

introduced DCHη (L2
V ∩CH), the class of all families of nonempty subsets D̂ = {D(t) :20

t ∈ R} ⊂ P(L2
V ∩ CH) such that21

lim
τ→−∞

(
eητ sup

φ∈D(τ)

|φ|2CH

)
= 0. (18)

Remark 3. After Corollary 3 it is immediate to realize that D̂1 = {D1(t) : t ∈22

R} ⊂ P(L2
V ∩ CH) given by D1(t) = BL2

V
(0, RV (t)) ∩ BCH (0, RH(t)) is pullback23

DCHη (L2
V ∩ CH)−absorbing for U on L2

V ∩ CH .24

Since the pullback estimates necessary for the dissipativity only require the25

tempered character in norms H × L2
H or CH , we may consider more restricted26

universes, with higher norms but the same tempered condition. So, analogously to27

the previous definitions of DH,L
2
H

η (H×(L2
V ∩L∞H )) and DCHη (L2

V ∩CH) we introduce28

the following classes.29
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Definition 3. Denote by DH,L
2
H

η (V × (L2
D(A) ∩ L

∞
V )) the class of all families of1

nonempty subsets D̂ = {D(t) : t ∈ R} ⊂ P(V × (L2
D(A)∩L

∞
V )) such that (16) holds.2

Denote by DCHη (L2
D(A) ∩ CV ) the class of all families of nonempty subsets D̂ =3

{D(t) : t ∈ R} ⊂ P(L2
D(A) ∩ CV ) such that (18) holds.4

We also denote by DF (V × (L2
D(A) ∩L

∞
V )) and DF (L2

D(A) ∩CV ) the universes of5

fixed bounded sets in V × (L2
D(A) ∩ L

∞
V ) and L2

D(A) ∩ CV respectively.6

Remark 4. After Corollary 3 and Remark 3, as an immediate consequence of7

Theorem 2, D̂0 ∩ P(V × (L2
D(A) ∩ L

∞
V )) and D̂1 ∩ P(L2

D(A) ∩ CV ) are pullback8

DH,L
2
H

η (V × (L2
D(A) ∩ L

∞
V ))−absorbing and pullback DCHη (L2

D(A) ∩ CV )−absorbing9

for S and U on V × (L2
D(A) ∩ L

∞
V ) and L2

D(A) ∩ CV respectively.10

4. Asymptotic compactness. The first goal of this section is to provide the11

sufficient uniform estimates at any current time t such that the data is starting12

pullback enough in time. The cumbersome choice of some intervals is due to the13

necessity of controlling several delay terms appearing in the computations. This14

will end up with the asymptotic compactness of the associated dynamical systems15

introduced previously.16

Lemma 2. Assume that g : R×CH → (L2(Ω))2 and f ∈ L2
loc(R;H) satisfy (H1)–17

(H5) and (17) respectively. Then, for any t ∈ R and D̂ ∈ DH,L
2
H

η (H × (L2
V ∩ L∞H )),18

there exists τ(D̂, t, h) < t−5h−2 and functions {ρi}4i=1 depending on t and h, such19

that for any τ ≤ τ(D̂, t, h) and any (uτ , φτ ) ∈ D(τ),20 

|u(r; τ, uτ , φτ )|2 ≤ ρ1(t) ∀r ∈ [t− 5h− 2, t],

‖u(r; τ, uτ , φτ )‖2 ≤ ρ2(t) ∀r ∈ [t− 3h− 1, t],

ν

2

∫ r

r−1

|Au(s)|2ds ≤ ρ3(t) ∀r ∈ [t− 2h, t],∫ r

r−1

|u′(s)|2ds ≤ ρ4(t) ∀r ∈ [t− 2h, t],

(19)

where

ρ1(t) =1 + e−η(t−5h−2)β−1

∫ t

−∞
eηs‖f(s)‖2∗ds,

ρ2(t) =

[
ρ1(t)

ν
(1 + Cg(h+ 2 + 2Cg(h+ 1)))+

∫ t

t−3h−2

(
‖f(s)‖2∗
ν2

+
2

ν
|f(s)|2

)
ds

]
× exp

[
27C4ρ1(t)

2ν4(1− ρ∗)

(
ρ1(t)(1+Cg(3h+ 2))+

1

ν

∫ t

t−4h−2

‖f(s)‖2∗ds
)

+
2C2

g

λ1ν

]
,

ρ3(t) =ρ2(t) +
27C4

2ν3
ρ1(t)ρ2

2(t) +
2

ν

∫ t

t−2h−1

|f(s)|2ds+
2C2

g

ν
(h+ 1)ρ1(t),

ρ4(t) =νρ2(t)+4

∫ t

t−2h−1

|f(s)|2ds+ 4C2
g (h+ 1)ρ1(t)+23/2C2ρ

1/2
1 (t)ρ2(t)

(
ρ3(t)

ν

)1/2

.

Proof. First estimate in (19) and the formula for ρ1 is a direct consequence of (13)21

in the interval [t − 5h − 2, t] since the universe is tempered w.r.t. the exponential22

with parameter η.23
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Using the Galerkin approximations introduced in Theorem 2, multiplying each
equation by λjγjk(t), summing from j = 1 to k, and using the Cauchy-Schwartz
and Young inequalities,

d

dt
‖uk(t)‖2 + 2ν|Auk(t)|2 + 2b(uk(t− ρ(t)), uk(t), Auk(t))

≤ν|Auk(t)|2 +
2

ν
|f(t)|2 +

2

ν
|g(t, ukt )|2 a.e. t > τ.

From (3) and the Young inequality,

|b(uk(t− ρ(t)), uk(t), Auk(t))|

≤C|uk(t− ρ(t))|1/2‖uk(t− ρ(t))‖1/2‖uk(t)‖1/2|Auk(t)|3/2

≤27C4

4ν3
|uk(t− ρ(t))|2‖uk(t− ρ(t))‖2‖uk(t)‖2 +

ν

4
|Auk(t)|2.

Plugging this into the above inequality,

d

dt
‖uk(t)‖2 +

ν

2
|Auk(t)|2 (20)

≤27C4

2ν3
|uk(t− ρ(t))|2‖uk(t− ρ(t))‖2‖uk(t)‖2 +

2

ν
|f(t)|2 +

2

ν
|g(t, ukt )|2 a.e. t > τ.

Integrating in [s, t] with s ≥ τ, and using (H4),

‖uk(t)‖2 +
ν

2

∫ t

s

|Auk(r)|2dr

≤‖uk(s)‖2 +

∫ t

s

(
27C4

2ν3
|uk(r − ρ(r))|2‖uk(r − ρ(r))‖2 +

2C2
g

λ1ν

)
‖uk(r)‖2dr

+
2

ν

∫ t

s

|f(r)|2dr +
2C2

g

ν

∫ s

s−h
|uk(r)|2dr.

In particular, the Gronwall lemma yields

‖uk(r)‖2 ≤

(
‖uk(s)‖2 +

2

ν

∫ r

s

|f(θ)|2dθ +
2C2

g

ν
‖uks‖2L2

H

)

× exp

[∫ r

s

(
27C4

2ν3
|uk(θ − ρ(θ))|2‖uk(θ − ρ(θ))‖2 +

2C2
g

λ1ν

)
dθ

]
(21)

for any τ ≤ s ≤ r.1

Integrating w.r.t. s ∈ (r − 1, r)

‖uk(r)‖2 ≤

(∫ r

r−1

‖uk(s)‖2ds+
2

ν

∫ r

r−1

|f(θ)|2dθ +
2C2

g

ν

∫ r

r−h−1

|uk(θ)|2dθ

)

× exp

[∫ r

r−1

(
27C4

2ν3
|uk(θ − ρ(θ))|2‖uk(θ − ρ(θ))‖2 +

2C2
g

λ1ν

)
dθ

]
for any r ≥ τ + 1.2

Using the first estimate in (19) by ρ1 proved above (which is valid also for
the Galerkin approximations), and twice the estimate (14) for ‖uk‖2L2(r−1,r;V ) and

‖uk(· − ρ(·))‖2L2(r−1,r;V ) (this last one of order ‖uk‖2L2(r−h−1,r;V ) by a change of
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variables), after some tedious computations (we omit the details for the sake of
brevity) we conclude that

‖uk(r)‖2 ≤
[
ρ1(t)

ν
(1 + Cg(h+ 2 + 2Cg(h+ 1)))+

∫ t

t−3h−2

(
‖f(s)‖2∗
ν2

+
2

ν
|f(s)|2

)
ds

]
× exp

[
27C4ρ1(t)

2ν4(1− ρ∗)

(
ρ1(t)(1+Cg(3h+ 2))+

1

ν

∫ t

t−4h−2

‖f(s)‖2∗ds
)

+
2C2

g

λ1ν

]

for all r ∈ [t− 3h− 1, t] and any k ∈ N.1

Since the convergence of the Galerkin approximations towards the solution u2

holds weakly-star in L∞(t− 3h− 1, t;V ) and u ∈ C([t− 3h− 1, t];V ) by Theorem3

2, taking the inferior limit when k goes to infinity above, we obtain the second4

estimate in (19).5

Going back to (20), integrating in [r − 1, r] we obtain

ν

2

∫ r

r−1

|Auk(s)|2ds ≤‖uk(r − 1)‖2 +
2

ν

∫ r

r−1

|f(s)|2ds+
2

ν

∫ r

r−1

|g(s, uks)|2ds

+
27C4

2ν3

∫ r

r−1

|uk(s− ρ(s))|2‖uk(s− ρ(s))‖2‖uk(s)‖2ds

≤ρ2(t)+
27C4

2ν3
ρ1(t)ρ2

2(t)+
2

ν

∫ t

t−2h−1

|f(s)|2ds+
2C2

g

ν
(h+ 1)ρ1(t),

for any r ∈ [t − 2h, t], where we have used (H4) and the two first estimates from6

(19) involving ρ1 and ρ2.7

Since the convergence of the Galerkin approximations towards the solution u8

holds weakly in L2(t− 2h, t;D(A)) by Theorem 2, taking the inferior limit when k9

goes to infinity above, we obtain the third estimate in (19).10

Finally, multiplying each equation in (6) by γ′jk(t) and summing from j = 1 till
k, after the Young inequality

|(uk)′(s)|2 +
ν

2

d

ds
‖uk(s)‖2 + b(uk(s− ρ(s)), uk(s), (uk)′(s))

=(f(s) + g(s, uks), (uk)′(s)) ≤ 2|f(s)|2 + 2|g(s, uks)|2 +
1

4
|(uk)′(s)|2 a.e. s > τ.

From (3) and the Young inequality once more,

|b(uk(s− ρ(s)), uk(s), (uk)′(s))|

≤1

4
|(uk)′(s)|2 + C2|uk(s− ρ(s))|‖uk(s− ρ(s))‖‖uk(s)‖|Auk(s)|.

Plugging this into the above estimate gives

|(uk)′(s)|2 + ν
d

ds
‖uk(s)‖2

≤4|f(s)|2+4|g(s, uks)|2+2C2|uk(s− ρ(s))|‖uk(s− ρ(s))‖‖uk(s)‖|Auk(s)| a.e. s > τ.
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In particular, integrating and combining (H4) with the previous estimates involving
{ρi}3i=1,∫ r

r−1

|(uk)′(s)|2ds ≤ν‖uk(r − 1)‖2 + 4

∫ r

r−1

|f(s)|2ds+ 4C2
g

∫ r

r−h−1

|uk(s)|2ds

+ 2C2

∫ r

r−1

|uk(s− ρ(s))|‖uk(s− ρ(s))‖‖uk(s)‖|Auk(s)|ds

≤νρ2(t) + 4

∫ t

t−2h−1

|f(s)|2ds+ 4C2
g (h+ 1)ρ1(t)

+ 2C2ρ
1/2
1 (t)ρ2(t)

(
2

ν
ρ3(t)

)1/2

for any r ∈ [t− 2h, t].1

Analogously to the previous arguments, following these computations one can2

check that the time derivates (uk)′ of the Galerkin approximations given in Theorem3

2 converge towards u′ weakly in L2(t − 2h, t;H). Taking the inferior limit when k4

goes to infinity above, we obtain the last estimate in (19).5

Now we may use the uniform estimates proved above to apply an energy method6

yielding the asymptotic compactness. The ideas are analogous to [6, Lemma 5.3]7

and [8, Lemma 4], but nevertheless the result here is not a verbatim copy of those.8

Actually, the presence of two delays make the arguments more involved. So we9

include the proof for the sake of clarity.10

Lemma 3. Assume that g : R×CH → (L2(Ω))2 and f ∈ L2
loc(R;H) satisfy (H1)–11

(H5) and (17) respectively. Then, for any t ∈ R, any D̂ ∈ DH,L
2
H

η (H × (L2
V ∩ L∞H ))12

and any sequences {τn} ⊂ (−∞, t] and {(uτn , φτn)} ⊂ H×(L2
V ∩L∞H ) with τn → −∞13

and (uτn , φτn) ∈ D(τn), the sequence {u(·; τn, uτn , φτn)} is relatively compact in14

C([t− h, t];V ) ∩ L2(t− h, t;D(A)).15

Proof. Fix t ∈ R, a family D̂ ∈ DH,L
2
H

η (H × (L2
V ∩ L∞H )), and sequences {τn} ⊂16

(−∞, t] and {(uτn , φτn)} ⊂ H × (L2
V ∩ L∞H ) as in the statement.17

Denote for short un(·) to u(·; τn, uτn , φτn). Firstly we will check the relative18

compactness of {un} in C([t− h, t];V ) and secondly in L2(t− h, t;D(A)).19

Indeed, thanks to Lemma 2, consider τ(D̂, t, h) < t−5h−2 such that the sequence20

{un : τn ≤ τ(D̂, t, h)} is bounded in L∞(t − 3h − 1, t;V ) ∩ L2(t − 2h − 1, t;D(A))21

with {(un)′} bounded in L2(t−2h−1, t;H). By using the Aubin-Lions compactness22

lemma there exists u ∈ L∞(t − 3h − 1, t;V ) ∩ L2(t − 2h − 1, t;D(A)) with u′ ∈23

L2(t− 2h− 1, t;H) such that a sequence (labeled the same) satisfies24 
un

∗
⇀ u weakly-star in L∞(t− 3h− 1, t;V ),

un ⇀ u weakly in L2(t− 2h− 1, t;D(A)),
(un)′ ⇀ u′ weakly in L2(t− 2h− 1, t;H),
un → u strongly in L2(t− 2h− 1, t;V ),

un(s) → u(s) strongly in V, a.e. s ∈ (t− 2h− 1, t).

(22)

From these convergences we deduce that u ∈ C([t−2h−1, t];V ) is a strong solution25

to (1) in (t − h − 1, t) with suitable initial data. Boundedness of {un} in L∞(t −26

2h− 1, t;V ) jointly with equi-continuity on [t− 2h− 1, t] with values in H, leads by27

the Ascoli-Arzelà theorem (up to a subsequence, labeled the same) to28

un → u strongly in C([t− 2h− 1, t];H), (23)
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which also helps to identify the weak-limit in next property1

un(sn) ⇀ u(s∗) weakly in V for any {sn} ⊂ [t− 2h− 1, t] with sn → s∗. (24)

Now we can prove that2

un → u strongly in C([t− h, t];V ). (25)

Indeed, if (25) is false, there exists ε > 0, t∗ ∈ [t− h, t] and sequences (labeled the3

same) {un} and {tn} ⊂ [t− h, t] with limn tn = t∗ such that4

‖un(tn)− u(t∗)‖ ≥ ε ∀n ≥ 1. (26)

However, from (24)5

‖u(t∗)‖ ≤ lim inf
n→∞

‖un(tn)‖. (27)

The second energy equality (5) for w = un or w = u reads

1

2

d

dθ
‖w(θ)‖2 + ν|Aw(θ)|2 + b(w(θ − ρ(θ)), w(θ), Aw(θ))

=(f(θ) + g(θ, wθ), Aw(θ)) a.e. θ > t− h− 1.

Combining the Young inequality for the RHS and for the trilinear term b (after (3))

|b(w(θ − ρ(θ)), w(θ), Aw(θ))|

≤27C4

4ν3
|w(θ − ρ(θ))|2‖w(θ − ρ(θ))‖2‖w(θ)‖2 +

ν

4
|Aw(θ)|2,

we conclude

d

dθ
‖w(θ)‖2 + ν|Aw(θ)|2

≤27C4

2ν3
|w(θ − ρ(θ))|2‖w(θ − ρ(θ))‖2‖w(θ)‖2 +

4

ν

(
|f(θ)|2 + |g(θ, wθ)|2

)
a.e. θ > t− h− 1. Integrating, we have for any w = un or w = u

‖w(s2)‖2 + ν

∫ s2

s1

|Aw(r)|2dr

≤‖w(s1)‖2 +
27C4

2ν3

∫ s2

s1

|w(r − ρ(r))|2‖w(r − ρ(r))‖2‖w(r)‖2dr

+
4

ν

∫ s2

s1

(
|f(r)|2 + |g(r, wr)|2

)
dr ∀t− h− 1 ≤ s1 ≤ s2 ≤ t. (28)

Neglecting the integral term in the LHS, we may consider the functions

Jn(s) =‖un(s)‖2 − 27C4

2ν3

∫ s

t−h−1

|un(r − ρ(r))|2‖un(r − ρ(r))‖2‖un(r)‖2dr

− 4

ν

∫ s

t−h−1

(
|f(r)|2 + |g(r, unr )|2

)
dr

and

J(s) =‖u(s)‖2 − 27C4

2ν3

∫ s

t−h−1

|u(r − ρ(r))|2‖u(r − ρ(r))‖2‖u(r)‖2dr

− 4

ν

∫ s

t−h−1

(
|f(r)|2 + |g(r, ur)|2

)
dr.
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These functions are continuous, and from the corresponding inequalities above, they
are non-increasing. Moreover, from (22) and (H4),

Jn(s)→ J(s) a.e. s ∈ (t− h− 1, t).

It is now a standard matter to deduce (e.g., cf. [4, Lemma 2]) that

lim sup
n→∞

Jn(tn) ≤ J(t∗),

whence, after (22) and (H4) again,

lim sup
n→∞

‖un(tn)‖ ≤ ‖u(t∗)‖,

which combined with (27) and (24) gives that un(tn) → u(t∗) strongly in V, con-1

tradicting (26). Therefore, (25) is proved.2

Going back to the inequality (28), after the convergences proved of un towards
u above, observing the integral term in the LHS, we deduce that un → u in norm
in L2(t− h, t;D(A)), which jointly with (22) means that

un → u strongly in L2(t− h, t;D(A)).

3

Observe that in particular the above gives immediately the following result.4

Corollary 4. Assume that g : R×CH → (L2(Ω))2 and f ∈ L2
loc(R;H) satisfy (H1)–5

(H5) and (17) respectively. Then, (V × (L2
D(A) ∩ L

∞
V ), {S(t, τ)}t≥τ ) and (L2

D(A) ∩6

CV , {U(t, τ)}t≥τ ) are pullback asymptotically compact in DH,L
2
H

η (V ×(L2
D(A)∩L

∞
V ))7

and DCHη (L2
D(A) ∩ CV ) respectively.8

5. Existence of attractors and their relationships. Before establishing the9

main result of the paper about the existence of attractors, it is useful to give an-10

other one concerning the relation of tempered families in the two universes we are11

considering. Namely, just allowing the solutions to (1) evolve for an elapsed time12

bigger than the delay time h, the regularization effect makes, roughly speaking,13

that a family tempered in one universe is mapped into a tempered family in a more14

regular universe. This type of result is the analogous to [4, Lemma 3], and it is15

helpful in order to establish comparison between attractors.16

Lemma 4. Under the assumptions of Corollary 3, for any D̂ = {D(τ) : τ ∈ R} ∈17

DH,L
2
H

η (H × (L2
V ∩ L∞H )) and any r > h, the family D̂(r) = {D(r)(τ) : τ ∈ R}18

where D(r)(τ) = {uτ+r(·; τ, uτ , φ) : (uτ , φ) ∈ D(τ)}, for any τ ∈ R, belongs to19

DCH
η (L2

D(A) ∩ CV ).20

Proof. The inclusion D(r)(τ) ⊂ L2
D(A)∩CV follows from Theorem 2. The tempered

character of any solution uτ+r in CH for any τ ∈ R and (uτ , φ) ∈ D(τ) can be
deduced from estimate (13) and assumption (17) for f. Indeed,

|u(τ + s)|2 ≤ e−ηs(|uτ |2 + Cg‖φ‖2L2
H

) + β−1e−η(τ+s)

∫ τ+s

τ

eηθ‖f(θ)‖2∗dθ ∀s ≥ 0.
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Therefore,

|uτ+r|2CH = sup
s∈[r−h,r]

|u(τ + s)|2

≤ e−η(r−h)(|uτ |2 + Cg‖φ‖2L2
H

) + β−1e−η(τ+r−h)

∫ τ+r

τ

eηθ‖f(θ)‖2∗dθ,

whence limτ→−∞ eητ supuτ+r∈D(r)(τ) |uτ+r|2CH = 0.1

Now we may establish our main result.2

Theorem 3. Assume that g : R × CH → (L2(Ω))2 and f ∈ L2
loc(R;H) satisfy3

(H1)–(H5) and (17) respectively. Then there exist the minimal pullback attractors4

{ADF (V×(L2
D(A)

∩L∞
V ))(s)}s∈R and {A

D
H,L2

H
η (V×(L2

D(A)
∩L∞

V ))
(s)}s∈R for (V ×(L2

D(A)∩5

L∞V ), {S(t, τ)}t≥τ ) and {ADF (L2
D(A)

∩CV )(s)}s∈R and {ADCHη (L2
D(A)

∩CV )
(s)}s∈R for6

(L2
D(A) ∩ CV , {U(t, τ)}t≥τ ).7

The following relations hold for any s ∈ R

ADF (V×(L2
D(A)

∩L∞
V ))(s) ⊂ADH,L2

H
η (V×(L2

D(A)
∩L∞

V ))
(s) ⊂ D0(s), (29)

ADF (L2
D(A)

∩CV )(s) ⊂ADCHη (L2
D(A)

∩CV )
(s) ⊂ D1(s), (30)

j̃(ADF (L2
D(A)

∩CV )(s)) ⊂ADF (V×(L2
D(A)

∩L∞
V ))(s), (31)

j̃(ADCHη (L2
D(A)

∩CV )
(s)) =A

D
H,L2

H
η (V×(L2

D(A)
∩L∞

V ))
(s), (32)

where j̃ : L2
D(A) ∩ CV → V × (L2

D(A) ∩ CV ) is defined by j̃(φ) = (φ(0), φ).8

Finally, if f satisfies9

sup
s≤0

∫ s

s−1

|f(θ)|2dθ <∞, (33)

then (31) becomes an equality, ADF (V×(L2
D(A)

∩L∞
V )) = A

D
H,L2

H
η (V×(L2

D(A)
∩L∞

V ))
and10

ADF (L2
D(A)

∩CV ) = ADCHη (L2
D(A)

∩CV )
.11

Proof. The abstract result ensuring existence of pullback attractors for the tempered12

universes (e.g., cf. [5, Theorem 3.11] or [4, Theorem 3]) can be applied for both13

(V × (L2
D(A) ∩ L

∞
V ), {S(t, τ)}t≥τ ) and (L2

D(A) ∩ CV , {U(t, τ)}t≥τ ) since they are14

continuous processes (cf. Corollary 2), with absorbing families (cf. Remark 4) and15

fulfilling the pullback asymptotic compact property (cf. Corollary 4) w.r.t. the16

universes DH,L
2
H

η (V × (L2
D(A) ∩ L

∞
V )) and DCHη (L2

D(A) ∩ CV ) respectively.17

The existence of pullback attractors for the case of universes of fixed bounded18

sets is simpler (e.g., cf. [14] or [4, Corollary 1]) since they are contained in the19

tempered universes. This also implies relations (29) and (30).20

Relations (31) and (32) via j̃ follows by the characterization of minimal pullback21

attractors and Lemma 4.22

Last statement follows again from [4, Corollary 1] since absorbing families in23

these phase-spaces are uniformly bounded in time (see expressions of ρ2 and ρ3 in24

Lemma 2).25

Using comparison results for attractors (e.g., cf. [5, Theorem 3.15]) and relations26

among tempered families of different universes after a time-shift (thanks to Lemma27
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4), it is possible to relate the attractors ADF (H×(L2
V ∩L∞

H )) and A
D
H,L2

H
η (H×(L2

V ∩L∞
H ))

1

for (H × (L2
V ∩ L∞H ), {S(t, τ)}t≥τ ) and ADF (L2

V ∩CH) and ADCHη (L2
V ∩CH)

for (L2
V ∩2

CH), {U(t, τ)}t≥τ ) obtained in [4, Theorems 4 and 5] with the ones obtained here3

in Theorem 3. Arguments are analogous to the above proof so it is omitted.4

Theorem 4. Under the assumptions of Theorem 3, the attractors cited previously
satisfy the following relations

ADF (V×(L2
D(A)

∩L∞
V ))(s) ⊂ ADF (H×(L2

V ∩L∞
H ))(s), (34)

ADF (L2
D(A)

∩CV )(s) ⊂ ADF (L2
V ∩CH)(s), (35)

A
D
H,L2

H
η (H×(L2

V ∩L∞
H ))

(s) = A
D
H,L2

H
η (V×(L2

D(A)
∩L∞

V ))
(s),

ADCHη (L2
V ∩CH)

(s) = ADCHη (L2
D(A)

∩CV )
(s)

for any s ∈ R.5

Moreover, if f satisfies (33), then (34) and (35) are in fact equalities.6
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