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A B S T R A C T

Flexoelectricity is the coupling between strain gradients and electric fields. This phenomenon can significantly 
enhance piezocomposite response in addition to linear piezoelectricity. This enhancement is especially important 
for lead-free piezocomposites, which generally underperform compared to lead-based counterparts. Flexoelectric 
enhancement is facilitated by structural anisotropy in piezocomposites. However, challenges in modeling 
flexoelectric effects arise from several unknowns. Firstly, the shear flexoelectric coefficient is not well- 
characterized experimentally. Secondly, significant discrepancies exist between theoretical predictions and 
experimental measurements of flexoelectric coefficients. Thirdly, the influence of matrix mechanical properties 
on flexoelectric behavior is poorly understood. To address these issues, we construct a parametric flexoelectric 
model of a lead-free piezocomposite with graded inclusion concentration. We then systematically analyze the 
impact of each parameter to identify which significantly influence flexoelectric behavior. This study is intended 
to provide direction to further experimental studies towards understanding and tailoring this subset of 
parameters.

1. Introduction

Flexoelectricity is the coupling between strain gradients and electric 
fields [1,2]. Unlike piezoelectricity, which is a coupling between strain 
and electric fields, flexoelectric coupling can occur even in materials 
with inversion symmetry. Harnessing this coupled process can widen the 
gamut of commonly available materials that can be used for many 
interesting electromechanical applications. Strain gradients can be 
brought about in otherwise homogeneous materials by inducing 
anisotropy in structure and electromechanical properties. This direction 
has been explored both in the context of bulk materials [3,4] and, more 
recently, flexoelectric composites [5-7]. These studies have shown that 
flexoelectricity holds promise in enhancing electromechanical perfor-
mance in the contexts of sensing, actuating, and energy generation. 
These alternative modes of enhancing electromechanical coupling are 
key in boosting the efficiencies of lead-free piezoelectric materials, such 
as BaTiO3, particularly given their inferior performance compared to 
lead-based piezoelectric materials [8,9]. Further, flexoelectricity plays a 

key role in polarization coupling across ferroelectric domains in poly-
crystalline piezoelectric materials [10]. This is particularly an important 
effect to properly understand to accurately model flexoelectric com-
posites based on low-cost polycrystalline, environmentally friendly, 
lead-free materials such as BaTiO3. However, the accurate design of 
flexoelectric materials, particularly composites, faces significant chal-
lenges due to several variables. These include, primarily, the mismatch 
between the experimentally measured and theoretically predicted 
values of the transverse and longitudinal flexoelectric coefficients [11], 
which is around three orders of magnitude. Secondly, the shear flexo-
electric coefficient is not well-characterized and does not have 
well-defined values in the literature [12]. Further, this gap in the un-
derstanding and the importance of filling it has been pointed out in the 
literature [10,13]. Thirdly, the matrix in which flexoelectric inclusions 
are dispersed plays an important role in determining the flexoelectric 
behaviour of the composite. However, the role of several matrix prop-
erties in influencing flexoelectricity, particularly the Poisson’s ratio, has 
not been explored. Hence, we aim to better understand the influence of 
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these factors by constructing and analyzing a parametric coupled 
flexoelectric model for a lead-free piezocomposite based on BaTiO3 in-
clusions. This study is particularly important to lead-free composites 
given their inferior piezoelectric performance compared to lead-based 
materials, which can be enhanced by flexoelectric optimization. The 
objective of the study is to identify the factors that most significantly 
influence flexoelectric coupling so that appropriate experimental studies 
can be conducted towards better characterizing these factors. A further 
objective is also to provide direction towards optimized engineering of 
electromechanical composites to enhance flexoelectric performance by 
maximizing the factors that have considerable influence on flexoelectric 
properties of the composite.

2. Modelling framework to evaluate flexoelectric contributions

In this section, we first develop the fully coupled electro-elastic 
model combining linear piezoelectricity, flexoelectricity, and electro-
striction. We further discuss the RVE (Representative Volume Element) 
geometry adopted for the study and the corresponding boundary con-
ditions used for the finite element analysis.

2.1. Generalized coupled electro-mechanical model

We start with the Gibbs free energy function that includes linear 
piezoelectric, flexoelectric, and electrostrictive coupling. This is given 
by [5,12,14-16]: 

G =
1
2
cijklεijεkl −

1
2

ϵijEiEj − ekijEkεij −
1
2
BklijEkElεij − μijklEiεjk,l, (1) 

where cijkl, εij, eijk, Bijkl, and μijkl are the elastic coefficients, the permit-
tivity, the piezoelectric, electrostrictive, and flexoelectric coefficients, 
respectively. The variables εij, Ei, and εjk,l represent the components of 
the strain tensor, electric field components, and strain-gradient fields. 
This model is a generalization of the linear piezoelectric model which is 
described by the free energy function, excluding flexoelectric and non- 
linear couplings, would be G = 1

2cijklεijεkl −
1
2ϵijEiEj − ekijEkεij [17-19]. 

Although size-dependent elasticity is another coupling that ideally needs 
to be included in the model [20-23], we have neglected it in Eq. (1). This 
is because size-dependent elasticity operates mainly at size scales of 
1–10 nm [24] whereas our analysis considers size scales that are at least 
an order of magnitude larger.

From Eq. (1), the following phenomenological relations to determine 
the electro-elastic behaviour of the flexoelectric composites are derived: 

σij =
∂G
∂εij

= cijklεkl − ekijEk −
1
2
BklijEkEl, (2) 

σ̂ ijk =
∂G

∂εij,k
= − μlijkEl, (3) 

Di = −
∂G
∂Ei

= ϵijEj + eijkεjk + BijklEjεkl + μijklεjk,l. (4) 

Here, σij standard stress tensor components, σ̂ ijk represents the higher 
order stress tensor components, and Di represents the electric flux den-
sity components. The balance equations governing the above relations 
are [6,25]: 
(
σij − σ̂ ijk,k

)

,j + Fi = 0, (5) 

Di,i = 0, (6) 

where Fi are the body force components assumed to vanish in the set of 
computational experiments presented in Section 3.

Further, the Cauchy relationship is used to express the strain com-
ponents as εij =

1
2
(
ui,j +uj,i

)
- in terms of the derivatives of the dis-

placements. The electric field is related to the electric potential by Ei = −

V,i. Using these relationships and by substituting Eqs. (2)-(4) in Eqs. (5)
and (6), we obtain a system of nonlinear, nonlocal differential equations 
in ui and V. The model is implemented in finite element method using 
COMSOL Multiphysics software.

2.2. RVE geometry and boundary conditions

For our study, we chose a two-dimensional rectangular RVE with 
sides am and bm(Fig. 1(a)). We consider a graded inclusion concentra-
tion, as shown in the figure. We use randomly shaped inclusions that are 
spatially constrained within radii R1 and R2 (R2 > R1). We scale the 
length scales along both the x and y axes by a scaling factor Nto study the 
size-dependent flexoelectric effects. When N = 1, the RVE dimensions 
are am = bm = 50μm. R1 and R2 have been picked randomly within the 
ranges [2.5–3.5 μm] and [4.0–5.0 μm], respectively, for each point 
defined by the random polygonal structure of the inclusion.

Figure 1(b)-(c) show the boundary conditions BC1 and BC2, 
respectively, that are used in this study to obtain the effective piezo-
electric coefficients e31 and e33, respectively [6,25]. We, further, use 
Lagrange quadratic shape functions for the dependent variables u1,u2 
and V because it is seen that second order functions typically better 
represent the physical model in flexoelectric simulations [26]. The 
effective piezoelectric coefficients e31and e33 are calculated as follows 
[27,28]: 

e31 =
D3

ε11
, e33 =

D3

ε33
, (7) 

where Xrepresents the volume average of the variable X.

2.3. Material properties

The materials making up the composite are the matrix and the 
piezoelectric inclusion. The inclusions are polycrystalline BaTiO3. 
Particularly, their electromechanical coefficients that include the elastic 
coefficients, piezoelectric and flexoelectric coefficients are a function of 
the orientation of the crystallites within the polycrystal aggregate. 
Assuming a Gaussian fiber texture distribution aligned with the polari-
zation direction, the orientation can be quantified to a first approxi-
mation through an orientation distribution parameter σθ, which denotes 
the standard deviation of the distribution of θ, the angle of the crystallite 
with the fiber direction (see Appendix A1). In this way, σθ → 0 corre-
sponds to a perfectly oriented condition and σθ → ∞ corresponds to 
randomly oriented configuration. Our model estimates the effective 
properties of the polycrystalline inclusions by means of volume aver-
aging [30] through the generalized spherical harmonic method [29]. 
The orientation dependent electroelastic parameters are shown in Fig. 2. 
These are the effective elastic coefficients, the effective linear piezo-
electric coefficients, and the effective electric permittivities for tetrag-
onal crystallites with properties taken from Ref. [30]. Our studies are 
conducted with σθ = 5.0 which reasonably corresponds to a random 
polycrystalline behaviour.

We next describe orientation-dependent flexoelectric coefficients. 
We assume cubic crystallites since the flexoelectric properties for BaTiO3 
are available in the literature only for its cubic piezoelectric phase. It is 
observed that the shear coefficient of the crystal is difficult to charac-
terize. To study its effect on the behaviour of the composite, and after 
revisiting the isotropic condition [36], we propose to define a flexo-
electric anisotropy factor given by 

Af =
2μS

μL − μT
, (8) 

where μS, μL, and μT are the shear, longitudinal, and transverse flexo-
electric coefficients of BaTiO3 crystals. In such a way that Af = 1 means 
that the crystal is isotropic. The index Af quantifies the degree of 
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flexoelectric anisotropy in cubic crystals. Since the shear coefficient is 
not well characterized experimentally, theoretical analyses typically 
assume μS = 0 (i.e. Af = 0). However, this is not generally the case as 
reference [11] theoretically predicts an anisotropic index Af = 6.226. 
Therefore, we study the effect of the anisotropy parameter to understand 
what significance it holds in terms of flexoelectric contribution. The 
dependence of the flexoelectric coefficients of a BaTiO3 polycrystal as a 
function of σθ are shown in Figure 2(d) for different Af.In Figure 2(e), we 

show the flexoelectric coefficients as a function of the flexoelectric 
anisotropy Af for an orientation parameter σθ = 5 which is representative 
of a randomly oriented BaTiO3 crystal inclusion. The detailed deriva-
tions of the orientation-dependent flexoelectric coefficients are pre-
sented in Appendix A1.

The Young’s modulus of the matrices is assumed to be 106 Pa which 
is representative of soft matrices (such a hydrogels) which are highly 
conducive to flexoelectric effective given the large elastic gradients at 

Fig. 1. (a) Representative illustration of a unit cell of a lead-free piezocomposite having a matrix in which piezoelectric inclusions are dispersed, (b) and (c) illustrate 
the boundary conditions imposed on the displacement components u1 and u3, and the electric potential V to compute the effective piezoelectric coefficients e31 and 
e33, respectively. ε11 and ε33 are boundary strains which are set to small values of 1 × 10− 6.

Fig. 2. (a)-(c) Orientation-dependent linear electromechanical coefficients of BaTiO3, (d) Orientation dependent flexoelectric coefficients of BaTiO3, (e) Flexoelectric 
anisotropy-dependent flexoelectric coefficients of polycrystalline BaTiO3 for a polycrystal with σθ = 5.0.
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their interface with rigid inclusions. We explore three different forms of 
matrix behaviour given by three different Poisson’s ratios: νm = − 1 
(auxetic), νm = 0.33(typicalpolymers), and νm = 0.499(incompressible) 
to understand how the properties of the matrix influence the flexo-
electric behaviour of the composite. The elastic coefficients are obtained 
using the Lame’s constants, λm = Emνm

(1+νm)(1− 2νm)
, μm = Em

2(1+νm)
, as C1111 =

C3333 = λm + 2μm,c1313 = λm,and c2323 = μm.
Finally, the current study neglects the effects of electrostriction.

3. Results and discussion

The results we present in this section are focused on developing an 
understanding of two key aspects. Firstly, in Section 3.1, we try to find 
out how important it is to reconcile the three-orders of magnitude dif-
ference between theoretical predictions and experimental measure-
ments of flexoelectric coefficients of BaTiO3. Secondly, in Section 3.2, 
we try to investigate the need to characterize the shear flexoelectric 
coefficient experimentally by studying its influence on the flexoelectric 
coefficients of a lead-free composite. In both experiments, as we would 
notice, there is a pressing need to fill these gaps in our understanding of 
flexoelectric properties of lead-free piezocomposites.

3.1. The influence of the flexoelectric scaling factor on the flexoelectric 
contribution

There is a well-documented order-of-magnitude discrepancy be-
tween theoretically estimated and experimentally measured flexo-
electric coefficients. As Wang et al. [31] comprehensively discuss, 
experimental measurements of flexoelectric coefficients in the para-
electric phase of many perovskite oxides reach up to several tens of 
μC/m, whereas theoretical estimations suggest intrinsic flexoelectricity 
should not exceed several nC/m. Wang et al. [31] provide a detailed 
analysis of potential factors contributing to this disparity, which is 
summarized in their Table 5.3 (not reproduced here), including extrinsic 
contributions, surface effects, and theoretical calculation ambiguities. 
Other studies have proposed additional explanations, such as the 

contribution of dynamic flexoelectricity to the giant static flexoelectric 
effect in spatially inhomogeneous samples [32], including soft electrets 
[33], and apparent flexoelectricity due to heterogeneous piezoelectricity 
[34].

To account for this discrepancy in our study, we introduce a flexo-
electric scaling factor Sf. We uniquely define Sf as a multiplicative factor 
applied to the theoretically predicted flexoelectric coefficients to span 
the range between theoretical predictions and experimental observa-
tions. Mathematically, this can be expressed as: 

μeff = Sf μth,

where μeff is the effective flexoelectric coefficient used in our calcula-
tions, μth is the theoretically predicted flexoelectric coefficient, and Sf is 
our scaling factor. Experimentally measured values of the flexoelectric 
coefficients of BaTiO3 are around three orders of magnitude higher than 
the theoretically predicted values [11]. We, accordingly, set Sf = 1 and 
1000 to study the flexoelectric enhancements in a BaTiO3-based piezo-
composite architecture, where Sf = 1 corresponds to the theoretically 
predicted values found in reference [11], and Sf = 1000 corresponds to 
flexoelectric coefficients in reference [11] scaled by a factor of 1000. 
This approach allows us to study the impact of this 
theoretical-experimental discrepancy on the flexoelectric behavior of 
our composite structure.

The normalized e31 coefficients, in the case of Sf = 1 and 1000, are 
shown in Fig. 3(a)-(c) for νm = − 0.99, 0.33, and 0.499, respectively. 
Similarly, Figure 3(d)-(f) show the corresponding values for the 
normalized e33 coefficients. The normalization is carried out relative to 
the actual piezoelectric coefficient values for N = 5, which represents a 
size-scale with negligible flexoelectric contribution. The first main 
observation is that matrices with νm = 0.33show the maximum flexo-
electric influence among matrices with the three values of νm considered 
here. This class of matrices shows almost an order of magnitude larger 
flexoelectric contribution than the matrices with νm = − 0.99 and 0.499, 
respectively. However, the sign of the flexoelectric enhancement with 
respect to the direction of the linear flexoelectric coefficient is not 
straightforward. When we consider theoretical values of the 

Fig. 3. Variation of normalized e31 ((a)-(c)) and normalized e33 ((d)-(f)) as a function of the size scale factor, Sf, of the flexoelectric RVE for different Poisson’s ratio 
νm of the matrix.
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flexoelectric coefficients (i.e. Sf = 1) as predicted in reference [11], we 
see that the flexoelectric contribution reinforces the linear piezoelectric 
response for both e31and e33. When we consider experimental correction 
to the values (Sf = 1000), we notice that the flexoelectric contribution in 
the case of e31 and e33 are in the opposite directions. In the case of e31,we 
notice an enhancement by a factor of around 50 due to the reinforcing 
nature of the flexoelectric contribution. However, in the case of e33, 
although the flexoelectric contribution reinforces the linear piezoelec-
tric response for larger values of N, at smaller size-scales, the flexo-
electric response is large but opposite in direction to the linear 
piezoelectric response. This change of sign in the properties means that, 
for some size parameter N, the piezoelectric properties become zero. 
This suggests that a proper understanding of the factors underlying the 
discrepancies between the theoretical and practical flexoelectric coef-
ficient values is required for the reliable design of flexoelectric 
composites.

The change in the sign of the flexoelectric contribution across Sf = 1 
and Sf = 1000 is noticed in a few more cases (Fig. 3(a) and (c)).

3.2. The influence of the flexoelectric anisotropy factor on the 
flexoelectric contribution

Here, we study the influence of the flexoelectric anisotropy Af on the 
flexoelectric contribution for different matrices. All the analyses are 
carried out with experimental correction to the flexoelectric coefficients 
(i.e. Sf = 1000). The flexoelectric anisotropy factor, as discussed in 
Section 2.3, is given by Af =

2 μS
μL − μT

.
We investigate the cases of Af = 0 (anisotropy, μS = 0), Af = 1 

(isotropy, μS = 1
2 (μL − μT)), and Af = 6.226 (theoretically predicted 

value [11]). In almost all the cases of νm, we notice from the results in 
Fig. 4. In all the cases, we notice that the theoretically predicted 
anisotropy shows a significantly larger flexoelectric contribution 
compared to the cases with Af = 0 and 1. Notably, in the case of the 
composite architecture with νm = 0.33, we notice that Af = 6.226 results 
in almost a 2.5-times increase in the e31 coefficient with respect to the 
isotropic and anisotropic cases (at N = 0.5). We also notice that in 

several cases (Fig. 4(a), (c), and (e)), the flexoelectric contribution 
changes signs as Af increases.

In summary, these results clearly point out that the shear flexo-
electric coefficient, which has been poorly characterized by experiments 
at this point, has a significant influence on the flexoelectric behaviour of 
a composite. This suggests that it would be fruitful to direct experi-
mental efforts towards characterizing the shear flexoelectric co-
efficients. This would help build more reliable size-dependent 
piezoelectric material models using which advanced lead-free compos-
ites and functional devices with tailored electromechanical properties 
can be designed.

4. Conclusions

Using advanced flexoelectric composite models, we have addressed 
pertinent questions in flexoelectric composite design stemming from 
three key issues: the poorly characterized shear flexoelectric coefficient, 
the significant discrepancies between theoretical predictions and 
experimental measurements of flexoelectric coefficients, and the poorly 
understood influence of matrix mechanical properties on flexoelectric 
behavior. Our parametric flexoelectric model of a lead-free piezo-
composite with graded inclusion concentration has provided valuable 
insights into these issues.

We first note the need to develop a proper understanding of the 
factors causing almost a 3-fold discrepancy in the flexoelectric co-
efficients predicted by theory and observed in experiments, as this 
discrepancy can result in a significant change in the magnitude and 
direction of the flexoelectric contribution. Further, the study on flexo-
electric anisotropy clearly shows that the flexoelectric shear effect and 
its contributions to the electromechanical properties of lead-free pie-
zocomposites cannot be neglected. Our analysis of matrix properties 
reveals their substantial influence on the overall flexoelectric behavior 
of the composite, particularly for matrices with a common Poisson’s 
ratio of 0.33.

While our study focuses on these specific aspects, it is important to 
acknowledge that the complex nature of flexoelectric phenomena may 
involve additional factors. Our work underscores the necessity for 

Fig. 4. Variation of normalized e31 ((a)-(c)) and normalized e33 ((d)-(f)) as a function of the flexoelectric anisotropy factor, Af, of the BaTiO3 inclusions. The analyses 
are done for different Poisson’s ratios νm of the matrix as indicated in the subfigures.
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refined models and further experimental studies to build more accurate 
representations of flexoelectric behavior in composites. These ad-
vancements will be crucial for designing tailored composites and devices 
for different applications based on lead-free materials, where the 
interplay between various electromechanical effects can significantly 
influence overall performance.
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Appendix A1

We derive here the orientation-dependent flexoelectric coefficients of polycrystalline BaTiO3.
Let us consider the flexoelectric constitutive law [31]: 

Pi = μijkl
∂εjk

∂xl
(AE1) 

where μijkl are the components of the fourth-order direct flexoelectric tensor, satisfying the symmetries μijkl = μikjl. These components relate the electric 
polarization vector P to the gradient of the strain tensor ε, under the assumption of small deformations.

This work focuses on crystalline aggregates with a fiber texture distribution of crystallites and formed by crystals with cubic symmetry. Specif-
ically, we consider a Gaussian texture with the orientation distribution function (ODF) given by 

w(θ, σθ) =

exp
(

−
θ2

2σ2
θ

)

̅̅̅̅̅̅
2π

√
σθ

,
(AE2) 

where θ represents the Euler angle relative to the x3 axis, and σθ is the standard deviation of this Gaussian distribution. Note that this Gaussian ODF is 
independent of the other two Euler angles, ψ and θ.

The direct flexoelectric tensor μ′ for cubic materials referred to a principal material system xí(i= 1…3) has 3 independent coefficients satisfying 
[35] 

μʹ
1111 = μʹ

2222 = μʹ
3333 = μʹ

L,

μʹ
1122 = μʹ

1133 = μʹ
2121 = μʹ

2233 = μʹ
3131 = μʹ

3232 = μʹ
S,

μʹ
1221 = μʹ

1331 = μʹ
2332 = μʹ

3113 = μʹ
3223 = μʹ

T ,

(AE3) 

with all other coefficients being zero. Coefficients μĹ, μŚ, and μT́ are usually called longitudinal, shear, and transverse coefficients, respectively.
When a cubic crystal is oriented statistically as described by the ODF (AE2), the effective or macroscopic flexoelectric behaviour μ assumes a matrix 

structure indicative of transversely isotropic behaviour, as elucidated by Buroni et al. [36]. Consequently, for a polycrystal with such effective 
symmetry and under the assumption of plane strain in the x1 − x3 plane (i.e., ε12,2 = ε22,1 = ε23,2 = ε22,3 = 0), the constitutive law (AE1) reduces to 

P1 = μ1111ε11,1 + 2μ1133ε13,3 + μ1331ε33,1, (AE4) 

and 

P3 = μ1331ε11,3 + 2μ1133ε13,1 + μ3333ε33,3, (AE5) 

with the comma denoting differentiation. Therefore, we need to account for the coefficients μ1111, μ1133, μ3311, and μ3333 of the polycrystal.
Following the model proposed by Buroni et al., [36], the effective flexoelectric tensor is estimated through the orientation average of the crystal’s 

flexoelectric properties, weighted by the ODF. This is expressed as: 

μ = 8π2
∫

SO(3)

μ’(ψ, θ,ϕ)w(ψ, θ,ϕ)dg, (AE6) 
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where dgrepresents the Haar measure on the SO(3), with 8π2dg = dV and V denoting the volume measure of SO(3). The ODF satisfies the 
normalization condition 

∫

SO(3)
wdV = 1. Buroni et al. provide closed-form expressions for these averages in terms of the texture coefficients [36]. When 

the ODF, w, is specified by the fiber texture (AE2), the necessary expressions for computing the plane strain constitutive laws (AE4) and (AE5) are 

μ1111 =
1
15

(
3μB − 2π2c4

00μA
)

μ1133 =
1
45

(
8π2c4

00μA − 9μC
)
,

μ1331 =
1
45

(
8π2c4

00μA + 9(μB + 2μC)
)
,

μ3333 =
1
45

(
9μB − 16π2c4

00μA
)
,

(AE7) 

where μA = μT́ + 2μŚ − μĹ, μB = 2μT́ + 4μŚ + 3μĹ, and μC = μT́ − 3μŚ − μĹ. Texture is accounted for through the texture coefficient c4
00. An analytical 

expression for this coefficient as a function of the standard deviation σθ and its formal definition are provided in Ref. [36].
In order to study the impact of the shear flexoelectric coefficient of the crystal on the overall behaviour, we propose the following flexoelectric 

anisotropy index [36] 

Af :=
2μʹ

S

μʹ
L − μʹ

T
(AE8) 

where Af ¼ 1 implies isotropic material behaviour, while when Af ¼ 0 the shear coefficient μŚ is zero. This index quantifies the degree of 
flexoelectric anisotropy in cubic materials. The coefficients μĹ and μT́ for the crystal are sourced from Maranganti and Sharma [11] (refer to 

Table AT1). The shear flexoelectric coefficient is then defined as μŚ = Af
μʹ

L − μʹ
T

2 . For the BTO crystal, as calculated by Maranganti and Sharma 
[11], the value of the flexoelectric anisotropy index is Af ≈ 6.226.

Table AT1 
Flexoelectric coefficients for cubic crystal properties of BTO computed by lattice dynamics approach 
(LDA) method [11].

Estimation method μ′L(nC/m) μ′T(nC/m) μ′S(nC/m)

LDA [11] 0.15 1.904 − 5.46

Fig. AF1 shows the variation of the effective values of the flexoelectric coefficients μ1111,μ1133,μ1331, and μ3333 as a function of the standard de-
viation σθ for different anisotropy indices Af. Continuous lines correspond to the estimations when the properties of the crystal are sourced from 
Maranganti and Sharma [11]; here, the anisotropy index is Af = 6.226. Dashed lines represent the effective estimations obtained when the shear 
coefficient of the crystal is forced to be zero, i.e. Af = 0. It is observed that the influence of the dispersion, σθ, on the effective properties is marginal 
compared to the former example. Lastly, dotted lines describe the behaviour when the crystal is considered isotropic, i.e. Af = 1. As expected, no 
variation in the effective properties is observed. Moreover, in this case, μ1111 = μ3333.

Fig. AF1. Effective μ1111,μ1133,μ1331,andμ3333 as a function of the standard deviation σθ for different anisotropic indices Af.
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