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Abstract

We study the flow of a micropolar fluid in a thin domain with microstructure, i.e. a thin domain with
thickness ε which is perforated by periodically distributed solid cylinders of size aε. A main feature of this
study is the dependence of the characteristic length of the micropolar fluid on the small parameters describing
the geometry of the thin porous medium under consideration. Depending on the ratio of aε with respect to
ε, we derive three different generalized Darcy equations where the interaction between the velocity and the
microrotation fields is preserved.
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1 Introduction

Based on the micropolar fluid theory [27, 28], which takes into account the effects of solid particles additive
in a Newtonian fluid, we study flows of micropolar fluids in a thin domain which is perforated by periodically
distributed solid cylinders (microstructure) which is called thin porous medium (TPM). This type of domains
include two small parameters: one called ε is connected to the fluid film thickness and the other called aε to the
microstructure representing the size of the cylinders and the interspatial distance between them. The behavior
of fluid flows through TPM has been studied extensively, mainly because of its importance in many industrial
processes, see [30, 31, 35, 41, 43, 44]. However, the literature on non-Newtonian micropolar fluid flows in this type
of domains is far less complete, although these problems have now become of great practical relevance. Therefore,
the objetive of this paper is to derive generalized micropolar Darcy equations for the pressure depending on the
magnitude of the parameters involving the TPM.

Definition of the TPM. A periodic porous medium is defined by a domain ω and an associated microstruc-
ture, or periodic cell Y ′ = (−1/2, 1/2)2 which is made of two complementary parts: the fluid part Y ′f , and the
solid part Y ′s (Y ′f ∪Y ′s = Y ′ and Y ′f ∩Y ′s = ∅). More precisely, we assume that ω is a smooth, bounded, connected

set in R2 and that Y ′s is an open connected subset of Y ′ with a smooth boundary ∂Y ′s , such that Y ′s is strictly
included in Y ′.

The microscale of a porous medium is given by a small positive number aε. The domain ω is covered by a
regular mesh of size aε: for k′ ∈ Z2, each cell Y ′k′,aε = aεk

′ + aεY
′ is divided in a fluid part Y ′fk′ ,aε and a solid

part Y ′sk′ ,aε , i.e. is similar to the unit cell Y ′ rescaled to size aε. We define Y = Y ′× (0, 1) ⊂ R3, which is divided

in a fluid part Yf and a solid part Ys, and consequently Yk′,aε = Y ′k′,aε × (0, 1) ⊂ R3, which is also divided in a
fluid part Yfk′ ,aε , and a solid part Ysk′ ,aε .

We denote by τ(Y
′
sk′ ,aε

) the set of all translated images of Y
′
sk′ ,aε

. The set τ(Y
′
sk′ ,aε

) represents the solids

in R2. The fluid part of the bottom ωε ⊂ R2 of the porous medium is defined by ωε = ω \⋃k′∈Kε
Y sk′ ,aε , where

Kε = {k′ ∈ Z2 : Y ′k′,aε ∩ ω 6= ∅}. The whole fluid part Ωε ⊂ R3 is defined by

Ωε = {(x′, x3) ∈ R2 × R : x′ ∈ ωε, 0 < x3 < ε}. (1.1)
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We make the assumption that the solids τ(Y
′
sk′ ,aε

) do not intersect the boundary ∂ω. We define Y εsk′ ,aε =
Y ′sk′ ,aε × (0, ε). Denote by Sε the set of the solids contained in Ωε. Then, Sε is a finite union of solids, i.e.

Sε =
⋃
k′∈Kε

Y
ε

sk′ ,aε
. We define Ω̃ε = ωε × (0, 1), Ω = ω × (0, 1), and Qε = ω × (0, ε). We observe that

Ω̃ε = Ω \⋃k′∈Kε
Y sk′ ,aε , and we define Tε =

⋃
k′∈Kε

Y sk′ ,aε as the set of the solids contained in Ω̃ε. We remark

that along this paper, the points x ∈ R3 will be decomposed as x = (x′, x3) with x′ ∈ R2, x3 ∈ R. We also use
the notation x′ to denote a generic vector of R2.
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Figure 1: View of the domain Ωε (left) and periodic cells Yk′,aε and Y ′k′,aε (right).

A direct numerical treatment of fluid flows through TPM becomes very difficult due to the rapid variations
on the microscale level, so it would be necessary to obtain macroscopic laws to describe the fluid flows in such
a domain. Thus, due to the description of the domain by using the parameters ε and aε, it is possible to
describe the macroscopic behavior by means of the homogenization theory, developed in the studies of partial
differential equations for strongly heterogeneous problems. In this sense, for Newtonian fluids, this problem
has been addressed in [29] proving the existence of three types of TPM depending on the relation between the
parameters ε and aε:

- The proportionally thin porous medium (PTPM), corresponding to the critical case when the cylinder
height is proportional to the interspatial distance, with λ the proportionality constant, that is aε ≈ ε, with
aε/ε→ λ, 0 < λ < +∞.

- The homogeneously thin porous medium (HTPM), corresponding to the case when the cylinder height is
much larger than interspatial distance, i.e. aε � ε which is equivalent to λ = 0.

- The very thin porous medium (VTPM), corresponding to the case when the cylinder height is much
smaller than the interspatial distance, i.e. aε � ε which is equivalent to λ = +∞.

In particular, denoting the velocity and the pressure in the TPM by uε and pε, respectively, and starting from
the following Stokes system 

−∆uε +∇pε = f in Ωε,

div uε = 0 in Ωε,

uε = 0 on ∂Qε ∪ ∂Sε,
it can be deduced, when ε tends to zero, that the flow is governed by the following 2D Darcy equation depending
on λ ∈ [0,+∞],  u′(x′) = Kλ(f ′(x′)−∇x′p(x′)), u3(x′) = 0 in ω,

divx′u
′ = 0 in ω, u′ · n = 0 on ∂ω,

(1.2)

where u = (u′, u3) is the velocity, p is the pressure and Kλ ∈ R2×2 is a macroscopic quantity known as flow
factor which takes into account the microstructure of the TPM:

- In the PTPM, the flow factor Kλ, 0 < λ < +∞, is calculated by solving 3D Stokes local problems
depending on the parameter λ. More precisely, (Kλ)ij =

∫
Yf
Dλu

i(y) : Dλu
j(y) dy, i, j = 1, 2, where the
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function ui(y), i = 1, 2, is the solution of the local 3D Stokes local problem posed in Y

−∆λu
i +∇λπi = ei in Yf ,

divλ u
i = 0 in Yf ,

ui = 0 in Ys,

ui(y), πi(y) Y ′ − periodic,

where Dλ = Dy′ + λ∂y3 , ∆λ = ∆y′ + λ2∂2
y3 , ∇λ = (∇y′ , λ∂y3)t, divλ = divy′ + λ∂y3 and {e1, e2, e3} is the

canonical basis in R3.

- In the HTPM, the flow factor K0 is calculated by solving 2D Stokes local problems. More precisely,
(K0)ij =

∫
Y ′f
Dy′u

i(y′) : Dy′u
j(y′) dy′, i, j = 1, 2, where the function ui(y′), i = 1, 2, is the solution of the

2D Stokes local problem posed in Y ′

−∆y′u
i +∇y′πi = ei in Y ′f ,

divy′ u
i = 0 in Y ′f ,

ui = 0 in Y ′s ,

ui(y′), πi(y′) Y ′ − periodic.

- In the VTPM, the flow factor K∞ is calculated by solving 2D Hele-Shaw local problems. More precisely,
(K∞)ij =

∫
Y ′f

(
ei +∇y′πi

)
ej dy

′, i, j = 1, 2, where the function πi(y′), i = 1, 2, is the solution of the 2D

Hele-Shaw local problem posed in Y ′
∆y′π

i = 0 in Y ′f ,(
∇y′πi + ei

)
· n = 0 in Y ′s ,

πi(y′) Y ′ − periodic.

From the above, it is obtained that the model problem considered as an average problem could be solved by
using the following homogenization procedure:

1. Solve the local problem numerically corresponding to the value of λ ∈ [0,+∞].

2. Use the solution to compute the components of the flow factor Kλ.

3. Find p by solving the homogenized problem (1.2)2 numerically.

4. Compute u by means of (1.2)1.

Remark that in the intermediate case PTPM, the local problems are three-dimensional and the coefficient of
proportionality λ appears as a parameter in the equations. In the extreme cases HTPM and VTPM, the local
problems are two-dimensional which, from the numerical point of view, represents a considerable simplification
compared with the intermediate case.

These results were proved in [29] by using the multiscale expansion method, which is a formal but powerful
tool to analyze homogenization problems, and later rigorously developed in [14] by using an adaptation of the
periodic unfolding method [18, 23, 24]. This adaptation consists of a combination of the unfolding method in
the horizontal variables with a rescaling in the height variable, in order to work with a domain of fixed height,
and then to use suitable compactness results to pass to the limit when the geometrical parameters ε and aε tend
to zero. We remark that this adaptation was developed in [13] to study the case of non-Newtonian power law
fluids in the TPM and it was recently applied to the case of non-Newtonian Bingham fluids in [11, 12]. For
other studies concerning TPM, see [7, 8, 9, 10, 15, 16, 17].
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On the other hand, micropolar fluids are very important in industrial and engineering applications, see for
instance [1, 2, 3, 4, 5, 33, 38, 39, 40]. In view of that, in this paper we consider a non-Newtonian micropolar
fluid flow in TPM, denoted by Ωε, governed by the linearized micropolar equations, with body forces fε and
body torque gε, written in a non-dimensional form (see [34] for more details)

−∆uε +∇pε = 2N2rotwε + fε in Ωε,

div uε = 0 in Ωε,

−RM∆wε + 4N2wε = 2N2rotuε + gε in Ωε,

uε = wε = 0 on ∂Qε ∪ ∂Sε.

(1.3)

In the system (1.3), the velocity uε, the pressure pε and the microrotation wε (i.e. the angular velocity field of
rotation of particles) are unknown. Observe that equation of the linear momentum (1.3)1 has the familiar form of
the Stokes equation but it is coupled with equation of the angular momentum (1.3)3, which esentially describes
the motion of the particles inside the microvolume as they undergo microrotational effects represented by the
microrotational vector wε. Dimensionless (non-Newtonian) parameter N2 with 0 < N < 1 is called coupling
number and it characterizes the coupling of the linear and angular momentum equations. When N is identically
zero, the equations are decoupled and equation of the linear momentum reduces to the classical Stokes equations
which represent Newtonian fluids. The parameter RM is called characteristic length and it characterizes the
interaction between the micropolar fluid and the microgeometry of the domain. It is small and has to be related
to the other small geometrical parameters depending on the type of TPM, i.e. we will assume that RM = a2

εRc
in the PTPM and HTPM, and RM = ε2Rc in the VTPM, where Rc = O(1) (see Section 3 for more details).

By using the homogenization techniques developed in [13], when ε tends to zero, we derive that the flow is
governed by a generalized 2D Darcy equation depending on the λ ∈ [0,+∞],

u′(x′) = K
(1)
λ (f ′(x′)−∇x′p(x′)) +K

(2)
λ g(x′), u3(x′) = 0 in ω,

w′(x′) = L
(1)
λ (f ′(x′)−∇x′p(x′)) + L

(2)
λ g(x′), w3(x′) = 0 in ω,

divx′u
′ = 0 in ω, u′ · n = 0 on ∂ω,

(1.4)

where the flow factors K
(k)
λ , L

(k)
λ ∈ R2×2, k = 1, 2, are calculated depending on the microstructure of the TPM:

- In the PTPM, the flow factors K
(k)
λ , L

(k)
λ , 0 < λ < +∞ are calculated by solving 3D micropolar local

problems posed in the 3D unit cell Y and depending on the parameter λ, the coupling number and the

characteristic length (see Theorem 4.3). More precisely, (K
(k)
λ )ij =

∫
Yf
ui,kj (y) dy, (L

(k)
λ )ij =

∫
Yf
wi,kj (y) dy,

i, j, k = 1, 2, where ui,k(y), wi,k(y), i, k = 1, 2, are the solution of the 3D micropolar local problems posed
in Y 

−∆λu
i,k +∇λπi,k − 2N2rotλw

i,k = eiδ1k in Yf ,

divλu
i,k = 0 in Yf ,

−Rc∆λw
i,k + 4N2wi,k − 2N2 rotλu

i,k = eiδ2k in Yf ,

ui,k = wi,k = 0 in Ys,

ui,k(y), wi,k(y), πi,k(y) Y ′ − periodic,

where rotλv = (roty′v3 + λroty3v
′,Roty′v

′), with roty′ , roty3 and Roty′ defined in (2.9).

- In the HTPM, the flow factors K
(k)
0 , L

(k)
0 are calculated by solving 3D micropolar local problems posed in

the 2D unit cell Y ′ and depending on the coupling number and the characteristic length (see Theorem 5.3).

More precisely, (K
(k)
0 )ij =

∫
Y ′f
ui,kj (y′) dy′, (L(k)

0 )ij =
∫
Y ′f
wi,kj (y′) dy′, i, j, k = 1, 2, where ui,k(y′), wi,k(y′),
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i, k = 1, 2, are the solution of the 3D micropolar local problems posed in Y ′

−∆y′(u
i,k)′ +∇y′πi,k − 2N2roty′w

i,k
3 = eiδ1k in Y ′f ,

−∆y′u
i,k
3 − 2N2Roty′(w

i,k)′ = 0 in Y ′f ,

divy′(u
i,k)′ = 0 in Yf ,

−Rc∆y′(w
i,k)′ + 4N2(wi,k)′ − 2N2 roty′u

i,k
3 = eiδ2k in Y ′f ,

−Rc∆y′w
i,k
3 + 4N2wi,k3 − 2N2 Roty′(u

i,k)′ = 0 in Y ′f ,

ui,k = wi,k = 0 in Y ′s ,

ui,k(y′), wi,k(y′), πi,k(y′) Y ′ − periodic.

- In the VTPM, the flow factors K
(k)
∞ , L

(k)
∞ are calculated by solving 2D local micropolar Reynolds problems

posed in the 2D unit cell Y ′ and depending on the coupling number and the characteristic length, see

Theorem 6.3. More precisely, (K
(k)
∞ )ij = 1

1−N2

∫
Y ′f

Φ(N,Rc)
(
∂yiπ

j,k(y′) + δijδ1k
)
dy′, L(1)

∞ = 0, (L
(2)
∞ )ij =

− 1
4N3

√
Rc

1−N2

(∫
Y ′f

Ψ(N,Rc) dy
′
)
δij , i, j, k = 1, 2, where πi,k(y′), i, k = 1, 2, is the unique solutions of the

local problems 
−divy′

(
1

1−N2
Φ(N,Rc)

(
∇y′πi,k(y′) + eiδ1k

))
= 0 in Y ′f ,(

1
1−N2 Φ(N,Rc)

(
∇y′πi,k(y′) + eiδ1k

))
· n = 0 in ∂Y ′s ,

with Φ and Ψ defined by (6.79) and (6.80) respectively.

Therefore, the average problem (1.4) could be solved by using a procedure similar to the one described above
for the Newtonian case:

1. Solve the local problem numerically corresponding to the value of λ ∈ [0,+∞].

2. Use the solution to compute the components of the flow factors Kλ and Lλ.

3. Find p by solving the homogenized problem (1.4)3 numerically.

4. Compute u by means of (1.4)1 and w by means of (1.4)2.

We also observe that in the intermediate case PTPM, the local problems are three-dimensional and the coefficient
of proportionality λ appears as a parameter in the equations. Moreover, in the extreme cases HTPM and
VTPM, the local problems are simpler, which represents a considerable simplification from the numerical point
of view. As far as the author knows, this is the first attempt to carry out such a theoretical analysis for
micropolar fluids, which could be instrumental for understanding the effects on the flows of micropolar fluids
and the microstructure of the domain. In view of that, more efficient numerical algorithms could be developed
improving, hopefully, the known engineering practice.

The paper is organized as follows. In Section 2, we introduce the problem under consideration. In Section
3, we give some a priori estimates for the dilated velocity, the microrotation and the pressure, we introduce the
extension of the unknowns to the whole domain Ω, and finally we recall the version of the unfolding method
necessary to pass to the limit in the next sections. Namely, we analyze the case PTPM in Section 4, the case
HTPM in Section 5 and the case VTPM in Section 6. The paper ends with a conclusion section and with a
list of references.
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2 Statement of the problem

In this section, we introduce the problem under consideration and also the rescaled problem posed in a domain
of fixed height. We finish this section giving the equivalent weak variational formulations. To do this, let us
first define some functional spaces which are necesary along the paper. Let C∞# (Y ) be the space of infinitely

differentiable functions in R3 that are Y ′-periodic. By L2
#(Y ) (resp. H1

#(Y )) we denote its completion in the

norm L2(Y ) (resp. H1(Y )) and by L2
0,#(Y ) the space of functions in L2

#(Y ) with zero mean value.

When the distance between two surfaces becomes very small, the experimental results from the tribology
literature (see e.g. [32, 36, 37]) suggest that the fluid’s internal structure should be taken into account as well.
Among various non-Newtonian models, the model of micropolar fluid (proposed by Eringen [28] in 60’s) turns
out to be the most appropriate since it acknowledges the effects of the local structure and micro-motions of
the fluid elements. Physically, micropolar fluids consist in a large number of small spherical particles uniformly
dispersed in a viscous medium. Assuming that the particles are rigid and ignoring their deformations, the related
mathematical model expresses the balance of momentum, mass and angular momentum. A new unknown function
called microrotation (i.e. the angular velocity field of rotation of particles) is added to the usual velocity and
pressure fields. Consequently, Navier-Stokes equations become coupled with a new vector equation coming from
the conservation of angular momentum with four microrotation viscosities introduced (see [34] for more details).
Being able to describe numerous real fluids better than the classical (Newtonian) model, micropolar fluid models
have been extensively studied in recent years (see e.g. [21, 22, 25, 42]).

Taking into account the application we want to model, it is reasonable to assume a small Reynolds number
and omit the inertial terms in momentum equations of the micropolar system. Also, it has been observed that
the magnitude of the viscosity coefficients appearing in the micropolar equations may influence the effective
flow. Thus, it is reasonable to work with the system written in a non-dimensional form (see e.g. [20] for more
details). Thus, we consider the stationary flow of an incompressible micropolar fluid in Ωε which is governed by
the following linearized micropolar system formulated in a non-dimensional form

−div(Duε) +∇pε = 2N2rotwε + fε in Ωε,

div uε = 0 in Ωε,

−RMdiv(Dwε) + 4N2wε = 2N2rotuε + gε in Ωε,

(2.5)

with homogeneous boundary conditions (it does not alter the generality of the problem under consideration),

uε = wε = 0 on ∂Qε ∪ ∂Sε. (2.6)

Under assumptions that fε, gε ∈ L2(Ωε)
3, it is well known that problem (2.5)-(2.6) has a unique weak solution

(uε, wε, pε) ∈ H1
0 (Ωε)

3×H1
0 (Ωε)

3×L2
0(Ωε) (see [34]), where the space L2

0(Ωε) is the space of functions of L2(Ωε)
with null integral.

Our aim is to study the asymptotic behavior of uε, wε and pε when ε and aε tend to zero and identify
homogenized models coupling the effects of the thickness of the domain and its microgeometry. For this purpose,
as usual when we deal with thin domains, we use the dilatation in the variable x3 given by

y3 =
x3

ε
, (2.7)

in order to have the functions defined in the open set with fixed height Ω̃ε.

Namely, we define ũε, w̃ε ∈ H1
0 (Ω̃ε)

3 and p̃ε ∈ L2
0(Ω̃ε) by

ũε(x
′, y3) = uε(x

′, εy3), w̃ε(x
′, y3) = wε(x

′, εy3), p̃ε(x
′, y3) = pε(x

′, εy3), a.e. (x′, y3) ∈ Ω̃ε . (2.8)

Let us introduce some notation which will be useful in the following. For a vectorial function v = (v′, v3) and a
scalar function w, we introduce the operators Dε, ∇ε and rotε by

(Dεv)ij = ∂xjvi for i = 1, 2, 3, j = 1, 2, (Dεv)i,3 =
1

ε
∂y3vi for i = 1, 2, 3,

∇εw =

(
∇x′w,

1

ε
∂y3w

)t
, divεv = divx′v

′ +
1

ε
∂y3v3, rotεv =

(
rotx′v3 +

1

ε
roty3v

′,Rotx′v
′
)t
,
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where, denoting (v′)⊥ = (−v2, v1)t, we define

rotx′v3 = (∂x2v3,−∂x1v3)t, roty3v
′ = (∂y3v

′)⊥, Rotx′v
′ = ∂x1v2 − ∂x2v1. (2.9)

Using the transformation (2.7), the rescaled system (2.5)-(2.6) can be rewritten as
−divε(Dεũε) +∇εp̃ε = 2N2rotε w̃ε + f̃ε in Ω̃ε,

divεũε = 0 in Ω̃ε,

−RMdivε(Dεw̃ε) + 4N2w̃ε = 2N2rotεũε + g̃ε in Ω̃ε ,

(2.10)

with homogeneous boundary conditions

ũε = w̃ε = 0 on ∂Ω ∪ ∂Tε , (2.11)

where f̃ε and g̃ε are defined similarly as in (2.8).

Our goal then is to describe the asymptotic behavior of this new sequences ũε, w̃ε and p̃ε when ε and aε tend
to zero. For this, it will be useful to use the the equivalent weak variational formulation of system (2.5)-(2.6)
and the rescaled system (2.10)-(2.11).

Weak variational formulations. For problem (2.5)-(2.6), the weak variational formulation is to find uε, wε ∈
H1

0 (Ωε)
3 and pε ∈ L2

0(Ωε) such that
∫

Ωε

Duε : Dϕdx−
∫

Ωε

pε divϕdx = 2N2

∫
Ωε

rotwε · ϕdx+

∫
Ωε

fε · ϕdx,

RM

∫
Ωε

Dwε : Dψ dx+ 4N2

∫
Ωε

wε · ψ dx = 2N2

∫
Ωε

rotuε · ψ dx+

∫
Ωε

gε · ψ dx ,
(2.12)

for every ϕ,ψ ∈ H1
0 (Ωε)

3, and the equivalent weak variational formulation for the rescaled system (2.10)-(2.11)

is to find ũε, w̃ε ∈ H1
0 (Ω̃ε)

3 and p̃ε ∈ L2
0(Ω̃ε) such that


∫

Ω̃ε

Dεũε : Dεϕdx
′dy3 −

∫
Ω̃ε

p̃ε divεϕdx
′dy3 = 2N2

∫
Ω̃ε

rotεw̃ε · ϕdx′dy3 +

∫
Ω̃ε

f̃ε · ϕdx′dy3 ,

RM

∫
Ω̃ε

Dεw̃ε : Dεψ dx
′dy3 + 4N2

∫
Ω̃ε

w̃ε · ψ dx′dy3 = 2N2

∫
Ω̃ε

rotεũε · ψ dx′dy3 +

∫
Ω̃ε

g̃ε · ψ dx′dy3 ,

(2.13)

for every ϕ,ψ ∈ H1
0 (Ω̃ε)

3. We recall that : denotes the full contraction of two matrices; for A = (aij)1≤i,j≤3 and

B = (bij)1≤i,j≤3, we have A : B =
∑3
i,j=1 aijbij .

3 A priori estimates

In the sequel we make the following assumptions concerning fε, gε, RM and N :

i) in the cases PTPM and HTPM, we assume

fε(x) = (f ′(x′), 0), gε(x) = (aεg
′(x′), 0), a.e. x ∈ Ωε, where f ′, g′ ∈ L2(ω)2, (3.14)

N2 = O(1), RM = a2
εRc with Rc = O(1) , (3.15)

ii) in the case VTPM, we assume

fε(x) = (f ′(x′), 0), gε(x) = (εg′(x′), 0), a.e. x ∈ Ωε, where f ′, g′ ∈ L2(ω)2, (3.16)

N2 = O(1), RM = ε2Rc with Rc = O(1) . (3.17)
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Along the paper, we denote by C a generic constant which can change from line to line.

Remark 3.1. We point out that in PTPM and HTPM the parameter RM is compared with the size of the
obstacles while in the case VTPM with the film thickness, which are the most challenging ones and they answer to
the question addressed in the paper, all preserve in the limit a strong coupling between velocity and microrotation.
This choice is justified by many studies, for example in the selected applications chapter in [34] (see also [19, 20]).

We also observe that due to the thickness of the domain, it is usual to assume that the vertical components
of f and g can be neglected and, moreover they can be considered independent of the vertical variable. The
parameters for gε are chosen to obtain appropriate estimates in each case.

First, we recall the Poincaré inequality in a thin porous medium domain Ωε (see [13]).

Lemma 3.2. There exists a constant C independent of ε, such that,

i) in the cases PTPM and HTPM, then

‖v‖L2(Ωε)3 ≤ Caε ‖Dv‖L2(Ωε)3×3 , ∀v ∈ H1
0 (Ωε)

3, (3.18)

ii) in the case VTPM, then

‖v‖L2(Ωε)3 ≤ Cε ‖Dv‖L2(Ωε)3×3 , ∀v ∈ H1
0 (Ωε)

3. (3.19)

Next, we give the following results relating the derivative and the rotational (see [26]).

Lemma 3.3. The following inequality holds

‖rot v‖L2(Ωε)3 ≤ ‖Dv‖L2(Ωε)3×3 , ∀v ∈ H1
0 (Ωε)

3. (3.20)

Moreover, if div v = 0 in Ωε, then it holds

‖rot v‖L2(Ωε)3 = ‖Dv‖L2(Ωε)3×3 . (3.21)

We start by obtaining some a priori estimates for ũε and w̃ε.

Lemma 3.4. There exists a constant C independent of ε, such that the rescaled solution (ũε, w̃ε) of the problem
(2.10)-(2.11) satisfies

i) in the cases PTPM and HTPM,

‖ũε‖L2(Ω̃ε)3 ≤ Ca2
ε, ‖Dεũε‖L2(Ω̃ε)3×3 ≤ Caε , (3.22)

‖w̃ε‖L2(Ω̃ε)3 ≤ Caε, ‖Dεw̃ε‖L2(Ω̃ε)3×3 ≤ C . (3.23)

ii) in the case VTPM,

‖ũε‖L2(Ω̃ε)3 ≤ Cε2, ‖Dεũε‖L2(Ω̃ε)3×3 ≤ Cε , (3.24)

‖w̃ε‖L2(Ω̃ε)3 ≤ Cε, ‖Dεw̃ε‖L2(Ω̃ε)3×3 ≤ C . (3.25)

Proof. We analyze the different cases.

i) Cases PTPM and HTPM. We first obtain the estimates for the velocity. Taking ϕ = uε as test function
in the first equation of (2.12), taking into account

∫
Ωε

rotwε · uε dx =
∫

Ωε
rotuε · wε dx, applying Cauchy-

Schwarz’s inequality and from Lemma 3.2 and (3.21), we have

‖Duε‖2L2(Ωε)3×3 = 2N2

∫
Ωε

rotwε · uε dx+

∫
Ωε

fε · uε dx

= 2N2

∫
Ωε

wε · rotuε dx+

∫
Ωε

f ′(x′) · u′ε dx (3.26)

≤ 2N2‖wε‖L2(Ωε)3‖Duε‖L2(Ωε)3×3 + ε
1
2 aεC‖f ′‖L2(ω)2‖Duε‖L2(Ωε)3×3 ,

8
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which implies
ε−

1
2 a−1
ε ‖Duε‖L2(Ωε)3×3 ≤ ε− 1

2 a−1
ε 2N2‖wε‖L2(Ωε)3 + C‖f ′‖L2(ω)2 . (3.27)

Taking now ψ = wε as test function in the second equation of (2.12), applying Cauchy-Schwarz’s inequality
and taking into account (3.14) and (3.15), we have

a2
εRc‖Dwε‖2L2(Ωε)3×3 + 4N2‖wε‖2L2(Ωε)3

= 2N2

∫
Ωε

rotuε · wε dx+ aε

∫
Ωε

g′(x′) · w′ε dx

≤ 2N2‖wε‖L2(Ωε)3‖Duε‖L2(Ωε)3×3 + ε
1
2 aε‖g′‖L2(ω)2‖wε‖L2(Ωε)3 ,

(3.28)

which implies

ε−
1
2 a−1
ε 2N2‖wε‖L2(Ωε)3 ≤ ε−

1
2 a−1
ε N2‖Duε‖L2(Ωε)3×3 +

1

2
‖g′‖L2(ω)2 . (3.29)

Then, from (3.27) and (3.29), we conclude that

ε−
1
2 a−1
ε ‖Duε‖L2(Ωε)3×3 ≤ C

1−N2
‖f ′‖L2(ω)2 +

1

2(1−N2)
‖g′‖L2(ω)2 ,

which gives
‖Duε‖L2(Ωε)3×3 ≤ Caεε

1
2 .

This together with Lemma 3.2 gives
‖uε‖L2(Ωε)3 ≤ Ca2

εε
1
2 , (3.30)

and by means of the dilatation (2.7) we get (3.22).

Finally, we obtain the estimates for the microrotation. We use
∫

Ωε
rotuε · wε dx =

∫
Ωε

rotwε · uε dx in

(3.28), Lemma 3.2 and (3.20), and proceeding as above we obtain

a2
εRc‖Dwε‖2L2(Ωε)3×3 + 4N2‖wε‖2L2(Ωε)3

≤ 2N2‖uε‖L2(Ωε)3‖Dwε‖L2(Ωε)3×3 + ε
1
2 a2
εC‖g′‖L2(ω)2‖Dwε‖L2(Ωε)3×3 ,

(3.31)

which, by using the estimate of uε given in (3.30), provides

a2
εRc‖Dwε‖L2(Ωε)3×3 ≤ C

(
2N2ε

1
2 a2
ε + ε

1
2 a2
ε‖g′‖L2(ω)2

)
.

This implies
‖wε‖L2(Ωε)3 ≤ Caεε

1
2 , ‖Dwε‖L2(Ωε)3×3 ≤ Cε 1

2 ,

and by means of the dilatation, we get (3.23).

ii) Case VTPM. For the velocity, proceeding as above by taking into account (3.16) and (3.17), we conclude

ε−
3
2 ‖Duε‖L2(Ωε)3×3 ≤ ε− 3

2 2N2‖wε‖L2(Ωε)3 + C‖f ′‖L2(ω)2 ,

and

ε−
3
2 2N2‖wε‖L2(Ωε)3 ≤ ε−

3
2N2‖Duε‖L2(Ωε)3×3 +

1

2
‖g′‖L2(ω)2 .

Then, we deduce estimate

‖uε‖L2(Ωε)3 ≤ Cε
5
2 , ‖Duε‖L2(Ωε)3×3 ≤ Cε 3

2 ,

and by means of the dilatation, we get (3.24).

For the microrotation, similarly as the previous case, we get that

ε2Rc‖Dwε‖L2(Ωε)3×3 ≤ C
(

2N2ε
5
2 + ε

5
2 ‖g′‖L2(ω)2

)
,

which implies
‖wε‖L2(Ωε)3 ≤ Cε

3
2 , ‖Dwε‖L2(Ωε)3×3 ≤ Cε 1

2 ,

and by means of the dilatation we get (3.25).

�
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3.1 The extension of (ũε, w̃ε, p̃ε) to the whole domain Ω

We extend the velocity ũε and the microrotation w̃ε by zero to the Ω \ Ω̃ε, and denote the extension by the same
symbol. Obviously, estimates (3.22)-(3.25) remain valid and the extension of ũε is divergence free too.

In order to extend the pressure to the whole domain Ω, we use the mapping Rε, defined in Lemma 4.5 in [13]
as Rε2, which allows us to extend the pressure pε from Ωε to Qε by introducing Fε in H−1(Qε)

3 in the following
way (brackets are for the duality products between H−1 and H1

0 ):

〈Fε, ϕ〉Qε
= 〈∇pε, Rεϕ〉Ωε

, for any ϕ ∈ H1
0 (Qε)

3 . (3.32)

Using Lemma 3.4 for fixed ε and aε, we see that it is a bounded functional on H1
0 (Qε) (see the proof of

Lemma 3.5 below), and in fact Fε ∈ H−1(Qε)
3. Moreover, divϕ = 0 implies 〈Fε, ϕ〉Qε

= 0 , and the DeRham

theorem gives the existence of Pε in L2
0(Qε) with Fε = ∇Pε.

We calcule the right hand side of (3.32) by using the first equation of (2.12) and we have

〈Fε, ϕ〉Qε
= −

∫
Ωε

Duε : DRεϕdx+ 2N2

∫
Ωε

rotwε ·Rεϕdx+

∫
Ωε

f ′(x′) · (Rεϕ)′ dx . (3.33)

We get for any ϕ̃ ∈ H1
0 (Ω)3 where ϕ̃(x′, y3) = ϕ(x′, εy3), using the change of variables (2.7), that

〈∇εP̃ε, ϕ̃〉Ω = −
∫

Ω

P̃ε divε ϕ̃ dx
′dy3 = −ε−1

∫
Qε

Pε divϕdx = ε−1〈∇Pε, ϕ〉Qε .

Then, using the identification (3.33) of Fε, we have

〈∇εP̃ε, ϕ̃〉Ω = ε−1
(
−
∫

Ωε

Duε : DRεϕdx+ 2N2

∫
Ωε

rotwε ·Rεϕdx+

∫
Ωε

f ′(x′) · (Rεϕ)′ dx
)
,

and applying the change of variables (2.7), we obtain

〈∇εP̃ε, ϕ̃〉Ω = −
∫

Ω̃ε

Dεũε : DεR̃
εϕ̃ dx′dy3 + 2N2

∫
Ω̃ε

rotεw̃ε · R̃εϕ̃ dx′dy3 +

∫
Ω̃ε

f(x′) · (R̃εϕ̃)′ dx′dy3 , (3.34)

where R̃εϕ̃ = Rεϕ for any ϕ̃ ∈ H1
0 (Ω)3.

Now, we estimate the right-hand side of (3.34).

Lemma 3.5. There exists a constant C > 0 independent of ε, such that the extension P̃ε ∈ L2
0(Ω) of the pressure

p̃ε satisfies
‖P̃ε‖L2(Ω) ≤ C. (3.35)

Proof. From the proof of Lemma 4.6-(i) in [13], we have that R̃εϕ̃ satisfies the following estimates

‖R̃ε(ϕ̃)‖2
L2(Ω̃ε)3

≤ C
(

1

a2
ε

‖ϕ̃‖2L2(Ω)3 + ‖Dx′ ϕ̃‖2L2(Ω)3×2 +
1

a2
ε

‖∂y3 ϕ̃‖2L2(Ω)3

)
,

‖Dx′R̃
εϕ̃‖2

L2(Ω̃ε)3×2 ≤ C
(

1

a2
ε

‖ϕ̃‖2L2(Ω)3 + ‖Dx′ ϕ̃‖2L2(Ω)3×2 +
1

a2
ε

‖∂y3 ϕ̃‖2L2(Ω)3

)
,

‖∂y3R̃εϕ̃‖2L2(Ω̃ε)3
≤ C

(
‖ϕ̃‖2L2(Ω)3 + a2

ε‖Dx′ ϕ̃‖2L2(Ω)2×3 + ‖∂y3 ϕ̃‖2L2(Ω)3

)
.

This implies that

‖R̃ε(ϕ̃)‖L2(Ω̃ε)3 ≤ C
(
‖ϕ̃‖2L2(Ω)3 + aε‖Dx′ ϕ̃‖L2(Ω)3×2 + ‖∂y3 ϕ̃‖2L2(Ω)3

)
≤ C‖ϕ̃‖H1

0 (Ω)3 .

10
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Moreover, in the case PTPM and HTPM,

‖DεR̃
εϕ̃‖L2(Ω̃ε)3×3 ≤ C

(
1

aε
‖ϕ̃‖L2(Ω)3 + ‖Dx′ ϕ̃‖L2(Ω)3×2 +

1

aε
‖∂y3 ϕ̃‖L2(Ω)3

)
≤ C

aε
‖ϕ̃‖H1

0 (Ω)3 ,

and in the case VTPM,

‖DεR̃
εϕ̃‖L2(Ω̃ε)3×3 ≤ C

(
1

ε
‖ϕ̃‖L2(Ω)3 +

aε
ε
‖Dx′ ϕ̃‖L2(Ω)3×3 +

1

ε
‖∂y3 ϕ̃‖L2(Ω)3

)
≤ C

ε
‖ϕ̃‖H1

0 (Ω)3 .

Thus, in the cases PTPM and HTPM, by using estimates for Dεũε in (3.22), for Dεwε in (3.23) and f ′ ∈ L2(ω)2,
we respectively obtain∣∣∣∣∫

Ω̃ε

Dεũε : DεR̃
εϕ̃ dx′dy3

∣∣∣∣ ≤ Caε‖DεR̃
εϕ̃‖L2(Ω̃ε)3×3 ≤ C‖ϕ̃‖H1

0 (Ω)3 ,∣∣∣∣∫
Ω̃ε

rotεwε · R̃εϕ̃ dx′dy3

∣∣∣∣ ≤ ‖Dεw̃ε‖L2(Ω̃ε)3×3‖R̃εϕ̃‖L2(Ω̃ε)3 ≤ Ca2
εε
−2‖R̃εϕ̃‖L2(Ω̃ε)3 ≤ C‖ϕ̃‖H1

0 (Ω)3 ,∣∣∣∣∫
Ω̃ε

f ′ · R̃εϕ̃ dx′dy3

∣∣∣∣ ≤ C‖R̃εϕ̃‖L2(Ω̃ε)3 ≤ C‖ϕ̃‖H1
0 (Ω)3 ,

which together with (3.34) gives ‖∇εP̃ε‖L2(Ω)3 ≤ C. By using the Nec̆as inequality there exists a representative

P̃ε ∈ L2
0(Ω) such that

‖P̃ε‖L2(Ω) ≤ C‖∇P̃ε‖H−1(Ω)3 ≤ C‖∇εP̃ε‖H−1(Ω)3 ,

which implies (3.35).

Finally, proceeding similarly in the case VTPM, by using now estimates for Dεũε in (3.24) and for Dεwε in
(3.25), we also obtain (3.35).

�

3.2 Adaptation of the unfolding method

The change of variables (2.7) does not provide the information we need about the behavior of ũε and w̃ε in

the microstructure associated to Ω̃ε. To solve this difficulty, we use an adaptation of the unfolding method (see
[18, 23, 24] for more details) introduced in [13].

Let us recall that this adaptation of the unfolding method divides the domain Ω̃ε in cubes of lateral length
aε and vertical length 1. Thus, given (ũε, w̃ε, P̃ε) ∈ H1

0 (Ω)3 ×H1
0 (Ω)3 × L2

0(Ω), we define (ûε, ŵε, P̂ε) by

ûε(x
′, y) = ũε

(
aεκ

(
x′

aε

)
+ aεy

′, y3

)
, ŵε(x

′, y) = w̃ε

(
aεκ

(
x′

aε

)
+ aεy

′, y3

)
, (3.36)

P̂ε(x
′, y) = P̃ε

(
aεκ

(
x′

ε

)
+ aεy

′, y3

)
, (3.37)

a.e. (x′, y) ∈ ω×Y , where ũε, w̃ε and P̃ε are extended by zero outside Ω. For k′ ∈ Z2, we define κ : R2 → Z2 by

κ(x′) = k′ ⇐⇒ x′ ∈ Y ′k′,1 . (3.38)

Remark that κ is well defined up to a set of zero measure in R2 (the set ∪k′∈Z2∂Y ′k′,1). Moreover, for every
aε > 0, we have

κ

(
x′

aε

)
= k′ ⇐⇒ x′ ∈ Y ′k′,aε .

11
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Remark 3.6. For k′ ∈ Kε, the restrictions of (ûε, ŵε, P̂ε) to Y ′k′,aε × Y does not depend on x′, whereas as a

function of y it is obtained from (ũε, w̃ε, P̃ε) by using the change of variables y′ = x′−aεk′
aε

, which transforms
Yk′,aε into Y .

Now, we get the estimates for the sequences (ûε, ŵε, P̂ε) similarly as in the proof of Lemma 4.9 in [13].

Lemma 3.7. There exists a constant C > 0 independent of ε, such that (ûε, ŵε, P̂ε) defined by (3.36)-(3.37)
satisfies

i) in the cases PTPM and HTPM,

‖ûε‖L2(ω×Y )3 ≤ Ca2
ε, ‖Dy′ ûε‖L2(ω×Y )3×3 ≤ Ca2

ε, ‖∂y3 ûε‖L2(ω×Y )3 ≤ Caεε, (3.39)

‖ŵε‖L2(ω×Y )3 ≤ Caε, ‖Dy′ŵε‖L2(ω×Y )3×3 ≤ Caε, ‖∂y3ŵε‖L2(ω×Y )3 ≤ Cε, (3.40)

ii) in the case VTPM,

‖ûε‖L2(ω×Y )3 ≤ Cε2, ‖Dy′ ûε‖L2(ω×Y )3×3 ≤ Caεε, ‖∂y3 ûε‖L2(ω×Y )3 ≤ Cε2, (3.41)

‖ŵε‖L2(ω×Y )3 ≤ Cε, ‖Dy′ŵε‖L2(ω×Y )3×3 ≤ Caε, ‖∂y3ŵε‖L2(ω×Y )3 ≤ Cε, (3.42)

and, moreover, in every cases,
‖P̂ε‖L2(ω×Y ) ≤ C.

Weak variational formulation. To finish this section, we will give the variational formulation satisfied by
the functions (ûε, ŵε, P̂ε), which will be useful in the following sections.

We consider ϕε(x
′, y3) = ϕ(x′, x′/ε, y3) and ψε(x

′, y3) = ψ(x′, x′/ε, y3) as test function in (2.13) where
ϕ(x′, y), ψ(x′, y) ∈ D(ω;C∞# (Y )3), and taking into account the extension of the pressure, we have∫

Ω̃ε

∇εp̃ε · ϕε dx′dy3 =

∫
Ω

∇εP̃ε · ϕε dx′dy3 ,

and the extension of (ũε, w̃ε), we get

∫
Ω̃ε

Dεũε : Dεϕε dx
′dy3 −

∫
Ω

P̃ε divεϕε dx
′dy3 = 2N2

∫
Ω̃ε

rotεw̃ε · ϕε dx′dy3 +

∫
Ω̃ε

f ′ · ϕ′ε dx′dy3 ,

RM

∫
Ω̃ε

Dεw̃ε : Dεψε dx
′dy3 + 4N2

∫
Ω̃ε

w̃ε · ψε dx′dy3 = 2N2

∫
Ω̃ε

rotεũε · ψε dx′dy3 +

∫
Ω̃ε

g′ε · ψ′ε dx′dy3 ,

(3.43)
where RM and g′ε depend on the case, see assumptions (3.14)-(3.17).

Now, by the change of variables given in Remark 3.6 (see [13] for more details), we obtain

1

a2
ε

∫
ω×Yf

Dy′ û
′
ε : Dy′ϕ

′ dx′dy +
1

ε2

∫
ω×Yf

∂y3 û
′
ε : ∂y3ϕ

′ dx′dy

−
∫
ω×Yf

P̂εdivx′ϕ
′ dx′dy − 1

aε

∫
ω×Yf

P̂εdivy′ϕ
′ dx′dy

=
2N2

aε

∫
ω×Yf

roty′ŵε,3 · ϕ′ dx′dy +
2N2

ε

∫
ω×Yf

roty3ŵ
′
ε · ϕ′ dx′dy +

∫
ω×Yf

f ′ · ϕ′ dx′dy +Oε ,

1

a2
ε

∫
ω×Yf

∇y′ ûε,3 · ∇y′ϕ3 dx
′dy +

1

ε2

∫
ω×Yf

∂y3 ûε,3 · ∂y3ϕ3 dx
′dy − 1

ε

∫
ω×Yf

P̂ε∂y3ϕ3 dx
′dy

=
2N2

aε

∫
ω×Yf

Roty′ŵ
′
ε ϕ3 dx

′dy +Oε ,

(3.44)

12
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and

RM
a2
ε

∫
ω×Yf

Dy′ŵ
′
ε : Dy′ψ

′ dx′dy +
RM
ε2

∫
ω×Yf

∂y3ŵ
′
ε : ∂y3ψ

′ dx′dy + 4N2

∫
ω×Yf

ŵ′ε · ψ′ dx′dy

=
2N2

aε

∫
ω×Yf

roty′ ûε,3 · ψ′ dx′dy +
2N2

ε

∫
ω×Yf

roty3 û
′
ε · ψ′ dx′dy +

∫
ω×Yf

g′ε · ψ′ dx′dy +Oε ,

RM
a2
ε

∫
ω×Yf

∇y′ŵε,3 · ∇y′ψ3 dx
′dy +

RM
ε2

∫
ω×Yf

∂y3ŵε,3 : ∂y3ψ3 dx
′dy + 4N2

∫
ω×Yf

ŵε,3 · ψ3 dx
′dy

=
2N2

aε

∫
ω×Yf

Roty′ û
′
ε ψ3 dx

′dy +Oε .

(3.45)

Along the paper, we denote by Oε a generic real sequence which tends to zero with ε and can change from line
to line.

When ε tends to zero, we obtain for (ûε, ŵε, P̂ε) different asymptotic behaviors depending on the cases
PTPM, HTPM and VTPM. We will analyze them in the next sections.

4 Proportionally Thin Porous Medium (PTPM)

It corresponds to the critical case when the cylinder height is proportional to the interspatial distance, with λ
the proportionality constant, that is aε ≈ ε, with aε/ε→ λ, 0 < λ < +∞.

Let us introduce some notation which will be useful along this section. For a vectorial function v = (v′, v3)
and a scalar function w, we introduce the operators Dλ, ∇λ, divλ and rotλ by

(Dλv)ij = ∂xj
vi for i = 1, 2, 3, j = 1, 2, (Dλv)i,3 = λ∂y3vi for i = 1, 2, 3,

∆λv = ∆y′v + λ2∂2
y3v, ∇λw = (∇y′w, λ∂y3w)t,

divλv = divy′v
′ + λ∂y3v3, rotλv = (roty′v3 + λroty3v

′,Roty′v
′) ,

where roty′ , roty3 and Roty′ are defined in (2.9). Next, we give some compactness results about the behavior

of the extended sequences (ũε, w̃ε, P̃ε) and the unfolding functions (ûε, ŵε, P̂ε) satisfying the a priori estimates
given in Lemmas 3.4, 3.5 and 3.7 respectively.

Lemma 4.1. For a subsequence of ε still denote by ε, we have that

i) (Velocity) there exist ũ ∈ H1
0 (0, 1;L2(ω)3) with ũ3 = 0 and û ∈ L2(ω;H1

0,#(Y ))3 with û = 0 on ω × Ys,
such that

∫
Y
û(x′, y)dy =

∫ 1

0
ũ(x′, y3) dy3 with

∫
Y
û3 dy = 0 and moreover

a−2
ε ũε ⇀ (ũ′, 0) in H1(0, 1;L2(ω)3), a−2

ε ûε ⇀ û in L2(ω;H1(Y )3), (4.46)

divx′

(∫ 1

0

ũ′(x′, y3) dy3

)
= 0 in ω,

(∫ 1

0

ũ′(x′, y3) dy3

)
· n = 0 in ∂ω , (4.47)

divλû = 0 in ω × Y, divx′

(∫
Y

û′(x′, y) dy

)
= 0 in ω,

(∫
Y

û′(x′, y) dy

)
· n = 0 in ∂ω , (4.48)

ii) (Microrotation) there exist w̃ ∈ H1
0 (0, 1;L2(ω)3) with w̃3 = 0 and ŵ ∈ L2(ω;H1

0,#(Y ))3 with ŵ = 0 on

ω × Ys, such that
∫
Y
ŵ(x′, y)dy =

∫ 1

0
w̃(x′, y3) dy3 with

∫
Y
ŵ3 dy = 0 and moreover

a−1
ε w̃ε ⇀ (w̃′, 0) in H1(0, 1;L2(ω)3), a−1

ε ŵε ⇀ ŵ in L2(ω;H1(Y )3), (4.49)
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iii) (Pressure) there exists a function P̃ ∈ L2
0(Ω), independent of y3, such that

P̃ε → P̃ in L2(Ω), P̂ε → P̃ in L2(ω × Y ). (4.50)

Proof. The proof of this result for the velocity is obtained by arguing similarly to Section 5 in [13].

The proof of the results for the microrotation is analogous to the ones of the velocity, except to prove that
w̃3 = 0. To do this, we consider as test function ψε(x

′, y3) = (0, 0, a−1
ε ψ3) in the variational formulation (3.43),

and we get

aεRc

∫
Ω

∇x′w̃ε,3 · ∇x′ψ3 dx
′dy3 + aεε

−2Rc

∫
Ω

∂y3w̃ε,3 ∂y3ψ3 dx
′dy3 + 4N2a−1

ε

∫
Ω

w̃ε,3ψ3 dx
′dy3

= 2N2a−1
ε

∫
Ω

Rotx′ ũ
′
ε ψ3 dx

′dy3 .

Passing to the limit by using convergences of ũε and w̃ε given in (4.46) and (4.49), we get

λ2Rc

∫
Ω

∂y3w̃3 ∂y3ψ3 dx
′dy3 + 4N2

∫
Ω

w̃3 ψ3 dx
′dy3 = 0 ,

and taking into account that w̃3 = 0 on y3 = {0, 1}, it is easily deduced that w̃3 = 0 a.e. in Ω.

We finish with the proof for the pressure. Estimate (3.7) implies, up to a subsequence, the existence of
P̃ ∈ L2

0(Ω) such that
P̃ε ⇀ P̃ in L2(Ω). (4.51)

Also, from ‖∇εP̃ε‖L2(Ω)3 ≤ C, by noting that ∂y3 P̃ε/ε also converges weakly in H−1(Ω), we obtain ∂y3 P̃ = 0

and so P̃ is independent of y3. Next, following [45], it can be proved that the convergence of the pressure is in
fact strong giving the first convergence of (4.50). Finally, we remark that the strong convergence of sequence P̂ε
to P̃ is a consequence of the strong convergence of P̃ε to P̃ (see [24, Proposition 2.9]).

�

Unsing previous convergences, in the following theorem we give the homogenized system satisfied by (û, ŵ, P̃ ).

Theorem 4.2. In the case PTPM, the sequence (a−2
ε ûε, a

−1
ε ŵε) converges weakly to (û, ŵ) in L2(ω;H1(Y )3)×

L2(ω;H1(Y )3) and P̂ε converges strongly to P̃ in L2(ω), where (û, ŵ, P̃ ) ∈ L2(ω;H1
0,#(Y )3)×L2(ω;H1

0,#(Y )3)×
(L2

0(ω) ∩H1(ω)), with
∫
Y
û3 dy =

∫
Y
ŵ3 dy = 0, is the unique solution of the following homogenized system

−∆λû+∇λq̂ = 2N2rotλŵ + f ′(x′)−∇x′ P̃ (x′) in ω × Yf ,
divλû = 0 in ω × Yf ,

−Rc∆λŵ + 4N2ŵ = 2N2 rotλû+ g′(x′) in ω × Yf ,
û = ŵ = 0 in ω × Ys,

divx′

(∫
Y

û′(x′, y) dy

)
= 0 in ω,(∫

Y

û′(x′, y) dy

)
· n = 0 on ∂ω,

û(x′, y), ŵ(x′, y), q̂(x′, y) Y ′ − periodic.

(4.52)

Proof. For every ϕ ∈ D(ω;C∞# (Y )3) with divλϕ = 0 in ω × Y and divx′(
∫
Y
ϕ′ dy) = 0 in ω, we choose

ϕε = (ϕ′, λ(ε/aε)ϕ3) in (3.44). Taking into account that thanks to divλϕ = 0 in ω × Y , we have that

1

aε

∫
ω×Y

P̂ε(divy′ϕ
′ + λ∂y3ϕ3) dx′dy = 0 .

14
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Thus, passing to the limit using the convergences (4.46), (4.49), (4.50) and λ(ε/ηε)→ 1, we obtain∫
ω×Yf

Dλû : Dλϕdx
′dy −

∫
ω×Y

P̃ divx′ϕ
′ dx′dy

= 2N2

∫
ω×Yf

(roty′ŵ3 · ϕ′ + λroty3ŵ
′ · ϕ′ + Roty′ŵ

′ ϕ3) dx′dy +

∫
ω×Yf

f ′ · ϕ′ dx′dy .
(4.53)

Since P̃ does not depend on y and divx′
∫
Y
ϕ′ dy = 0 in ω, we have that the second term is zero, and so we get∫

ω×Yf

Dλû : Dλϕdx
′dy = 2N2

∫
ω×Yf

rotλŵ · ϕdx′dy +

∫
ω×Yf

f ′ · ϕ′ dx′dy . (4.54)

Next, for every ψ ∈ D(ω;C∞# (Y )3), we choose ψε = a−1
ε ψ in (3.45) with gε and RM satisfying (3.14) and

(3.15). Then, passing to the limit using convergences (4.46) and (4.49), we get

Rc

∫
ω×Yf

Dλŵ : Dλψ dx
′dy + 4N2

∫
ω×Yf

ŵ · ψ dx′dy = 2N2

∫
ω×Yf

rotλû · ψ dx′dy +

∫
ω×Yf

g′ · ψ′ dx′dy .

(4.55)
By density (4.54) holds for every function ϕ in the Hilbert space V defined by

V =



ϕ(x′, y) ∈ L2(ω;H1
0,#(Y )3) such that

divx′

(∫
Yf

ϕ(x′, y) dy

)
= 0 in ω,

(∫
Yf

ϕ(x′, y) dy

)
· n = 0 on ∂ω

divλϕ(x′, y) = 0 in ω × Yf , ϕ(x′, y) = 0 in ω × Ys


,

and (4.55) in W = {ψ(x′, y) ∈ L2(ω;H1
0,#(Y )3) : ψ(x′, y) = 0 in ω × Ys}.

From Theorem 2.4.2 in [34], the variational formulation (4.54)-(4.55) admits a unique solution (û, ŵ) in V ×W .

From Lemma 2.4.1 in [34] (see also [6]), the orthogonal of V with respect to the usual scalar product in
L2(ω×Y ) is made of gradients of the form∇x′q(x′)+∇λq̂(x′, y), with q(x′) ∈ L2

0(ω) and q̂(x′, y) ∈ L2(ω;H1
#(Y )).

Therefore, by integration by parts, the variational formulations (4.54)-(4.55) are equivalent to the homogenized
system (4.52). It remains to prove that the pressure P̃ (x′), arising as a Lagrange multiplier of the incompress-
ibility constraint divx′(

∫
Y
û(x′, y)dy) = 0, is the same as the limit of the pressure P̂ε. This can be easily done

by considering in equation (3.44) a test function with divλ equal to zero, and obtain the variational formulation
(4.53). Since 2N2rotλŵ + f ′ ∈ L2(ω × Y )3 we deduce that P̃ ∈ H1(ω).

Finally, since from Lemma 2.4.1 in [34] we have that (4.52) admits a unique solution, and then the complete
sequence (a−2

ε ûε, a
−1
ε ŵε, P̂ε) converges to the solution (û(x′, y), ŵ(x′, y), P̃ (x′)).

�

Let us define the local problems which are useful to eliminate the variable y of the previous homogenized
problem and then obtain a Darcy equation for the pressure P̃ .

For every i, k = 1, 2 and 0 < λ < +∞, we consider the following local micropolar problems

−∆λu
i,k +∇λπi,k − 2N2rotλw

i,k = eiδ1k in Yf ,

divλu
i,k = 0 in Yf ,

−Rc∆λw
i,k + 4N2wi,k − 2N2 rotλu

i,k = eiδ2k in Yf ,

ui,k = wi,k = 0 in Ys,

ui,k(y), wi,k(y), πi,k(y) Y ′ − periodic.

(4.56)

It is known (see Lemma 2.5.1 in [34]) that there exist a unique solution (ui,k, wi,k, πi,k) ∈ H1
0,#(Yf )3×H1

0,#(Yf )3×
L2

0,#(Yf ) of problem (4.56), and moreover πi,k ∈ H1(Yf ).

Now, we give the main result concerning the homogenized flow.

15



Francisco J. Suárez-Grau

Theorem 4.3. Let (û, ŵ, P̃ ) ∈ L2(ω;H1
0,#(Y )3)×L2(ω;H1

0,#(Y )3)×(L2
0(ω)∩H1(ω)) be the unique weak solution

of problem (4.52). Then, the extensions (a−2
ε ũε, a

−1
ε w̃ε) and P̃ε of the solution of problem (2.10)-(2.11) converge

weakly to (ũ, w̃) in H1(0, 1;L2(ω)3)×H1(0, 1;L2(ω)3) and strongly to P̃ in L2(ω) respectively, with ũ3 = w̃3 = 0.

Moreover, defining Ũ(x′) =
∫ 1

0
ũ(x′, y3) dy3 and W̃ (x′) =

∫ 1

0
w̃(x′, y3) dy3, it holds

Ũ ′(x′) = K
(1)
λ

(
f ′(x′)−∇x′ P̃ (x′)

)
+K

(2)
λ g(x′), Ũ3(x′) = 0 in ω,

W̃ ′(x′) = L
(1)
λ

(
f ′(x′)−∇x′ P̃ (x′)

)
+ L

(2)
λ g(x′), W̃3(x′) = 0 in ω,

(4.57)

where K
(k)
λ , L

(k)
λ ∈ R2×2, k = 1, 2, are matrices with coefficients(

K
(k)
λ

)
ij

=

∫
Yf

ui,kj (y) dy,
(
L

(k)
λ

)
ij

=

∫
Yf

wi,kj (y) dy, i, j = 1, 2,

where ui,k, wi,k are the solutions of the local micropolar problems defined in (4.56).

Here, P̃ ∈ H1(ω) ∩ L2
0(ω) is the unique solution of the 2D Darcy equation

divx′
(
K

(1)
λ

(
f ′(x′)−∇x′ P̃ (x′)

)
+K

(2)
λ g(x′)

)
= 0 in ω,(

K
(1)
λ

(
f ′(x′)−∇x′ P̃ (x′)

)
+K

(2)
λ g(x′)

)
· n = 0 in ∂ω.

(4.58)

Proof. We eliminate the microscopic variable y in the effective problem (4.52). To do that, we consider the
following identification

û(x′, y) =

2∑
i=1

[(
fi(x

′)− ∂xi
P̃ (x′)

)
ui,1(y) + gi(x

′)ui,2(y)
]
,

ŵ(x′, y) =

2∑
i=1

[(
fi(x

′)− ∂xi
P̃ (x′)

)
wi,1(y) + gi(x

′)wi,2(y)
]
, (4.59)

q̂(x′, y) =

2∑
i=1

[(
fi(x

′)− ∂xi
P̃ (x′)

)
πi,1(y) + gi(x

′)πi,2(y)
]
,

and thanks to the identity
∫
Yf
ϕ̂(x′, y) dy =

∫ 1

0
ϕ̃(x′, y3) dy3 with

∫
Yf
ϕ̂3 dy = 0 satisfied by velocity and microro-

tation given in Lemma 4.1, we deduce that Ũ and W̃ are given by (4.57).

Finally, the divergence condition with respect to the variable x′ given in (4.52) together with the expression

of Ũ ′(x′) gives (4.58), which has a unique solution since K
(1)
λ is positive definite and then the whole sequence

converges, see Part III - Theorem 2.5.2 in [34].

�

Remark 4.4. We observe that when N is identically zero, taking into account the linear momentum equations
from (4.52), we can deduce that the Darcy equation (4.58) agrees with the ones obtained in [14, 29] in the case
PTPM.

5 The homogeneously thin porous medium (HTPM)

It corresponds to the case when the cylinder height is much larger than interspatial distance, i.e. aε � ε which
is equivalent to λ = 0.

Next, we give some compactness results about the behavior of the extended sequences (ũε, w̃ε, P̃ε) and the
unfolding functions (ûε, ŵε, P̂ε) by using the a priori estimates given in Lemmas 3.4 and 3.5, and Lemma 3.7,
respectively.
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Lemma 5.1. For a subsequence of ε still denoted by ε, there exist the following functions:

i) (Velocity) there exist ũ ∈ L2(Ω)3, with ũ3 = 0 and û ∈ L2(Ω;H1
#(Y ′)3) with û = 0 on ω × Ys, such that∫

Yf
û(x′, y)dy =

∫ 1

0
ũ(x′, y3)dy3 with

∫
Yf
û3(x′, y)dy = 0, û3 independent of y3 and moreover

a−2
ε ũε ⇀ (ũ′, 0) in L2(Ω)3, a−2

ε ûε ⇀ û in L2(Ω;H1(Y ′)3), (5.60)

divx′

(∫ 1

0

ũ′(x′, y3) dy3

)
= 0 in ω,

(∫ 1

0

ũ′(x′, y3) dy3

)
· n = 0 in ∂ω , (5.61)

divy′ û
′ = 0 in ω × Yf , divx′

(∫
Yf

û′(x′, y) dy

)
= 0 in ω,

(∫
Yf

û(x′, y) dy

)
· n = 0 in ∂ω , (5.62)

ii) (Microrotation) there exist w̃ ∈ L2(Ω)3 with w̃3 = 0 and ŵ ∈ L2(Ω;H1
#(Y ′)3) with ŵ = 0 on ω × Ys, such

that
∫
Yf
ŵ(x′, y)dy =

∫ 1

0
w̃(x′, y3) dy3 with

∫
Yf
ŵ3(x′, y) dy = 0, û3 independent of y3 and moreover

a−1
ε w̃ε ⇀ (w̃′, 0) in L2(Ω)3, a−1

ε ŵε ⇀ ŵ in L2(Ω;H1(Y ′)3), (5.63)

iii) (Pressure) there exists P̃ ∈ L2
0(Ω) independent of y3, such that

P̃ε → P̃ in L2(ω), P̂ε → P̃ in L2(ω). (5.64)

Proof. The proof of this result is obtained by arguing similarly to Section 5 in [13] and Lemma 4.1 of the
present paper.

�

Using previous convergences, in the following theorem we give the homogenized system satisfied by (û, ŵ, P̃ ).

Theorem 5.2. In the case HTPM, the sequence (a−2
ε ûε, a

−1
ε ŵε) converges weakly to (û, ŵ) in L2(Ω;H1(Y ′)3)×

L2(Ω;H1(Y ′)3) and P̂ε converges strongly to P̃ in L2(ω), where (û, ŵ, P̃ ) ∈ L2(Ω;H1
#(Y ′)3)×L2(Ω;H1

#(Y ′)3)×
(L2

0(ω) ∩ H1(ω)) with û3 and ŵ3 independent of y3 and
∫
Y ′f
û3(x′, y′) dy′ =

∫
Y ′f
ŵ3(x′, y′) dy′ = 0. Moreover,

defining Û =
∫ 1

0
û(x′, y)dy3, Ŵ =

∫ 1

0
û(x′, y)dy3, we have that (Û , Ŵ ) ∈ L2(ω;H1

#(Y ′)3) × L2(ω;H1
#(Y ′)3) is

the unique solution of the following homogenized system

−∆y′Û
′ +∇y′ q̂ = 2N2roty′Ŵ3 + f ′(x′)−∇x′ P̃ (x′) in ω × Y ′f ,

−∆y′Û3 = 2N2Roty′Ŵ
′ in ω × Y ′f ,

−Rc∆y′Ŵ
′ + 4N2Ŵ ′ = 2N2roty′Û3 + g′(x′) in ω × Y ′f ,

−Rc∆y′Ŵ3 + 4N2Ŵ3 = 2N2Roty′Û
′ in ω × Y ′f ,

divy′Û
′ = 0 in ω × Y ′f ,

Û ′ = Ŵ ′ = 0 in ω × Y ′s ,

divx′

(∫
Y ′f

Û ′(x′, y′) dy′
)

= 0 in ω,

(∫
Y ′f

Û ′(x′, y′) dy′
)
· n = 0 on ∂ω,

Û(x′, y′), ŵ(x′, y′), q̂(x′, y′) Y ′ − periodic.

(5.65)
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Proof. We choose ϕ ∈ D(ω;C∞# (Y )3) with divy′ϕ
′ = 0 in ω×Y , divx′(

∫
Y
ϕ′ dy) = 0 in ω and ϕ3 independent

of y3 in (3.44). Taking into account that thanks to divy′ϕ
′ = 0 in ω×Yf and ϕ3 independent of y3, we have that

1

aε

∫
ω×Y

P̂εdivy′ϕ
′ dx′dy = 0 and

1

ε

∫
ω×Y

∂y3 P̂ε∂y3ϕ3 dx
′dy = 0 .

Thus, passing to the limit using the convergences (5.60), (5.63), (5.64), aε/ε→ 0 and using in the limit that P̃
does not depend on y and divx′(

∫
Y
ϕ′ dy) = 0, we obtain

∫
ω×Yf

Dy′ û
′ : Dy′ϕ

′ dx′dy = 2N2

∫
ω×Yf

roty′ŵ3 · ϕ′ dx′dy +

∫
ω×Yf

f ′ · ϕ′ dx′dy∫
ω×Yf

∇y′ û3 : ∇y′ϕ3 dx
′dy = 2N2

∫
ω×Yf

Roty′ŵ
′ ϕ3 dx

′dy .

(5.66)

Next, for every ψ ∈ D(ω;C∞# (Y )3) with ψ3 independent of y3, we choose ψε = a−1
ε ψ in (3.45) taking into

account that gε and RM satisfy (3.14) and (3.15). Then, passing to the limit using convergences (5.60) and
(5.63), we get

Rc

∫
ω×Yf

Dy′ŵ
′ : Dy′ψ

′ dx′dy + 4N2

∫
ω×Yf

ŵ′ · ψ′ dx′dy

= 2N2

∫
ω×Yf

roty′ û3 · ψ′ dx′dy +

∫
ω×Yf

g′(x′) · ψ′ dx′dy ,

Rc

∫
ω×Yf

∇y′ŵ3 : ∇y′ψ3 dx
′dy + 4N2

∫
ω×Yf

ŵ3 · ψ3 dx
′dy = 2N2

∫
ω×Yf

Roty′ û
′ · ψ3 dx

′dy.

(5.67)

We take into account that there is no y3-dependence in the obtained variational formulation. For that, we can
consider ϕ,ψ independent of y3, which implies that (Û , Ŵ ) satisfies the same variational formulation with integral
in ω×Y ′f . By density, we can deduce that the variational formulation for (Û , Ŵ ) is equivalent to problem (5.65).

�

The local problems to eliminate the variable y of the previous homogenized problem can be defined by using
the local system (4.56) with λ = 0. In that case, since there is no y3 dependence, then it is correct to consider
all equations in 2D domain Y ′f instead of Yf . Therefore, for every i, k = 1, 2, we consider (ui,k, wi,k, πi,k) ∈
H1

#(Y ′f )3 ×H1
#(Y ′f )3 × (H1(Y ′f ) ∩ L2

0,#(Y ′f )) the unique solutions of the following local micropolar problems

−∆y′(u
i,k)′ +∇y′πi,k − 2N2roty′w

i,k
3 = eiδ1k in Y ′f ,

−∆y′u
i,k
3 − 2N2Roty′(w

i,k)′ = 0 in Y ′f ,

divy′(u
i,k)′ = 0 in Yf ,

−Rc∆y′(w
i,k)′ + 4N2(wi,k)′ − 2N2 roty′u

i,k
3 = eiδ2k in Y ′f ,

−Rc∆y′w
i,k
3 + 4N2wi,k3 − 2N2 Roty′(u

i,k)′ = 0 in Y ′f ,

ui,k = wi,k = 0 in Y ′s ,

ui,k(y′), wi,k(y′), πi,k(y′) Y ′ − periodic.

(5.68)

We give the main result concerning the homogenized flow.

Theorem 5.3. Let (Û , Ŵ , P̃ ) ∈ L2(ω;H1
#(Y ′)3)×L2(ω;H1

#(Y ′)3)×(L2
0(ω)∩H1(ω)) be the unique weak solution

of problem (5.65). Then, the extensions (a−2
ε ũε, a

−1
ε w̃ε) and P̃ε of the solution of problem (2.10)-(2.11) converge

weakly to (ũ, w̃) in L2(Ω)3 × L2(Ω)3 and strongly to P̃ in L2(ω) respectively, with ũ3 = w̃3 = 0. Moreover,

defining Ũ(x′) =
∫ 1

0
ũ(x′, y3) dy3 and W̃ (x′) =

∫ 1

0
w̃(x′, y3) dy3, it holds

Ũ ′(x′) = K
(1)
0

(
f ′(x′)−∇x′ P̃ (x′)

)
+K

(2)
0 g(x′), Ũ3(x′) = 0 in ω,

W̃ ′(x′) = L
(1)
0

(
f ′(x′)−∇x′ P̃ (x′)

)
+ L

(2)
0 g(x′), W̃3(x′) = 0 in ω,

(5.69)
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where K
(k)
0 , L

(k)
0 ∈ R2×2, k = 1, 2, are matrices with coefficients(

K
(k)
0

)
ij

=

∫
Y ′f

ui,kj (y′) dy′,
(
L

(k)
0

)
ij

=

∫
Y ′f

wi,kj (y′) dy′, i, j = 1, 2,

where ui,k, wi,k are the solutions of the local micropolar problems defined in (5.68).

Here, P̃ ∈ H1(ω) ∩ L2
0(ω) is the unique solution of the 2D Darcy equation

divx′
(
K

(1)
0

(
f ′(x′)−∇x′ P̃ (x′)

)
+K

(2)
0 g(x′)

)
= 0 in ω,(

K
(1)
0

(
f ′(x′)−∇x′ P̃ (x′)

)
+K

(2)
0 g(x′)

)
· n = 0 in ∂ω.

(5.70)

Proof. To eliminate the microscopic variable y′ in the effective problem (5.65), we proceed as for the critical
case by considering the local systems (5.68).

Thanks to the identities for the velocity
∫
Y ′f
Û(x′, y′) dy′ = Ũ(x′) with

∫
Y ′f
Û3 dy

′ = 0 and the analogous one

for the microrotation given in Lemma 5.1, we deduce that Ũ and W̃ are given by (5.69).

Finally, the divergence condition with respect to the variable x′ given in (5.61) together with the expression

of Ũ ′(x′) gives (5.70), which has a unique solution since K
(1)
0 is positive definite and then the whole sequence

converges, see Part III - Theorem 2.5.2 in [34].

�

Remark 5.4. We observe that when N is identically zero, taking into account the linear momentum equations
from (5.65), we can deduce that the Darcy equation (5.70) agrees with the ones obtained in [14, 29] in the case
HTPM.

6 The very thin porous medium (VTPM)

It corresponds to the case when the cylinder height is much smaller than the interspatial distance, i.e. aε � ε
which is equivalent to λ = +∞.

Next, we give some compactness results about the behavior of the extended sequences (ũε, w̃ε, P̃ε) and the
unfolding functions (ûε, ŵε, P̂ε) satisfying the a priori estimates given in Lemmas 3.4 and 3.5, and Lemma 3.7,
respectively.

Lemma 6.1. For a subsequence of ε still denoted by ε, there exist the following functions:

i) (Velocity) there exist ũ ∈ H1
0 (0, 1;L2(ω)3) with ũ3 = 0 and û ∈ H1

0 (0, 1;L2
#(ω×Y ′)3) with û = 0 in ω×Ys,

such that
∫
Y
û(x′, y)dy =

∫ 1

0
ũ(x′, y3) dy3 with

∫
Y
û3 dy = 0, û3 independent of y3 and moreover

ε−2ũε ⇀ (ũ′, 0) in H1(0, 1;L2(ω)3), ε−2ûε ⇀ û in H1(0, 1;L2(ω × Y ′)3), (6.71)

divx′

(∫ 1

0

ũ′(x′, y3) dy3

)
= 0 in ω,

(∫ 1

0

ũ′(x′, y3) dy3

)
· n = 0 in ∂ω , (6.72)

divy′ û
′ = 0 in ω × Yf , divx′

(∫
Yf

û′(x′, y) dy

)
= 0 in ω,

(∫
Yf

û′(x′, y) dy

)
· n = 0 in ∂ω ,(6.73)

ii) (Microrotation) there exist w̃ ∈ H1
0 (0, 1;L2(ω)3) with w̃3 = 0 and ŵ ∈ H1

0 (0, 1;L2
#(ω×Y ′)3) with ŵ = 0 in

ω × Ys, such that
∫
Yf
ŵ(x′, y)dy =

∫ 1

0
w̃(x′, y3) dy3 with

∫
Yf
ŵ3 dy = 0, ŵ3 independent of y3 and moreover

ε−1w̃ε ⇀ (w̃′, 0) in H1(0, 1;L2(ω)3), ε−1ŵε ⇀ ŵ in H1(0, 1;L2(ω × Y ′)3), (6.74)
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iii) (Pressure) there exists P̃ ∈ L2
0(Ω) independent of y3, such that

P̃ε → P̃ in L2(ω), P̂ε → P̃ in L2(ω). (6.75)

Proof. The proof of this result is obtained by arguing similarly to Section 5 in [13] and Lemma 4.1 of the
present paper.

�

Theorem 6.2. In the case VTPM, the sequence (ε−2ûε, ε
−1ŵε) converges weakly to (û, ŵ) in H1(0, 1;L2(ω ×

Y ′)3)×H1(0, 1;L2(ω× Y ′)3) and P̂ε converges strongly to P̃ in L2(ω), where (û, ŵ, P̃ ) ∈ H1
0 (ω;L2

#(ω× Y ′)3)×
H1

0 (ω;L2
#(ω × Y ′)3) × (L2

0(ω) ∩H1(ω)) with û3 = ŵ3 = 0, is the unique solution of the following homogenized
system 

−∂y3 û′ +∇y′ q̂ = 2N2 roty3ŵ
′ + f ′(x′)−∇x′ P̃ (x′) in ω × Yf ,

−Rc∂y3ŵ′ + 4N2ŵ = 2N2 roty3 û
′ + g′(x′) in ω × Yf ,

divy′ û
′ = 0 in ω × Yf ,

û′ = ŵ′ = 0 in ω × Ys,

divx′

(∫
Y

û′(x′, y) dy

)
= 0 in ω,(∫

Y

û′(x′, y) dy

)
· n = 0 on ∂ω,

û′(x′, y), ŵ′(x′, y), q̂(x′, y′) Y ′ − periodic.

(6.76)

Proof. We choose ϕ ∈ D(ω;C∞# (Y )3) with divy′ϕ
′ = 0 in ω×Y , divx′(

∫
Y
ϕ′ dy) = 0 in ω and ϕ3 independent

of y3 in (3.44). Taking into account that thanks to divy′ϕ
′ = 0 in ω× Y and ϕ3 independent of y3, we have that

1

aε

∫
ω×Y

P̂εdivy′ϕ
′ dx′dy = 0 and

1

ε

∫
ω×Y

∂y3 P̂ε∂y3ϕ3 dx
′dy = 0 .

Thus, passing to the limit using the convergences (6.71), (6.74), (6.75), ε/aε → 0 and using in the limit that P̃
does not depend on y and divx′(

∫
Y
ϕ′ dy) = 0, we obtain

∫
ω×Y

Dy′ û
′ : Dy′ϕ

′ dx′dy = 2N2

∫
ω×Y

roty3ŵ
′ · ϕ′ dx′dy +

∫
ω×Y

f ′ · ϕ′ dx′dy,∫
ω×Y

∇y′ û3 : ∇y′ϕ3 dx
′dy = 0.

(6.77)

Next, for every ψ ∈ D(ω;C∞# (Y )3) with ψ3 independent of y3, we choose ψε = a−1
ε ψ in (3.45) with gε and

RM satisfying (3.16) and (3.17). Then, passing to the limit using convergences (6.71) and (6.74), we get

Rc

∫
ω×Yf

∂y3ŵ
′ : ∂y3ψ

′ dx′dy + 4N2

∫
ω×Yf

ŵ′ · ψ′ dx′dy

= 2N2

∫
ω×Yf

roty3 û
′ · ψ′ dx′dy +

∫
ω×Yf

g′(x′) · ψ′ dx′dy ,

Rc

∫
ω×Yf

∂y3ŵ3 : ∂y3ψ3 dx
′dy + 4N2

∫
ω×Yf

ŵ3 · ψ3 dx
′dy = 0.

(6.78)

The second equations of (6.77) and (6.78) together to the boundary conditions imply û3 = ŵ3 = 0. By density,
we can deduce that this variational formulation is equivalent to problem (6.76).

�
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Let us define the local problems which are useful to eliminate the variable y of the previous homogenized
problem and then obtain a Darcy equation for P̃ . We define Φ and Ψ by

Φ(N,Rc) =
1

12
+

Rc
4(1−N2)

− 1

4

√
N2Rc
1−N2

coth

N√1−N2

Rc

 , (6.79)

Ψ(N,Rc) =
tanh

(
N
√

1−N2

Rc

)
1−N

√
1−N2

Rc
tanh

(
N
√

1−N2

Rc

) , (6.80)

and for every k = 1, 2, we consider the following 2D local micropolar Darcy problems for πi,k as follows
−divy′

(
1

1−N2
Φ(N,Rc)

(
∇y′πi,k(y′) + eiδ1k

))
= 0 in Y ′f ,(

1
1−N2 Φ(N,Rc)

(
∇y′πi,k(y′) + eiδ1k

))
· n = 0 in ∂Y ′s .

(6.81)

It is known that from the positivity of function Φ, problem (6.85) has a unique solution for πi,k ∈ H1
#(Y ′) (see

[19] for more details).

Theorem 6.3. Let (û, ŵ, P̃ ) ∈ H1
0 (ω;L2

#(ω×Y ′)3)×H1
0 (ω;L2

#(ω×Y ′)3)× (L2
0(ω)∩H1(ω)) be the unique weak

solution of problem (6.76). Then, the extensions (ε−2ũε, ε
−1w̃ε) and P̃ε of the solution of problem (2.10)-(2.11)

converge weakly to (ũ, w̃) in H1(0, 1;L2(ω)3) × H1(0, 1;L2(ω)3) and strongly to P̃ in L2(ω) respectively, with

ũ3 = w̃3 = 0. Moreover, defining Ũ(x′) =
∫ 1

0
ũ(x′, y3) dy3 and W̃ (x′) =

∫ 1

0
w̃(x′, y3) dy3, it holds

Ũ ′(x′) = K
(1)
∞
(
f ′(x′)−∇x′ P̃ (x′)

)
+K

(2)
∞ g(x′), Ũ3(x′) = 0 in ω,

W̃ ′(x′) = L
(2)
∞ g(x′), W̃3(x′) = 0 in ω,

(6.82)

where the matrices K
(k)
∞ ∈ R2×2, k = 1, 2, and L

(2)
∞ ∈ R2×2 are matrices with coefficients(

K(k)
∞
)
ij

=
1

1−N2

∫
Y ′f

Φ(N,Rc)
(
∂yiπ

j,k(y′) + δijδ1k
)
dy′, i, j = 1, 2 ,

(
L(2)
∞
)
ij

= − 1

4N3

√
Rc

1−N2

(∫
Y ′f

Ψ(N,Rc) dy
′
)
δij ,

(6.83)

with Φ and Ψ given by (6.79) and (6.80) respectively, and πi,k ∈ H1
#(Y ′), i, k = 1, 2, the unique solutions of the

local problems (6.85). Here, P̃ ∈ H1(ω) ∩ L2
0(ω) is the unique solution of the 2D Darcy problem

divx′
(
K

(1)
∞
(
f ′(x′)−∇x′ P̃ (x′)

)
+K

(2)
∞ g(x′)

)
= 0 in ω,(

K
(1)
∞
(
f ′(x′)−∇x′ P̃ (x′)

)
+K

(2)
∞ g(x′)

)
· n = 0 in ∂ω.

(6.84)

Proof. We proceed as in in the proof of Theorem 4.3 in order to obtain (6.82). Thus, by using (4.59) where
(ui,k, wi,k, πi,k) ∈ H1

0,#(Yf )2 ×H1
0,#(Yf )2 × L2

0(Y ′f ), i, k = 1, 2, is the unique solution of

−∂y3ui,k +∇y′πi,k − 2N2roty3w
i,k = −eiδ1k in Yf ,

divy′u
i,k = 0 in Yf ,

−Rc∂y3wi,k + 4N2wi,k − 2N2 roty3u
i,k = −eiδ2k in Yf ,

ui,k = wi,k = 0 in Ys,

ui,k(y), wi,k(y), πi,k(y′) Y ′ − periodic,

(6.85)
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then, thanks to the identities
∫
Yf
û(x′, y) dy =

∫ 1

0
ũ(x′, y3) dy3 with û3 = 0 and

∫
Yf
ŵ(x′, y) dy =

∫ 1

0
w̃(x′, y3) dy3

with ŵ3 = 0 given in Lemma 6.1, it holds

Ũ ′(x′) =

∫
Y

û′(x′, y) dy = −K(1)
∞
(
∇x′ P̃ (x′)− f ′(x′)

)
+K(2)

∞ g′(x′), Ũ3(x′) =

∫
Y

û3(x′, y′) dy = 0 in ω,

W̃ ′(x′) =

∫
Y

ŵ′(x′, y) dy = −L(1)
∞
(
∇x′ P̃ (x′)− f ′(x′)

)
+ L(2)

∞ g′(x′), W̃3(x′) =

∫
Y

ŵ3(x′, y) dy = 0 in ω,

(6.86)

where K
(k)
∞ , L

(k)
∞ , k = 1, 2, are matrices defined by their coefficients(

K(k)
∞
)
ij

= −
∫
Y

ui,kj (y) dy,
(
L(k)
∞
)
ij

= −
∫
Y

wi,kj (y) dy , i, j = 1, 2 . (6.87)

Then, by the divergence condition in the variable x′ given in (6.76), we get the Darcy equation (6.84).

However, we observe that (6.85) can be viewed as a system of ordinary differential equations with constant

coefficients, with respect to the variable y3 and unkowns functions y3 7→ ui,k1 (y′, y3), wi,k2 (y′, y3), ui,k2 (y′, y3),

wi,k1 (y′, y3), where y′ is a parameter, y′ ∈ Y ′. Thus, we can give explicit expressions for ui,k and wi,k given in
terms of πi,k as follows (see [19, 20, 46] for more details):

ui,k(y) = 1
2(1−N2)

[
y2

3 − y3 + N2

k

(
sinh(ky3)− (cosh(ky3)− 1) coth

(
k
2

))] (
∇y′πi,k(y′) + eiδ1k

)
+ 1
N2

[(
2N2

k sinh(ky3)− 2y3

)
A+ 2N2

k (cosh(ky3)− 1)B − y3

]
(eiδ2k)

⊥
,

wi,k(y) = 1
4(1−N2)

[
2y3 +

(
cosh(ky3)− 1− sinh (ky3) coth

(
k
2

))] (
∇y′πi,k(y′) + eiδ1k

)⊥
− 1

2N2

[
cosh(ky3)A+ sinh(ky3)B

]
eiδ2k ,

(6.88)

where k =
√

4N2(1−N2)
Rc

and A, B are given by

A(y′) =
sinh(k)

−2 sinh(k) + 4N2

k (cosh(k)− 1)
, B(y′) =

−(cosh(k)− 1)

−2 sinh(k) + 4N2

k (cosh(k)− 1)
.

Integrating with respect to y3, we get∫ 1

0

ui,k(y′, y3) dy3 = − 1

1−N2
Φ(N,Rc)

(
∇y′πi,k(y′) + eiδ1k

)
,∫ 1

0

wi,k(y′, y3) dy3 =
1

4N3

√
Rc

1−N2
Ψ(N,Rc)eiδ2k ,

(6.89)

with Φ and Ψ given by (6.79) and (6.80), and so that πi,k satisfies the Darcy local problem (6.81). Using the
expressions of ui,k and wi,k together with (6.86), (6.87) and (6.89), we easily get (6.82), which has a unique

solution since K
(1)
λ is positive definite and then the whole sequence converges. Observe that, from the second

equation in (6.89) with k = 2, we have L
(1)
0 = 0, which ends the proof.

�

Remark 6.4. We observe that then Rc tends to zero, the function Φ given by (6.79) becomes identical to 1/12.
In that case, when N is identically zero, taking into account the linear momentum equations from (6.76), we can
deduce that the Darcy equation (6.84) agrees with the ones obtained in [14, 29] in the case VTPM.

7 Conclusion

A micropolar fluid flow has been considered in a thin domain with microstructure, i.e. a thin domain which is
perforated by periodically distributed solid cylinders which is called thin porous medium (TPM). This type of
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domains include a parameter ε connected to the fluid film thickness and another aε connected to the microstruc-
ture representing the size of the cylinders and the interspatial distance between them.

A direct numerical treatment of fluid flows through TPM becomes very difficult due to the rapid variations
on the microscale level, so it would be necessary to obtain macroscopic laws to describe the fluid flows in such a
domain. Thus, due to the description of the domain by using the parameters ε and aε, it is possible to describe the
macroscopic behavior by means of the homogenization theory. In this sense, by using homogenization techniques,
we derive that the flow is governed by a generalized 2D Darcy equation

u′(x′) = K
(1)
λ (f ′(x′)−∇x′p(x′)) +K

(2)
λ g(x′), u3(x′) = 0 in ω,

w′(x′) = L
(1)
λ (f ′(x′)−∇x′p(x′)) + L

(2)
λ g(x′), w3(x′) = 0 in ω,

divx′u
′ = 0 in ω, u′ · n = 0 on ∂ω,

(7.90)

where λ is the proportionality constant between aε and ε and we remark that the interaction between the

velocity and the microrotation fields is preserved. Moreover, we have that the flow factors K
(k)
λ , L

(k)
λ , k = 1, 2,

are calculated depending on the type of TPM:

- In the PTPM, i.e. when 0 < λ < +∞, the flow factors K
(k)
λ , L

(k)
λ are calculated by solving 3D micropolar

local problems posed in a 3D unit cell Y and depending on the parameter λ, the coupling number and the
characteristic length.

- In the HTPM, i.e. when λ = 0, the flow factors K
(k)
0 , L

(k)
0 are calculated by solving 3D micropolar local

problems posed in a 2D unit cell Y ′ and depending on the coupling number and the characteristic length.

- In the VTPM, i.e. when λ = +∞, the flow factors K
(k)
∞ , L

(k)
∞ are calculated by solving 2D micropolar

Reynolds local problems posed in a 2D unit cell Y ′ and depending on the coupling number and the
characteristic length.

From the above, it is obtained that the model problem considered as an average problem could be solved by
using the following homogenization procedure:

1. Solve the local problem numerically corresponding to the value of λ ∈ [0,+∞].

2. Use the solution to compute the components of the flow factors Kλ and Lλ.

3. Find p by solving the homogenized problem (7.90)3 numerically.

4. Compute u by means of (7.90)1 and w by means of (7.90)2.

We remark that in the intermediate case PTPM, the local problems are three-dimensional and the coefficient of
proportionality λ appears as a parameter in the equations. In the extreme cases HTPM and VTPM, the local
problems are simpler, which represents a considerable simplification, compared with the intermediate case, from
the numerical point of view. In view of that, more efficient numerical algorithms could be developed improving,
hopefully, the known engineering practice of micropolar flows through TPM.
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[17] M. Anguiano and F.J. Suárez-Grau, Derivation of a coupled Darcy-Reynolds equation for a fluid flow in
a thin porous medium including a fissure, ZAMP-Journal of Applied Mathematics and Physics, 68 (2017)
68:52

[18] T. Arbogast, J. Douglas J.R. and U. Hornung, Derivation of the double porosity model of single phase flow
via homogenization theory, SIAM J. Math. Anal., 21 (1990) 823-836.

[19] G. Bayada, M. Chambat and S.R. Gamouana, About thin film micropolar asymptotic equations, Quart.
Appl. Math., 59 (2001) 413-439.

[20] G. Bayada and G. Lukaszewicz, On micropolar fluids in the theory of lubrication. Rigorous derivation of an
analogue of the Reynolds equation. Internat. J. Engrg. Sci., 34 (1996) 1477-1490.
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