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J. CASADO-DÍAZ† M. LUNA-LAYNEZ† F.J. SUÁREZ-GRAU†
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Abstract. In order to study the asymptotic behavior of a fluid in a domain of small thickness ε,
it is common to use that the norm of the pressure pε in Lq, q > 1, is smaller than C‖∇pε‖W−1,q/ε.
Our purpose in the present paper is to improve this estimate by showing that in fact pε can be
decomposed as the sum of two terms: the first one is of order 1/ε with respect to ∇pε but it
belongs to the Sobolev space W 1,q and not only to Lq; the second one only belongs to Lq but it
is of order one with respect to ∇pε. This result also allows us to improve the classical estimate
for Korn’s constant in an elastic thin domain providing a decomposition of the deformation
which contains terms with a stronger regularity. The advantage of these expansions is that
they simplify the study of the asymptotic behavior of continuum mechanics problems in thin
domains since they give an additional compactness. As examples we provide two applications
in fluid mechanics and linear elasticity.
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1 Introduction

In order to obtain an estimate for the pressure of a fluid in a given domain, it is usual to apply
the following result (see e.g. [17], [23], [24]): for every smooth connected bounded domain
Ω ⊂ RN , there exists C > 0, such that for every p ∈ L2(Ω) with null mean value on Ω, one has

‖p‖L2(Ω) ≤ C‖∇p‖H−1(Ω)N . (1.1)

However, this constant C depends on the geometry of Ω and then, if we deal with a sequence
of partial differential problems in varying domains, it is necessary to study the variation of this
constant with respect to the domain. An important example is the case of problems posed in
thin domains. To fix ideas let us consider two smooth connected bounded open sets ω ⊂ Rk
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and ϑ ⊂ RN−k with N ≥ 2, 1 ≤ k ≤ N − 1. Then, for a small parameter ε > 0, we define the
sequence of thin domains Ωε ⊂ RN by

Ωε = ω × (εϑ). (1.2)

In this case it is known that the corresponding constant in (1.1), which we now denote as Cε,
can be estimated by

Cε ≤
C

ε
, (1.3)

with C independent of ε. As a classical application, we consider the Stokes problem in Ωε
−∆uε +∇pε = f in Ωε,

div uε = 0 in Ωε,

uε = 0 on ∂Ωε,

with f ∈ L2(ω)N . Multiplying the first equation by uε and using that the Poincaré constant in
Ωε is of order ε we easily deduce

1

ε2
−
∫

Ωε

|Duε|2dx bounded,

where −
∫

Ωε
vdx denotes the mean value 1

|Ωε|

∫
Ωε
v dx. Then (1.3) shows that choosing pε with null

integral, we also have

−
∫

Ωε

|pε|2dx bounded.

This proves that, at least for a subsequence, there exists p ∈ L2(ω) such that (we use the
notation x′ = (x1, . . . , xk), x

′′ = (xk+1, . . . , xN))

−
∫
εϑ

pε dx
′′ ⇀ p in L2(ω). (1.4)

It is well known that in fact it is not necessary to extract any subsequence and that the function
p is the solution of the Reynolds problem{

−divM
(
∇p− f ′

)
= 0 in ω,

M
(
∇p− f ′

)
· ν = 0 on ∂ω,

(1.5)

with f ′ = (f1, ..., fk), ν the outward unitary normal vector to ω and M ∈ Rk2 a definite positive
symmetric matrix which depends on ϑ. By (1.4) we expect p to only belong to L2(ω) but
since it is the solution of (1.5) we get surprisingly that p is smoother: it is in H1(ω). This
phenomenon of regularity gain also appears in several other related examples.

Our aim in this paper is to show that in fact the estimate

‖pε‖L2(Ωε) ≤
C

ε
‖∇pε‖H−1(Ωε)N , ∀ pε ∈ L2(Ωε),

∫
Ωε

pε dx = 0,

for Ωε as above can be improved. Namely, we show that if pε ∈ L2(Ωε) has null mean value,
then it can be decomposed as

pε(x) =
1

ε
p0
ε(x
′) + p1

ε(x) a.e. x ∈ Ωε, (1.6)
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with p0
ε ∈ H1(ω) and p1

ε ∈ L2(Ωε) satisfying

‖p0
ε‖H1(Ωε) + ‖p1

ε‖L2(Ωε) ≤ C‖∇pε‖H−1(Ωε)N , (1.7)

with C independent of ε and pε. Applying this result to the previous example, we get that p1
ε

can be neglected because

−
∫

Ωε

|p1
ε|2dx ≤ Cε2,

and that p is the limit in the weak topology of H1(ω) of the sequence p0
ε/ε. So, the fact that p

is in H1(ω) is just a consequence of the decomposition theorem, without the need for p to be
the solution of any partial differential problem.

Our results refer to more general domains Ωε than the one described by (1.2) (see the
beginning of Section 3 for the precise assumptions) which include thin domains with rough
boundaries. Besides, more generally than the Hilbert framework pε ∈ L2(Ωε) we just consider
pε ∈ Lq(Ωε) with 1 < q <∞. A similar result was obtained in [11] in a simple framework.

A well known important application of (1.1) is that it provides an easy proof of Korn
inequality in elasticity. In this way, we use the previous decomposition result (1.6), (1.7) to
get a decomposition for a sequence of elastic deformations uε ∈ W 1,q(Ωε)

N . For Ωε defined by
(1.2) (the result holds for more general domains) the decomposition reads as

uε(x) = φε(x) +

 −Dx′u
0
ε(x
′)t
x′′

ε
1

ε
u0
ε(x
′) + Zε(x

′)
x′′

ε

+ vε(x), a.e. x ∈ Ωε, (1.8)

where φε is a rigid displacement, i.e. φε(x) = aε+Aεx with aε ∈ RN , Aε ∈ RN2
skew-symmetric,

vε belongs to W 1,q(Ωε)
N , Zε belongs to W 1,q(ω)(N−k)2 and is skew-symmetric and the sequence

u0
ε belongs to the space of smoother functions W 2,q(ω)N−k. Moreover, we have

‖u0
ε‖W 2,q(Ωε)N−k + ‖Zε‖W 1,q(Ωε)(N−k)

2 + ‖vε‖W 1,q(Ωε)N ≤ C‖e(uε)‖Lq(Ωε)N2 ,

where as usual, e(uε) denotes the symmetric part of the derivative matrix of uε, and where the
constant C does not depend on uε or ε.

In the case N = 3, k = 1, 2 some similar decompositions to (1.8) have been proved in [6] and
[18] but in these results all the terms are in the space W 1.q(Ωε). Here the main novelty is the
stronger regularity u0

ε ∈ W 2,q(ω)N−k. This is related to the fact that the classical models for
elastic beams and plates correspond to fourth order equations whose solutions are in W 2,q(ω).

The main interest of the results stated above is that they allow us to simplify the study of
the asymptotic behavior of continuum mechanics problems posed in thin domains which can
have a rough boundary. The presence of terms with a stronger regularity in the decompositions
(1.6) and (1.8) provides an additional compactness which allow us to easily pass to the limit
in the product of some terms which other would only converge in a weak topology. As an
application we consider in Sections 5 and 6 of the paper the following two examples:

In the first example we study the asymptotic behavior of a viscous fluid in the rough domain

Ωε =

{
(x′, x3) ∈ ω × R : εΨb

(x′
ε

)
< x3 < εΨt

(x′
ε

)}
,

where ω is a smooth bounded open set in R2 and Ψb, Ψt are periodic Lispchtiz functions.
In the second example we consider an anisotropic non-homogeneous elastic beam whose

geometry is more general than (1.2) with k = 1. For this example our results extend the ones
obtained in [20] (see also [9], [12], [16], [25]).
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2 Some notations and definitions

• We denote by {e1, ..., eN} the usual basis in RN .

• For k,N ∈ N, N ≥ 2, k < N , we decompose the elements x ∈ RN as x = (x′, x′′)
with x′ ∈ Rk, x′′ ∈ RN−k. By x′ and x′′ we also denote generic points in Rk and RN−k

respectively. Confusions are avoided by the context.

• We define π′ : RN −→ Rk, π′′ : RN −→ RN−k as the projections of RN into Rk and RN−k

respectively, i.e.
π′(x) = x′, π′′(x) = x′′, ∀x = (x′, x′′) ∈ RN .

• By Bd(η, r) and Bd(η, r) we denote the open and closed ball of Rd of center η ∈ Rd and
radius r > 0.

• Given h > 0, θ ∈ (0, π/2) and a unitary vector ξ′ ∈ Rk, we denote by C(ξ′, h, θ) the open
cone of Rk with vertex at the origin, angle 2θ, height h, and axis in the direction of ξ′,
i.e.

C(ξ′, h, θ) =
{
z′ ∈ Rk : |z′| cos θ < z′ · ξ′ < h

}
.

• For m ∈ N, we denote Rm2

s and Rm2

a the space of symmetric and skew-symmetric (or
antisymmetric) m×m matrices. We also use the indexes s and a for spaces of functions
with values in the space of symmetric or skew-symmetric matrices respectively. For
example Lp(Ω)m

2

s and Lp(Ω)m
2

a denote the spaces Lp(Ω;Rm2

s ) and Lp(Ω;Rm2

a ) respectively.

• Given a mesurable set A ⊂ Rd, we denote its d-dimensional measure by |A|d. When the
value of d is clear by the context, we simply write |A|. We denote −

∫
A
v dx the mean value

1
|A|

∫
A
vdx.

• For u ∈ W 1,q(Θ)m with Θ ⊂ Rm open, m ≥ 1, we denote by Du the derivative of u, and
by e(u) and a(u) the symmetric and skew-symmetric parts of Du, namely

e(u) =
1

2

(
Du+DuT

)
, a(u) =

1

2

(
Du−DuT

)
.

• C > 0 denotes a generic constant which can change from line to line.

• Oε denotes a generic sequence depending on the positive parameter ε which tends to zero
when ε goes to zero. This sequence can change from line to line.

3 Decomposition results for the pressure and the elastic

deformation in thin domains

The goal of the present section is to state the main results of the paper which, as announced
in the introduction, are concerned with a decomposition result for the pressure of a fluid and
for the elastic deformation of a solid body in a domain Ωε of thickness of (small) order ε. The
proof of these results will be carried out in Section 4.

We start by stating the precise assumptions that we impose to the sequence of thin domains.

For ε > 0 we denote by Ωε an open set of RN and we define ωε and B̂(x′, ε) by

ωε = π′(Ωε), (3.1)
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B̂(x′, ε) =
{
z ∈ Ωε : z′ ∈ Bk(x

′, ε)
} (

= Ωε ∩
(
Bk(x

′, ε)× RN−k)), ∀x′ ∈ ωε. (3.2)

We assume that

i) There exist r, R > 0 such that for every ε > 0, we have

ωε ×BN−k(0, rε) ⊂ Ωε ⊂ ωε ×BN−k(0, Rε). (3.3)

ii) There exist h > 0, θ ∈ (0, π/2) such that for every ε > 0 and every x′ ∈ ωε there exists
ξ′x′ ∈ Rk, with |ξ′x′ | = 1, which satisfies

z′ + C(ξ′x′ , εh, θ) ⊂ ωε, ∀z′ ∈ Bk(x
′, ε) ∩ ωε. (3.4)

iii) There exist Λ > 0 and q > 1 such that for every ε > 0 and every x′ ∈ ωε, we have∥∥∥∥pε −−∫
B̂(x′,ε)

pε dz

∥∥∥∥
Lq(B̂(x′,ε))

≤ Λ‖∇pε‖W−1,q(B̂(x′,ε))N , ∀ pε ∈ Lq(B̂(x′, ε)). (3.5)

Remark 3.1 Taking into account that for a smooth, connected open set the norm in Lq of a
function can be estimated by the norm of its gradient in W−1,q (see e.g. [17], [23], [24]) an
elementary example of Ωε satisfying (3.3)-(3.5) is given by

Ωε = ω × (εϑ), ∀ε > 0, (3.6)

with ω ⊂ Rk, ϑ ⊂ RN−k connected Lipschitz open sets such that 0 ∈ ϑ.
Assumptions (3.3), (3.4) and (3.5) given above hold true for domains which are much more

general than (3.6). For example we can take ω and ϑ in (3.6) varying with ε. Specially, we are
interested in the case of rough domains, some examples of which are given in Sections 5 and 6.

Our first result is the following theorem which provides a special decomposition for any
function whose gradient is in W−1,q(Ωε)

N .

Theorem 3.2 Let Ωε be a sequence of open sets in RN (not necessarily bounded) satisfying
(3.3), (3.4) and (3.5). Then there exists C > 0 such that for every ε > 0 and every pε ∈ Lq(Ωε)
there exist p0

ε ∈ H1(ωε) and p1
ε ∈ Lq(Ωε) which satisfy

pε(x) =
1

ε
p0
ε(x
′) + p1

ε(x) a.e. x ∈ Ωε, (3.7)

ε
N−k
q ‖∇p0

ε‖Lq(ωε)k + ‖p1
ε‖Lq(Ωε) ≤ C‖∇pε‖W−1,q(Ωε)N . (3.8)

Moreover, p0
ε and p1

ε can be chosen linearly dependent on pε.

Remark 3.3 Since p0
ε does not depend on x′′ and (3.3) is satisfied, we can also write (3.8) as

‖∇p0
ε‖Lq(Ωε)N + ‖p1

ε‖Lq(Ωε) ≤ C‖∇pε‖W−1,q(Ωε)N . (3.9)

The function p0
ε which we obtain in the proof of Theorem 3.2 is not only in H1(ωε) but in

C∞(ωε). However, we can only estimate the norm of p0
ε in H1(ωε).

Inequality (3.8) only provides an estimate for ∇p0
ε and not for p0

ε. As usual (for ωε connected
and bounded) we can also estimate p0

ε in Lq(Ωε) if we take p0
ε with null mean value, but for this

purpose we need to assume that a Poincaré inequality holds in ωε. The corresponding result is
given by
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Corollary 3.4 Let Ωε be a sequence of connected bounded open sets in RN satisfying (3.3),
(3.4) and (3.5). Let us also assume that there exists C > 0 such that∥∥∥∥wε −−∫

ωε

wε dz
′
∥∥∥∥
Lq(ωε)

≤ C‖∇wε‖Lq(ωε)k , ∀wε ∈ W 1,q(ωε), ∀ε > 0. (3.10)

Then, there exists another constant C > 0 such that for every ε > 0 and every pε ∈ Lq(Ωε)
there exist p0

ε ∈ H1(ωε) and p1
ε ∈ Lq(Ωε) which satisfy

pε(x) = −
∫

Ωε

pε dz +
1

ε
p0
ε(x
′) + p1

ε(x) a.e. x ∈ Ωε, (3.11)

ε
N−k
q ‖p0

ε‖W 1,q(ωε) + ‖p1
ε‖Lq(Ωε) ≤ C‖∇pε‖W−1,q(Ωε)N . (3.12)

Remark 3.5 Corollary 3.4 proves in particular the existence of C > 0 such that∥∥∥∥pε −−∫
Ωε

pε dx

∥∥∥∥
Lq(Ωε)

≤ C

ε
‖∇pε‖W−1,q(Ωε)N , ∀pε ∈ Lq(Ωε), ∀ ε > 0. (3.13)

In fluid mechanics, this is the classical estimate for the pressure when one deals with a thin
domain of thickness ε. However, Corollary 3.4 provides a more precise information. The term
1/εp0

ε which appears in (3.11) is estimated not only in Lq(Ωε) but in W 1,q(Ωε). Moreover, it
only depends on x′. To this term we need to add p1

ε which is just in Lq(Ωε) but it is of order
one.

It is well known that the estimate of ‖pε‖Lq(Ωε) in terms of ‖∇pε‖W−1,q(Ωε)N can be used to
prove Korn’s inequality. In this sense, we can use Theorem 3.2 to prove

Theorem 3.6 Let Ωε be a sequence of connected open bounded sets in RN satisfying (3.3),
(3.4) and (3.5). Let us also assume that there exists C > 0 such that∥∥∥∥wε −−∫

ωε

wε dz
′
∥∥∥∥
Lq(ωε)

≤ C‖∇wε‖W−1,q(ωε)k , ∀wε ∈ Lq(ωε), ∀ε > 0. (3.14)

Then there exists another constant C > 0 such that for every ε > 0 and every uε ∈ W 1,q(Ωε)
N

there exist aε ∈ RN , Aε ∈ RN2

a , u0
ε ∈ W 2,q(ωε)

N−k, vε ∈ W 1,q(Ωε)
N , and Zε ∈ W 1,q (ωε)

(N−k)2

a

which satisfy

uε(x) = aε + Aεx+

 −Dx′u
0
ε(x
′)t
x′′

ε
1

ε
u0
ε(x
′) + Zε(x

′)
x′′

ε

+ vε(x), (3.15)

ε
N−k
q ‖u0

ε‖W 2,q(ωε)N−k + ε
N−k
q ‖Zε‖W 1,q(ωε)

(N−k)2
a

+ ‖vε‖W 1,q(Ωε)N ≤ C‖e(uε)‖Lq(Ωε)N2 . (3.16)

Moreover, aε, Aε, u
0
ε, vε, and Zε can be chosen linearly dependent on uε.

Remark 3.7 Theorem 3.6 in particular proves the existence of C > 0 such that

‖uε − aε − Aεx‖W 1,q(Ωε)N ≤
C

ε
‖e(uε)‖Lq(Ωε)N2 , ∀uε ∈ W 1,q(Ωε)

N , ∀ ε > 0.

In linear elasticity problems, this is the estimate for the displacement when we deals with thin
domains of thickness ε. However, Theorem 3.6 provides a more precise information. It shows
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that the terms with derivatives of order 1/ε have a very particular structure, and that they
correspond to a Bernouilli-Navier displacement and a torsion term given by −Dx′u

0
ε(x
′)t
x′′

ε
1

ε
u0
ε(x
′)

 and

 0

Zε(x
′)
x′′

ε

 ,

respectively. Related results for N = 3 and k = 1, 2 have been obtained in [6] and [18]. The
main difference is that our function u0

ε belongs to the Sobolev space W 2,q(ωε)
N−k, while the

corresponding function in these references only belongs to W 1,q(ωε)
N−k.

4 Proof of the decomposition results stated in Section 3

Let us now prove in this section the results stated in the previous one. We start with the proof
of Theorem 3.2.

Proof of Theorem 3.2. The proof is divided into 5 steps. The first one is devoted to construct
a suitable partition of the unity of ωε. This is necessary to deal with assumption (3.4) where
the vertex and the axis of the cones vary on ∂ωε. In the second step we define a certain mollifier
sequence associated to the partition of the unity defined in Step 1. In the third step we use
this mollifier sequence and the partition of the unity to define the functions p0

ε and p1
ε in the

thesis of Theorem 3.2. In the fourth and fifth steps we prove estimate (3.8).
Before of starting the proof, we remark that in assumption (3.4) h can be chosen as small

as we want. Thus, it is not restrictive to assume in the following that

h <
1

2
. (4.1)

Step 1. Let us prove that there exists m ∈ N which only depends on k such that for every ε > 0
there exists a set of indices Iε at most countable and points x′ε,i ∈ ωε, i ∈ Iε, satisfying that

ωε ⊂
⋃
i∈Iε

Bk(x
′
ε,i, ε/4), (4.2)

and
card

( {
i ∈ Iε : Bk(x

′
ε,i, ε/2) ∩Bk(x

′
ε,l, ε/2) 6= ∅

} )
≤ m, ∀l ∈ Iε, (4.3)

i.e. each ball Bk(x
′
ε,i, ε/2) intersects at most m balls. Moreover, there exist φiε ∈ C∞(ωε),

i ∈ Iε, such that

supp(φiε) ⊂ Bk(x
′
ε,i, ε/2) ∩ ωε, 0 ≤ φiε ≤ 1, |∂αx′φiε| ≤

Cα
ε|α|

in ωε, ∀α ∈ Nk, ∀ i ∈ Iε, (4.4)∑
i∈Iε

φiε = 1 in ωε, (4.5)

where Cα is a positive constant independent of i and ε, but depending on α.

For the proof, we apply Vitali’s covering theorem to the closed balls Bk(x
′, ε/20), with

x′ ∈ ωε. It gives the existence of a set of indices Iε at most countable and points x′ε,i ∈ ωε,

i ∈ Iε, satisfying (4.2), and such that the balls Bk(x
′
ε,i, ε/20), i ∈ Iε, are disjoint. In particular,

this proves the existence of m depending just on the dimension k such that (4.3) holds.
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Now, for ψ ∈ C∞c (Rk), ψ ≥ 0, supp(ψ) ⊂ Bk(0, 1/2), and ψ > 0 in Bk(0, 1/4), we define

ψlε(x
′) = ψ

(
x′ − x′ε,l

ε

)
, φlε(x

′) =
ψlε(x

′)∑
i∈Iε

ψiε(x
′)
, ∀x′ ∈ ωε, ∀l ∈ Iε. (4.6)

Then, it is easy to check that (4.4)-(4.5) hold true.
For the following, we observe that (4.5) also implies∑

i∈Iε

∂jφ
i
ε = 0 in ωε, ∀ j ∈ {1, · · · , k}. (4.7)

Step 2. Associated to the points x′ε,i, i ∈ Iε, of Step 1, we denote

Ciε = C(ξ′x′ε,i , εh, θ)×BN−k(0, rε), ∀ i ∈ Iε ε > 0, (4.8)

with ξx′ε,i , h and θ given by (3.4).

Let us prove that for every ε > 0 and every i ∈ Iε, there exists ρiε in C∞c (RN) satisfying

supp(ρiε) ⊂ −Ciε,
∫
RN
ρiε dx = 1,

∫
RN
x ρiε dx = 0, ‖ρiε‖L∞(RN ) + ε‖∇ρiε‖L∞(RN )N ≤

C

εN
, (4.9)

where C does not depend on ε or i.
In order to prove this property, let us first show that there exists ρ ∈ C∞c (BN(e1, sin θ))

such that ∫
RN
ρ dy = 1,

∫
RN
y ρ dy = 0. (4.10)

Once this is proved, taking P i
ε : RN → RN a rotation such that P i

ε(ξx′ε,i) = −e1, we get that

ρiε(x) =
2N

(hε)N
ρ

(
P i
ε

(
2x

hε

))
,

satisfies (4.9). To show the existence of a such ρ ∈ C∞c (BN(e1, sin θ)) satisfying (4.10), we
define L : C∞c (BN(e1, sin θ))→ R1+N by

Lψ =

(∫
RN
ψ dy,

∫
RN
y ψ dy

)
, ∀ψ ∈ C∞c (BN(e1, sin θ)).

Our aim is to show that L is surjective. For this purpose, we take (a0, a) ∈ Range(L)⊥, then∫
RN

(a0 + a · y)ψ dy = 0, ∀ψ ∈ C∞c (BN(e1, sin θ)),

which shows that a0 + a · y vanishes in BN(e1, sin θ) and then that (a0, a) = (0, 0). This proves
that the orthogonal of Range(L) is the null space. Since Range(L) is closed because it is of
finite dimension we get L surjective.

Step 3. For every ε > 0 and i ∈ Iε, we denote

Bi
ε = ωε ∩Bk(x

′
ε,i, ε) ⊂ Rk, Ei

ε = ωε ∩Bk

(
x′ε,i,

ε

2

)
⊂ Rk

B̂i
ε =

{
x ∈ Ωε : x′ ∈ Bk(x

′
ε,i, ε)

}
⊂ RN , Êi

ε =
{
x ∈ Ωε : x′ ∈ Bk

(
x′ε,i,

ε

2

)}
⊂ RN ,
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and we take φiε ∈ C∞(ωε) and ρiε ∈ C∞c (RN) as the functions given in Steps 1 and 2 respectively.
Then, for pε in Lq(Ωε), with q > 1, we define p0

ε ∈ C∞(ωε) and p1
ε ∈ Lq(Ωε) by

p0
ε(x
′) = ε

∑
i∈Iε

φiε(x
′)(ρiε ∗ pε)(x′, 0), ∀x′ ∈ ωε, (4.11)

p1
ε(x) = pε(x)− 1

ε
p0
ε(x
′), ∀x = (x′, x′′) ∈ Ωε, (4.12)

where as usual

(ρiε ∗ pε)(x′, 0) =

∫
Ωε

pε(y)ρiε(x
′ − y′,−y′′) dy, ∀x′ ∈ ωε, ∀ i ∈ Iε. (4.13)

Observe that p0
ε and p1

ε depend linearly on pε. Our aim is to prove that these functions
satisfy the results stated in Theorem 3.2. Equality (3.7) is evident. Thus we just need to prove
estimate (3.8).

We define ηε as the unique solution of

−div (|Dηε|q
′−2Dηε) = ∇pε in Ωε, ηε ∈ W 1,q′

0 (Ωε)
N . (4.14)

The existence of ηε follows from (3.3), which implies Poincaré’s inequality

‖v‖Lq′ (Ωε)N ≤ Cε‖Dv‖Lq′ (Ωε)N2 , ∀ v ∈ W 1,q′

0 (Ωε)
N .

The introduction of ηε is necessary to estimate the norm of ∇pε in the negative Sobolev
space W−1,q(Ωε). Observe that ηε satisfies:

‖∇pε‖W−1,q(Ωε)N = ‖Dηε‖q
′−1

Lq′ (Ωε)N
2 , (4.15)

‖∇pε‖W−1,q(O)N ≤ ‖Dηε‖q
′−1

Lq′ (O)N2 , ∀O ⊂ Ωε open. (4.16)

Thus, to show (3.8) (see also (3.9)) it is equivalent to prove the existence of C > 0 such that

‖p1
ε‖Lq(Ωε) ≤ C‖Dηε‖q

′−1

Lq′ (Ωε)N
2 , (4.17)

‖∇p0
ε‖Lq(Ωε)N ≤ C‖Dηε‖q

′−1

Lq′ (Ωε)N
2 . (4.18)

These estimates are proved in the remainding two steps.

Step 4. Proof of (4.17): For every ε > 0 and i ∈ Iε, we set

mi
ε = −

∫
B̂iε

pε dz.

Thanks to (3.4), (4.5), (4.9), (4.11) and (4.12), we can write

p1
ε(x) =

∑
i∈Iε

φiε(x
′)(pε(x)−mi

ε) +
∑
i∈Iε

φiε(x
′)(ρiε ∗ (mi

ε − pε))(x′, 0), a.e. x ∈ Ωε. (4.19)

By (4.4) and (4.5), the first term on the right hand side is a convex combination of the terms
pε −mi

ε, with i ∈ Iε. Using also (3.5), (4.16), (4.4) and (4.3), we have∫
Ωε

∣∣∣∣∣∑
i∈Iε

φiε(x
′)(pε(x)−mi

ε)

∣∣∣∣∣
q

dx ≤
∑
i∈Iε

∫
Êiε

|pε(x)−mi
ε|qdx

≤ C
∑
i∈Iε

‖∇pε‖qW−1,q(B̂iε)
N
≤ C

∑
i∈Iε

‖Dηε‖q
′

Lq′ (B̂iε)
N2 ≤ C‖Dηε‖q

′

Lq′ (Ωε)N
2 .

(4.20)
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For the second term on the right hand side of (4.19), a similar reasoning using convexity, (4.4),
(3.3), (3.5), (4.9), (4.16) and (4.3), provides∫

Ωε

∣∣∣∣∣∑
i∈Iε

φiε(x
′)(ρiε ∗ (mi

ε − pε))(x′, 0)

∣∣∣∣∣
q

dx ≤
∑
i∈Iε

∫
Êiε

∣∣(ρiε ∗ (mi
ε − pε))(x′, 0)

∣∣q dx
≤
∑
i∈Iε

|Êi
ε| ‖(ρiε ∗ (mi

ε − pε))(·, 0)‖q
L∞(Eiε)

≤ CεN
∑
i∈Iε

‖ρiε‖
q

Lq′ (−Ciε)
‖mi

ε − pε‖
q

Lq(B̂iε)

≤ C
∑
i∈Iε

‖∇pε‖qW−1,q(B̂iε)
N
≤ C‖Dηε‖q

′

Lq′ (Ωε)N
2 .

(4.21)

From (4.19), (4.20) and (4.21) we get (4.17).

Step 5 . Proof of (4.18): By (4.5), (4.7), (4.9) and (4.11) we have

∇x′p
0
ε(x
′) = ε

∑
i∈Iε

∇x′φ
i
ε(x
′)(ρiε ∗ (pε −mi

ε))(x
′, 0) + ε

∑
i∈Iε

∇x′φ
i
ε(x
′)
(
mi
ε − pε(x)

)
+ε
∑
i∈Iε

φiε(x
′)
(
∇x′ρ

i
ε ∗ pε

)
(x′, 0), a.e. x ∈ Ωε.

(4.22)

To estimate the first term on the right hand side we reason similarly to (4.21) using Hölder’s
inequality combined with (4.3), instead of convexity. We get∫

Ωε

∣∣∣∣∣∑
i∈Iε

∇x′φ
i
ε(x
′)(ρiε ∗ (pε −mi

ε))(x
′, 0)

∣∣∣∣∣
q

dx

≤
∫

Ωε

(∑
i∈Iε

|∇x′φ
i
ε(x
′)|q′
) q

q′∑
i∈Iε

χÊiε(x)|(ρiε ∗ (pε −mi
ε))(x

′, 0)|q dx

≤ C

εq

∑
i∈Iε

∫
Êiε

|(ρiε ∗ (pε −mi
ε))(x

′, 0)|qdx ≤ C

εq
‖Dηε‖q

′

Lq′ (Ωε)N
2 .

(4.23)

For the second term on the right hand side of (4.22), we use again Hölder’s inequality
combined with (4.4), (4.3), (3.5) and (4.16), which provides∫

Ωε

∣∣∣∣∣∑
i∈Iε

∇x′φ
i
ε(x
′)(pε(x)−mi

ε)

∣∣∣∣∣
q

dx ≤ C

εq

∑
i∈Iε

∫
Êiε

|pε(x)−mi
ε|qdx ≤

C

εq
‖Dηε‖q

′

Lq′ (Ωε)N
2 .

(4.24)
For the last term in (4.22), we define for every x′ ∈ Bk(x

′
ε,i, ε/2), the function hiε by hiε(y) =

ρiε(x
′ − y′,−y′′). By (4.9), (3.4) and (4.1), it has support contained in (x′, 0) + Ciε ⊂ B̂i

ε and
satisfies

‖hiε‖W 1,q′
0 (B̂iε)

≤ ‖∇ρiε‖L∞(RN )N |B̂i
ε|1/q

′ ≤ C

ε
N
q

+1
.

Using this function, for every j ∈ {1, · · · , k}, we have∣∣∣(∂xjρiε ∗ pε)(x′, 0)
∣∣ =

∣∣∣∣∫
Ωε

∂xjρ
i
ε(x
′ − y′,−y′′)pε(y)dy

∣∣∣∣ =

∣∣∣∣∫
(x′,0)+Ciε

∂xjρ
i
ε(x
′ − y′,−y′′)pε(y)dy

∣∣∣∣
=

∣∣∣∣−∫
(x′,0)+Ciε

∂yjh
i
εpε dy

∣∣∣∣ =
∣∣∣〈∂yjpε, hiε〉W−1,q(B̂iε),W

1,q′
0 (B̂iε)

∣∣∣ ≤ C

ε
N
q

+1
‖∇pε‖W−1,q(B̂iε)

N .
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From this estimate, using convexity, (4.3) and (4.16), we deduce∫
Ωε

∣∣∣∣∣∑
i∈Iε

φiε(x
′)(∇x′ρ

i
ε ∗ pε)(x′, 0)

∣∣∣∣∣
q

dx ≤ C

εN+q

∑
i∈Iε

|Êi
ε|‖Dηε‖

q′

Lq′ (B̂iε)
N2 ≤

C

εq
‖Dηε‖q

′

Lq′ (Ωε)N
2 .

This inequality combined with (4.22), (4.23) and (4.24) proves (4.18).
�

Proof of Corollary 3.4. For every ε > 0 and pε in Lq(Ωε), we consider the functions
p0
ε ∈ C∞(ωε) and p1

ε ∈ Lq(Ωε) given by Theorem 3.2. We define p̃0
ε ∈ C∞(ωε), p̃

1
ε ∈ Lq(Ωε) by

p̃0
ε(x
′) = p0

ε(x
′)−−

∫
Ωε

p0
εdz, a.e. x′ ∈ ωε; p̃1

ε(x) = p1
ε(x)−−

∫
Ωε

p1
εdz, a.e. x ∈ Ωε.

Thanks to (3.8), we easily deduce that

ε
N−k
q ‖∇p̃0

ε‖Lq(ωε)k + ‖p̃1
ε‖Lq(Ωε) ≤ C‖∇pε‖W−1,q(Ωε)N .

On the other hand, thanks to (3.3), Holder’s inequality, (3.10) and (3.8), we get

εN−k‖p̃0
ε‖
q
Lq(ωε)

≤ C

∫
BN−k(0;rε)

∫
ωε

∣∣∣∣p0
ε −−
∫

Ωε

p0
εdz

∣∣∣∣q dx′dx′′ ≤ C

∫
Ωε

∣∣∣∣p0
ε −−
∫

Ωε

p0
εdz

∣∣∣∣q dx
≤ C

∫
Ωε

∣∣∣∣p0
ε −−
∫
ωε

p0
εdζ
′
∣∣∣∣q dx+ C

∫
Ωε

∣∣∣∣−∫
Ωε

p0
εdz −−

∫
ωε

p0
εdζ
′
∣∣∣∣q dx

≤ C

∫
Ωε

∣∣∣∣p0
ε −−
∫
ωε

p0
εdζ
′
∣∣∣∣q dx+ C|Ωε|

∣∣∣∣−∫
Ωε

(
p0
ε −−
∫
ωε

p0
εdζ
′
)
dz

∣∣∣∣q
≤ C

∫
Ωε

∣∣∣∣p0
ε −−
∫
ωε

p0
εdζ
′
∣∣∣∣q dz ≤ CεN−k‖∇p0

ε‖
q
Lq(ωε)k

≤ C‖∇pε‖qW−1,q(Ωε)N
,

Using then that by (3.7), we have

pε = −
∫

Ωε

pεdx+
1

ε
p̃0
ε + p̃1

ε in Ωε,

it is enough to rename p̃0
ε as p0

ε and p̃1
ε as p1

ε to finish the proof. �

Let us now start with the proof of Theorem 3.6. We need some preliminary lemmas

Lemma 4.1 Let O ⊂ RN be a bounded open set and q ∈ (1,∞) such that there exists C > 0
satisfying ∥∥∥∥u−−∫

O

u dx

∥∥∥∥
Lq(O)

≤ C‖∇u‖W−1,q(O)N , ∀u ∈ Lq(O). (4.25)

Then, we have ∥∥∥∥u−−∫
O

u dx

∥∥∥∥
Lq(O)

≤ C diam(O)‖∇u‖Lq(O)N , ∀u ∈ W 1,q(O). (4.26)

Proof. It is enough to use that for every u ∈ W 1,q(O), we have

‖∇u‖W−1,q(O)N = sup
ϕ∈W 1,q′

0 (O)N

ϕ 6=0

∫
O

∇u · ϕdx

‖ϕ‖
W 1,q′

0 (O)N

≤ sup
ϕ∈W 1,q′

0 (O)N

ϕ 6=0

‖∇u‖Lq(O)N‖ϕ‖Lq′ (O)N

‖ϕ‖
W 1,q′

0 (O)N

,
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where thanks to Poincaré’s inequality, we have

‖ϕ‖Lq′ (O)N ≤ diam(O)‖ϕ‖
W 1,q′

0 (O)N
,

and then
‖∇u‖W−1,q(O)N ≤ diam(O)‖∇u‖Lq(O)N .

Using this inequality in (4.25) proves (4.26). �

Lemma 4.2 There exists C > 0 depending only on N such that for every open set O ⊂ RN

and every u ∈ Lq(O)N , with e(u) ∈ Lq(O)N
2
, we have

‖D2u‖W−1,q(O)N3 ≤ C‖e(u)‖Lq(O)N2 . (4.27)

Proof. It is a classical result which just follows from

∂2
ijur = ∂ie(u)jr + ∂je(u)ir − ∂re(u)ij, ∀i, j, r ∈ {1, . . . , N}, ∀u ∈ W 1,q(O)N .

�

A first decomposition result for a sequence uε in the conditions of Theorem 3.6 is given by
the following lemma.

Lemma 4.3 Let Ωε be a family of bounded domains in RN which satisfy (3.3), (3.4), (3.5)
and (3.14). Then, there exist C > 0 such that for every uε ∈ W 1,q(Ωε)

N , there exist û′′ε ∈
W 2,q(ωε)

N−k, wε ∈ W 1,q(Ωε)
N , Bε ∈ Rk2

a and Sε ∈ W 1,q(ωε)
(N−k)2

a such that

uε(x) =

 Bεx
′ −Dû′′ε(x′)t

x′′

ε
1

ε
û′′ε(x

′) + Sε(x
′)
x′′

ε

+ wε(x), a.e. x ∈ Ωε, (4.28)

ε
N−k
q ‖D2û′′ε‖Lq(ωε)(N−k)k2 + ε

N−k
q ‖DSε‖Lq(ωε)(N−k)2k + ‖Dwε‖Lq(Ωε)N2 ≤ C‖e(uε)‖Lq(Ωε)N2 . (4.29)

Proof. We divide the proof in seven steps.

Step 1. For uε in W 1,q(Ωε)
N , we define ûε ∈ C∞(ωε)

N by (in the statement of Lemma 4.3 we
just use the last N − k component of this function)

ûε(x
′) = ε

∑
i∈Iε

φiε(x
′)(ρiε ∗ uε)(x′, 0), ∀x′ ∈ ωε, (4.30)

where φiε and ρiε, i ∈ Iε, are given in Steps 1 and 2 of the proof of Theorem 3.2, respectively.
Let us prove the following estimates∥∥∥∥∂iuε − 1

ε
∂iûε

∥∥∥∥
Lq(Ωε)N

≤ C‖e(uε)‖Lq(Ωε)N2 , ∀i ∈ {1, . . . , k}, (4.31)

‖∂2
ijûε‖Lq(Ωε)N ≤ C‖e(uε)‖Lq(Ωε)N2 , ∀i, j ∈ {1, . . . , k}. (4.32)

We start deriving ûε with respect to xi, i ∈ {1, . . . , k}. Taking into account supp(ρiε) ⊂ −Ciε,
(4.8) and (3.4), we have

∂iûε(x
′) = ε

∑
l∈Iε

φlε(x
′)(ρlε ∗ ∂iuε)(x′, 0) + ε

∑
l∈Iε

∂iφ
l
ε(x
′)(ρlε ∗ uε)(x′, 0), (4.33)
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for every x′ ∈ ωε and every i ∈ {1, . . . , k}. We observe that the first term in this decomposition
agrees with the expression of p0

ε in (4.11) applied to ∂iuε (which is now a vectorial function)
instead of pε. Then, thanks to (3.9) and (4.27), we have∥∥∥∥∥∂iuε −∑

l∈Iε

φlε(ρ
l
ε ∗ ∂iuε)(·, 0)

∥∥∥∥∥
Lq(Ωε)N

≤ C‖D∂iuε‖W−1,q(Ωε)N ≤ C‖e(uε)‖Lq(Ωε)N2 , (4.34)

∥∥∥∥∥Dx′

(∑
l∈Iε

φlε(ρ
l
ε ∗ ∂iuε)

)
(·, 0)

∥∥∥∥∥
Lq(Ωε)N

≤ C

ε
‖D∂iuε‖W−1,q(Ωε)Nk ≤

C

ε
‖e(uε)‖Lq(Ωε)N2 , (4.35)

for every i ∈ {1, . . . , k}. Thanks to (4.34), (4.35) and decomposition (4.33) of ∂iûε, in order to
prove (4.31) and (4.32), it is enough to show∥∥∥∥∥∑

l∈Iε

∂iφ
l
ε(ρ

l
ε ∗ uε)(·, 0)

∥∥∥∥∥
Lq(Ωε)N

≤ C‖e(uε)‖Lq(Ωε)N2 , ∀i ∈ {1, . . . , k}, (4.36)

∥∥∥∥∥Dx′

(∑
l∈Iε

∂iφ
l
ε(ρ

l
ε ∗ uε)

)
(·, 0)

∥∥∥∥∥
Lq(Ωε)Nk

≤ C

ε
‖e(uε)‖Lq(Ωε)N2 , ∀i ∈ {1, . . . , k}. (4.37)

The proof of these estimates is carried out in the following two steps.

Step 2. Proof of (4.36): We define ϕlε, l ∈ Iε, ε > 0, as

ϕlε(x) = uε(x)−−
∫
B̂lε

uεdz −−
∫
B̂lε

Duεdz

(
x−−

∫
B̂lε

zdz

)
, a.e. x ∈ Ωε. (4.38)

An estimate for this function in Lq(B̂l
ε) can be obtained as follows: Using that the integral of

ϕlε vanishes in B̂l
ε, (3.5) and (4.26), we get∫
B̂lε

∣∣ϕlε∣∣q dx ≤ Cεq
∫
B̂lε

∣∣Dϕlε∣∣q dx = Cεq
∫
B̂lε

∣∣∣∣Duε −−∫
B̂lε

Duεdz

∣∣∣∣q dx,
where we observe that (3.5) and (4.27) also imply∫

B̂lε

∣∣∣∣Duε −−∫
B̂lε

Duεdz

∣∣∣∣q dx ≤ C‖e(uε)‖qLq(B̂lε)N2 , ∀ ε > 0, ∀ l ∈ Iε. (4.39)

Thus, ∫
B̂lε

∣∣ϕlε∣∣q dx ≤ Cεq‖e(uε)‖qLq(B̂lε)N2 , ∀ ε > 0, ∀ l ∈ Iε. (4.40)

Taking into account the second and third statements in (4.9), we have

(ρlε ∗ uε)(x′, 0) = (ρlε ∗ ϕlε)(x′, 0) +−
∫
B̂lε

uεdz +−
∫
B̂lε

Dx′uεdz x
′ −−
∫
B̂lε

Duεdz −
∫
B̂lε

zdz

= (ρlε ∗ ϕlε)(x′, 0) +−
∫
B̂lε

uεdz +−
∫
B̂lε

Duεdz

(
x−−

∫
B̂lε

z dz

)
−−
∫
B̂lε

Dx′′uεdz x
′′.
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Then, using (4.7), we can write a.e. in Ωε∑
l∈Iε

∂iφ
l
ε(ρ

l
ε ∗ uε)(x′, 0) =

∑
l∈Iε

∂iφ
l
ε(ρ

l
ε ∗ ϕlε)(x′, 0)

+
∑
l∈Iε

∂iφ
l
ε

(
−
∫
B̂lε

uεdz +−
∫
B̂lε

Duεdz

(
x−−

∫
B̂lε

z dz

)
− uε

)

−
∑
l∈Iε

∂iφ
l
ε

(
−
∫
B̂lε

Dx′′uεdz −Dx′′uε

)
x′′

=
∑
l∈Iε

∂iφ
l
ε(ρ

l
ε ∗ ϕlε)(x′, 0)−

∑
l∈Iε

∂iφ
l
ε(x
′)ϕlε(x)

+
∑
l∈Iε

∂iφ
l
ε

(
Dx′′uε(x)−−

∫
B̂lε

Dx′′uεdz
)
x′′.

(4.41)

In the first term of the right-hand side, using (4.3), (4.4), Holder’s inequality, (4.40) and
reasoning as in (4.21) we deduce∫

Ωε

∣∣∣∣∣∑
l∈Iε

∂iφ
l
ε(ρ

l
ε ∗ ϕlε)(x′, 0)

∣∣∣∣∣
q

dx ≤ C

εq

∑
l∈Iε

∫
Êlε

∣∣(ρlε ∗ ϕlε)(x′, 0)
∣∣q dx

≤ C

εq

∑
l∈Iε

|Êl
ε| ‖(ρlε ∗ ϕlε)(·, 0)‖q

L∞(Blε)
≤ C‖e(uε)‖qLq(Ωε)N2 .

(4.42)

A similar reasoning also provides the following estimate for the second term in the right-hand
side of (4.41) ∫

Ωε

∣∣∣∣∣∑
l∈Iε

∂iφ
l
εϕ

l
ε

∣∣∣∣∣
q

dx ≤ C

εq

∑
l∈Iε

∫
Êlε

|ϕlε|qdx ≤ C‖e(uε)‖qLq(Ωε)N2 . (4.43)

Finally, in the third term term in (4.41) we use (4.4), (4.39) and |x′′| < Cε, for every (x′, x′′) ∈
Ωε, to get ∫

Ωε

∣∣∣∣∣∑
l∈Iε

∂iφ
l
ε

(
Dx′′uε(x)−−

∫
B̂iε

Dx′′uεdz
)
x′′

∣∣∣∣∣
q

dx ≤ C‖e(uε)‖qLq(Ωε)N2 . (4.44)

Taking into account (4.42), (4.43) and (4.44) in (4.41), we deduce (4.36).

Step 3. Proof of (4.37): For every i, j ∈ {1, · · · , k}, Using (4.9) and (4.7), we have

∂j

(∑
l∈Iε

∂iφ
l
ε(ρ

l
ε ∗ uε)(x′, 0)

)
=
∑
l∈Iε

∂ijφ
l
ε(ρ

l
ε ∗ uε)(x′, 0)

+
∑
l∈Iε

∂iφ
l
ε

(
ρlε ∗

(
∂juε −−

∫
B̂lε

∂juεdz
))

(x′, 0) +
∑
l∈Iε

∂iφ
l
ε

(
−
∫
B̂lε

∂juεdz − ∂juε
)
.

(4.45)

The first term in the right-hand side is similar to the term we estimated in (4.36). Taking into
account that now |∂ijφlε| ≤ C/ε2, we get∥∥∥∥∥∑

l∈Iε

∂ijφ
l
ε(ρ

l
ε ∗ uε)(·, 0)

)∥∥∥∥∥
Lq(Ωε)N

≤ C

ε
‖e(uε)‖Lq(Ωε)N2 , ∀i, j ∈ {1, . . . , k}. (4.46)
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In the second term in the right hand side of (4.45) we reason as in (4.42) by using (4.39) instead
of (4.40). This gives∥∥∥∥∥∑

l∈Iε

∂iφ
l
ε

(
ρlε ∗

(
∂juε −−

∫
B̂lε

∂juεdz
))

(·, 0)

∥∥∥∥∥
Lq(Ωε)N

≤ C

ε
‖e(uε)‖Lq(Ωε)N2 , ∀i, j ∈ {1, . . . , k}. (4.47)

For the third term in the right hand side of (4.45) we just use (4.3), (4.4) and (4.39) to get∥∥∥∥∥∑
l∈Iε

∂iφ
l
ε

(
∂juε −−

∫
B̂lε

∂juεdz
)∥∥∥∥∥

Lq(Ωε)N

≤ C

ε
‖e(uε)‖Lq(Ωε)N2 , ∀i, j ∈ {1, . . . , k}. (4.48)

Equations (4.45), (4.46), (4.47) and (4.48) give (4.37). This finishes the proof of (4.31) and
(4.32).

Step 4. Let us prove the existence of C > 0 independent of ε such that the following partial
Korn’s inequality holds∥∥∥∥∂juε,i −−∫

Ωε

a(uε)ijdz

∥∥∥∥
Lq(Ωε)

≤ C‖e(uε)‖Lq(Ωε)N2 , ∀i, j ∈ {1, . . . , k}, ∀ε > 0. (4.49)

Indeed, taking into account (4.31), it is enough to show that a similar inequality holds for
uε replaced by ûε. Since this last function does not depend on the variable x′′, the result is a
simple consequence of (3.14), (4.27) and (3.3), which prove∥∥∥∥∂jûε,i −−∫

Ωε

a(ûε)ijdz

∥∥∥∥
Lq(Ωε)

≤
∥∥∥∥∂jûε,i −−∫

ωε

∂jûε,idz

∥∥∥∥
Lq(Ωε)

+

∥∥∥∥−∫
ωε

e(ûε)ijdz

∥∥∥∥
Lq(Ωε)

+

∥∥∥∥−∫
ωε

a(ûε)ijdz −−
∫

Ωε

a(ûε)ijdx

∥∥∥∥
Lq(Ωε)

≤ CεN−k
∥∥∥e(û′ε)∥∥∥

Lq(ωε)k
2

+

∥∥∥∥−∫
Ωε

∣∣∣a(ûε)ij −−
∫
ωε

a(ûε)ijdx
∣∣∣dz∥∥∥∥

Lq(Ωε)

≤ CεN−k‖e(û′ε)‖Lq(ωε)k2 ≤ C‖e(ûε)‖Lq(Ωε)N2 .

(4.50)

Step 5. We define wε,i ∈ W 1,q(Ωε), i ∈ {1, . . . , k}, ε > 0, by

wε,i(x) = uε,i(x)−
k∑
r=1

−
∫

Ωε

a(uε)irdz xr +
1

ε

N∑
r=k+1

∂iûε,r(x
′)xr, a.e. x ∈ Ωε. (4.51)

Let us prove that there exists C > 0 independent of ε such that

‖∇wε,i‖Lq(Ωε)N ≤ C‖e(uε)‖Lq(Ωε)N2 , ∀i ∈ {1, . . . , k}, ∀ε > 0. (4.52)

To estimate ∂jwε,i, with j ∈ {1, . . . , k}, we use (4.49), (4.32) and |xr| ≤ Cε, for x ∈ Ωε,
r ∈ {k + 1, . . . , N}. We get

‖∂jwε,i‖Lq(Ωε) =

∥∥∥∥∥∂juε,i −−
∫

Ωε

a(uε)ijdz +
1

ε

N∑
r=k+1

∂2
ijûε,r xr

∥∥∥∥∥
Lq(Ωε)

≤ C‖e(uε)‖Lq(Ωε)N2 . (4.53)
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The estimate of ∂jwε,i, j ∈ {k + 1, . . . , N}, i ∈ {1, . . . , k}, just follows from (4.31), which gives

‖∂jwε,i‖Lq(Ωε) =

∥∥∥∥2e(uε)ij +
1

ε
∂iûε,j − ∂iuε,j

∥∥∥∥
Lq(Ωε)

≤ C‖e(uε)‖Lq(Ωε)N2 .

This finishes the proof of (4.52).

Step 6. For ε > 0, we introduce Sε ∈ C∞(ωε)
(N−k)2

a as

Sε(x
′)ij = ε

∑
l∈Iε

φlε(x
′)(ρlε ∗ ∂juε,i)(x′, 0), ∀x′ ∈ ωε ∀i, j ∈ {k + 1, . . . , N} with j < i, (4.54)

and wε,i ∈ W 1,q(Ωε), i ∈ {k + 1, . . . , N}, by

wε,i(x) = uε,i(x)− 1

ε
ûε,i(x

′)− 1

ε

N∑
r=k+1

Sε(x
′)ir xr, a.e. x ∈ Ωε, ∀i ∈ {k + 1, . . . , N}. (4.55)

The function (Sε)ij agrees with the expression of p0
ε in (4.11) applied to ∂juε,i instead of pε

for j < i. Thanks to (3.9), Lemma 4.2, the definition of e(uε) and Sε skew-symmetric is then
simple to show∥∥∥∥∂juε,i − 1

ε
(Sε)ij

∥∥∥∥
Lq(Ωε)

≤ C‖e(uε)‖Lq(Ωε)N2 , ∀i, j ∈ {k + 1, . . . , N}, (4.56)

‖∇(Sε)ij‖Lq(Ωε)N ≤ C‖e(uε)‖Lq(Ωε)N2 , ∀i, j ∈ {k + 1, . . . , N}. (4.57)

Let us prove that wε,i satisfies

‖∇wε,i‖Lq(Ωε)N ≤ C‖e(uε)‖Lq(Ωε)N2 , ∀i ∈ {k + 1, . . . , N}. (4.58)

By (4.56) we have

∥∥∂jwε,i∥∥Lq(Ωε) =

∥∥∥∥∂juε,i − 1

ε
(Sε)ij

∥∥∥∥
Lq(Ωε)

≤ C‖e(uε)‖Lq(Ωε)N2 , ∀i, j ∈ {k + 1, . . . , N}. (4.59)

For the partial derivatives of wε,i, with respect to the k first variables we use

∂jwε,i(x) = ∂juε,i(x)− 1

ε
∂jûε,i(x

′)− 1

ε

N∑
r=k+1

∂jSε(x
′)ir xr, a.e. x ∈ Ωε, ∀j ∈ {1, . . . , k}. (4.60)

Then, by (4.31), (4.57) and |x′′| ≤ Cε, for (x′, x′′) ∈ Ωε, we get

‖∂jwε,i‖Lq(Ωε) ≤ C‖e(uε)‖Lq(Ωε)N2 , ∀j ∈ {1, . . . , k}, ∀i ∈ {k + 1, . . . , N}, ∀ε > 0. (4.61)

Step 7. From (4.51) and (4.55), we have

uε,i(x) =



k∑
r=1

−
∫

Ωε

a(uε)irdz xr −
N∑

r=k+1

∂iûε,r(x
′)
xr
ε

+ wε,i(x), if i ∈ {1, . . . , k},

1

ε
ûε,i(x

′) +
N∑

r=k+1

(Sε)ir(x
′)
xr
ε

+ wε,i(x), if i ∈ {k + 1, . . . , N},
(4.62)
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for a.e. x ∈ Ωε, where (4.32), (4.52), (4.57) and (4.58) prove

ε
N−k
q ‖D2û′′ε‖Lq(ωε)(N−k)k2 + ε

N−k
q ‖DSε‖Lq(ωε)(N−k)2k + ‖Dwε‖Lq(Ωε)N2 ≤ C‖e(uε)‖Lq(Ωε)N2 , (4.63)

for every ε > 0. Taking then

Bε :=

(
−
∫

Ωε

a(uε)irdz

)
i,r∈{1,...,k}

, ∀ε > 0,

we get (4.28) and (4.29). �

Proof of Theorem 3.6. From Lemma 4.3 and assumption (3.14) it is enough to take

a′ε :=
1

|Ωε|

∫
Ωε

w′ε dy, a′′ε :=
1

|ωε|

∫
ωε

û′′εdy
′ − 1

|ωε|2

∫
ωε

Dû′′εdy
′
∫
ωε

y′dy′ +
1

|Ωε|

∫
Ωε

w′′ε dy

Aε :=

 Bε − 1

ε|ωε|

∫
ωε

(Dû′′ε)
tdx′

1

ε|ωε|

∫
ωε

Dû′′εdy
′ 1

ε|ωε|

∫
ωε

Sεdy′


u0
ε(x
′) := û′′ε(x

′)− 1

|ωε|

∫
ωε

û′′εdy
′ − 1

|ωε|

∫
ωε

Dû′′εdy
′
(
x′ − 1

|ωε|

∫
ωε

y′dy′
)
,

Zε(x′) := Sε(x
′)− 1

|ωε|

∫
ωε

Sεdy
′, vε(x) := wε(x)− 1

|Ωε|

∫
Ωε

wε dy,

a.e. x ∈ Ωε, to get the result. �

5 Application to the behavior of a fluid in thin domains

with oscillating boundaries

In this section we assume that N = 3 and we denote by Y ′ = (−1/2, 1/2)2 the unitary cube of
R2.

For a connected bounded open set ω ⊂ R2 with boundary which is locally a Lipschitz
continuous graph, and for Ψb,Ψt ∈ W 1,∞(R2), Y ′-periodic, with Ψb < Ψt (where b refers to
bottom and t to top) we define

Ωε =

{
(x′, x3) ∈ ω × R : εΨb

(
x′

ε

)
< x3 < εΨt

(
x′

ε

)}
, ∀ ε > 0. (5.1)

Figure 1 corresponds to the case

Ψb(y) = cos
(
2π(y1 + y2)

)
+ 0.5 cos(2πy2), Ψt(y) = 2 + Ψb(y),

and ε = 0.2 . Our aim in this section is to study the asymptotic behavior of the solutions
(uε, pε) of the Navier- Stokes problem in Ωε

−µ∆uε + (uε · ∇)uε +∇pε = f in Ωε,

div uε = 0 in Ωε,

uε = 0 on ∂Ωε,

∫
Ωε

pε dx = 0,

(5.2)
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Figure 1: The domain Ωε

where the viscosity µ is strictly positive and the external force f = f(x′) is assumed to belong
to L2(ω)3. Some related problems have been considered for example in [4], [5] and [7].

We introduce the following notation:

The canonical basis in R3 is denoted by {e1, e2, e3}.
The sets Λ̃, Ỹ , Γ̃ ⊂ R3 are defined by

Λ̃ =
{
y ∈ R3 : Ψb(y

′) < y3 < Ψt(y
′)
}
, Ỹ =

{
y ∈ Λ̃ : y′ ∈ Y ′

}
, Γ̃ =

{
y ∈ ∂Λ̃ : u′ ∈ Y ′

}
.

The spaces L2
] (Ỹ ), H1

] (Ỹ ), H1
0,](Ỹ ) are defined by:

L2
] (Ỹ ) =

{
w̃ ∈ L2

loc(Λ̃) :

∫
Ỹ

|w̃|2dy < +∞, w̃(y′ + k′, y3) = w̃(y), ∀k′ ∈ Z2, a.e. y ∈ Λ̃
}
,

H1
] (Ỹ ) =

{
w̃ ∈ H1

loc(Λ̃) : w̃ ∈ L2
] (Ỹ ), ∇w̃ ∈ L2

] (Ỹ )N
}
,

H1
0,](Ỹ ) =

{
w̃ ∈ H1

] (Ỹ ) : w̃ = 0 on Γ̃
}
.

Our main result is given by the following theorem

Theorem 5.1 Let (uε, pε) ∈ H1
0 (Ωε)

3 × L2(Ωε) be a solution of (5.2) for f ∈ L2(ω)3. For
i = 1, 2, there exists a unique solution (w̃i, π̃i) of the so called cell problem

−µ∆w̃i +∇π̃i = ei in Λ̃,

div w̃i = 0 in Λ̃,

w̃i ∈ H1
0,](Ỹ )3, π̃i ∈ L2

] (Ỹ )/R.
(5.3)

Let A ∈ R2×2
s be the matrix defined by

Aij = µ

∫
Ỹ

Dw̃i : Dw̃jdy, i, j ∈ {1, 2}. (5.4)
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Then, A is a positive definite matrix. Defining p as the solution of the Reynolds problem
−divx′

(
A(∇x′p− f ′)

)
= 0 in ω,

A(∇x′p− f ′) · ν = 0 on ∂ω,

∫
ω

p dx′ = 0,
(5.5)

and ũ ∈ L2(ω;H1
0,](Ỹ ))3 by

ũ(x′, y) =
2∑
i=1

(
fi(x

′)− ∂ip(x′)
)
w̃i(y), (5.6)

we have the following approximation result for (uε, pε):

lim
ε→0
−
∫

Ωε

(∣∣∣ 1

ε2
uε − ûε

(
x′,

x

ε

)∣∣∣2 +
∣∣∣1
ε
Duε −Dyûε

(
x′,

x

ε

)∣∣∣2 + |pε − p|2
)
dx = 0, (5.7)

where

ûε(x
′, y) :=

∑
k′∈Z2

(
−
∫
εk′+εY ′

ũ(z′, y) dz′
)
χεk′+εY ′(x

′), a.e. (x′, y) ∈ R2 × Ỹ .

Remark 5.2 In the approximation of uε given by (5.7), we have used in place of the function
ũ, the regularization with respect to x′ given by ûε. This is necessary because in general the
functions x 7→ ũ(x′, x/ε) and x 7→ Dyũ(x′, x/ε) are products of functions in L2(Ωε), see (5.6),
and therefore they belong only to L1(Ωε). But we can replace ûε by ũ if we assume more
regularity in the data. For example, this is the case if we assume that the functions Ψb, Ψt in
the definition (5.1) of Ωε belong to W 2,∞

] (Y ′), which implies that the solution (w̃i, π̃i) of (5.3)

belongs to W 1,∞(Ỹ )3 × L∞(Ỹ ).

Theorem 5.1 gives a strong approximation in L2(Ωε) of uε which contains the quick variable
y = x/ε. However, for related problems, it is usual in the literature to deal with an approx-
imation which only depends on the macroscopic variable x′. This can be done by using the
function

u(x′) = −
∫
Ỹ

ũ(x′, y) dy. (5.8)

The next corollary shows that this function u provides a “weak” approximation of uε and
satisfies a Darcy law.

Corollary 5.3 Let (uε, pε) ∈ H1
0 (Ωε)

3 × L2(Ωε) be a solution of (5.2) for f ∈ L2(ω)3, and let
A be defined by (5.4) and p by (5.5). Then u defined by (5.8) satisfies

u′(x′) = A(f ′ −∇x′p), u3(x′) = 0, a.e. x′ ∈ ω, (5.9)

and

lim
ε→0

1

ε2
−
∫

Ωε

uε · ϕdx = −
∫
ω

u · ϕdx′, ∀ϕ ∈ L2(ω)3. (5.10)

The proof of Theorem 5.1 is based on the decomposition result obtained in Section 3 for the
pressure and the unfolding method (see e.g. [3], [8], [13], [14]), which is closely related to the
two scale convergence method ([1], [19], [21]) . We also refer to the Bloch-wave homogenization
method as a related approach to deal with this type of problems (see e.g. [2], [15]).

We recall that the idea of the unfolding method is to use a convenient dilatation of the
periodic cell. In the present case we introduce the following notation
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Definition 5.4 For k′ ∈ Z2 and ε > 0, we define Ck′
ε ⊂ R2 as the square of center εk′ and

sides of length ε parallel to the coordinate axis, i.e.

Ck′

ε = εk′ + εY ′, (5.11)

and Ĉk′
ε by

Ĉk′

ε =

{
(x′, x3) ∈ Ck′

ε × R : εΨb

(
x′

ε

)
< x3 < εΨt

(
x′

ε

)}
. (5.12)

We also introduce the function κ′ : R2 → Z2 defined by x′ ∈ Cκ′(x′)
1 for a.e. x′ ∈ R2.

The idea to prove Theorem 5.1 will be to study the asymptotic behavior of the sequences of
functions

ũε(x
′, y) = uε

(
εκ′
(
x′

ε

)
+ εy

)
, a.e. (x′, y) ∈ R2 × Ỹ , (5.13)

p̃0
ε(x
′, y′) = p0

ε

(
εκ′
(
x′

ε

)
+ εy′

)
, a.e. (x′, y′) ∈ R2 × Y ′, (5.14)

and

p̃1
ε(x
′, y) = p1

ε

(
εκ′
(
x′

ε

)
+ εy

)
, a.e. (x′, y) ∈ R2 × Ỹ , (5.15)

where p0
ε, p

1
ε are the functions defined by Theorem 3.2, from the pressure pε. The functions uε,

p0
ε and p1

ε are assumed to be defined in the whole set

Zε =

{
(x′, x3) ∈ R2 × R : εΨb

(
x′

ε

)
< x3 < εΨt

(
x′

ε

)}
, (5.16)

by extending them by zero outside Ωε.

Remark 5.5 The introduction of the functions ũε, p̃
0
ε and p̃1

ε is the main idea in the unfolding
method. We observe that for x′ ∈ Ck′

ε , with k′ ∈ Z2, we have

ũε(x
′, y) = uε (εk′ + εy) , p̃0

ε(x
′, y′) = p0

ε (εk′ + εy′) , p̃1
ε(x
′, y) = p1

ε (εk′ + εy) a.e. y ∈ Ỹ .

Thus, in Ck′
ε × Ỹ , these functions only depend on y and are obtained by the change of variables

x− εk′

ε
= y, (5.17)

which transforms the small set Ĉk′
ε into Ỹ . The variable y represents the microscopic variable

and x′ the macroscopic one.

The following compactness lemmas give a first result about the asymptotic behavior of the
sequences p0

ε ∈ H1(R2), p1
ε ∈ L2(Zε) and uε ∈ H1

0 (Zε)
3, which are not necessarily the solution

of any partial differential problem but satisfy some suitable a priori estimates.
The first lemma is just the classical compactness result for the unfolding method, and so,

it is given without proof.

Lemma 5.6 Let p0
ε be any bounded sequence in H1(R2). Define p̃0

ε : R2 × Y ′ → R by (5.14).
Then there exist p ∈ H1(R2) and p̃0 ∈ L2(R2;H1

] (Y ′)) such that for a subsequence of ε, still
denoted by ε, we have

p0
ε ⇀ p in H1(R2), (5.18)

1

ε
∇y′ p̃

0
ε ⇀ ∇x′p+∇y′ p̃

0 in L2(R2;L2(Y ′))2. (5.19)
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Lemma 5.7 Let p1
ε be any sequence in L2(Ωε) such that there exists C > 0, with

−
∫

Ωε

|p1
ε|2dx ≤ C, ∀ ε > 0. (5.20)

Extending p1
ε by zero to the set Zε given by (5.16), define p̃1

ε : R2 × Ỹ → R by (5.15). Then,
for a subsequence of ε, still denoted by ε, there exists a function p̃1 ∈ L2(R2;L2(Ỹ )), such that

p̃1
ε ⇀ p̃1 in L2(R2;L2(Ỹ )). (5.21)

Proof. Using the change of variables (5.17) in each set Ĉk′
ε , k′ ∈ Z2, we get

−
∫

Ωε

|p1
ε|2dx =

1

|Ωε|
∑
k′∈Z2

∫
Ĉk′ε

|p1
ε|2dx =

ε3

|Ωε|
∑
k′∈Z2

∫
Ỹ

∣∣p1
ε(εk

′ + εy)
∣∣2 dy

=
ε

|Ωε|
∑
k′∈Z2

∫
Ck′ε

∫
Ỹ

∣∣p̃1
ε

∣∣2 dydx′ = ε

|Ωε|

∫
R2×Ỹ

∣∣p̃1
ε

∣∣2 dx′dy, ∀ε > 0,

which thanks to (5.20) and

|Ωε|
ε

=

∫
ω

(
Ψt

(
x′

ε

)
−Ψb

(
x′

ε

))
dx′ → |ω|

∫
Y ′

(Ψt −Ψb) dy
′ = |ω||Ỹ |, (5.22)

shows that p̃1
ε is bounded in L2(R2, L2(Ỹ )) and then the existence of a subsequence of ε and

p̃1 ∈ L2(R2;L2(Ỹ )) satisfying (5.21).
�

Lemma 5.8 Let uε be any sequence in H1
0 (Ωε)

3, with div uε = 0 in Ωε, such that there exists
C > 0 satisfying

−
∫

Ωε

|Duε|2dx ≤ C, ∀ ε > 0. (5.23)

Extending uε by zero to the set Zε given by (5.16), define ũε : R2 × Ỹ → R3 by (5.13). Then,
there exists a function ũ ∈ L2(R2;H1

0,](Ỹ ))3, such that

ũ = 0 a.e. in (R2 \ ω)× Ỹ , (5.24)

divyũ = 0 a.e. in R2 × Ỹ , (5.25)

divx′

∫
Ỹ

ũ′dy = 0 a.e. in R2, (5.26)

and such that, for a subsequence of ε still denoted by ε, we have

ũε
ε
⇀ ũ in L2(R2;H1(Ỹ ))3. (5.27)

Proof. Using the change of variables (5.17) in each set Ĉk′
ε , k′ ∈ Z2, we have

−
∫

Ωε

|Duε|2dx =
1

|Ωε|
∑
k′∈Z2

∫
Ĉk′ε

|Duε|2dx

=
ε3

|Ωε|
∑
k′∈Z2

∫
Ỹ

|Duε(εk′ + y)|2 dy =
ε

|Ωε|

∫
ω×Ỹ

∣∣∣∣Dy

(
ũε
ε

)
(x′, y)

∣∣∣∣2 dx′dy.
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From (5.22) and (5.23), this proves that ũε/ε is bounded in L2(R2;H1(Ỹ ))3. Since it vanishes
on R2× Γ̃, we deduce the existence of ũ ∈ L2(R2;H1(Ỹ ))3, which vanishes on R2× Γ̃ such that
(5.27) holds, up to a subsequence. Moreover, by construction,

ũε = 0 a.e. in
{

(x′, y) ∈ R2 × Ỹ : dist(x′, ω) >
√

2ε
}
,

and so ũ satisfies (5.24). Using also

divyũε(x, y) = ε divxuε

(
εκ′
(
x′

ε

)
+ εy

)
= 0,

we deduce (5.25).
Now for φ ∈ C∞(R2), we use that ũε/ε is bounded in L2(R2;H1(Ỹ ))3 to deduce

0 =
1

ε
−
∫

Ωε

u′ε · ∇x′φ dx =
1

ε|Ωε|
∑
k′∈Z2

∫
Ĉk′ε

u′ε · ∇x′φ dx

=
ε2

|Ωε|
∑
k′∈Z2

∫
Ỹ

u′ε(εk
′ + εy) · ∇x′φ(εk′ + εy) dy =

ε

|Ωε|

∫
R2

∫
Ỹ

1

ε
ũ′ε(x

′, y) · ∇x′φ(x′) dydx′ +Oε,

which passing to the limit thanks to (5.22) and (5.27) proves∫
ω

−
∫
Ỹ

ũ′ · ∇x′φ dydx
′ = 0, ∀φ ∈ C∞(R2).

This combined with (5.24) shows (5.26).
It remains to prove that ũ is periodic in y′. This follows by passing to the limit in the

equality
1

ε
ũε

(
x′ + εe1,−1

2
, y2, y3

)
=

1

ε
ũε

(
x′,

1

2
, y2, y3

)
,

which is a consequence of definition (5.13). This shows

ũ

(
x′,−1

2
, y2, y3

)
= ũ

(
x′,

1

2
, y2, y3

)
,

and then the periodicity of ũ with respect to y1. Similarly one can show the periodicity with
respect to y2. �

Proof of Theorem 5.1. The proof is divided in two steps.

Step 1. It is well known that (5.2) has at least a solution (uε, pε) in H1
0 (Ωε)

3 × L2(Ωε). Let us
obtain some a priori estimates for uε and ∇pε, which allow us to apply Lemmas 5.6, 5.7 and
5.8.

Using uε as test function in (5.2), and taking into account that div uε vanishes in Ωε, we get

µ

∫
Ωε

|Duε|2dx =

∫
Ωε

f · uε dx. (5.28)

Now, we observe that since the height of Ωε is of order ε, we have∫
Ωε

|v|2dx ≤ Cε2

∫
Ωε

|∂3v|2dx, ∀ v ∈ H1
0 (Ωε)

3, ∀ ε > 0, (5.29)
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which, combined with (5.28) and f = f(x′) implies∫
Ωε

|Duε|2dx ≤ Cε2

∫
Ωε

|f |2dx ≤ Cε3, ∀ε > 0. (5.30)

Let us now obtain an estimate for the gradient of the pressure in H−1(Ωε)
3. For this purpose,

we use (5.2), which gives

〈∇pε, v〉 =

∫
Ωε

f · v dx− µ
∫

Ωε

Duε : Dv dx−
∫

Ωε

(uε · ∇)uε · v dx, ∀ v ∈ H1
0 (Ωε)

3. (5.31)

Thanks to (5.29) and (5.30), we have∣∣∣∣∫
Ωε

f · v dx− µ
∫

Ωε

Duε : Dv dx

∣∣∣∣ ≤ Cε
3
2‖v‖H1

0 (Ωε)3 . (5.32)

In order to estimate the third term in (5.31) we use that, extending by zero the functions in
H1

0 (Ωε), we have H1
0 (Ωε) ⊂ H1

0 (ω × (−1, 1)), for ε > 0 small enough. Therefore, Sobolev’s
inequality applied to the fixed open set ω × (−1, 1) shows

‖v‖L6(Ωε)3 ≤ C‖v‖H1
0 (Ωε)3 , ∀ v ∈ H1

0 (Ωε)
3, (5.33)

which combined with (5.28) proves the inequality∣∣∣∣∫
Ωε

(uε · ∇)uε · v dx
∣∣∣∣ ≤ ‖uε‖L6(Ωε)3‖v‖L6(Ωε)3‖uε‖H1

0 (Ωε)3|Ωε|
1
6 ≤ Cε

19
6 ‖v‖H1

0 (Ωε)3 .

Using this estimate and (5.32) in (5.31), we then have

‖∇pε‖H−1(Ωε)3 ≤ Cε
3
2 , ∀ε > 0. (5.34)

From (5.30) we can apply Lemma 5.8 with uε replaced by uε/ε which proves the existence
of a subsequence of ε, still denoted by ε, and a function ũ ∈ L2(R2;H1

0,](Ỹ ))3 which satisfies
(5.24), (5.25), (5.26) such that the sequence ũε defined by (5.13) satisfies

ũε
ε2
⇀ ũ in L2(R2;H1(Ỹ ))3. (5.35)

On the other hand, using (5.34) and ω Lipschitz and connected, we can apply Corollary 3.4
with q = 2, N = 3 and k = 2 to deduce the existence of p0

ε ∈ H1(ω) and p1
ε ∈ L2(Ωε) such that

pε = p0
ε + εp1

ε in Ωε, (5.36)

ε
3
2‖p0

ε‖H1(ω) + ε‖p1
ε‖L2(Ωε) ≤ C‖∇pε‖H−1(Ωε)3 ≤ Cε

3
2 . (5.37)

Extending p0
ε to a function in H1(R2), thanks to ω Lipschitz, this allows us to apply Lemmas

5.6 and 5.7 to p0
ε and p1

ε to deduce the existence of a subsequence of ε, still denoted by ε and
functions p ∈ H1(R2), p̃0 ∈ L2(R2;H1

] (Y ′)), p̃1 ∈ L2(R2;L2
] (Ỹ )) such that p̃0

ε and p̃1
ε defined by

(5.14) and (5.15) satisfy (5.18), (5.19) and (5.21). Moreover, passing to the limit when ε tends
to zero in

0 =
1

ε

∫
Ωε

pε dx =

∫
ω

(
Ψt

(x′
ε

)
−Ψb

(x′
ε

))
p0
εdx

′ +

∫
Ωε

p1
εdx,
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we deduce

0 =

∫
Y ′

(Ψt −Ψb)dy
′
∫
ω

p dx′,

and so, that p has null mean value in ω.

Step 2. Let us now show that p, ũ are given by (5.5), (5.6) and that (5.7) holds.
For ṽ ∈ C1

c (ω;H1
0,](Ỹ ))3, we consider vε(x) = ε−1ṽ(x′, x/ε) as test function in (5.2). Using

(5.36), we get

µ

ε

∫
Ωε

Duε : Dxṽ(x′,
x

ε
) dx+

µ

ε2

∫
Ωε

Duε : Dyṽ
(
x′,

x

ε

)
dx

+
1

ε

∫
Ωε

(uε · ∇)uε ṽ
(
x′,

x

ε

)
dx+

1

ε

∫
Ωε

∇p0
ε · ṽ

(
x′,

x

ε

)
dx−

∫
Ωε

p1
εdivxṽ

(
x′,

x

ε

)
dx

−1

ε

∫
Ωε

p1
ε divyṽ

(
x′,

x

ε

)
dx =

1

ε

∫
Ωε

f · ṽ
(
x′,

x

ε

)
dx.

(5.38)

Let us pass to the limit in the different terms in (5.38).
Taking into account (5.30), (5.33) and (5.37), the first, third and fifth terms on the left-hand
side tend to zero.

For the remaining terms in (5.38), we use the change of variables (5.17), the definitions
(5.13), (5.14), (5.15) of ũε, p̃

0
ε and p̃1

ε respectively and the convergences (5.35), (5.19) and
(5.21), to get

µ

ε2

∫
Ωε

Duε : Dyṽ
(
x′,

x

ε

)
dx =

µ

ε2

∫
ω×Ỹ

Dyũε : Dyṽ dx
′dy +Oε = µ

∫
ω×Ỹ

Dyũ : Dyṽ dx
′dy +Oε,

1

ε

∫
Ωε

∇p0
ε · ṽ

(
x′,

x

ε

)
dx =

1

ε

∫
ω×Ỹ
∇y′ p̃

0
ε · ṽ dx′dy +Oε =

∫
ω×Ỹ

(∇x′p+∇y′ p̃
0) · ṽ dx′dy +Oε,

1

ε

∫
Ωε

p1
ε divyṽ

(
x′,

x

ε

)
dx =

∫
ω×Ỹ

p̃1
ε divyṽ dx

′dy +Oε =

∫
ω×Ỹ

p̃1divyṽ dx
′dy +Oε,

1

ε

∫
Ωε

f · ṽ
(
x′,

x

ε

)
dx =

∫
ω×Ỹ

f · ṽ dx′dy +Oε.

Taking q̃ := p̃0 + p̃1 ∈ L2(ω;L2
] (Ỹ )), we then deduce from (5.38) that ũ, p and q̃ satisfy

µ

∫
ω×Ỹ

Dyũ : Dyṽ dx
′dy +

∫
ω×Ỹ
∇x′p · ṽ dx′dy −

∫
ω×Ỹ

q̃ divyṽ dx
′dy =

∫
ω×Ỹ

f · ṽ dx′dy, (5.39)

for every ṽ ∈ C1
c (ω;H1

0,](Ỹ ))3. By density, this equality holds true for every ṽ ∈ L2(ω;H1
0,](Ỹ ))3.

Since ũ ∈ L2(ω;H1
0,](Ỹ ))3 and divyũ = 0 in ω × Ỹ , we then deduce that ũ, p and q̃ satisfy
−µ∆yũ+∇y q̃ = f −∇x′p in Λ̃,

divyũ = 0 in Λ̃,

(ũ, q̃) ∈ H1
0,](Ỹ )3 × L2

] (Ỹ )/R,

a.e. in ω. (5.40)

From this equation we can obtain ũ and q̃ from f and p. Namely: we define (w̃i, π̃i), i = 1, 2, 3,
as the unique solution of problem (5.3), where we observe that

w̃3 = 0 in H1
0,](Ỹ )3, π̃3 = y3 in L2

] (Ỹ )/R. (5.41)
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Then, reasoning by linearity and uniqueness we deduce (5.6) and

q̃(x′, y) =
2∑
i=1

(
fi(x

′)− ∂ip(x′)
)
π̃i(y) + f3(x′)y3 in L2(ω;L2

] (Ỹ )/R). (5.42)

Let us now prove (5.5), which in particular shows the existence and uniqueness of p and then
of ũ, q̃. For this aim, we recall that ũ also satisfies (5.24) and (5.26) and so that∫

Ỹ

ũ′dy · ν = 0 on ∂ω,

and therefore, using (5.6) we get

2∑
j=1

∂xj

[
2∑
i=1

(fi − ∂xip)
∫
Ỹ

w̃ijdy

]
= divx′

∫
Ỹ

ũ′(x, y) dy = 0 in ω,

2∑
i=1

(fi − ∂xip)
∫
Ỹ

w̃idy · ν =

∫
Ỹ

ũ′(x, y) dy · ν = 0 on ∂ω.

(5.43)

On the other hand, we observe that taking w̃i as test function in the equation for w̃j, we have∫
Ỹ

w̃ij(y) dy = µ

∫
Ỹ

Dw̃i : Dw̃j dy, 1 ≤ i, j ≤ 3. (5.44)

Thus, (5.43) proves (5.5).
In order to finish the proof of the theorem, it remains to show the corrector result (5.7). As

usual this can be done by showing the convergence of the energies. Namely, using uε as test
function in (5.2), taking ũ as test function in (5.40), and using the change of variables (5.17)
and (5.35) we easily have

µ

ε4

∫
R2

∫
Ỹ

|Dyũε|2dy dx′ =
µ

ε3

∫
Ωε

|Duε|2dx =
1

ε3

∫
Ωε

f · uε dx

=
1

ε2

∫
R2

∫
Ỹ

f · ũε dy dx′ +Oε = µ

∫
R2

∫
Ỹ

|Dyũ|2dy dx′ +Oε.

This shows that the convergence in (5.35) holds in fact in the strong topology of L2(R2;H1(Ỹ ))3.
On the other hand, the change of variables (5.17) and the definition (5.13) of ũε give

−
∫

Ωε

(∣∣∣∣ 1

ε2
uε − ûε

(
x′,

x

ε

)∣∣∣∣2 +

∣∣∣∣1εDxuε −Dyûε
(
x′,

x

ε

)∣∣∣∣2
)
dx

≤ C

∫
R2

∫
Ỹ

(∣∣∣∣ 1

ε2
ũε − ũ

∣∣∣∣2 +

∣∣∣∣ 1

ε2
Dyũε −Dyũ

∣∣∣∣2
)
dydx′.

Therefore, the two first terms in (5.7) tend to zero. In order to prove that the last term also
tends to zero we just use that the weak convergence in H1(ω) of p0

ε to p implies the strong
convergence in L2(ω), which combined with (5.36) and (5.37) proves the result. �

Proof of Corollary 5.3. By (5.6) we have

u(x′) =
2∑
i=1

(
fi(x

′)− ∂ip(x′)
)
−
∫
Ỹ

w̃idy.
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From (5.44), (5.41), and definition (5.4) of A, we then deduce (5.9).
It remains to prove (5.10). Taking into account that thanks to (5.29) and (5.30), the

sequence

1

ε3

∫ εΨt(
x′
ε

)

εΨb(
x′
ε

)

uε(x
′, t)dt

is bounded in L2(ω)3, we can assume that ϕ in (5.10) is smooth. In this case, (5.7) and the
change of variables (5.17) give

1

ε2
−
∫

Ωε

uε · ϕdx = −
∫

Ωε

ûε

(
x′,

x

ε

)
· ϕdx+Oε = −

∫
ω

−
∫
Ỹ

ũ · ϕdy dx′ +Oε = −
∫
ω

u · ϕdx′ +Oε.

�

6 Application to the behavior of thin elastic beams with

rough boundaries

As an application of Theorem 3.6 we study in this section the asymptotic behavior of an elastic
beam with a varying profile. Namely, for a connected bounded open set with boundary which is
locally a Lipschitz continuous graph, ϑ ⊂ RN−1, N ≥ 2, with 0 ∈ ϑ and a sequence of functions
Ψε ∈ W 1,∞(R1+N)N−1, Ψε = Ψε(x1, y), such that

lim
ε→0

(
‖Ψε‖L∞(R1+N )N−1 +

∥∥DyΨε‖L∞(R1+N )(N−1)N + ε
∥∥∂x1Ψε‖L∞(R1+N )N−1

)
= 0, (6.1)

(see Remark 6.1 for an example of such a sequence of functions) we define the “thin beam” Ωε,
with ε > 0, by

Ωε =

{
(x1, x

′′) ∈ (0, 1)× RN−1 :
x′′

ε
+ Ψε

(
x1,

x

ε

)
∈ ϑ
}
, (6.2)

and we denote
Ω = (0, 1)× ϑ. (6.3)

The two bases of Ωε and Ω are denoted by

Γε =
{

(x1, x
′′) ∈ Ωε : x1 ∈ {0, 1}

}
, Γ = {0, 1} × ϑ. (6.4)

We also consider a tensor valued function A ∈ L∞(RN ;L(RN2

s )) such that there exists α > 0,
with

A(x)ξ : ξ ≥ α|ξ|2, ∀ξ ∈ RN2

s , a.e. x ∈ RN , (6.5)

and two functions f ∈ L2(RN)N , G ∈ L2(RN)N
2

s .
Defining Aε ∈ L∞(Ωε;L(RN2

s )), fε ∈ L2(Ωε)
N and Gε ∈ L2(Ωε)

N2

s by

Aε(x) = A

(
x1,

x′′

ε

)
, fε(x) =

(
f1

(
x1,

x′′

ε

)
, εf ′′

(
x1,

x′′

ε

))
, Gε(x) = G

(
x1,

x′′

ε

)
,

a.e. x = (x1, x
′′) ∈ Ωε, we are interested in the asymptotic behavior of the solutions uε of the

elasticity problem {
−div (Aεe(uε)) = fε − divGε in Ωε

uε = 0 on Γε,
(
Aεe(uε)−Gε

)
ν = 0 on ∂Ωε \ Γε,

(6.6)

26



where ν denotes the unitary outward normal vector on ∂Ωε \ Γε.
An answer to the above question is given in Theorem 6.2 below. This result has been proved

in [20] in the case where Ψε is the null function. To take Ψε 6≡ 0 allows us to deal with slightly
rough domains. In the case where G = 0 and where Aε is less general (usually isotropic),
problem (6.6) has been previously solved for example in [12], [16], [25]. We also refer to [9] for
a related result to [20].

Remark 6.1 As an example of sequence Ψε we can take

Ψε(x1, y) = rεΨ

(
x1,

y

τε

)
,

where Ψ = Ψ(x1, z) is a Lipschitz continuous function in R1+N , which is Y -periodic in z, with
Y = (−1/2, 1/2)N , and rε, τε are two positive parameters such that

lim
ε→0

τε = lim
ε→0

rε
τε

= 0.

In Figure 2 we represent Ωε in the case N = 3, ϑ = B((0, 0), 1) ⊂ R2

Ψ(x1, y) =
((

sin
(
(2π(y1 + y2)

)
+ sin(2πy1)

)
x1, sin

(
2π(y1 − y2 + 2y1)

)
(1− x1)

)
,

and ε = 0.1, rε = 0.2, τε = 0.25.

Figure 2: The elastic beam

In order to describe the asymptotic behavior of the solutions of (6.6) we need to introduce
the following spaces:

We define the spaces W and E by

W =
{
w ∈ L2(Ω)N : Dy′′w ∈ L2(Ω)N×(N−1)

}
, (6.7)

E = H2
0 (0, 1)N−1×H1

0 (0, 1)×H1
0 (0, 1)(N−1)2

a ×W. (6.8)
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For (u0, v1, Z, w) ∈ E we denote

E(u0, v1, Z, w) =


dv1

dy1

− d2u0

dy2
1

· y′′ 1

2

(
∇y′′w1 +

dZ

dy1

y′′
)t

1

2

(
∇y′′w1 +

dZ

dy1

y′′
)

ey′′(w
′′)

 . (6.9)

The main result of the present section is given by the following theorem

Theorem 6.2 For every A ∈ L∞(RN ;L(RN2

s )), which satisfies (6.5) and every f ∈ L2(RN)N ,
G ∈ L2(RN)N

2

s , the solution uε of (6.6) satisfies

lim
ε→0
−
∫

Ωε

(∣∣∣uε,1 − v1 +
du0

dx1

· x
′′

ε

∣∣∣2 +
∣∣εu′′ε − u0

∣∣2) dx = 0, (6.10)

lim
ε→0
−
∫

Ωε

∣∣∣∣e(uε)− E(u0, v1, Z, w)

(
x1,

x′′

ε

)∣∣∣∣2 dx = 0, (6.11)

where (u0, v1, Z, w) is the solution of

(u0, v1, Z, w) ∈ E∫
Ω

AE(u0, v1, Z, w) : E(ū0, v̄1, Z̄, w̄) dy

=

∫
Ω

(
f1

(
v̄1 −

dū0

dy1

· y′′
)

+ f ′′ · ū0 +G : E(ū0, v̄1, Z̄, w̄)

)
dy, ∀ (ū0, v̄1, Z̄, w̄) ∈ E.

(6.12)

Remark 6.3 The existence of solution for problem (6.12) easily follows from Lax-Milgram
Theorem. The functions u0, v1 and Z are unique while w is defined up to an additive function
in L2(0, 1)N . Observe that E(u0, v1, Z, w) does not depend on such additive function.

Consider the particular case of an elastic homogeneous isotropic material, i.e.

AM = λ tr(M)I + 2µM, ∀M ∈ RN2

s ,

with λ, µ > 0 the Lamé coefficients, G ≡ 0 and f depending only on x1, take the coordinate
system such that ∫

ϑ

xi dx
′ = 0,

∫
ϑ

xixj dx
′ = 0, 2 ≤ i < j ≤ N.

Defining Sj with j ≥ 2 and the Young’s modulus E by

Sj = −
∫
ϑ

x2
jdx

′, E =
2µ(λN + 2µ)

λ(N − 1) + 2µ
,

one can check that v1 and u0 are the solutions of

−E d2v1

dx2
1

= f1 en (0, 1), v1(0) = v1(1) = 0,

ESj
d4u0

j

dx4
1

= fj en (0, 1), u0
j(0) = u0

j(1) =
du0

j

dx1

(0) =
du0

j

dx1

(1) = 0, 2 ≤ j ≤ N,
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while Z = 0, w1 = 0 and

wj =
λ

λ(N − 1) + 2µ

−dv1

dx1

xj +
1

2

d2u0
j

dx2
1

x2
j −

∑
k≥2
k 6=j

x2
k

+
∑
k≥2
k 6=j

d2u0
k

dx2
1

xjxk

 , 2 ≤ j ≤ N.

In particular, the equations for u0
j (which are the terms of higher order in the approximation of

uε given by (6.10)) are the classical equations for an elastic beam.

The proof of Theorem 6.2 is based on the following Lemma. It complements Theorem 3.6
in the case of the thin beam Ωε, taking into account that the deformation uε vanishes in the
extremities of the beam.

Lemma 6.4 Consider a connected Lipschitz bounded open set ϑ ⊂ RN−1, N ≥ 2, with 0 ∈ ϑ,
and a sequence of functions Ψε ∈ W 1,∞(RN+1)N−1 satisfying (6.1). Then, for r > 0 such that
B(0, 2r) ⊂ ϑ and ε > 0 small enough to have (0, 1) × B(0, εr) ⊂ Ωε, there exists a constant
C > 0 such that every sequence uε ∈ H1(Ωε)

N satisfying

(uε)|x1=0 = 0, ∀ ε > 0, (6.13)

can be decomposed as
uε,1(x) = −du

0
ε

dx1

(x1) · x
′′

ε
+ vε,1(x1) + wε,1(x)

u′′ε(x) =
1

ε
u0
ε(x1) + Zε(x1)

x′′

ε
+ v′′ε (x1) + w′′ε (x),

(6.14)

with u0
ε ∈ H2(0, 1)N−1, Zε ∈ H1(0, 1)

(N−1)2

a , vε ∈ H1(0, 1)N , wε ∈ H1(Ωε)
N

u0
ε(0) = 0, vε(0) = 0,

∣∣∣du0
ε

dx1

(0)
∣∣∣+
∣∣Zε(0)

∣∣ ≤ C
√
ε‖e(uε)‖L2(Ωε)N

2
s
, (6.15)

wε,1(0, x′′)− du0
ε

dx1

(0) · x
′′

ε
= 0, Zε(0)

x′′

ε
+ w′′ε (0, x

′′) = 0, a.e. x′′ ∈ ϑ, (6.16)

ε
N−1

2

(
‖u0

ε‖H2(0,1)N−1 +‖Zε‖H1(0,1)
(N−1)2
a

+‖vε‖H1(0,1)N
)
+

1

ε
‖wε‖L2(Ωε)N +‖Dwε‖L2(Ωε)N

2

≤ C‖e(uε)‖L2(Ωε)N
2

s
.

(6.17)

Moreover, if uε also satisfies
(uε)|x1=1 = 0, ∀ ε > 0, (6.18)

then we can take u0
ε, Zε, vε and wε satisfying

u0
ε(1) = 0, vε(1) = 0,

∣∣∣du0
ε

dx1

(1)
∣∣∣+
∣∣Zε(1)

∣∣ ≤ C
√
ε‖e(uε)‖L2(Ωε)N

2
s
, (6.19)

wε,1(1, x′′)− du0
ε

dx1

(1) · x
′′

ε
= 0, Zε(1)

x′′

ε
+ w′′ε (1, x

′′) = 0, a.e. x′′ ∈ ϑ. (6.20)
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Proof. We first note that for every z ∈ RN , equation

x1 = z1,
x′′

ε
+ Ψε

(
x1,

x

ε

)
= z′′ (6.21)

is equivalent to

x1 = z1,
x′′

ε
+ Ψε

(
z1,

z1

ε
,
x′′

ε

)
= z′′,

which taking into account that
∥∥Dy′′Ψε‖L∞(RN+1)(N−1)2 tends to zero we can apply Banach fixed

point theorem to get a unique solution. Therefore, the function Φε : RN → RN defined by

Φε(x) =

(
x1,

x′′

ε
+ Ψε

(
x1,

x

ε

))
(6.22)

is bijective. On the other hand, we observe that assumptions (3.3) and (3.4) on Ωε are trivially
satisfied with ϑε = (0, 1) while (3.5) can be easily proved using for every fixed x̃1 ∈ (0, 1) the
change of variables

y1 =
x1 − x̃1

ε
, y′′ =

x′′

ε
+ Ψε

(
x1,

x

ε

)
,

which transforms
B̂(x̃1, ε) = {x ∈ Ωε : x1 ∈ (x̃1 − ε, x̃1 + ε)}

into the set

Qε,x̃1 :=
{
y ∈ (−1, 1)× RN−1 : (x̃1 + εy1, y

′′) ∈ Ω
}

=
(
−min

{
1,
x̃1

ε

}
,min

{
1,

1− x̃1

ε

})
× ϑ,

and then using that
∥∥Dy′′Ψε‖L∞(RN+1)(N−1)2 tends to zero combined with the existence of C > 0,

independent of ε and x̃1, such that∥∥∥∥∥q −−
∫
Qε,x̃1

q dy

∥∥∥∥∥
L2(Qε,x̃1 )

≤ C‖∇q‖H−1(Qε,x̃1 )N , ∀ q ∈ L2(Qε,x̃1),

where the last assertion follows from the smoothness assumptions on ϑ.
Thus, Ωε satisfies the conditions of Section 3. So, if uε ∈ H1(Ωε)

N vanishes at x1 = 0, we
can apply Theorem 3.6 to get the decomposition

uε,1(x) = bε,1 − λ′′ε · x′′ −
dû0

ε

dy1

(x1) · x
′′

ε
+ v̂ε,1(x), (6.23)

u′′ε(y) = b′′ε + λ′′εx1 + Λεx
′′ +

1

ε
û0
ε(x1) + Ẑε(x1)

x′′

ε
+ v̂′′ε (x), (6.24)

with bε ∈ RN , λ′′ε ∈ RN−1, Λε ∈ R(N−1)2

a , û0
ε ∈ H2(0, 1)N−1, Ẑε ∈ H1(0, 1)

(N−1)2

a and vε ∈
H1(Ωε)

N , satisfying

ε
N−1

2

(
‖û0

ε‖H2(0,1)N−1 + ‖Ẑε‖H1(0,1)
(N−1)2
a

)
+ ‖v̂ε‖H1(Ωε)N ≤ C‖e(uε)‖L2(Ωε)N

2 (6.25)

and

0 = bε,1 − λ′′ε · x′′ −
dû0

ε

dx1

(0) · x
′′

ε
+ v̂ε,1(0, x′′),

0 = b′′ε + Λεx
′′ +

1

ε
û0
ε(0) + Ẑε(0)

x′′

ε
+ v̂′′ε (0, x′′),
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which combined with (6.25) proves

ε
N−1

2 |bε,1|+ ε
N+1

2

(
|b′′ε |+ |λ′′ε |

)
+ ε

N+3
2 |Λε| ≤ C‖e(uε)‖L2(Ωε)N

2 .

Defining then

u0
ε(x1) = û0

ε(x1) + εb′′ε + ε−
∫
BN−1(0,rε)

v̂′′ε (0, y′′)dy′′ + ελ′′εx1,

Zε(x1) = Ẑε(x1) + εΛε,

vε,1(x1) = bε,1 +−
∫
BN−1(0,rε)

v̂ε,1(x1, y
′′)dy′′, v′′ε (x1) = −

∫
BN−1(0,rε)

(
v̂′′ε (x1, y

′′)− v̂′′ε (0, y′′)
)
dy′′,

wε(x) = v̂ε(x)−−
∫
BN−1(0,rε)

v̂ε(x1, y
′′)dy′′,

and taking into account that Poincaré-Wirtinger’s inequality provides∫
{x′′:(x1,x′′)∈Ωε}

∣∣∣v̂ε(x1, x
′′)−−

∫
BN−1(0,rε)

v̂ε(x1, y
′′)dy′′

∣∣∣2dx′′
≤ Cε2

∫
{x′′:(x1,x′′)∈Ωε}

|Dx′′vε(x1, x
′′)|2 dx′′, a.e. x1 ∈ (0, 1),

we deduce that (6.14), (6.16), (6.17) and the two first assertions in (6.15) are satisfied. In order
to show the last assertion in (6.15), we use thanks to (6.16), we have∣∣∣du0

ε

dx1

(0)
∣∣∣2 +

∣∣Zε(0)
∣∣2 ≤ C −

∫
BN−1(0,rε)

|wε(0, x′′)|2dx′′

≤ C

ε

∫ ε

0

−
∫
BN−1(0,rε)

|wε|2dx′′dx1 + Cε

∫ ε

0

−
∫
BN−1(0,rε)

|Dwε|2dx′′dx1,

(6.26)

where the second inequality just follows by using the change of variables y = x/ε which trans-
forms the open set (0, ε)×BN−1(0, rε) into the fixed open set (0, 1)×BN−1(0, r) and then the
continuity of the trace operator. Using now (6.17) in (6.26) we conclude the last inequality in
(6.15).

The case where uε also vanishes at x1 = 1 follows similarly by defining Zε, vε,1 and wε as
above and

u0
ε(x1) = û0

ε(x1) + εb′′ε + ε−
∫
BN−1(0,rε)

(
(1− x1)v̂′′ε (0, y′′) + x1v̂ε(1, y

′′)
)
dy′′ + ελ′′εx1

v′′ε = −
∫
BN−1(0,rε)

(
v̂′′ε (x1, y

′′)− (1− x1)v̂′′ε (0, y′′)− x1v̂
′′
ε (1, y′′)

)
dy′′.

�

Remark 6.5 In order to apply Lemma 6.4 to problem (6.6) we just need the case uε vanishing
at x1 = 0 and x1 = 1. However, we have preferred to also state the case where uε vanishes only
on one basis of the beam. It is the interesting case when we assume Dirichlet conditions in one
of the basis and Neumann conditions in the other one.

Observe that Lemma 6.4 does not allow to take uε and Zε satisfying the boundary conditions
du0ε
dx1

(0) = 0, Zε(0) = 0. This is related with the apparition of boundary layer terms when we
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deal with the asymptotic behavior of a thin structure (see e.g. [10], [22]). In fact, as a simple
example of sequence uε in the conditions of Lemma 6.4 we can think in N = 2 and

uε,1(x) = − x2√
ε

(
1− ϕ

(x1

ε

))
, uε,2(x) =

x1√
ε
,

with ϕ ∈ C∞([0,∞)) with compact support and satisfying ϕ(0) = 1. In this case the sequences
vε, Zε and w′′ε vanish while u0

ε(x) =
√
εx1 and wε,1 is the boundary layer term

wε,1(x) = ϕ
(x1

ε

) x2√
ε
.

Proof of Theorem 6.2. Using uε as test function in (6.6) and taking into account decompo-
sition (6.14) of uε and (6.17), we deduce the estimate

1

εN−1

∫
Ωε

|e(uε)|2dx ≤ C, (6.27)

which combined with (6.15), (6.15), (6.17), (6.19) and (6.20) proves the existence of a sub-

sequence of ε still denoted by ε and functions u0 ∈ H2
0 (0, 1)N−1, Z0 ∈ H1

0 (0, 1)
(N−1)2

a and
v ∈ H1

0 (0, 1)N such that

uε ⇀ u in H2(0, 1)N−1, Zε ⇀ Z0 in H1(0, 1)(N−1)2

a , vε ⇀ v in H1(0, 1)N . (6.28)

Moreover, using the estimates for wε provided by (6.17) and defining Wε by

Wε(y) = wε

(
y1, εy

′′
)
,

we also deduce the existence of w ∈ L2(0, 1;H1(ϑ))N such that

1

ε
Dy′′Wε ⇀ Dy′′w in L2

(
{y ∈ Ω : dist(y, ∂Ω \ Γ) > δ}

)N(N−1)
, ∀ δ > 0. (6.29)

Now, we consider functions ū0 ∈ H2
0 (0, 1)N−1, v̄1 ∈ H1

0 (0, 1), Z̄ ∈ H1
0 (0, 1)

(N−1)2

a and w̄ ∈
H1((0, 1)× RN−1)N such that w̄ = 0 on {0, 1} × RN−1 and we define ūε ∈ H1(Ωε)

N by
ūε,1(x) = v̄1(x1)− dū0

dy1

(x1) · x
′′

ε
+ εw̄1

(
x1,

x′′

ε

)
ū′′ε(x) =

1

ε
ū0(x1) + Z̄(x1)

x′′

ε
+ εw̄′′

(
x1,

x′′

ε

) a.e. x ∈ Ωε.

Taking ūε as test function in (6.6) and dividing by εN−1 we get

1

εN−1

∫
Ωε

A

(
x1,

x′

ε

)
e(uε) : e(ūε) dx =

1

εN−1

∫
Ωε

(
fε · ūε +Gε : e(ūε)

)
dx. (6.30)

In order to pass to the limit in the left-hand side of (6.30) we use the decompositon

Ωε =
(

(0, 1)× (εϑδ)
)
∪
(

Ωε \
(
(0, 1)× (εϑδ)

))
with

ϑδ =
{
y′′ ∈ ϑ : dist(y, ∂ϑ) > δ

}
.
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Using the change of variables y1 = x1, y′′ = x′′/ε, (6.14), (6.28) and (6.29) we have

lim
ε→0

1

εN−1

∫
(0,1)×(εϑδ)

Ae(uε) : e(ūε) dx =

∫
(0,1)×ϑδ

AE(u0, v1, Z, w) : E(ū0, v̄1, Z̄, w̄) dy. (6.31)

On the other hand, taking into account that e(ūε) is bounded in L∞((0, 1)×RN−1)N
2

s we have

lim sup
ε→0

1

εN−1

∣∣∣∣∫
Ωε\((0,1)×(εϑδ))

Ae(uε) : e(ūε) dx

∣∣∣∣
≤ C lim sup

ε→0

(
1

εN−1

∫
Ωε

∣∣e(uε)∣∣2dx) 1
2

∣∣Ωε \
(
(0, 1)× (εϑδ)

)∣∣ 12
ε
N−1

2

,

where thanks to the definition of Ωε, the last factor in this inequality tends to zero if ε and
then δ tend to zero. Using then (6.27) and (6.31) and passing to the limit first in ε and then
in δ we conclude

lim sup
ε→0

1

εN−1

∫
Ωε

A

(
x1,

x′

ε

)
e(uε) : e(ūε) dx =

∫
Ω

AE(u0, v1, Z, w) : E(ū0, v̄1, Z̄, w̄) dy.

Analogously,

lim
ε→0

1

εN−1

∫
Ωε

(
fε · ūε +Gε : e(ūε)

)
dx

=

∫
Ω

(
f1

(
v̄1 −

dū0

dy1

· y′′
)

+ f ′′ · ū0 +G : E(ū0, v̄1, Z̄, w̄)

)
dy.

So, passing to the limit in (6.30) we have proved that the variational equation in (6.12) holds for

every ū0 ∈ H2
0 (0, 1)N−1, v̄1 ∈ H1

0 (0, 1), Z̄ ∈ H1
0 (0, 1)

(N−1)2

a and w̄ ∈ H1((0, 1)×RN−1)N such that
w = 0 on {0, 1} × RN−1. By density, we then deduce that it holds for every (u0, v1, Z, w) ∈ E.

Now, we take uε as test function in (6.6) and we divide by εN−1. This gives

1

εN−1

∫
Ωε

A

(
x1,

x′

ε

)
e(uε) : e(uε) dx =

1

εN−1

∫
Ωε

(
fε · uε +Gε : e(uε)

)
dx.

Reasoning as above we can easily pass to the limit in the right-hand side of this equality, which
thanks to (6.12) allows us to prove the convergence of the energies

lim
ε→0
−
∫

Ωε

Ae(uε) : e(uε) dx = −
∫

Ω

AE(u0, v1, Z, w) : E(u0, v1, Z, w) dy.

From this equality and (6.14) is now simple to check (6.10). �
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