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a b s t r a c t

A well-known technique to construct regular graphs with girth 5 is the amalgamation
into the incidence graphs Cq and Lq, elliptic semiplanes of type C and L respectively,
where q is a prime power. The case q odd has extensively been studied by means of
amalgamations into Lq. In this paper we provide new families of small regular graphs
of girth 5 constructed by amalgamation into Cq using finite fields of even order.

1. Introduction

A k-regular graph with girth g is called a (k, g)-graph. A classic problem in graph theory is the construction of (k, g)-
cages, that is, (k, g)-graphs with the minimum number n(k, g) of vertices. We are interested in the case g = 5, where
there are only known cages for k = 2, . . . , 7 [9,12–16].

For values of k ≥ 8, upper bounds on n(k, 5) are obtained by explicit construction of (k, 5)-graphs. To reach this aim, a
useful technique consists in injecting (or amalgamating) edges from a pair of rq-regular graphs with girth at least 5 into
a large (q, 6)-graph.

With a prime power q and the incidence graph Lq of the elliptic semiplane of type L, the technique of amalgamation
provides the bound

n
(
q + rq, 5

)
≤ 2(q2 − 1),

[1,2,8,10,11]. Moreover, specific deletion of vertices from the graph resulting after amalgamation leads to

n
(
k, 5

)
≤ 2(q − 1)(k + 1 − rq) for k ≤ q + rq.

In 2005, for an odd prime power q, the first general construction was established in [10] with

rq = ⌊
1
4

√
q − 1⌋.

In [1,2] some better degrees rq were obtained by distinct amalgamations, including the high value

rq =
1

√
2

√
q + 1 + 2,

nly admissible when q = 2(p2 − 1) + 1 is a prime power related to another prime power p > 7.
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Let us notice that no general result associated to even prime powers has been so far established. That is the goal of 
the paper. To do that, in Section 2, we describe the incidence graph Cq of the elliptic semiplane of type C together with 
the notation and technique of amalgamation. It provides the inequality

n
(
q + rq, 5

)
≤ 2q2,

for a prime power q, [1–3,6,8]. Reduction operations after amalgamation give

n
(
k, 5

)
≤ 2q(k − rq) for k ≤ q + rq.

The main results are shown in the third section, where we focus on even prime powers q = 22s+1 (Theorems 3.1, 3.2)
nd q = 22s (Theorem 3.3), for s ≥ 3. We amalgamate into Cq a pair of suitable rq-regular graphs GL and GP , isomorphic
o subgraphs of Cp, with p = 2s. This way we establish two families of bounds with degree of amalgamation{

rq =
7

8
√
2

√
q if q = 22s+1

;

rq =
1
2
√
q if q = 22s.

By means of new amalgamations into GL and GP , in Section 4 we present refinements of these bounds which, in Section 5,
re applied to small values of even prime powers q and compared with the ones in [1,2].

. Notations and known results

For undefined terminology we refer the reader to [5]. Given a graph G we denote by V (G) and E(G) the sets of vertices
and edges of G, respectively. If A, B ⊂ V (G), let [A, B] ⊂ E(G) hold for the set of edges joining A and B. If S is a set and
φ : V (G) → S is a bijection, we write φ(G) for the graph with vertex set S and edge set {φ(v)φ(v′) : vv′

∈ E(G)}.
Given a prime power γ , let Fγ be the finite field of order γ . The following graph Cγ , first introduced by Cronheim

in [6], is the key structure throughout this paper.

Definition 2.1. The bipartite graph Cγ has vertex set Lγ ∪ Pγ , where

Lγ =

⋃
a∈Fγ

La =

⋃
a∈Fγ

{ℓa,b : b ∈ Fγ }, Pγ =

⋃
x∈Fγ

Px =

⋃
x∈Fγ

{px,y : y ∈ Fγ }

and edge set

E(Cγ ) =

⋃
a,x∈Fγ

[La, Px] =

⋃
a,x∈Fγ

{ℓa,bpx,ax+b : b ∈ Fγ }.

That is, the edge ℓa,bpx,y ∈ E(Cγ ) iff y = ax + b.

It is well known [4,6–8] that Cγ is the incidence graph of the elliptic semiplane of type C , obtained from the projective
plane by removing the points at the infinity together with the vertical lines. It is a γ -regular graph with order 2γ 2, girth
g = 6 and diameter 4. Two vertices are at distance 4 if and only if both of them belong to the same set La or Px.

Our basic goal is to add as many edges as possible to the graph Cγ in order to construct a new graph with greater
degree and girth 5. To do that, in [8] the author introduces the following technique.

Definition 2.2 ([8]). Let γ be a prime power. Given two graphs GL, GP with vertex set Fγ , the amalgamation Cγ (GL,GP ) is
the graph obtained from Cγ by adding to E(Cγ ) the set of edges{

ℓa,bℓa,b′ : a ∈ Fγ , bb′
∈ E(GL)

}
∪

{
px,ypx,y′ : x ∈ Fγ , yy′

∈ E(GP )
}
.

The pair of graphs GL, GP must satisfy a certain restriction to ensure that Cγ (GL,GP ) has girth 5. Let us recall that given
a graph G with vertex set Fγ , the Cayley color of an edge vv′

∈ E(G) is the pair ±(v − v′) if γ is odd or the single element
v − v′

= v + v′ if γ is a power of two. The set of Cayley colors of the edges of G is denoted by ω(G).

Theorem 2.1 ([8]). If GL, GP are r-regular graphs with vertex set Fγ , girth g ≥ 5 and with no common Cayley color, then
Cγ (GL,GP ) is a (γ + r)-regular graph with girth g ≥ 5. Then,

n(γ + r, 5) ≤ 2γ 2.

Moreover, deleting from Cγ (GL,GP ) pairs of sets La, Pa, for a ∈ Fγ , we have

n(k, 5) ≤ 2γ (k − r) for k ≤ γ + r.

We also need to introduce another result, which is a special case of Theorem 5 in [3]:
2
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Theorem 2.2 ([3]). If GL, GP are (r + 1)- and r-regular graphs respectively, with vertex set Fγ , girth g ≥ 5 and without any
ayley color in common, then Cγ (GL,GP ) is a (γ + r + 1, γ + r)-regular graph with girth g ≥ 5. Deleting the set P0, we have

n(γ + r, 5) ≤ 2γ 2
− γ = 2γ (γ −

1
2 ).

Additionally, deleting pairs La, Pa, for a ∈ Fγ \ {0}, we have

n(k, 5) ≤ 2γ (k − (r +
1
2 )) for k ≤ γ + r.

These results lead us to extend the definition of suitability given in [8].

Definition 2.3. A pair of regular graphs GL,GP with vertex set Fγ , girth g ≥ 5 and disjoint sets of Cayley colors (in
particular, a pair satisfying the hypothesis of either Theorem 2.1 or Theorem 2.2) is said to be suitable for amalgamation
into Cγ or, in this paper, simply suitable.

3. General results

In this section, for an integer s ≥ 2, we first deal with the prime power p = 2s, the finite field Fp and the graph Cp.
Given a fixed primitive element η of Fp with minimal polynomial g(X), the elements of the field Fp = Fp[η] ≈

F[X]/(g(X)) are given by the polynomial expressions a0 + a1η + · · · + as−1η
s−1, with a0, . . . , as−1 ∈ F2, and can be

uniquely represented by the integers a0 + a1 2 + · · · + as−1 2s−1 in the range 0, . . . , p − 1.

Remark 3.1. For the sake of simplicity, we use this integer representation and write ‘‘a < p/2’’ to refer to the subgroup
H = {0, . . . , p

2 − 1}. Similarly, ‘‘a ≥ p/2’’ refers to the coset p
2 + H = {

p
2 , . . . , p − 1}. Notice that a + x ∈ H if and only if

, x ∈ H or a, x ∈
p
2 + H .

We also consider the field Fq and the graph Cq for q = p2 or q = 2p2. Our target is to construct a pair of graphs GL and
GP , suitable for amalgamation into Cq. We develop this goal in two steps. First, we construct graphs G̃L and G̃P as certain
subgraphs of Cp. Secondly, we define isomorphic graphs GL and GP with vertex set Fq.

The construction for odd powers of two q = 2p2 = 22s+1 and for even ones q = p2 = 22s is different. Notice that
|V (Cp)| = 2p2, so we begin with q = 2p2.

3.1. Case q = 22s+1

Now we deal with an integer s ≥ 2, and prime powers p = 2s, q = 2p2 = 22s+1. We have the relationship
|V (Cp)| = 2p2 = |Fq|.

As we only need computations in the additive group F+
q , we use the isomorphism F+

q ≈ F+

2 ⊕ F+
p ⊕ F+

p to identify
the elements of F+

q with triplets (d, α, β) with d = 0, 1 and α, β ∈ F+
p . Notice that the Cayley color of an edge

(d1, α1, β1)(d2, α2, β2) joining two elements in F+
q is the single element (d1, α1, β1) − (d2, α2, β2) = (d1, α1, β1) +

(d2, α2, β2) = (d1 + d2, α1 + α2, β1 + β2) ∈ F+
q \ {0}.

To construct G̃L and G̃P , regular subgraphs of Cp, we decompose the set E(Cp) into p perfect matchings between the
sets Lp and Pp.

Definition 3.1. Let p = 2s be a prime power and Cp be the bipartite graph given in Definition 2.1. For m ∈ Fp, define the
subset E(m) ⊂ E(Cp) by

E(m) =

⋃
a + x = m
a, x ∈ Fp

[La, Px] =

⋃
a + x = m
a, x ∈ Fp

{
ℓa,bpx,ax+b : b ∈ Fp

}
=

⋃
a∈Fp

[La, Pm+a] =

⋃
a∈Fp

{
ℓa,bpm+a,a(m+a)+b : b ∈ Fp

}
Notice that E(Cp) = ∪m∈FpE(m). Some subsets of Fp are immediately suggested:

Definition 3.2. For each m, δ ∈ F∗
p , define the sets

D(m) = {a x : a, x ∈ Fp, a + x = m} = {a(m + a) : a ∈ Fp}

Mb(δ) = {a + x : a, x ∈ Fp, ax = δ}

Mg (δ) = Fp \ Mb(δ)

The following properties, based on the fact that F is a characteristic-two field, are critical.
p

3
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Lemma 3.1. For δ ∈ F∗
p , the following assertions hold:

(i) |Mg (δ)| =
p
2 .

(ii) If m ∈ Mg (δ), then m ̸= 0, and the sets D(m), δ + D(m) are disjoint.

roof. (i) If a + a′
= m and aa′

= δ, then a, a′ is the unique (unordered) pair of roots of the equation X2
− mX + δ = 0,

and a = a′ iff m = a + a′
= 0. Then, given δ ̸= 0, the p − 1 elements of F∗

p are grouped into p/2 − 1 pairs a, a′ with
aa′

= δ and different values of m = a + a′
̸= 0, and one element a with a2 = δ, m = a + a = 0. That is, |Mb(δ)| = p/2

nd |Mg (δ)| = p/2.
(ii) Since a0(m+ a0)+ a1(m+ a1) = (a0 + a1)(m+ a0 + a1), the set D(m) is a subgroup of the additive group F+

p . Then,
(m) and δ + D(m) are disjoint (actually, complementary) sets, unless δ ∈ D(m), which is equivalent to m ∈ Mb(δ) ■

Attending the notation in Remark 3.1, for δ ∈ F∗
p , let us split the set Mb(δ) into disjoint sets Mb(δ) = Mb(δ) ∩ H

nd Mb(δ) = Mb(δ) ∩
( p
2 + H

)
. Analogously, denote Mg (δ) = Mg (δ) ∩ H and Mg (δ) = Mg (δ) ∩

( p
2 + H

)
. Clearly,

Mg (δ)| + |Mb(δ)| = p/2 and |Mg (δ)| + |Mb(δ)| = p/2.
We are going to select the largest possible set Mg (δ) or Mg (δ), for δ ∈ F∗

p .

efinition 3.3. With the notation above, denote

K = max
δ∈F∗

p

(
max

(
|Mg (δ)|, |Mg (δ)|

) )
.

Notice that p/4 ≤ K ≤ p/2. Now, we are ready to prove the first main result of this section:

heorem 3.1. For an integer s ≥ 2, denote p = 2s and q = 2p2 = 22s+1. Determine the value K according to Definition 3.3.
The following assertions hold:

(i) If K is even, there exists a pair of suitable graphs GL, GP with vertex set Fq and degrees rL = rP =
3p
4 +

K
2 . Then,

n
(
q +

3p
4 +

K
2 , 5

)
≤ 2q2.

(ii) If K is odd, there exists a pair of suitable graphs GL, GP with vertex set Fq and degrees rL =
3p
4 +

K+1
2 , rP = rL − 1.

Moreover, n
(
q +

3p
4 +

K−1
2 , 5

)
≤ 2q2 − q.

Proof. We construct a pair of graphs G̃L, G̃P as regular subgraphs of Cp with girth g ≥ 5, and bijections ΦL, ΦP : V (Cp) → Fq
uch that GL = ΦL (̃GL) and GP = ΦP (̃GP ). The key point is to ensure that these graphs share no Cayley color in Fq.
The definition of the bijection ΦL is rather simple:{

ΦL(ℓa,b) = (0, a, b)
ΦL(px,y) = (1, x, y)

The rest of the construction depends on K and its associated value δ.
• K = |Mg (δ)|
As |Mb(δ)| =

p
2 − K , we split this set into disjoint subsets M0

b(δ) and M1
b(δ) only attending that |M0

b(δ)| = ⌈( p2 − K )/2⌉
nd |M1

b(δ)| = ⌊( p2 − K )/2⌋.
Define subgraphs G̃L and G̃P with vertex set V (Cp) and edges:

E (̃GL) =

⋃
m∈ML

E(m) with ML = {
p
2 , . . . , p − 1} ∪ Mg (δ) ∪ M0

b(δ) = Fp \ M1
b(δ)

E (̃GP ) =

⋃
m∈MP

E(m) with MP = {
p
2 , . . . , p − 1} ∪ Mg (δ) ∪ M1

b(δ) = Fp \ M0
b(δ).

Consider the bijection ΦP :⎧⎪⎪⎪⎨⎪⎪⎪⎩
ΦP (ℓa,b) = (0, a, b) if a <

p
2

ΦP (ℓa,b) = (1, a, b + δ) if a ≥
p
2

ΦP (px,y) = (1, x, y + δ) if x <
p
2

ΦP (px,y) = (0, x, y) if x ≥
p
2

and define GL = ΦL (̃GL) and GP = ΦP (̃GP ).
Being isomorphic to subgraphs of Cp, graphs GL and GP have g ≥ 6. Their degrees are |ML| and |MP |, both equal to

3p
4 +

K
2 if K is even, or to 3p

4 +
K+1
2 and 3p

4 +
K−1
2 if K is odd. The last step to prove the suitability of the pair GL, GP is to

see that both graphs have no Cayley color in common.
4



E. Abajo and M. Bendala

T

a

d

˜

B

o

p

T

The computation of E(GL) and ω(GL) is straightforward

E(GL) =

⋃
m∈ML

⋃
a∈Fp

{
(0, a, b)(1, m + a, a(m + a) + b) : b ∈ Fp

}
,

ω(GL) =

⋃
m≥

p
2

{(1,m, a(m + a)) : a ∈ Fp} ∪

⋃
m∈Mg (δ)∪M0

b (δ)

{(1,m, a(m + a)) : a ∈ Fp}

o describe the set of edges of GP we need to take into account Remark 3.1.

E(GP ) =

⋃
m≥

p
2

⋃
a< p

2

{
(0, a, b)(0, m + a, a(m + a) + b) : b ∈ Fp

}
∪

⋃
m≥

p
2

⋃
a≥ p

2

{
(1, a, b + δ)(1,m + a, a(m + a) + b + δ) : b ∈ Fp

}
∪

⋃
m∈Mg (δ)∪M1

b (δ)

⋃
a< p

2

{
(0, a, b)(1,m + a, a(m + a) + b + δ) : b ∈ Fp

}
∪

⋃
m∈Mg (δ)∪M1

b (δ)

⋃
a≥ p

2

{
(1, a, b + δ)(0, m + a, a(m + a) + b) : b ∈ Fp

}
nd its set of Cayley colors

ω(GP ) =

⋃
m≥

p
2

{(0,m, a(m + a)) : a ∈ Fp} ∪

⋃
m∈Mg (δ)∪M1

b (δ)

{(1,m, a(m + a) + δ) : a ∈ Fp}

By Lemma 3.1, when m ∈ Mg (δ), the sets D(m) = {a(m + a) : a ∈ Fp} and D(m) + δ = {a(m + a) + δ : a ∈ Fp} are
isjoint. By definition, M0

b(δ) ∩ M1
b(δ) = ∅. We conclude that ω(GL) ∩ ω(GP ) = ∅.

• K = |Mg (δ)|
Now we write |Mb(δ)| = M

0
b(δ) ∪ M

1
b(δ) with |M

0
b(δ)| = ⌈( p2 − K )/2⌉ and |M

1
b(δ)| = ⌊( p2 − K )/2⌋ and define subgraphs

GL and G̃P with vertex set V (Cp) and edges:

E (̃GL) =

⋃
m∈ML

E(m) with ML = {0, . . . , p
2 − 1} ∪ Mg (δ) ∪ M

0
b(δ) = Fp \ M

1
b(δ)

E (̃GP ) =

⋃
m∈MP

E(m) with MP = {0, . . . , p
2 − 1} ∪ Mg (δ) ∪ M

1
b(δ) = Fp \ M

0
b(δ).

Consider the bijection ΦP :⎧⎪⎪⎪⎨⎪⎪⎪⎩
ΦP (ℓa,b) = (0, a, b) if a <

p
2

ΦP (ℓa,b) = (1, a +
p
2 , b + δ) if a ≥

p
2

ΦP (px,y) = (0, x +
p
2 , y) if x <

p
2

ΦP (px,y) = (1, x, y + δ) if x ≥
p
2

(1)

and the graphs GL = ΦL (̃GL) and GP = ΦP (̃GP ).
The girth and degrees of GL and GP are the same as in the previous case. The computation of the Cayley colors leads

to:

ω(GL) =

⋃
m<

p
2

{(1,m, a(m + a)) : a ∈ Fp} ∪

⋃
m∈Mg (δ)∪M0

b (δ)

{(1,m, a(m + a)) : a ∈ Fp}

ω(GP ) =

⋃
m≥

p
2

{(0,m +
p
2 , a(m + a)) : a ∈ Fp} ∪

⋃
m∈Mg (δ)∪M1

b (δ)

{(1,m, a(m + a) + δ) : a ∈ Fp}

oth sets are disjoint.
In both cases the graphs GL and GP satisfy the hypothesis of Theorem 2.1, when K is even, or Theorem 2.2, when K is

dd. The proof is complete. ■

The result in Theorem 3.1 depends on K and it requires the computation of this value. By definition, K ≥
p
4 . Then, if

= 2s
≥ 8, the conclusion of Theorem 3.1 holds when K is the even number p

4 .

heorem 3.2. Given s ≥ 3 and q = 22s+1, the following inequality holds:

n
(
q +

7
8

√
q
2 , 5

)
≤ 2q2.
5
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3.2. Case q = 22s

Now we consider an integer s ≥ 2, the prime powers p = 2s, q = 22s, the field Fp, the additive group F+
q and the

somorphism F+
q ≈ F+

2 ⊕ F+

p/2 ⊕ F+
p . As in Section 3.1, we are looking for suitable amalgamations into Cq, but this time

V (Cp)| = 2p2 while |Fq| = p2.
Define G̃L and G̃P as the subgraphs of Cp induced by the disjoint sets of vertices (∪a<p/2La)∪ (∪x<p/2Px) and (∪a≥p/2La)∪

∪x≥p/2Px), respectively. Clearly, |V (̃GL)| = |V (̃GP )| = p2 = q. Also, G̃L and G̃P are p/2-regular graphs because

E (̃GL) =

⋃
a<p/2

⋃
x<p/2

[La, Px], E (̃GP ) =

⋃
a≥p/2

⋃
x≥p/2

[La, Px].

Writing m = a + x and taking into account Remark 3.1, we have

E (̃GL) =

⋃
m<p/2

⋃
a<p/2

[La, Pm+a], E (̃GP ) =

⋃
m<p/2

⋃
a≥p/2

[La, Pm+a]

With these constructions, we are ready to prove the following result:

heorem 3.3. For an integer s ≥ 2 and prime powers p = 2s, q = 22s, there is a pair of graphs GL, GP of degrees rL = rP =
p
2

suitable for amalgamation into Cq. Then, n(q +
1
2
√
q, 5) ≤ 2q2.

roof. Consider the bijections ΦL : V (̃GL) → Fq defined as{
ΦL(ℓa,b) = (0, a, b)
ΦL(px,y) = (1, x, y),

and ΦP : V (̃GP ) → Fq such that{
ΦP (ℓa,b) = (0, a +

p
2 , b)

ΦP (px,y) = (1, x +
p
2 , y).

efine the graphs GL = ΦL (̃GL) and GP = ΦP (̃GP ). The computation of their Cayley colors is straightforward:

E(GL) =

⋃
m<p/2

⋃
a<p/2

{
(0, a, b)(1, m + a, a(m + a) + b) : b ∈ Fp

}
ω(GL) =

⋃
m<p/2

{(1,m, a(m + a)) : a <
p
2 }

E(GP ) =

⋃
m<p/2

⋃
a≥p/2

{
(0, a +

p
2 , b)(1, m + a +

p
2 , a(m + a) + b) : b ∈ Fp

}
ω(GP ) =

⋃
m<p/2

{(1,m, a(m + a)) : a ≥
p
2 },

If a0(m+ a0) = a1(m+ a1), then (a0 + a1)(m+ a0 + a1) = 0. Hence, a1 = a0 or a1 = m+ a0. In both cases, a0, a1 < p/2
or a0, a1 ≥ p/2 when m < p/2. Hence, ω(GL) ∩ ω(GP ) = ∅.

This proves that the p
2 -regular graphs GL and GP are suitable for amalgamation into Cq. By Theorem 2.1, the graph

Cq(GL,GP ) is (q +
p
2 )-regular with girth at least five and order 2q2. ■

Before proceeding to obtain more accurate bounds, let us notice that no Cayley color (0, 0, β) appears in the set
(GL) ∪ ω(GP ), where GL and GP are the graphs constructed in Theorem 3.1 and in Theorem 3.3.

. Refined bounds

We are now interested in increasing the degree of the graphs GL and GP constructed in Section 3. The technique involves
recursive construction with two pairs of graphs, one to be amalgamated into G̃L and the other into G̃P .

roposition 4.1. Let s ≥ 3 and p = 2s. If q = 2p2, let K , rL, rP be defined as in Theorem 3.1; and if q = p2, let rL, rP be
efined as in Theorem 3.3. Assume that H0

L , H
1
L , H

0
P , H

1
P are graphs with vertex set Fp and girth g ≥ 5. Additionally, consider

(i) H0
L , H

1
L have common degree sL.

(ii) H0
P , H

1
P have common degree sP .

(iii) The sets of Cayley colors of H0
L , H

1
L , H

0
P , H

1
P are pairwise disjoint in Fp.

hen, there exists a pair of suitable graphs GL, GP with vertex set Fq and degrees rL + sL, rP + sP respectively.
6
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Fig. 1. One pair of graphs H0
L and H1

L with disjoint Cayley colors in F16 .

Proof. Consider the bijections ΦL, ΦP and the graphs G̃L, G̃P provided in Theorem 3.1 for q = 2p2, or in Theorem 3.3 for
= p2.
By (i) and (iii), the pair H0

L , H
1
L is suitable for amalgamation into Cp, then also into its subgraph G̃L. Similarly, by

(ii) and (iii), the pair H0
P , H

1
P can be suitably amalgamated into G̃P . In order not to introduce more notation, let G̃L and G̃P

also denote the graphs resulting after these amalgamations. In the same way, let GL and GP hold for the graphs isomorphic
to G̃L and G̃P after applying the bijections ΦL and ΦP . These new graphs GL and GP have girth 5 and degrees rL + sL and
rP + sP , respectively.

The colors in Fq of the new edges of GL and GP form the subsets {(0, 0, β) : β ∈ ω(H0
L ) ∪ ω(H1

L )}, {(0, 0, β) : β ∈

ω(H0
P ) ∪ ω(H1

P )} of Fq, respectively. By (iii) both sets are disjoint. Also, as we have mentioned above, these colors are
different from the original ones of GL and GP . Hence, the new pair GL, GP is suitable for amalgamation into Cq. ■

Proposition 4.1 allows a slight improvement of Theorems 3.1 and 3.3. There is an easy way to construct the four graphs
required in this proposition.

Lemma 4.1. Let s ≥ 3 and p = 2s. Assume HL, HP are graphs with vertex set Fp/2, girth g ≥ 5, degrees sL, sP , and sharing no
Cayley color. Then, there exist four graphs H0

L , H
1
L , H

0
P , H

1
P verifying the hypothesis of Proposition 4.1.

Proof. Let us identify F+
p ≈ F+

p/2 ⊕ F+

2 . Define graphs H0
L , H

1
L with vertex set Fp and edge sets

E(H0
L ) = {(u, 0)(v, 0) : uv ∈ E(HL)} ∪ {(u, 1)(v, 1) : uv ∈ E(HL)}

E(H1
L ) = {(u, 0)(v, 1) : uv ∈ E(HL)} ∪ {(u, 1)(v, 0) : uv ∈ E(HL)}

Similarly, define graphs H0
P , H1

P . It is straightforward to see that H0
L , H1

L , H0
P , H1

P satisfy the hypothesis of
Proposition 4.1. ■

5. Small cases

We apply the refined bounds described in Section 4 to some particular cases. Moreover, we also describe an iterative
process that makes feasible to provide better bounds.

In [1] the authors construct two pairs of suitable graphs with vertex sets F25 and F26 with degrees 5 and 6 respectively.
Consequently, bounds n(32 + 5, 5) ≤ 2 · 322 and n(64 + 6, 5) ≤ 2 · 642 were established. In [2], (see Table 2 and
inequality (2) in Remark 2.1), thanks to suitable amalgamations into the elliptic semiplanes L127 and L257, the bounds
n(127 + 10 − 1, 5) ≤ 2(127 + 1 − 1)(127 − 1) = 32004 and n(257 + 12 − 3, 5) ≤ 2(257 + 1 − 3)(257 − 1) = 130560
were established. In this paper we get the less accurate bounds n(27

+ 8, 5) = n(136, 5) ≤ 2 · (27)2 − 27
= 32640 and

n(28
+ 10, 5) = n(266, 5) ≤ 2 · (28)2 − 28

= 130816. Let us continue with some more values.

• q = 29
= 512

We have q = 2p2 with p = 24. Let us represent the elements of F16 by the integers 0, . . . , 15 and consider that
F16 ≃ F2[X]/(X4

+ X + 1). Computations lead to the value K = 6 and, by Theorem 3.1, there is a suitable pair of
regular graphs with degrees rL = rP = 15.
To increase the degree of these graphs consider the 3-regular graphs H0

L , H
1
L displayed in Fig. 1 and the 2-regular

graphs H0
P , H

1
P in Fig. 2. They have girth 6 and 8 respectively. Since ω(H0

L ) = {1, 2, 4, 8}, ω(H1
L ) = {7, 11, 13, 14},

ω(H0) = {3, 6, 12} and ω(H1) = {5, 9, 10} any two of these graphs have disjoint sets of colors in F .
P P p

7
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Fig. 2. Another pair of graphs H0
P and H1

P with disjoint Cayley colors in F16 .

Fig. 3. (4, 6)-graphs H0
L and H1

L with disjoint Cayley colors in F32 .

Using Proposition 4.1 we construct graphs GL, GP of degrees 18, 17 respectively, suitable for amalgamation into C29 .
According to Theorem 2.2, we have the bound n(29

+ 17) ≤ 2 · (29)2 − 29
= 2 · 29 (29

−
1
2 ) and, more generally,

n(k, 5) ≤ 2 · 29(k − 17 −
1
2 ) for k ≤ 29

+ 17. Actually, this is a record bound when 29
+ 5 ≤ k ≤ 29

+ 17.
• q = 210

= 1024
Now q = p2 with p = 25

= 32. By Theorem 3.3, there is a suitable pair of regular graphs with degrees rL = rP = 16.
Consider the (4, 6)-regular graphs H0

L , H
1
L in Fig. 3 and the (3, 6)-regular graphs H0

P , H
1
P in Fig. 4. The sets of Cayley

colors in F32 are ω(H0
L ) = {1, 7, 11, 15, 23, 27, 31}, ω(H1

L ) = {3, 5, 9, 13, 21, 25, 29}, ω(H0
P ) = {17, 18, 20, 24},

ω(H1
P ) = {2, 4, 6, 8, 10, 12, 14, 16, 22, 26, 28, 30}. Any two of these sets are disjoint.

By using Proposition 4.1 we construct the new suitable pair of graphs GL, GP with degrees 20, 19 respectively.
Theorem 2.2 states n(210

+ 19) ≤ 2 · 210(210
−

1
2 ) and the new record bound n(k, 5) ≤ 2 · 210(k − 19 −

1
2 ) for

210
+ 16 ≤ k ≤ 210

+ 19.
• q = 211

= 2048
Again, p = 25. Computations in F32 ≃ F2[X]/(X5

+ X2
+ 1) lead to the value K = 11. By Theorem 3.1 there are two

suitable graphs GL, GP of degrees 3p/4 + ⌈K/2⌉ = 30 and 3p/4 + ⌊K/2⌋ = 29.
By using again the graphs H0

L , H
1
L , H

0
P , H

1
P provided in Figs. 3 and 4 together with Proposition 4.1 we construct the

new suitable 33-regular graphs GL, GP . Theorem 2.1 establishes the new record bound n(k, 5) ≤ 2 · 211(k − 33) for
211

+ 3 ≤ k ≤ 211
+ 33.

• q = 212
= 4096

Now p = 26
= 64 and q = p2. In [1] the authors give a pair of suitable graphs with vertex set F25 and degree

5. By Lemma 4.1, there are four graphs with vertex set F26 verifying the hypothesis of Proposition 4.1. Then, by
Theorem 3.3, we obtain a suitable pair of graphs GL and GP , both with degree 26/2 + 5 = 37, and the associated
bound n(212

+ 37, 5) ≤ 2(212)2.
8
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Fig. 4. (3, 6)-graphs H0
P and H1

P with disjoint Cayley colors in F32 .

We summarize the last results:

Theorem 5.1. The following upper bound on the minimum order of a (k, 5)-graph holds

q k rec(k, 5)

29 29
+ 5 ≤ k ≤ 29

+ 17 2 · 29(k − 17 −
1
2 )

210 210
+ 16 ≤ k ≤ 210

+ 19 2 · 210(k − 19 −
1
2 )

211 211
+ 3 ≤ k ≤ 211

+ 33 2 · 211(k − 33)

212 212
+ 29 ≤ k ≤ 212

+ 37 2 · 212(k − 37)

Alternating Theorems 3.2 and 3.3, the process used for q = 212 could indefinitely be applied to obtain refined bounds
associated to greater powers of two.
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