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Abstract. In this paper we strengthen some results on the existence and

properties of pullback attractors for a 2D Navier-Stokes model with finite delay
formulated in [Caraballo and Real, J. Differential Equations 205 (2004), 271–

297]. Actually, we prove that under suitable assumptions, pullback attractors

not only of fixed bounded sets but also of a set of tempered universes do
exist. Moreover, thanks to regularity results, the attraction from different

phase spaces also happens in C([−h, 0]; V ). Finally, from comparison results

of attractors, and under an additional hypothesis, we establish that all these
families of attractors are in fact the same object.

1. Introduction and statement of the problem. Let Ω ⊂ R2 be an open
bounded set with smooth enough boundary ∂Ω, and consider an arbitrary initial
time τ ∈ R, and the following functional Navier-Stokes problem:

∂u

∂t
− ν∆u+ (u · ∇)u+∇p = f(t) + g(t, ut) in Ω× (τ,∞),

div u = 0 in Ω× (τ,∞),

u = 0 on ∂Ω× (τ,∞),

u(x, τ) = uτ (x), x ∈ Ω,

u(x, τ + s) = φ(x, s), x ∈ Ω, s ∈ (−h, 0),

(1)

where ν > 0 is the kinematic viscosity, u = (u1, u2) is the velocity field of the fluid,
p is the pressure, f is a non-delayed external force field, g is another external force
with some hereditary characteristics, and uτ and φ(x, s − τ) are the initial data
in τ and (τ − h, τ) respectively, where h > 0 is the time of memory effect. For
each t ≥ τ , we denote by ut the function defined a.e. on (−h, 0) by the relation
ut(s) = u(t+ s), a.e. s ∈ (−h, 0).
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The importance of physical models for fluid mechanic problems including delay
terms is related, for instance, to real applications where devices to control proper-
ties of fluids (temperature, velocity, etc.) are inserted in domains and make a local
influence on the behaviour of the system (e.g., cf. [13] for a wind-tunnel model).

The study of Navier-Stokes models including delay terms –existence, unique-
ness, stationary solutions, exponential decay, and other asymptotic properties such
as the existence of attractors– was initiated in the references [3, 4, 5], and after
that, many different questions, as dealing with unbounded domains, and models
(for instance in three dimensions for modified terms) have been addressed (e.g., cf.
[10, 17, 21, 19, 14, 20, 11, 15, 16] among others).

In the recent paper [9], we have treated a relaxation on the assumptions for the
delay operator involved, removing conditions related to the control of the L2 norm
of the delay terms (see assumptions (IV) and (V) below). Although this implies to
restrict the phase space to continuous functions instead of square integrable in time,
the delay functions driving the delayed time within this theory can be taken just
measurable, without any additional assumption as continuity nor C1 with bounded
derivative, as usual in the literature.

Moreover, in [9] we were also able to establish attraction in a higher norm
(namely, H1 instead of L2) making a sharp use of regularization of the equations in
dimension two and by energy methods. Relationships among attractors in different
metrics was successfully carried out there, too.

Our goal in this paper is to keep all usual conditions for the delay operator (in-
cluding (IV) and (V)) and to compare both kind of attractors, for both possibilities
of phase spaces (continuous in time, or just square integrable in time). Observe
that in the autonomous framework this issue would be almost immediate since
one inclusion is clear by continuous embedding, and the other is obtained after an
elapsed time as long as the memory effect. However, in the non-autonomous case
(that we are dealing with) this is not the case at all. Using the theory of attrac-
tion for universes (cf. [1, 2, 18]) we deal with different families and under different
metrics. Namely, we consider universes of fixed (in time) bounded sets and also
time-dependent families given by a tempered condition when time goes to −∞.

Moreover, we also improve some results previously obtained in the literature
(cf. [5]) since we can deal with the phase space V × L2(−h, 0;V ) and not only
H × L2(−h, 0;H). Finally, from comparison results of attractors and under an ad-
ditional assumption, we establish that all these families of attractors are in fact the
same object.

The structure of the paper is the following. We continue this section with the
abstract setting of the problem, general definitions and some well-known results
on existence of weak and strong solutions and regularity properties. In Section
2 we recall the basic theory of pullback attractors for non-autonomous dynamical
systems within the framework of universes, and comparison results, when different
metrics are involved, are also given. Section 3 is devoted to establish all possible
attractors for different phase-spaces but taking into account the L2 norm in space.
Our main results, established in the higher norm H1 (in space), are given in Section
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4. In these two last sections, energy methods (introduced in this context by Rosa
in [23]) are used to prove asymptotic compactness in the respective universes. As
said before, relationships among all these objects are obtained.

To set our problem in the abstract framework, we consider the following usual
function spaces:

V =
{
u ∈ (C∞0 (Ω))2 : div u = 0

}
,

H = the closure of V in (L2(Ω))2 with the norm | · |, and inner product (·, ·), where
for u, v ∈ (L2(Ω))2,

(u, v) =
2∑
j=1

∫
Ω

uj(x)vj(x) dx,

V = the closure of V in (H1
0 (Ω))2 with the norm ‖·‖ associated to the inner product

((·, ·)), where for u, v ∈ (H1
0 (Ω))2,

((u, v)) =
2∑

i,j=1

∫
Ω

∂uj
∂xi

∂vj
∂xi

dx.

We will use ‖ · ‖∗ for the norm in V ′ and 〈·, ·〉 for the duality between V ′ and
V . We consider every element h ∈ H as an element of V ′, given by the equality
〈h, v〉 = (h, v) for all v ∈ V . It follows that V ⊂ H ⊂ V ′, where the injections are
dense and continuous, and, in fact, compact.

Now, we define the operator A : V → V ′ as

〈Au, v〉 = ((u, v)) ∀u, v ∈ V.
Let us denote D(A) = {u ∈ V : Au ∈ H}. By the regularity of ∂Ω, one has that
D(A) = (H2(Ω))2 ∩ V , and Au = −P∆u for all u ∈ D(A) is the Stokes operator
(P is the ortho-projector from (L2(Ω))2 onto H). On D(A) we consider the norm
| · |D(A) defined by |u|D(A) = |Au|. Observe that on D(A) the norms ‖·‖(H2(Ω))2 and
| · |D(A) are equivalent (see [6] or [25]), and D(A) is compactly and densely injected
in V .

Let us define

b(u, v, w) =
2∑

i,j=1

∫
Ω

ui
∂vj
∂xi

wj dx,

for every functions u, v, w : Ω→ R2 for which the right-hand side is well defined.
In particular, b has sense for all u, v, w ∈ V , and is a continuous trilinear form

on V × V × V .
Some useful properties concerning b that we will use in the next sections are the

following (see [22] or [24]): b(u, v, w) = −b(u,w, v) for all u, v, w ∈ V , which also
implies that b(u, v, v) = 0 for all u, v ∈ V . Moreover, there exists a constant C1 > 0,
only dependent on Ω, such that (recall that we are in dimension two)

|b(u, v, w)| ≤ C1|u|1/2|Au|1/2‖v‖|w| ∀u ∈ D(A), v ∈ V, w ∈ H. (2)

Now, we establish some suitable spaces in order to deal with the delay term, and
some appropriate assumptions on the term in (1) containing the delay.

Let us denote CH = C([−h, 0];H), with the norm |ϕ|CH = maxs∈[−h,0] |ϕ(s)|,
and L2

X = L2(−h, 0;X) for X = H, V . On the delay operator from (1), we
consider that is well defined as g : R×CH → (L2(Ω))2, and it satisfies the following
assumptions:
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(I) for all ξ ∈ CH , the function R 3 t 7→ g(t, ξ) ∈ (L2(Ω))2 is measurable,
(II) g(t, 0) = 0, for all t ∈ R,

(III) there exists Lg > 0 such that for all t ∈ R, and for all ξ, η ∈ CH ,

|g(t, ξ)− g(t, η)| ≤ Lg|ξ − η|CH ,

(IV) there exists Cg > 0 such that for all τ ≤ t, and for all u, v ∈ C([τ − h, t];H),∫ t

τ

|g(s, us)− g(s, vs)|2 ds ≤ C2
g

∫ t

τ−h
|u(s)− v(s)|2 ds.

Examples of fixed, variable, and distributed delay operators can be found, for in-
stance, in [3, Section 3], [5, Sections 3.5 and 3.6], and [10, Section 3], and we omit
them here just for the sake of brevity.

Observe that (I) − (III) imply that given T > τ and u ∈ C([τ − h, T ];H), the
function gu : [τ, T ] → (L2(Ω))2 defined by gu(t) = g(t, ut) for all t ∈ [τ, T ], is
measurable and, in fact, belongs to L∞(τ, T ; (L2(Ω))2). Then, thanks to (IV), the
mapping

G : u ∈ C([τ − h, T ];H)→ gu ∈ L2(τ, T ; (L2(Ω))2)

has a unique extension to a mapping G̃ which is uniformly continuous from L2(τ −
h, T ;H) into L2(τ, T ; (L2(Ω))2). From now on, we will denote g(t, ut) = G̃(u)(t)
for each u ∈ L2(τ − h, T ;H), and thus property (IV) will also hold for all u,
v ∈ L2(τ − h, T ;H).

Assume that uτ ∈ H, φ ∈ L2
H , and f ∈ L2

loc(R;V ′).

Definition 1. A weak solution of (1) is a function u that belongs to L2(τ−h, T ;H)
∩ L2(τ, T ;V ) ∩ L∞(τ, T ;H) for all T > τ , with u(τ) = uτ and u(t) = φ(t− τ) a.e.
t ∈ (τ − h, τ), and such that for all v ∈ V ,

d

dt
(u(t), v) + ν〈Au(t), v〉+ b(u(t), u(t), v) = 〈f(t), v〉+ (g(t, ut), v), (3)

where the equation must be understood in the sense of D′(τ,∞).

Remark 1. If u is a weak solution of (1), then from (3) we deduce that for any
T > τ , one has u′ ∈ L2(τ, T ;V ′), and so u ∈ C([τ,∞);H), whence the initial datum
u(τ) = uτ has full sense. Moreover, in this case the following energy equality holds:

|u(t)|2+2ν
∫ t

s

‖u(r)‖2dr= |u(s)|2+2
∫ t

s

[
〈f(r), u(r)〉+(g(r, ur), u(r))

]
dr ∀ τ ≤ s ≤ t.

A notion of more regular solution is also suitable for problem (1).

Definition 2. A strong solution of (1) is a weak solution u of (1) such that u ∈
L2(τ, T ;D(A)) ∩ L∞(τ, T ;V ) for all T > τ .

Remark 2. If f ∈ L2
loc(R; (L2(Ω))2) and u is a strong solution of (1), then u′ ∈

L2(τ, T ;H) for all T > τ , and so u ∈ C([τ,∞);V ). In this case the following energy
equality holds:

‖u(t)‖2 + 2ν
∫ t

s

|Au(r)|2 dr + 2
∫ t

s

b(u(r), u(r), Au(r)) dr

= ‖u(s)‖2 + 2
∫ t

s

(f(r) + g(r, ur), Au(r)) dr ∀ τ ≤ s ≤ t. (4)
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Concerning the existence and uniqueness of weak and strong solutions for (1),
we have the following result which can be proved similarly as [3, Theorem 2.1] or
[4, Theorem 2.5] (see also [10, Theorem 2.3] for a more general case).

Theorem 1. Let us consider uτ ∈ H, φ ∈ L2
H , f ∈ L2

loc(R;V ′), and g : R×CH →
(L2(Ω))2 satisfying (I)–(IV). Then, for each τ ∈ R, there exists a unique weak
solution u = u(·; τ, uτ , φ) of (1).

Moreover, if f ∈ L2
loc(R; (L2(Ω))2), then

(a) u ∈ C([τ + ε, T ];V ) ∩ L2(τ + ε, T ;D(A)) for all T > τ + ε > τ .
(b) If uτ ∈ V , u is in fact a strong solution of (1).

Before establishing the original results about the regularity of pullback attractors,
we recall the main existence results studied in [5, 17, 19]. Firstly, in order to do
that, we remember briefly the abstract theory on pullback attractors in the next
section.

2. Abstract results on minimal pullback attractors. Now, we present a sum-
mary of some results from [8] about the existence of minimal pullback attractors
(see also [1, 2, 18]). In particular, we assume that the process U is closed (see
Definition 3 below).

Consider given a metric space (X, dX), and let us denote R2
d={(t, τ)∈R2 :τ≤ t}.

A process U on X is a mapping R2
d × X 3 (t, τ, x) 7→ U(t, τ)x ∈ X such that

U(τ, τ)x = x for any (τ, x) ∈ R × X, and U(t, r)(U(r, τ)x) = U(t, τ)x for any
τ ≤ r ≤ t and all x ∈ X.

Definition 3. Let U be a process on X.
(a) U is said to be continuous if for any pair τ ≤ t, the mapping U(t, τ) : X → X

is continuous.
(b) U is said to be closed if for any τ ≤ t, and any sequence {xn} ⊂ X, if

xn → x ∈ X and U(t, τ)xn → y ∈ X, then U(t, τ)x = y.

Remark 3. It is clear that every continuous process is closed.

Let us denote by P(X) the family of all nonempty subsets of X, and consider a
family of nonempty sets D̂0 = {D0(t) : t ∈ R} ⊂ P(X).

Definition 4. We say that a process U onX is pullback D̂0-asymptotically compact
if for any t ∈ R and any sequences {τn} ⊂ (−∞, t] and {xn} ⊂ X satisfying
τn → −∞ and xn ∈ D0(τn) for all n, the sequence {U(t, τn)xn} is relatively compact
in X.

Denote

Λ(D̂0, t) =
⋂
s≤t

⋃
τ≤s

U(t, τ)D0(τ)
X

∀ t ∈ R,

where {· · · }
X

is the closure in X.
Given two subsets of X, O1 and O2, we denote by distX(O1,O2) the Hausdorff

semi-distance in X between them, defined as

distX(O1,O2) = sup
x∈O1

inf
y∈O2

dX(x, y).

Let be given D a nonempty class of families parameterized in time D̂ = {D(t) :
t ∈ R} ⊂ P(X). The class D will be called a universe in P(X).
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Definition 5. A process U on X is said to be pullback D-asymptotically compact
if it is pullback D̂-asymptotically compact for any D̂ ∈ D.

It is said that D̂0 = {D0(t) : t ∈ R} ⊂ P(X) is pullback D-absorbing for the
process U on X if for any t ∈ R and any D̂ ∈ D, there exists a τ0(t, D̂) ≤ t such
that

U(t, τ)D(τ) ⊂ D0(t) ∀ τ ≤ τ0(t, D̂).

With the above definitions, we may establish the main result of this section (cf.
[8, Theorem 3.11]).

Theorem 2. Consider a closed process U : R2
d ×X → X, a universe D in P(X),

and a family D̂0 = {D0(t) : t ∈ R} ⊂ P(X) which is pullback D-absorbing for U ,
and assume also that U is pullback D̂0-asymptotically compact.

Then, the family AD = {AD(t) : t ∈ R} defined by AD(t) =
⋃
D̂∈D Λ(D̂, t)

X

, has
the following properties:

(a) for any t ∈ R, the set AD(t) is a nonempty compact subset of X, and AD(t) ⊂
Λ(D̂0, t),

(b) AD is pullback D-attracting, i.e., limτ→−∞ distX(U(t, τ)D(τ),AD(t)) = 0 for
all D̂ ∈ D, and any t ∈ R,

(c) AD is invariant, i.e., U(t, τ)AD(τ) = AD(t) for all (t, τ) ∈ R2
d,

(d) if D̂0 ∈ D, then AD(t) = Λ(D̂0, t) ⊂ D0(t)
X

for all t ∈ R.

The family AD is minimal in the sense that if Ĉ = {C(t) : t ∈ R} ⊂ P(X) is a fam-
ily of closed sets such that for any D̂ = {D(t) : t ∈ R} ∈ D, lim

τ→−∞
distX(U(t, τ)D(τ),

C(t)) = 0, then AD(t) ⊂ C(t).

Remark 4. Under the assumptions of Theorem 2, the family AD is called the
minimal pullback D-attractor for the process U .

If AD ∈ D, then it is the unique family of closed subsets in D that satisfies
(b)–(c).

A sufficient condition for AD ∈ D is to have that D̂0 ∈ D, the set D0(t) is
closed for all t ∈ R, and the family D is inclusion-closed (i.e., if D̂ ∈ D, and
D̂′ = {D′(t) : t ∈ R} ⊂ P(X) with D′(t) ⊂ D(t) for all t, then D̂′ ∈ D).

We will denote by DF (X) the universe of fixed nonempty bounded subsets of X,
i.e., the class of all families D̂ of the form D̂ = {D(t) = D : t ∈ R} with D a fixed
nonempty bounded subset of X.

Now, it is easy to conclude the following result.

Corollary 1. Under the assumptions of Theorem 2, if the universe D contains the
universe DF (X), then both attractors, ADF (X) and AD, exist, and ADF (X)(t) ⊂
AD(t) for all t ∈ R.

Remark 5. It can be proved (see [18]) that, under the assumptions of the preceding
corollary, if for some T ∈ R, the set ∪t≤TD0(t) is a bounded subset of X, then
ADF (X)(t) = AD(t) for all t ≤ T .

Now, and since it will be useful below, we establish an abstract result (cf. [8,
Theorem 3.15]) that allows us to compare two attractors for a process under appro-
priate assumptions.
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Theorem 3. Let {(Xi, dXi)}i=1,2 be two metric spaces such that X1 ⊂ X2 with
continuous injection, and for i = 1, 2, let Di be a universe in P(Xi), with D1 ⊂ D2.
Assume that we have a map U that acts as a process in both cases, i.e., U : R2

d×Xi →
Xi for i = 1, 2 is a process.

For each t ∈ R, let us denote

Ai(t) =
⋃

D̂i∈Di

Λi(D̂i, t)
Xi

i = 1, 2,

where the subscript i in the symbol of the omega-limit set Λi is used to denote the
dependence of the respective topology.

Then, A1(t) ⊂ A2(t) for all t ∈ R.
Suppose moreover that the two following conditions are satisfied:

(i) A1(t) is a compact subset of X1 for all t ∈ R,
(ii) for any D̂2 ∈ D2 and any t ∈ R, there exist a family D̂1 ∈ D1 and a

t∗
D̂1
≤ t (both possibly depending on t and D̂2), such that U is pullback D̂1-

asymptotically compact, and for any s ≤ t∗
D̂1

there exists a τs ≤ s such that
U(s, τ)D2(τ) ⊂ D1(s) for all τ ≤ τs.

Then, under all the conditions above, A1(t) = A2(t) for all t ∈ R.

Remark 6. In the preceding theorem, if instead of assumption (ii) we consider the
following condition:
(ii’) for any D̂2 ∈ D2 and any sequence τn → −∞, there exist another family

D̂1 ∈ D1 and another sequence τ ′n → −∞ with τ ′n ≥ τn for all n, such that U
is pullback D̂1-asymptotically compact, and

U(τ ′n, τn)D2(τn) ⊂ D1(τ ′n) ∀n,
then, with a similar proof, one can obtain that the equality A1(t) = A2(t) also holds
for all t ∈ R.

Observe that a sufficient condition for (ii’) is that there exists T > 0 such that for
any D̂2 ∈ D2, there exists a D̂1 ∈ D1 satisfying that U is pullback D̂1-asymptotically
compact, and U(τ + T, τ)D2(τ) ⊂ D1(τ + T ) for all τ ∈ R.

3. Previous results on processes and pullback attractors in H. In this
section we recall some known results (cf. [5, 17, 19]) on the existence of minimal
pullback attractors in the H norm for suitable processes associated to problem (1).

In order to apply the theory of the above section, and following [5, 17, 19], we
may consider the Banach space CH , and the Hilbert space M2

H = H × L2
H with

associated norm

‖(uτ , φ)‖2M2
H

= |uτ |2 +
∫ 0

−h
|φ(s)|2 ds for (uτ , φ) ∈M2

H .

We can define two processes for problem (1).

Proposition 1. Assume that f ∈ L2
loc(R;V ′), and g : R×CH → (L2(Ω))2 satisfies

(I)–(IV). Then, the bi-parametric families of mappings U(t, τ) : CH → CH and
S(t, τ) : M2

H →M2
H given respectively by

U(t, τ)φ = ut(·; τ, φ(0), φ) for φ ∈ CH , τ ≤ t, (5)

and

S(t, τ)(uτ , φ) = (u(t; τ, uτ , φ), ut(·; τ, uτ , φ)) for (uτ , φ) ∈M2
H , τ ≤ t, (6)
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where u is the unique weak solution of (1), are well defined continuous processes on
CH and M2

H respectively.

Proof. The result follows from Theorem 1 above, and from [5, Theorem 9].

Now, in order to establish asymptotic estimates for the solutions of (1), we impose
a fifth assumption on g and f .

Denote by λ1 the first eigenvalue of the Stokes operator A.
(V) Assume that νλ1 > Cg, and that there exists a value η ∈ (0, 2(νλ1−Cg)) such

that for every u ∈ L2(τ − h, t;H),∫ t

τ

eηs|g(s, us)|2 ds ≤ C2
g

∫ t

τ−h
eηs|u(s)|2 ds for any τ ≤ t, and∫ 0

−∞
eηs‖f(s)‖2∗ ds < ∞.

Lemma 1. Suppose that f ∈ L2
loc(R;V ′), and that f and g : R × CH → (L2(Ω))2

satisfy (I)–(V). Then, for any (uτ , φ) ∈ M2
H , the following estimate holds for the

solution u to (1) for all t ≥ τ :

|u(t)|2 ≤ e−η(t−τ) max{1, Cg}‖(uτ , φ)‖2M2
H

+ β−1e−ηt
∫ t

τ

eηs‖f(s)‖2∗ ds, (7)

where
β = 2ν − (η + 2Cg)λ−1

1 . (8)

Proof. By the energy equality (see Remark 1), and Young’s inequality, we have
d

dt
|u(t)|2 + 2ν‖u(t)‖2

≤ β‖u(t)‖2 + β−1‖f(t)‖2∗ + Cg|u(t)|2 + C−1
g |g(t, ut)|2, a.e. t > τ.

Thus,
d

dt

(
eηt|u(t)|2

)
+ eηt

(
2ν − β − (η + Cg)λ−1

1

)
‖u(t)‖2

≤ eηtβ−1‖f(t)‖2∗ + eηtC−1
g |g(t, ut)|2, a.e. t > τ,

and therefore, integrating above and using property (V), we obtain

eηt|u(t)|2 +
(
2ν − β − (η + Cg)λ−1

1

) ∫ t

τ

eηs‖u(s)‖2 ds

≤ eητ |uτ |2 + β−1

∫ t

τ

eηs‖f(s)‖2∗ ds+ Cg

∫ t

τ−h
eηs|u(s)|2 ds

≤ eητ max{1, Cg}‖(uτ , φ)‖2M2
H

+ β−1

∫ t

τ

eηs‖f(s)‖2∗ ds+ Cg

∫ t

τ

eηs|u(s)|2 ds,

for all t ≥ τ , and from this last inequality and (8), in particular we deduce (7).

After the above result, it turns out appropriate the introduction of the following
tempered universes.

Definition 6. For any η > 0, we will denote by Dη(CH) the class of all families of
nonempty subsets D̂ = {D(t) : t ∈ R} ⊂ P(CH) such that

lim
τ→−∞

(
eητ sup

ϕ∈D(τ)

|ϕ|2CH

)
= 0.
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Analogously, we will denote by Dη(M2
H) the class of all families of nonempty subsets

D̂ = {D(t) : t ∈ R} ⊂ P(M2
H) such that

lim
τ→−∞

(
eητ sup

(w,ϕ)∈D(τ)

‖(w,ϕ)‖2M2
H

)
= 0.

Furthermore, accordingly to the notation introduced in the previous section,
DF (CH) and DF (M2

H) will denote the universes of fixed bounded sets in CH and
M2
H respectively.

Remark 7. (i) The choices of the above universes are right and convenient to
keep, in the sense that, on the one hand, M2

H is more general as phase space
for the initial data of problem (1). On the other hand, the regularity of
the solution to (1) (cf. Theorem 1) makes that, after an elapsed time h,
every solution is continuous with values on H. Indeed, as it was observed in
[5], in the case of the universes of fixed bounded sets, pullback attractors in
both spaces do exist, and they are intrinsically related through the canonical
embedding j : CH →M2

H defined by j(ϕ) = (ϕ(0), ϕ) (see Theorem 4 below).
(ii) The universes Dη(CH) and Dη(M2

H), which are inclusion-closed, contain re-
spectively the universes DF (CH) and DF (M2

H).

Now, we obtain pullback absorbing families for U : R2
d × CH → CH and S :

R2
d ×M2

H →M2
H .

Corollary 2. Under the assumptions of Lemma 1, the family D̂1,η = {D1,η(t) : t ∈
R} ⊂ P(CH) defined by D1,η(t) = BCH (0, rη(t)), the closed ball in CH of center
zero and radius rη(t), where

r2
η(t) = 1 + β−1e−η(t−h)

∫ t

−∞
eηs‖f(s)‖2∗ ds,

with β given by (8), is pullback Dη(CH)-absorbing for the process U on CH defined
by (5) (and therefore pullback DF (CH)-absorbing too), and D̂1,η belongs to Dη(CH).

Besides, the family D̂2,η = {D2,η(t) : t ∈ R} ⊂ P(M2
H) defined by D2,η(t) =

BM2
H

(0, Rη(t)), the closed ball in M2
H of center zero and radius Rη(t), with

R2
η(t) = 1 + β−1(1 + heηh)e−ηt

∫ t

−∞
eηs‖f(s)‖2∗ ds,

is pullback Dη(M2
H)-absorbing for the process S on M2

H given by (6) (and thus also
pullback DF (M2

H)-absorbing), and D̂2,η belongs to Dη(M2
H).

Since it will be useful in order to compare the pullback attractors defined in the
spaces CH and M2

H , we consider the bi-parametric family of mappings Ũ(t, τ) :
M2
H → L2

H defined as

Ũ(t, τ)(uτ , φ) = ut(·; τ, uτ , φ) for (uτ , φ) ∈M2
H , τ ≤ t.

Remark 8. Observe that Ũ(t, τ) maps M2
H into CH if t ≥ τ + h, and therefore we

can write

S(t, τ)(uτ , φ) = j(Ũ(t, τ)(uτ , φ)) for (uτ , φ) ∈M2
H , t ≥ τ + h,

where S(·, ·) is given by (6).
Moreover, it is clear that

U(t, τ)φ = Ũ(t, τ)j(φ) for φ ∈ CH , t ≥ τ,
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with U(·, ·) defined in (5).

Lemma 2. Under the assumptions of Lemma 1, for any D̂ ∈ Dη(M2
H) and any

r ≥ h, the family D̂(r) = {D(r)(τ) : τ ∈ R}, where D(r)(τ) = Ũ(τ + r, τ)D(τ) for
any τ ∈ R, belongs to Dη(CH).

Proof. From (7), we obtain

sup
ψ∈D(r)(τ)

(
eητ |ψ|2CH

)
≤ e−η(r−h) max{1, Cg} sup

(uτ ,φ)∈D(τ)

(
eητ‖(uτ , φ)‖2M2

H

)
+β−1e−η(r−h)

∫ τ+r

τ

eηs‖f(s)‖2∗ ds.

From this inequality and assumption (V), we deduce the result.

Now, we are able to establish the main result of this section.

Theorem 4. Assume that f ∈ L2
loc(R;V ′), and that f and g : R×CH → (L2(Ω))2

satisfy (I)–(V). Then, there exist the minimal pullback attractors {ADF (CH)(t)}t∈R,
{ADη(CH)(t)}t∈R, {ADF (M2

H)(t)}t∈R, and {ADη(M2
H)(t)}t∈R, in CH and M2

H respec-
tively, for the universes of fixed bounded sets and for those with tempered condition
given in Definition 6.

Besides, the following relations hold:

ADF (CH)(t) ⊂ ADη(CH)(t), and ADF (M2
H)(t) ⊂ ADη(M2

H)(t) ∀ t ∈ R, (9)

j(ADF (CH)(t)) ⊂ ADF (M2
H)(t) ∀ t ∈ R, and (10)

j(ADη(CH)(t)) = ADη(M2
H)(t) ∀ t ∈ R, (11)

where the map j is the canonical injection of CH into M2
H defined in Remark 7 (i).

Finally, if f also satisfies

sup
s≤0

(
e−ηs

∫ s

−∞
eηθ‖f(θ)‖2∗ dθ

)
<∞, (12)

then, the inclusions in (9) and (10) are in fact equalities.

Proof. For the existence of the four minimal pullback attractors see [5, Theorem
17, Remark 18], [17, Theorem 20], and [19, Theorem 4].

The relations in (9) follow from Remark 7 (ii) and Corollary 1, and the inclusion
in (10) can be proved analogously as in [19, Theorem 5].

Now, we analyze the equality (11). On the one hand, the inclusion j(ADη(CH)(t))
⊂ ADη(M2

H)(t) can be obtained again in a similar way as in [19, Theorem 5]. On

the other hand, from Remark 8 and Lemma 2, we have that for any D̂ ∈ Dη(M2
H)

and any τ < t− h,

distM2
H

(S(t, τ)D(τ), j(ADη(CH)(t)))

= distM2
H

(S(t, τ + h)(S(τ + h, τ)D(τ)), j(ADη(CH)(t)))

= distM2
H

(S(t, τ + h)(j(Ũ(τ + h, τ)D(τ))), j(ADη(CH)(t)))

= distM2
H

(j(U(t, τ + h)D(h)(τ)), j(ADη(CH)(t)))

≤ (1 + h)1/2distCH (U(t, τ + h)D(h)(τ),ADη(CH)(t)),

where in the last inequality we have used that j ∈ L(CH ,M2
H) with ‖j‖L(CH ,M2

H) ≤
(1 + h)1/2. Therefore, the inclusion ADη(M2

H)(t) ⊂ j(ADη(CH)(t)) follows since
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ADη(M2
H)(t) is the minimal closed set in M2

H that attracts any family D̂ ∈ Dη(M2
H)

in the pullback sense.
Finally, if moreover f satisfies (12), the coincidences of the pullback attractors in

(9) is a consequence of Remark 5, and the fact that (12) is equivalent to have that
supt≤T rη(t) and supt≤T Rη(t) are bounded for any T ∈ R, with rη(t) and Rη(t)
defined in Corollary 2. Now, from these identities and (11), the equality in (10)
follows.

Remark 9. Under the assumptions of Theorem 4, as a consequence of Remarks
4 and 7 (ii), and Corollary 2, we have that ADη(CH) and ADη(M2

H) belong to the
universes Dη(CH) and Dη(M2

H) respectively.
Actually, if in addition f satisfies (12), one can see that for each T ∈ R, the

sets {ADη(CH)(t) : t ≤ T} and {ADη(M2
H)(t) : t ≤ T} are bounded in CH and M2

H

respectively.

4. Regularity of the pullback attractors and V attraction. Now, we will
improve in a certain way the main result of the previous section, Theorem 4, in the
sense that we will establish the existence of minimal pullback attractors in the V
norm, using some new phase spaces which will be defined below. Moreover, we will
check that under suitable assumptions all these families of attractors are in fact the
same (here Theorem 3 will play an essential role).

For any h̃ ∈ [0, h], let us denote

C h̃,VH =
{
ϕ ∈ CH : ϕ|[−h̃,0] ∈ B([−h̃, 0];V )

}
,

where B([−h̃, 0];V ) is the space of bounded functions from [−h̃, 0] into V . The
space C h̃,VH is a Banach space with the norm

‖ϕ‖h̃,V = |ϕ|CH + sup
θ∈[−h̃,0]

‖ϕ(θ)‖.

Observe that the space CV = C([−h, 0];V ) is a Banach subspace of Ch,VH .

We also consider the Hilbert space M2
V = V × L2

V with associated norm

‖(uτ , φ)‖2M2
V

= ‖uτ‖2 +
∫ 0

−h
‖φ(s)‖2 ds for (uτ , φ) ∈M2

V .

We have the following result.

Proposition 2. Suppose that f ∈ L2
loc(R; (L2(Ω))2), and g : R × CH → (L2(Ω))2

satisfies (I)–(IV). Then, for any h̃ ∈ [0, h], the bi-parametric families of mappings
U(t, τ)|

Ch̃,VH
and S(t, τ)|M2

V
, with τ ≤ t, are well defined continuous processes on

C h̃,VH and M2
V respectively.

Proof. The fact that, for any h̃ ∈ [0, h] and τ ≤ t, U(t, τ)|
Ch̃,VH

and S(t, τ)|M2
V

are well defined processes follows from Theorem 1. The continuity can be proved
similarly as [9, Proposition 5.2], using property (IV) instead of (III).

We introduce the following universes in P(C h̃,VH ) and in P(M2
V ).
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Definition 7. For any η > 0 and h̃ ∈ [0, h], we will denote by Dh̃,Vη (CH) the class
of families D̂ = {D(t) : t ∈ R} ∈ Dη(CH) such that for any t ∈ R and for any
ϕ ∈ D(t), it holds that ϕ|[−h̃,0] ∈ B([−h̃, 0];V ).

Analogously, we will denote by Dh̃,VF (CH) the class of families D̂ = {D(t) = D :
t ∈ R} with D a fixed nonempty bounded subset of CH such that for any ϕ ∈ D, it
holds that ϕ|[−h̃,0] ∈ B([−h̃, 0];V ).

Finally, we will denote by DF (C h̃,VH ) the class of families D̂ = {D(t) = D : t ∈ R}
with D a fixed nonempty bounded subset of C h̃,VH .

Remark 10. The chain of inclusions for the universes in the above definition and
the universes in P(CH) introduced in Section 3, is the following:

DF (C h̃,VH ) ⊂ Dh̃,VF (CH) ⊂ Dh̃,Vη (CH) ⊂ Dη(CH),

and
DF (C h̃,VH ) ⊂ Dh̃,VF (CH) ⊂ DF (CH) ⊂ Dη(CH),

for all η > 0 and any h̃ ∈ [0, h].
It must also be pointed out that all the classes Dh̃,Vη (CH), with h̃ ∈ [0, h], are

inclusion-closed, which will be important (cf. Remark 4).
Finally, it is clear that if 0 ≤ h̃1 < h̃2 ≤ h, then

DF (C h̃2,V
H ) ⊂ DF (C h̃1,V

H ), Dh̃2,V
F (CH) ⊂ Dh̃1,V

F (CH), Dh̃2,V
η (CH) ⊂ Dh̃1,V

η (CH).

Definition 8. For any η > 0, we will denote by DVη (M2
H) the class of families

D̂ = {D(t) : t ∈ R} ∈ Dη(M2
H) such that for any t ∈ R and for any (w,ϕ) ∈ D(t),

it holds that (w,ϕ) ∈M2
V .

Moreover, we will denote by DF (M2
V ) the class of families D̂ = {D(t) = D : t ∈

R} with D a fixed nonempty bounded subset of M2
V .

Remark 11. In this case, the relations among the universes introduced above and
those in P(M2

H) defined in Section 3, are the following:

DF (M2
V ) ⊂ DVη (M2

H) ⊂ Dη(M2
H),

and
DF (M2

V ) ⊂ DF (M2
H) ⊂ Dη(M2

H),
for any η > 0.

Observe also that DVη (M2
H) is inclusion-closed.

Now, we establish the existence of pullback absorbing families for the processes
U : R2

d × C
h̃,V
H → C h̃,VH and S : R2

d ×M2
V →M2

V .

Proposition 3. Assume that f ∈ L2
loc(R; (L2(Ω))2), and that f and g : R×CH →

(L2(Ω))2 satisfy (I)–(V). Then, for any h̃ ∈ [0, h], the family D̂1,η,h̃ = {D1,η,h̃(t) :

t ∈ R} ⊂ P(C h̃,VH ), with

D1,η,h̃(t) = D1,η(t) ∩ C h̃,VH ,

where D1,η(t) is defined in Corollary 2, is a family of closed sets of C h̃,VH , which is

pullback Dh̃,Vη (CH)-absorbing for the process U on C h̃,VH given by (5), and D̂1,η,h̃

belongs to Dh̃,Vη (CH).
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Besides, the family D̂2,η,V = {D2,η,V (t) : t ∈ R} ⊂ P(M2
V ), where

D2,η,V (t) = D2,η(t) ∩M2
V ,

with D2,η(t) also given in Corollary 2, is a family of closed sets of M2
V , that is

pullback DVη (M2
H)-absorbing for the process S on M2

V defined by (6), and D̂2,η,V

belongs to DVη (M2
H).

Proof. It is a direct consequence of Corollary 2.

The following result can be obtained analogously as [9, Lemma 5.2] (see also
[7, 8] for close results).

Lemma 3. Under the assumptions of Proposition 3, for any t ∈ R and D̂ ∈
Dη(M2

H), there exist τ1(D̂, t, h) < t− 3h− 2 and functions {ρi}4i=1 depending on t

and h, such that for any τ ≤ τ1(D̂, t, h) and any (uτ , φ) ∈ D(τ), it holds

|u(r; τ, uτ , φ)|2 ≤ ρ1(t) ∀ r ∈ [t− 3h− 2, t],

‖u(r; τ, uτ , φ)‖2 ≤ ρ2(t) ∀ r ∈ [t− 2h− 1, t],

ν

∫ r

r−1

|Au(θ; τ, uτ , φ)|2 dθ ≤ ρ3(t) ∀ r ∈ [t− 2h, t],∫ r

r−1

|u′(θ; τ, uτ , φ)|2 dθ ≤ ρ4(t) ∀ r ∈ [t− 2h, t],

(13)

where

ρ1(t) =1 + β−1e−η(t−3h−2)

∫ t

−∞
eηs‖f(s)‖2∗ ds,

ρ2(t) =ν−1

((
1 + 2ν−1λ−1

1 L2
g + 4L2

g

)
ρ1(t) +

(
4 + 2ν−1λ−1

1

) ∫ t

t−2h−2

|f(θ)|2 dθ
)

× exp
{

2ν−1C(ν)ρ1(t)
[(

1+2ν−1λ−1
1 L2

g

)
ρ1(t)+2ν−1λ−1

1

∫ t

t−2h−2

|f(θ)|2dθ
]}
,

ρ3(t) =ρ2(t) + 4ν−1

∫ t

t−2h−1

|f(θ)|2 dθ + 4L2
gν
−1ρ1(t) + 2C(ν)ρ1(t)ρ2

2(t),

ρ4(t) =νρ2(t) + 4
∫ t

t−2h−1

|f(θ)|2 dθ + 4L2
gρ1(t) + 2C2

1ν
−1ρ2(t)ρ3(t),

with β given by (8), and
C(ν) = 27C4

1 (4ν3)−1. (14)

Remark 12. Under the assumptions of Lemma 3, limt→−∞ eηtρ1(t) = 0.

Now, we apply an energy method that relies on the continuity of the solutions
and some non-increasing functions (e.g., cf. [9, Lemma 5.3] for a similar proof)
in order to obtain the pullback asymptotic compactness in C h̃,VH and M2

V for the
universes Dh̃,Vη (CH) and DVη (M2

H) respectively.

Lemma 4. Under the assumptions of Proposition 3, for any t ∈ R, any D̂ ∈
Dη(M2

H), and any sequences {τn} ⊂ (−∞, t] and {(uτn , φn)} ⊂M2
H such that τn →

−∞ and (uτn , φn) ∈ D(τn) for all n, the sequence {u(·; τn, uτn , φn)} is relatively
compact in C([t− h, t];V ).
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Proof. Let us fix t ∈ R, a family D̂ ∈ Dη(M2
H), and sequences {τn} ⊂ (−∞, t]

with τn → −∞, and {(uτn , φn)} with (uτn , φn) ∈ D(τn) for all n. Denote for short
un(·) = u(·; τn, uτn , φn).

From Lemma 3, we have that there exists a τ1(D̂, t, h) < t − 3h − 2 such that
the subsequence {un : τn ≤ τ1(D̂, t, h)} ⊂ {un} is bounded in L∞(t− 2h− 1, t;V )∩
L2(t−2h−1, t;D(A)) with {(un)′} also bounded in L2(t−2h−1, t;H). Therefore,
using in particular the Aubin-Lions compactness lemma (e.g., cf. [12]), there exists a
function u ∈ L∞(t−2h−1, t;V )∩L2(t−2h−1, t;D(A)) with u′ ∈ L2(t−2h−1, t;H)
such that, for a subsequence which we relabel the same, the following convergences
hold: 

un
∗
⇀ u weakly-star in L∞(t− 2h− 1, t;V ),

un ⇀ u weakly in L2(t− 2h− 1, t;D(A)),
(un)′ ⇀ u′ weakly in L2(t− 2h− 1, t;H),
un → u strongly in L2(t− 2h− 1, t;V ),
un(s)→ u(s) strongly in V, a.e. s ∈ (t− 2h− 1, t).

(15)

Observe that u ∈ C([t − 2h − 1, t];V ) satisfies, thanks to (15), the equation (3) in
the interval (t− h− 1, t).

Moreover, from (15) we can also deduce that {un} is equi-continuous on [t −
2h− 1, t] with values in H. Thus, since {un} is bounded in C([t− 2h− 1, t];V ) and
the injection of V into H is compact, by the Ascoli-Arzelà theorem, we obtain that
(once more, up to a subsequence)

un → u strongly in C([t− 2h− 1, t];H). (16)

Indeed, again from the boundedness of {un} in C([t − 2h − 1, t];V ), one has that
for any sequence {sn} ⊂ [t− 2h− 1, t] with sn → s∗, it holds that

un(sn) ⇀ u(s∗) weakly in V, (17)

where we have used (16) to identify the weak limit.
Our goal now is to show that

un → u strongly in C([t− h, t];V ), (18)

which in particular will imply the relative compactness.
If it were not true, there would exist ε > 0, a value t∗ ∈ [t−h, t], and subsequences

(relabelled the same) {un} and {tn} ⊂ [t− h, t], with limn→∞ tn = t∗, such that

‖un(tn)− u(t∗)‖ ≥ ε ∀n ≥ 1. (19)

Recall that by (17) we already have that

‖u(t∗)‖ ≤ lim inf
n→∞

‖un(tn)‖. (20)

On the other hand, applying the energy equality (4) to w = un or w = u, we obtain

1
2
d

dθ
‖w(θ)‖2 + ν|Aw(θ)|2 + b(w(θ), w(θ), Aw(θ))

= (f(θ) + g(θ, wθ), Aw(θ))

≤ 2
ν
|f(θ)|2 +

2L2
g

ν
|wθ|2CH +

ν

4
|Aw(θ)|2, a.e. θ > t− h− 1,

where we have used Young’s inequality and the assumptions (II) and (III) of g.
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Observing that the trilinear term b can be estimated by (2) as follows

|b(w(θ), w(θ), Aw(θ))| ≤ C1|w(θ)|1/2‖w(θ)‖|Aw(θ)|3/2

≤ C(ν)|w(θ)|2‖w(θ)‖4 +
ν

4
|Aw(θ)|2,

with C(ν) given in (14), we deduce from above that

d

dθ
‖w(θ)‖2 + ν|Aw(θ)|2

≤ 2C(ν)|w(θ)|2‖w(θ)‖4 +
4
ν
|f(θ)|2 +

4L2
g

ν
|wθ|2CH , a.e. θ > t− h− 1.

Therefore, we have that for all t− h− 1 ≤ s1 ≤ s2 ≤ t,

‖un(s2)‖2 + ν

∫ s2

s1

|Aun(r)|2 dr ≤ ‖un(s1)‖2 + 2C(ν)

∫ s2

s1

|un(r)|2‖un(r)‖4 dr

+
4
ν

∫ s2

s1

|f(r)|2 dr +
4L2

g

ν

∫ s2

s1

|unr |2CH dr,

and

‖u(s2)‖2 + ν

∫ s2

s1

|Au(r)|2 dr ≤ ‖u(s1)‖2 + 2C(ν)

∫ s2

s1

|u(r)|2‖u(r)‖4 dr

+
4
ν

∫ s2

s1

|f(r)|2 dr +
4L2

g

ν

∫ s2

s1

|ur|2CH dr.

Now, consider the functions Jn, J : [t− h− 1, t]→ R defined by

Jn(s) = ‖un(s)‖2 − 2C(ν)

∫ s

t−h−1

|un(r)|2‖un(r)‖4 dr − 4
ν

∫ s

t−h−1

|f(r)|2 dr

−
4L2

g

ν

∫ s

t−h−1

|unr |2CH dr,

J(s) = ‖u(s)‖2 − 2C(ν)

∫ s

t−h−1

|u(r)|2‖u(r)‖4 dr − 4
ν

∫ s

t−h−1

|f(r)|2 dr

−
4L2

g

ν

∫ s

t−h−1

|ur|2CH dr.

From the regularity of u and all un, it is clear that these functions are continuous,
and from the corresponding inequalities above, both Jn and J are non-increasing.
Actually, by (15) and (16),

Jn(s)→ J(s) a.e. s ∈ (t− h− 1, t).

Hence, there exists a sequence {t̃k} ⊂ (t−h− 1, t∗) satisfying that limk→∞ t̃k = t∗,
and

lim
n→∞

Jn(t̃k) = J(t̃k) ∀ k.

Fix an arbitrary value δ > 0. Due to the continuity of J , there exists kδ such that

|J(t̃k)− J(t∗)| < δ/2 ∀ k ≥ kδ.

Now, let us take n(kδ) such that for all n ≥ n(kδ) it holds

tn ≥ t̃kδ and |Jn(t̃kδ)− J(t̃kδ)| < δ/2.
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Then, since all Jn are non-increasing, we deduce that for all n ≥ n(kδ)

Jn(tn)− J(t∗) ≤ Jn(t̃kδ)− J(t∗)
≤ |Jn(t̃kδ)− J(t∗)|
≤ |Jn(t̃kδ)− J(t̃kδ)|+ |J(t̃kδ)− J(t∗)| < δ.

Therefore, as δ > 0 is arbitrary, we obtain that

lim sup
n→∞

Jn(tn) ≤ J(t∗),

and consequently, again by (15) and (16),

lim sup
n→∞

‖un(tn)‖ ≤ ‖u(t∗)‖,

which combined with (20) and (17) allows us to claim that un(tn)→ u(t∗) strongly
in V , in contradiction with (19). Thus, (18) is proved as desired.

As an immediate consequence of the previous lemma, we have the following result.

Corollary 3. Under the assumptions of Lemma 4, it holds:

(a) For any h̃ ∈ [0, h], the process U : R2
d × C

h̃,V
H → C h̃,VH is pullback Dh̃,Vη (CH)-

asymptotically compact.
(b) The process S : R2

d×M2
V →M2

V is pullback DVη (M2
H)-asymptotically compact.

We establish now the following result about the existence of minimal pullback
attractors for the process U on C h̃,VH , which can be proved in a same way as [9,
Theorem 5.1].

Theorem 5. Assume that f ∈ L2
loc(R; (L2(Ω))2), and that f and g : R × CH →

(L2(Ω))2 satisfy (I)–(V). Then, for any h̃ ∈ [0, h], the process U on C h̃,VH possesses

a minimal pullback Dh̃,Vη (CH)-attractor ADh̃,Vη (CH)
, a minimal pullback Dh̃,VF (CH)-

attractor ADh̃,VF (CH)
, and a minimal pullback DF (C h̃,VH )-attractor ADF (Ch̃,VH )

. Be-
sides, the following relations hold:

ADF (Ch̃,VH )
(t) ⊂ ADh̃,VF (CH)

(t)

⊂ ADF (CH)(t)
⊂ ADh̃,Vη (CH)

(t) = ADη(CH)(t)

⊂ CV ∀ t ∈ R, (21)

and for any family D̂ ∈ Dη(CH),

lim
τ→−∞

distCV (U(t, τ)D(τ),ADη(CH)(t)) = 0 ∀ t ∈ R.

Finally, if moreover f satisfies

sup
s≤0

(
e−ηs

∫ s

−∞
eηθ|f(θ)|2 dθ

)
<∞, (22)

then all attractors in (21) coincide, and this family is tempered in CV , in the sense
that

lim
t→−∞

(
eηt sup

v∈ADη(CH )(t)

‖v‖2CV

)
= 0,

where ‖v‖CV = maxs∈[−h,0] ‖v(s)‖ for any v ∈ CV .
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Remark 13. Observe that, under the assumptions of Theorem 5, one has that
ADh̃,Vη (CH)

≡ ADh,Vη (CH) for any h̃ ∈ [0, h], i.e., the pullback attractor ADh̃,Vη (CH)
is

independent of h̃.
Actually, if f also satisfies (22), then ADh̃,VF (CH)

≡ ADh,VF (CH), and ADF (Ch̃,VH )
≡

ADF (Ch,VH ).

Remark 14. Under the assumptions of Theorem 5, since D̂1,η,h belongs toDh,Vη (CH),
and the set D1,η,h(t) is closed in Ch,VH for all t ∈ R, from Remarks 4 and 10, and
the equality in (21), we deduce that ADη(CH) belongs to Dh,Vη (CH).

In fact, if in addition f satisfies (22), then, for each T ∈ R, the set {ADη(CH)(t) :
t ≤ T} is bounded in Ch,VH .

We are also able to obtain the existence of minimal pullback attractors for the
process S on M2

V .

Theorem 6. Suppose that f ∈ L2
loc(R; (L2(Ω))2), and that f and g : R × CH →

(L2(Ω))2 satisfy (I)–(V). Then, there exist the minimal pullback DF (M2
V )-attractor

ADF (M2
V ), and the minimal pullback DVη (M2

H)-attractor ADVη (M2
H) for the process S

on M2
V , and the following relations hold:

ADF (M2
V )(t) ⊂ ADF (M2

H)(t) ⊂ ADη(M2
H)(t) = ADVη (M2

H)(t) ∀ t ∈ R. (23)

In particular, for any family D̂ ∈ Dη(M2
H),

lim
τ→−∞

distM2
V

(S(t, τ)D(τ),ADη(M2
H)(t)) = 0 ∀ t ∈ R. (24)

Finally, if f also satisfies (22), then

ADF (M2
V )(t) = ADF (M2

H)(t) = ADη(M2
H)(t) = ADVη (M2

H)(t) ∀ t ∈ R,

and this family is tempered in M2
V , i.e.,

lim
t→−∞

(
eηt sup

(w,ϕ)∈ADη(M2
H

)(t)

‖(w,ϕ)‖2M2
V

)
= 0. (25)

Proof. The existence of ADF (M2
V ) and ADVη (M2

H) is a direct consequence of Theorem
2, Corollary 1, Proposition 2, Proposition 3, and Corollary 3.

In (23), the inclusions follow from Corollary 1, Theorem 3, and Remark 11. The
equality holds by applying Theorem 3 and Remark 6, using Theorem 1, Lemma 2,
Remark 11, and Corollary 3.

The pullback attraction result (24) comes from Remark 8, Lemma 2, and the
fact that by the regularity property (a) in Theorem 1, for any D̂ ∈ Dη(M2

H) and
any τ < t− h− 1,

distM2
V

(S(t, τ)D(τ),ADη(M2
H)(t))

= distM2
V

(S(t, τ + h+ 1)(S(τ + h+ 1, τ)D(τ)),ADη(M2
H)(t))

= distM2
V

(S(t, τ + h+ 1)(j(Ũ(τ + h+ 1, τ)D(τ))),ADη(M2
H)(t))

= distM2
V

(S(t, τ + h+ 1)(j(D(h+1)(τ))),ADVη (M2
H)(t)),

since it is clear that the family {j(D(h+1)(τ)) : τ ∈ R} belongs to DVη (M2
H).

If moreover f satisfies (22), the equality ADF (M2
H)(t) = ADη(M2

H)(t) follows from
Remark 5, and the equality ADF (M2

V )(t) = ADF (M2
H)(t) is again a consequence of
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Theorem 3, by using the second estimate in (13), Remark 11, and Corollary 3, since
(22) is equivalent to

sup
s≤0

∫ s

s−1

|f(θ)|2 dθ <∞. (26)

Lastly, the tempered property (25) comes from (22) (and therefore (26)) and the
tempered character of ρ2(t) defined in Lemma 3.

Remark 15. Under the assumptions of Theorem 6, reasoning analogously as in
Remark 14, one has that ADη(M2

H) belongs to DVη (M2
H).

To conclude, we relate the minimal pullback attractors obtained in C h̃,VH and M2
V

through the canonical injection j.

Theorem 7. Assume that f ∈ L2
loc(R; (L2(Ω))2), and that f and g : R × CH →

(L2(Ω))2 satisfy (I)–(V). Then, the following relations hold:

j(ADF (Ch,VH )(t)) ⊂ ADF (M2
V )(t) ∀ t ∈ R, and (27)

j(ADh̃,Vη (CH)
(t)) = ADVη (M2

H)(t) ∀ h̃ ∈ [0, h], t ∈ R. (28)

Actually, if f also satisfies (22), then, for any h̃ ∈ [0, h],

j(ADF (Ch̃,VH )
(t)) = j(ADh̃,VF (CH)

(t)) = ADF (M2
V )(t) ∀ t ∈ R. (29)

Proof. In order to prove the inclusion in (27) we proceed similarly as in [19, Theorem
5], taking into account that the map j is continuous from Ch,VH into M2

V , and that
j(DF (Ch,VH )) ⊂ DF (M2

V ).
The equality in (28) is a consequence of property (11) in Theorem 4, using the

equalities (21) and (23).
Finally, the equalities in (29) follow from (28) and the known facts that, under

the additional assumption (22), all attractors in (21) and (23) coincide.
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