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A GENERALIZED REYNOLDS EQUATION FOR MICROPOLAR FLOWS PAST
A RIBBED SURFACE WITH NONZERO BOUNDARY CONDITIONS

Matthieu Bonnivard1,* , Igor Pažanin2 and Francisco J. Suárez-Grau3

Abstract. Inspired by the lubrication framework, in this paper we consider a micropolar fluid flow
through a rough thin domain, whose thickness is considered as the small parameter 𝜀 while the roughness
at the bottom is defined by a periodical function with period of order 𝜀ℓ and amplitude 𝜀𝛿, with
𝛿 > ℓ > 1. Assuming nonzero boundary conditions on the rough bottom and by means of a version
of the unfolding method, we identify a critical case 𝛿 = 3

2
ℓ − 1

2
and obtain three macroscopic models

coupling the effects of the rough bottom and the nonzero boundary conditions. In every case we provide
the corresponding micropolar Reynolds equation. We apply these results to carry out a numerical study
of a model of squeeze-film bearing lubricated with a micropolar fluid. Our simulations reveal the impact
of the roughness coupled with the nonzero boundary conditions on the performance of the bearing,
and suggest that the introduction of a rough geometry may contribute to enhancing the mechanical
properties of the device.
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1. Introduction

Microfluidics is a multidisciplinary field intersecting engineering, physics, chemistry, microtechnology and
biotechnology, with practical applications to the design of systems in which such small volumes of fluids will
be used. Microfluidic area emerged in the beginning of the 1980s and is used in the development of inkjet
printheads, DNA chips, lab-on-a-chip technology, micro-propulsion, and micro-thermal technologies.

Microfluidics deals with the manipulation of lubricants that are geometrically constrained to a small (typically
sub-millimetre) scale, and with the experimental and theoretical study of their mechanical behaviour. This
behaviour can differ from “macrofluidic” behaviour since, at the microscale, factors such as surface tension,
energy dissipation, and fluidic resistance start to dominate the system. In particular, when a lubricant is in
contact with a solid, at a small scale, surfacic effects may become preponderant. As a result, in order to reduce
the energy dissipation of microscaled fluid-solid systems, one needs to understand and quantify very precisely
the behaviour of the fluid near a solid wall.
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From an experimental point of view, an efficient method to reduce the friction consists in using a certain type
of rough boundaries, that are called riblets. These riblets are characterized by fast oscillations in the transversal
direction, with a low amplitude, and by their constancy in the direction of the flow; they are essentially one-
dimensional perturbations of the boundary of the solid. The aim of the use of riblets is to prevent vortices to
appear in the neighborhood of the solid wall, and thus to reduce the momentum transfer from the vortices to
the solid boundary. By using homogenization techniques, the influence of riblets on the slip behaviour of viscous
fluids has been studied recently. In [22], starting with perfect slip condition at a highly ribbed surface, it is
showed that when the oscillating parameter goes to zero, no-slip condition appears in the transversal direction
while perfect slip still holds in the direction of the flow. This means that riblets tend to prevent the fluid from
slipping laterally, whereas the motion in the direction of the flow is allowed with no constraint. In the same
spirit, it was proved in [24] that surfaces with low amplitude riblets give rise to a friction parameter in the
transversal direction and no roughness effects in the direction of the flow.

The mathematical models for describing the motion of the lubricant in a device with small volume usually
result from the simplification of the geometry of the lubricant film, i.e. its thickness. Using the film thickness as
a small parameter 𝜀, a simple asymptotic approximation can be easily derived providing a well-known Reynolds
equation for the pressure of the fluid. Formal derivation goes back to the 19th century and the celebrated work
of Reynolds [60]. The justification of this approximation, namely the proof that it can be obtained as the limit
of the Stokes system (as thickness tends to zero) is provided in [5] for a Newtonian flow between two plain
surfaces. Different Reynolds equations for Newtonian fluids including roughness effects have been obtained for
example in [6, 12,16,21,23–25,55,57].

Nevertheless, most of the modern lubricants are no longer Newtonian fluids, since the use of additives in
lubricants has become a common practice in order to improve their performance. Therefore, several microcon-
tinuum theories [31] have been proposed to account for the effects of additives. Eringen micropolar fluid theory
[32] ignores the deformation of the microelements and allows for the particle micromotion to take place.

From a mathematical point of view, a micropolar Reynolds equation was obtained in [7] for a micropolar
flow in a thin film with a plain bottom assuming zero boundary conditions for microrotation. Other related
results on the lubrication with a micropolar fluid with zero boundary condition can be found in [47, 58], and
some others references including roughness effects in [18,19,56,66].

In the previously mentioned references, a zero boundary condition for the microrotation is assumed, implying
that the fluid elements cannot rotate on the fluid-solid interface. If 𝑠 is the horizontal velocity of the boundary,
these conditions are written as follows:

u = s (u velocity), (1.1)
w = 0 (w microrotation). (1.2)

However, more general boundary conditions for the microrotation were introduced to take into account the
rotation of the microelements on the solid boundary. In the case where the boundary is flat, these conditions
read

𝛼

2
(∇× u)× n = w × n, w · n = 0, (1.3)

where n is a normal unit vector to the boundary. Conditions (1.3) were effectively proved to be in good
accordance with experiments, see [13, 14, 49, 59]. The coefficient 𝛼 describes the interaction between the given
fluid and solid; it characterizes microrotation retardation on the solid surfaces.

In [14], a generalized micropolar Reynolds equation is derived by using conditions (1.1), (1.3), and the
relevance of the new parameter 𝛼 regarding the performance of lubricated devices for both load and friction, is
established by numerical computations. Nevertheless, it was mathematically proved in [9] that it is not possible
to consider the boundary condition (1.3) and simultaneously retain the no-slip condition (1.1) for the velocity.
This would be like considering simultaneously, at the same boundary, a Neumann and a Dirichlet boundary
condition. In order to obtain a well-posed variational formulation of the micropolar system, it is straightforward
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to confirm (see e.g. [9]) that a velocity condition compatible with (1.3) needs to be introduced. This condition
allows a slippage in the tangential direction and retains a non-penetration condition in the normal direction n
(𝛿0 is a real parameter)

(u− s)× n = 𝛿0(∇×w)× n, u · n = 0. (1.4)

It is worth stressing that in most lubrication studies, it is assumed that the speed of the lubricant at the
surface equals that of the solid surface. However, it has been found that wall slip occurs, not only in non-
Newtonian flows [4, 34, 38, 48, 63, 69], but also in hydrodynamic lubrication or elasto-hydrodynamic lubrication
[15,28,36,40]. It seems that such phenomenon is linked to physical or chemical interactions of the solid surfaces
with the lubricant. Several boundary conditions have been considered in those works to model the observed
slippage. Most of them include limited yield stress or retain slippage value proportional to the shear stress.
In that context, condition (1.4) appears as a new interpretation of the slippage observed in lubrication with
micropolar fluids, expressed in terms of the microrotation field w.

In [9], by using the nonzero boundary conditions (1.3) and (1.4) described above, in a 2-dimensional thin
domain without roughness (see also [54] for the 3D flow), Bayada et al. derive rigourously a generalized version
of the Reynolds equation taking such boundary conditions into account. They perform their study in the critical
case where one the non-Newtonian characteristic parameters of the micropolar fluid has specific (small) order
of magnitude. The authors provide a comparison with the model in [14] that uses the no-slip condition (1.1)
for the velocity field, and observe that the introduction of slippage may enhance the performance of a bearing
(that is, increase the load and reduce the friction coefficient) if the coupling number of the micropolar fluid and
the nondimensional coefficient describing its slippage on the wall, are above a certain value.

Observe that in previous studies, the nonzero boundary condition has been considered on a plain bottom.
In this paper, we impose this condition on a surface covered by riblets with low amplitude, and use asymptotic
analysis to derive a micropolar Reynolds equation coupling the effects of the nonzero boundary conditions and
the riblets. Since we are interested in the effect of the roughness, we adopt a simple geometric setting where
the top boundary is plane, given by 𝜀ℎ with ℎ > 0. At the bottom we consider a surface covered by periodically
distributed riblets with low amplitude, associated with a small parameter 𝜀, where 𝜀𝛿 is the amplitude and 𝜀ℓ

is the period, where 𝛿 > ℓ > 1. This type of rough surface has been treated in [17,24,64,65] for fluid flows with
Navier slip boundary conditions.

First, we identify a range of values of the coupling parameter 𝑁2, namely 𝑁2 ≤ 1/2, under which there is
existence and uniqueness of solution (Thm. 4.2). Later, by means of homogenization and reduction of dimension
techniques, we identify the critical regime, i.e. 𝛿 = 3

2ℓ −
1
2 , in which the nonzero boundary conditions make

appear two friction parameters reflecting the riblets effect on both the effective velocity and micropolar fields
(Thm. 4.4). Finally, we also obtain a precise description of the corresponding Reynolds equation which implicitly
contains the effective nonzero boundary conditions describing the roughness effects (see (4.14) for more details).
Moreover, we give the corresponding Reynolds equations corresponding to the sub-critical and super-critical
regimes. This constitutes a generalization of the results of [9] to domains with rough bottom (Thm. 4.6).

The paper is organized as follows. In Sections 2 and 3, we formulate the problem and introduce some notation.
In Section 4, we state our main results providing the homogenized model and the generalized Reynolds equation,
which are proved in Section 5. The details of certain explicit computations or asymptotic developments are
postponed to the appendix. Finally, in Section 6 we conduct numerical simulations based on the generalized
micropolar Reynolds equation obtained for a particular lubrication device: a squeze-film bearing.

2. Position of the problem

In the following, 𝑥 ∈ R3 is decomposed as 𝑥 = (𝑥′, 𝑥3) where 𝑥′ = (𝑥1, 𝑥2) ∈ R2 and 𝑥3 ∈ R. We take 𝑒1, 𝑒2
and 𝑒3 to be the vectors of the canonical basis in R3, and 𝑒′1, 𝑒′2 to be the vectors of the canonical basis in R2.
The domain under consideration has the following form

Ω𝜀 =
{︀

(𝑥′, 𝑥3) ∈ R2 × R : 𝑥′ = (𝑥1, 𝑥2) ∈ 𝐿𝜔, −Ψ𝜀(𝑥′) < 𝑥3 < ℎ𝑐
}︀
.
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Figure 1. Representation of the geometry of riblets (upper) and of their cross section (lower).
The riblets are periodic with period 𝜀ℓ in the 𝑥1 direction, constant in the 𝑥2 direction and
oscillate with an amplitude of order 𝜀𝛿 in the 𝑥3 direction.

Here 𝐿 is the characteristic length of the domain, 𝜔 ⊂ R2 is an open subset with smooth boundary, 𝑐 is the
characteristic distance between the plates, ℎ > 0 is an adimensional constant, 𝜀 is the ratio 𝜀 = 𝑐

𝐿 and Ψ𝜀 is
defined by

1
𝐿

Ψ𝜀(𝑥′) = 𝜆𝜀𝛿Ψ
(︂

1
𝐿𝜀ℓ

𝑥′ · 𝑒′1
)︂

(2.1)

see Figure 1, where 𝜆 > 0 is an amplitude parameter and 𝛿, ℓ > 0 satisfy

1 < ℓ < 𝛿. (2.2)

In definition (2.1), Ψ ∈𝑊 2,∞
# (R) is a R-valued function with period 1 (we use the index # to mean periodicity

of period 1), that models the roughness profile on the lower surface, and that is normalized in the sense that∫︁ 1

0

|𝜕𝑧1Ψ(𝑧1)|2 d𝑧1 = 1. (2.3)

Let Γ
0

𝜀, Γ
1

𝜀 and Γ
ℓ

𝜀 denote the lower, upper and lateral boundaries on Ω𝜀, namely

Γ
0

𝜀 =
{︀

(𝑥′, 𝑥3) ∈ R2 × R : 𝑥′ ∈ 𝐿𝜔, 𝑥3 = −Ψ𝜀(𝑥′)
}︀
,

Γ
1

𝜀 =
{︀

(𝑥′, 𝑥3) ∈ R2 × R : 𝑥′ ∈ 𝐿𝜔, 𝑥3 = 𝜀ℎ𝐿
}︀
,

Γ
ℓ

𝜀 = 𝜕Ω𝜀 −
(︁

Γ
0

𝜀 ∪ Γ
1

𝜀

)︁
.

The exterior normal n𝜀 to Γ
0

𝜀 is defined by

∀𝑥′ ∈ 𝐿𝜔 n𝜀
(︀
𝑥′,−Ψ𝜀(𝑥′)

)︀
=

1[︀
1 + 𝜕𝑥1Ψ𝜀(𝑥′)2

]︀1/2 (︀−𝜕𝑥1Ψ𝜀(𝑥′), 0,−1
)︀
. (2.4)

For any vector field 𝜉 defined on Γ
0

𝜀, we note [𝜉]tan its tangential part, i.e. is the vector field defined on Γ
0

𝜀 by
[𝜉]tan = 𝜉 − (𝜉 · n𝜀)n𝜀.
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2.1. The equations and boundary conditions

The micropolar fluid flow is described by the following equations expressing the balance of momentum, mass
and angular momentum:

− (𝜈 + 𝜈𝑟)∆u𝜀 +∇𝑝𝜀 = 2𝜈𝑟(∇×w𝜀), (2.5)

div u𝜀 = 0, (2.6)

−𝑐𝑟 ∆w𝜀 + 4𝜈𝑟w𝜀 = 2𝜈𝑟(∇× u𝜀). (2.7)

In the above system, velocity u𝜀, pressure 𝑝𝜀 and microrotation w𝜀 are unknown. 𝜈 is the Newtonian viscosity,
while 𝜈𝑟 and 𝑐𝑟 are microrotation viscosities resulting from the asymmetry of the stress tensor. All viscosity
coefficients are assumed to be positive constants.

Let 𝑉 𝜀 be the velocity of the upper plate, and g𝜀 be velocity of the fluid on the lateral boundaries of the
domain. As discussed in the Introduction, the following boundary conditions are imposed

u𝜀 = (0, 0,−𝑉 𝜀), w𝜀 = 0 on Γ
1

𝜀, (2.8)

u𝜀 = g𝜀, w𝜀 = 0 on Γ
ℓ

𝜀, (2.9)

u𝜀 · n𝜀 = 0, w𝜀 · n𝜀 = 0 on Γ
0

𝜀, (2.10)

𝛼

2
[𝐷u𝜀 n𝜀]tan = w𝜀 × n𝜀 on Γ

0

𝜀, (2.11)

[𝐷w𝜀 n𝜀]tan =
2𝜈𝑟
𝑐𝑟
𝛽 u𝜀 × n𝜀 on Γ

0

𝜀. (2.12)

We remark that along the paper, 𝐷u denotes the gradient of a vectorial function u = (𝑢𝑖)1≤𝑖≤3, defined by
(𝐷u)𝑖,𝑗 = 𝜕𝑗𝑢𝑖, and should not be confused with the symmetric part of the gradient. Notice that the usual
(Dirichlet) boundary conditions (2.8) and (2.9) for the velocity and microrotation are prescribed on Γ1

𝜀 ∪ Γℓ𝜀.
However, on the lower part Γ0

𝜀 (corresponding to the rough boundary), new type of boundary conditions (2.11)
and (2.12) are imposed, together with the non-penetration conditions (2.10). Finally, coefficient 𝛽 ∈ R+ in
(2.12) is a friction coefficient that controls the slippage of the fluid at the wall.

Let us stress that conditions (2.11) and (2.12) are adaptations of conditions (1.3) and (1.4) to the present case
of an oscillating boundary Γ

0

𝜀. Since system (2.5)–(2.7) couples a Stokes equation on u𝜀 with an elliptic system
on w𝜀, in the present context of slip boundary conditions, the normal conditions (2.10) must be completed by
tangential conditions on [𝐷u𝜀n𝜀]tan and [𝐷w𝜀n𝜀]tan, in the aim of obtaining a well-posed problem.

To obtain conditions (2.11) and (2.12), we have interpreted the rotational terms (∇× u) × n, (∇×w) × n
appearing in the initial formulatation of the tangential boundary conditions (1.3) and (1.4), as being respectively
equal to [𝐷un]tan and [𝐷wn]tan. This is indeed the case for a flat boundary Γ of normal n, since for regular
vector fields u,v satisfying u · n = v · n = 0 on Γ, there holds∫︁

Γ

[(∇× u)× n] · v d𝜎 =
∫︁

Γ

[𝐷un]tan · v d𝜎.

Last equality is obtained by writing (∇×u)×n = 𝐷un− (𝐷u)𝑇 n and using that v · ∇(u ·n) = 0 on Γ, which
gives ∫︁

Γ

[(∇× u)× n] · v d𝜎 =
∫︁

Γ

[𝐷un] · v −
∫︁

Γ

[︀
(𝐷u)𝑇 n

]︀
· v d𝜎

=
∫︁

Γ

[𝐷un]tan · v d𝜎 −
∫︁

Γ

[(v · ∇)u] · n d𝜎
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=
∫︁

Γ

[𝐷un]tan · v d𝜎 +
∫︁

Γ

[(v · ∇)n] · u d𝜎

=
∫︁

Γ

[𝐷un]tan · v d𝜎

because (v · ∇)n = 0 since n is a constant vector.
Hence, conditions (2.11), (2.12) and (1.3), (1.4) are equivalent in the case of a flat boundary, so the tangential

conditions (2.11) and (2.12) can be seen as a generalization of (1.3) and (1.4) to the case of a non flat boundary.
In [13], it was proposed to define the parameter 𝛼 appearing in (2.11) as a microrotation retardation at the

boundary and to connect it with the different viscosity coefficients. It has been shown experimentally [37, 41]
that there are chemical interactions between a solid surface and the nearest fluid layer. This had to be taken into
account, especially for a non-Newtonian fluid and a very thin-film thickness. This can be done by introducing
a viscosity 𝜈𝑏 near the surface which is different from 𝜈 and 𝜈𝑟. In [13], it was proposed to define 𝛼 by means
of this boundary viscosity 𝜈𝑏 by

𝛼 =
𝜈 + 𝜈𝑟 − 𝜈𝑏

𝜈𝑟
· (2.13)

Following [13], it is possible to give physical limits to 𝜈𝑏, inducing limits on 𝛼:

0 ≤ 𝜈𝑏 ≤ 𝜈 + 𝜈𝑟 ⇒ 0 ≤ 𝛼 ≤ 𝜈 + 𝜈𝑟
𝜈𝑟

· (2.14)

The condition 𝛼 = 0 is equivalent to strong adhesion of the fluid particles to the boundary surface so that they
do not rotate relative to the boundary, i.e. w = 0. Thus, from now on, we consider 𝛼 > 0 so that the stress
tensor and the micro-rotation are coupled on the boundary.

It has been observed (see e.g. [7,9,52]) that the magnitude of the viscosity coefficients appearing in (2.5)–(2.7)
may influence the effective flow. Thus, it is reasonable to work with the system written in a non-dimensional
form. In view of that, we introduce the characteristic velocity 𝑉0 of the fluid, and define:

𝑥′ =
𝑥′

𝐿
, 𝑥3 =

𝑥3

𝐿
, Ψ𝜀 =

Ψ𝜀

𝐿
,

u𝜀 =
u𝜀
𝑉0
, 𝑝𝜀 =

𝐿

𝑉0(𝜈 + 𝜈𝑟)
𝑝𝜀, w𝜀 =

𝐿

𝑉0
w𝜀, g𝜀 =

g𝜀
𝑉0
, 𝑉𝜀 =

𝑉 𝜀
𝑉0
,

𝑁2 =
𝜈𝑟

𝜈 + 𝜈𝑟
, 𝑅𝑀 =

𝑐𝑟
𝜈 + 𝜈𝑟

1
𝐿2
· (2.15)

Dimensionless (non-Newtonian) parameter 𝑁2 characterizes the coupling between the equations for the velocity
and the microrotation, and is of order 𝒪(1) with respect to small parameter 𝜀. Notice that assumption (2.14)
yields

1
𝛼
≥ 𝑁2. (2.16)

The second dimensionless parameter denoted by 𝑅𝑀 is related to the characteristic length of the microrotation
effects and will be compared with 𝜀. We also assume that friction parameter 𝛽 is of order 𝒪(1).

In view of the above changes of variables, the fluid domain becomes

Ω𝜀 =
{︀

(𝑥′, 𝑥3) ∈ R2 × R : 𝑥′ ∈ 𝜔, −Ψ𝜀

(︀
𝑥′
)︀
< 𝑥3 < 𝜀ℎ

}︀
,

where according to (2.1), Ψ𝜀 is given by

Ψ𝜀(𝑥′) = 𝜆𝜀𝛿Ψ
(︂

1
𝜀ℓ
𝑥′ · 𝑒′1

)︂
(2.17)
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and the lower, upper and lateral boundaries are now described by

Γ0
𝜀 =

{︀
(𝑥′, 𝑥3) ∈ R2 × R : 𝑥′ ∈ 𝜔, 𝑥3 = −Ψ𝜀

(︀
𝑥′
)︀}︀
,

Γ1
𝜀 =

{︀
(𝑥′, 𝑥3) ∈ R2 × R : 𝑥′ ∈ 𝜔, 𝑥3 = 𝜀ℎ

}︀
,

Γℓ𝜀 = 𝜕Ω𝜀 −
(︀
Γ0
𝜀 ∪ Γ1

𝜀

)︀
.

The exterior normal n𝜀 to Γ0
𝜀 is now defined by

∀𝑥′ ∈ 𝜔 n𝜀
(︀
𝑥′,−Ψ𝜀

(︀
𝑥′
)︀)︀

=
1[︁

1 + 𝜆2𝜀2(𝛿−ℓ)𝜕𝑥1Ψ
(︀

1
𝜀ℓ𝑥′ · 𝑒′1

)︀2]︁1/2
(︂
−𝜆𝜀𝛿−ℓ𝜕𝑥1Ψ

(︂
1
𝜀ℓ
𝑥′ · 𝑒′1

)︂
, 0,−1

)︂
.

The tangential part of a vector field 𝜉 defined on Γ0
𝜀 is accordingly given by [𝜉]tan = 𝜉 − (𝜉 · n𝜀)n𝜀.

The flow equations (2.5)–(2.7) now have the following form

−∆u𝜀 +∇𝑝𝜀 = 2𝑁2(∇×w𝜀) in Ω𝜀, (2.18)

div u𝜀 = 0 in Ω𝜀, (2.19)

−𝑅𝑀 ∆w𝜀 + 4𝑁2w𝜀 = 2𝑁2(∇× u𝜀) in Ω𝜀, (2.20)

with boundary conditions

u𝜀 = −𝑉𝜀𝑒3, w𝜀 = 0 on Γ1
𝜀, (2.21)

u𝜀 = g𝜀, w𝜀 = 0 on Γℓ𝜀, (2.22)

u𝜀 · n𝜀 = 0, w𝜀 · n𝜀 = 0 on Γ0
𝜀, (2.23)

𝛼

2
[𝐷u𝜀 n𝜀]tan = w𝜀 × n𝜀 on Γ0

𝜀, (2.24)

𝑅𝑀 [𝐷w𝜀 n𝜀]tan = 2𝑁2𝛽 u𝜀 × n𝜀 on Γ0
𝜀. (2.25)

The divergence-free condition (2.19) imposes the following compatibility condition on the boundary data:∫︁
Γℓ

𝜀

g𝜀 · n𝜀 d𝜎 = 𝑉𝜀|𝜔|, (2.26)

where 𝜎 stands for the Hausdorff measure of dimension 2, and |𝜔| is the area of 𝜔.
In the present paper the aim is to derive the macroscopic law describing the effective flow in Ω𝜀 by using

rigorous asymptotic analysis with respect to the small parameter 𝜀. In particular, we shall focus on detecting
the roughness-induced effects together with the effects of nonzero boundary conditions.

Let us start by defining the notion of weak solution to system (2.18)–(2.25).
Weak formulation of problem (2.18)–(2.25). Let us introduce the functional spaces V𝜀 and V0

𝜀 defined by

V𝜀 =
{︀
𝜙 ∈ 𝐻1(Ω𝜀)3, 𝜙|Γ1

𝜀∪Γℓ
𝜀

= 0, 𝜙 · n𝜀 = 0 on Γ0
𝜀

}︀
,

V0
𝜀 = {𝜙 ∈ V𝜀, div𝜙 = 0 in Ω𝜀},

endowed with the norm ‖𝐷𝜙‖𝐿2(Ω𝜀)3 . Assume that (u𝜀,w𝜀, 𝑝𝜀) is a classical solution to system (2.18)–(2.25).
Multiplying (2.18) by a test function 𝜙 ∈ V𝜀, integrating by parts and taking into account the boundary
conditions and the free divergence condition satisfied by 𝜙, we obtain∫︁

Ω𝜀

𝐷u𝜀 : 𝐷𝜙d𝑥−
∫︁

Γ0
𝜀

[𝐷u𝜀 n𝜀]tan · 𝜙d𝜎 −
∫︁

Ω𝜀

𝑝𝜀 div𝜙d𝑥− 2𝑁2

∫︁
Ω𝜀

(∇×w𝜀) · 𝜙d𝑥 = 0.
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Hence, boundary condition (2.24) yields∫︁
Ω𝜀

𝐷u𝜀 : 𝐷𝜙d𝑥−
∫︁

Ω𝜀

𝑝𝜀 div𝜙d𝑥− 2𝑁2

∫︁
Ω𝜀

(∇×w𝜀) · 𝜙d𝑥− 2
𝛼

∫︁
Γ0

𝜀

(w𝜀 × n𝜀) · 𝜙d𝜎 = 0.

Using the integration by part formula∫︁
Ω𝜀

(∇×w𝜀) · 𝜙d𝑥 =
∫︁

Ω𝜀

(∇× 𝜙) ·w𝜀 d𝑥−
∫︁

Γ0
𝜀

(w𝜀 × n𝜀) · 𝜙d𝜎, (2.27)

the previous equality can be rewritten as∫︁
Ω𝜀

𝐷u𝜀 : 𝐷𝜙d𝑥−
∫︁

Ω𝜀

𝑝𝜀 div𝜙d𝑥− 2𝑁2

∫︁
Ω𝜀

w𝜀 · (∇× 𝜙) d𝑥− 2
(︂

1
𝛼
−𝑁2

)︂∫︁
Γ0

𝜀

(w𝜀 × n𝜀) · 𝜙d𝜎 = 0. (2.28)

Multiplying equation (2.20) by another test function 𝜓 ∈ V𝜀, integrating by parts and using boundary condition
(2.25), we obtain

𝑅𝑀

∫︁
Ω𝜀

𝐷w𝜀 : 𝐷𝜓 d𝑥− 2𝑁2𝛽

∫︁
Γ0

𝜀

(u𝜀 × n𝜀) · 𝜓 d𝜎 + 4𝑁2

∫︁
Ω𝜀

w𝜀 · 𝜓 d𝑥− 2𝑁2

∫︁
Ω𝜀

(∇× u𝜀) · 𝜓 d𝑥 = 0. (2.29)

Summing relations (2.28) and (2.29) yields∫︁
Ω𝜀

𝐷u𝜀 : 𝐷𝜙d𝑥−
∫︁

Ω𝜀

𝑝𝜀 div𝜙d𝑥+𝑅𝑀

∫︁
Ω𝜀

𝐷w𝜀 : 𝐷𝜓 d𝑥− 2𝑁2

∫︁
Ω𝜀

(∇× u𝜀) · 𝜓 d𝑥

− 2𝑁2

∫︁
Ω𝜀

w𝜀 · (∇× 𝜙) d𝑥+ 4𝑁2

∫︁
Ω𝜀

w𝜀 · 𝜓 d𝑥− 2
(︂

1
𝛼
−𝑁2

)︂∫︁
Γ0

𝜀

(w𝜀 × n𝜀) · 𝜙d𝜎 (2.30)

− 2𝑁2𝛽

∫︁
Γ0

𝜀

(u𝜀 × n𝜀) · 𝜓 d𝜎 = 0.

This leads to the following definition.

Definition 2.1. We say that (u𝜀,w𝜀, 𝑝𝜀) ∈ 𝐻1(Ω𝜀)3 ×𝐻1(Ω𝜀)3 × 𝐿2
0(Ω𝜀) is a weak solution to system (2.18)–

(2.25) if (u𝜀,w𝜀) satisfy boundary conditions (2.21)–(2.23), div u𝜀 = 0 in Ω and relation (2.30) holds for any
(𝜙,𝜓) ∈ V𝜀 ×V𝜀.

3. Notation

The unitary cube of R2 will be denoted by 𝑍 ′ =
(︀
− 1

2 ,
1
2

)︀2, and we set ̂︀𝑄 = 𝑍 ′× (0,+∞). For any 𝑀 > 0, we
define ̂︀𝑄𝑀 = 𝑍 ′ × (0,𝑀). We introduce the space 𝐿2

#(𝑍 ′), which is defined by the functions 𝑢 in 𝐿2
loc(R2) and

𝑍 ′-periodic. The space 𝐿2
#

(︁ ̂︀𝑄)︁ is defined by the functions ̂︀𝑢 in 𝐿2
loc

(︀
R2 × (0,+∞)

)︀
and∫︁

̂︀𝑄
|̂︀𝑢|2d𝑧 < +∞, ̂︀𝑢(𝑧′ + 𝑘′, 𝑧3) = ̂︀𝑢(𝑧), ∀𝑘′ ∈ Z2, a.e. 𝑧 ∈ R2 × (0,+∞).

We define 𝐿2
0(𝒪), with 𝒪 a bounded and measurable subset of R𝑁 , by the functions of 𝐿2(𝒪) with zero

integral.
For every 𝜃′ = (𝜃1, 𝜃2), we define

[𝜃′]⊥ = (−𝜃2, 𝜃1), rot𝑥3𝜃
′ = 𝜕𝑥3 [𝜃]⊥, Rot𝑥′𝜃′ = 𝜕𝑥1𝜃2 − 𝜕𝑥2𝜃1.



GENERALIZED REYNOLDS EQUATION FOR MICROPOLAR FLOWS 1263

We define the sets
Ω−𝜀 = (𝜔 × (−∞, 0)) ∩ Ω𝜀, Ω+

𝜀 = (𝜔 × (0,+∞)) ∩ Ω𝜀.

Given 𝑘′ ∈ Z2 and 𝜏 > 0, we define

𝐶𝑘
′

𝜏 = 𝜏𝑍 ′ + 𝜏𝑘′, 𝑄𝑘
′

𝜏 =
(︁
𝐶𝑘

′

𝜏 × R
)︁
∩Θ𝜀,

where Θ𝜀 =
{︀
𝑥 ∈ R2 × R : Ψ𝜀(𝑥′) < 𝑥3 < 𝜀

}︀
. We consider the function 𝜅 : R2 ↦→ Z2 given by

𝜅(𝑥′) = 𝑘′ ⇔ 𝑥′ ∈ 𝐶𝑘
′

1 .

We observe that 𝜅 is well defined, except for a set of zero measure in R2. In addition, for any 𝜏 > 0, it holds

𝜅

(︂
𝑥′

𝜏

)︂
= 𝑘′ ⇔ 𝑥′ ∈ 𝐶𝑘

′

𝜏 .

We denote 𝐶𝜀ℓ(𝑥′), for a.e. 𝑥′ ∈ R2, by the square 𝐶𝑘
′

𝜀ℓ such that 𝑥′ ∈ 𝐶𝑘′𝜀ℓ .
Given 𝜌 > 0, we take

𝜔𝜌 = {𝑥 ∈ 𝜔 : dist(𝑥, 𝜕𝜔) > 𝜌}, (3.1)

𝐼𝜌,𝜀 =
{︁
𝑘′ ∈ Z2 : 𝜔𝜌 ∩ 𝐶𝑘

′

𝜀ℓ ̸= ∅
}︁
.

By 𝒱 we define the space of functions ̂︀𝜙 : R2 × (0,+∞) ↦→ R such that ̂︀𝜙 ∈ 𝐻1
#

(︁ ̂︀𝑄𝑀)︁, for every 𝑀 > 0, and

∇̂︀𝜙 ∈ 𝐿2
#

(︁ ̂︀𝑄)︁3

. We remark that 𝒱 is a Hilbert space by considering ‖ · ‖𝒱 given by

‖̂︀𝜙‖2𝒱 = ‖∇̂︀𝜙‖2
𝐿2( ̂︀𝑄)3 + ‖̂︀𝜙‖2𝐿2(𝑍′×{0}).

We observe that when we use 𝑂𝜀, we refer to a generic real sequence which is devoted to tend to zero when
𝜀→ 0. Moreover, 𝑂𝜀 is allowed to change change from line to line. By 𝐶, we denote a generic positive constant,
which does not depend on 𝜀 and it can also change from line to line.

4. Main results

As discussed before, different asymptotic behaviours of the flow may be deduced depending on the order
of magnitude of the viscosity coefficients. Indeed, if we compare the characteristic number 𝑅𝑀 defined by
(2.15) and appearing in the equation (2.20) with small parameter 𝜀, three different asymptotic situations can
be formally identified (see e.g. [8, 52, 66]). The most interesting one is, of course, the one leading to a strong
coupling at main order, namely the regime

𝑅𝑀 = 𝜀2𝑅𝑐, 𝑅𝑐 = 𝒪(1). (4.1)

Hence, we will perform our analysis assuming the above scalings of 𝑅𝑀 and 𝑅𝑐 with respect to 𝜀. Concerning
the other parameters, we recall that 𝑁2, 𝛼 and 𝛽 are of order 𝒪(1).

Besides, in the case of a squeeze film model, we also assume that the (vertical) velocity of the upper plate 𝑉𝜀
is of order 𝜀 as 𝜀 tends to zero. Hence, we consider the asymptotic regime

𝑉𝜀 = 𝜀𝑆, (4.2)

where 𝑆 is a positive constant.
In order to study the asymptotic behaviour of the solution to system (2.18)–(2.25), we also need to assume

a certain regularity on the boundary data g𝜀, and uniform estimates of relevant norms. A very general way
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of stating those properties is the following: there exists a sequence of lift functions J𝜀 ∈ 𝐻1(Ω𝜀)3 satisfying
div J𝜀 = 0 in Ω𝜀, the boundary conditions

J𝜀 = −𝑉𝜀𝑒3 on Γ1
𝜀, J𝜀 = g𝜀 on Γℓ𝜀, J𝜀 · n𝜀 = 0 on Γ0

𝜀, (4.3)

and the estimates

∀𝜀 > 0 ‖J𝜀‖𝐿2(Ω𝜀)3 ≤ 𝐶𝜀
1
2 , ‖𝐷J𝜀‖𝐿2(Ω𝜀)3×3 ≤ 𝐶𝜀−

1
2 , ‖J𝜀‖𝐿2(Γ0

𝜀)3 ≤ 𝐶, (4.4)

where 𝐶 > 0 is a universal constant.

Remark 4.1. One typical construction of a boundary data g𝜀 and the associate lift function J𝜀 is the following,
see [9]. Consider a regular vector field J ∈ 𝐻1(Ω)3, satisfying

div J = 0 in Ω, J = −𝑆𝑒3 on 𝜔 × {ℎ}, J = 0 on 𝜔 × {0}.

Extending J = (𝐽 ′, 𝐽3) by zero on 𝜔 × (−∞, 0), we can define J𝜀 ∈ 𝐻1(Ω𝜀)3 by

J𝜀(𝑥′, 𝑥3) =
(︁
𝐽 ′
(︁
𝑥′,

𝑥3

𝜀

)︁
, 𝜀𝐽3

(︁
𝑥′,

𝑥3

𝜀

)︁)︁
∀(𝑥′, 𝑥3) ∈ Ω𝜀,

and g𝜀 := J𝜀|Γℓ
𝜀

in the sense of traces. By the change of variable (𝑥′, 𝑥3) = (𝑦′, 𝜀𝑦3), there holds∫︁
Ω𝜀

|𝐷J𝜀|2 d𝑥′d𝑥3 = 𝜀

∫︁
Ω

(︂
|𝐷𝑦′𝐽

′|2 +
1
𝜀2
|𝜕𝑦3𝐽 ′|2 + 𝜀2|∇𝑦′𝐽3|2 + |𝜕𝑦3𝐽3|2

)︂
d𝑦′d𝑦3,∫︁

Ω𝜀

|J𝜀|2 d𝑥′d𝑥3 = 𝜀

∫︁
Ω

(︀
|𝐽 ′|2 + 𝜀2|𝐽3|2

)︀
d𝑦′d𝑦3,

so that J𝜀 satisfies all the required properties (4.3) and (4.4).
Since such vector field J is not unique, the lift function J𝜀 and the boundary data g𝜀 are quite arbitrary.

In fact, they do not play a significant role in the asymptotic analysis of the problem, provided that conditions
(4.3) and (4.4) are satisfied.

Let us start with an existence and uniqueness result for the solution of problems (2.18)–(2.25), whose proof
is given in the Section 5.

Theorem 4.2. Assume that the coupling parameter 𝑁2 satisfies the condition

𝑁2 ≤ 1
2
, (4.5)

and define the nonnegative parameter 𝛾 by

𝛾 =
1
𝛼
−𝑁2 −𝑁2𝛽. (4.6)

Assume that the asymptotic regimes (4.1) and (4.2) hold. Then, for any 𝛽 such that

𝛾2 <
𝑅𝑐(1− 2𝑁2)

ℎ2
, (4.7)

there exists 𝜀0 > 0 such that for any 0 < 𝜀 < 𝜀0, there exists a unique weak solution (u𝜀,w𝜀, 𝑝𝜀) in 𝐻1(Ω𝜀)3 ×
𝐻1(Ω𝜀)3 × 𝐿2

0(Ω𝜀) to system (2.18)–(2.25) (in the sense of Def. 2.1).

Remark 4.3. In the case of a flat boundary, Bayada et al. obtained in [9] less restrictive conditions, namely
𝑁2 < 1 and 𝛾2 < 𝑅𝑐(1−𝑁2)

ℎ2 . However, we stress that the restriction of parameter 𝑁 (4.5) that it is necessary to
guarantee existence and uniqueness of the weak solution, is in fact in agreement with tribology models, where
different considerations lead to the same assumption 𝑁2 ≤ 1/2 (see [61,62]).
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4.1. Rescaling

We also want to describe the asymptotic behaviour of the sequence (u𝜀,w𝜀, 𝑝𝜀) of solution of the microp-
olar system (2.18)–(2.20) supplemented with boundary conditions (2.24)–(2.25), as 𝜀 tends to 0. We start by
introducing a change of variables classically used in asymptotic analysis of flows in thin domains: the dilatation

𝑦′ = 𝑥′, 𝑦3 =
𝑥3

𝜀
, (4.8)

which changes Ω𝜀 to the set ̃︀Ω𝜀 of height of order ℎ, defined as follows:

̃︀Ω𝜀 =
{︁

(𝑦′, 𝑦3) ∈ R2 × R : 𝑦′ ∈ 𝜔, −̃︀Ψ𝜀(𝑦′) < 𝑦3 < ℎ
}︁
, (4.9)

where ̃︀Ψ𝜀(𝑦′) =
1
𝜀

Ψ𝜀(𝑦′) = 𝜀𝛿−1Ψ
(︂

1
𝜀ℓ
𝑦′ · 𝑒′1

)︂
.

The lower, upper and lateral boundaries of the rescaled domain ̃︀Ω𝜀 are now defined by

Γ̃0
𝜀 =

{︁
(𝑦′, 𝑦3) ∈ R2 × R : 𝑦′ ∈ 𝜔, 𝑦3 = −Ψ̃𝜀(𝑦′)

}︁
,

Γ̃1
𝜀 =

{︀
(𝑦′, 𝑦3) ∈ R2 × R : 𝑦′ ∈ 𝜔, 𝑦3 = ℎ

}︀
,

Γ̃ℓ𝜀 = 𝜕Ω̃𝜀 −
(︁

Γ̃0
𝜀 ∪ ̃︀Γ1

𝜀

)︁
.

Accordingly, we define the functions ̃︀u𝜀, ̃︀w𝜀 ∈ 𝐻1
(︁̃︀Ω𝜀)︁3

and ̃︀𝑝𝜀 ∈ 𝐿2
0

(︁̃︀Ω𝜀)︁ by

̃︀u𝜀(𝑦) = u𝜀(𝑦′, 𝜀𝑦3), ̃︀w𝜀(𝑦) = w𝜀(𝑦′, 𝜀𝑦3), ̃︀𝑝𝜀(𝑦) = 𝑝𝜀(𝑦′, 𝜀𝑦3), a.e. 𝑦 ∈ ̃︀Ω𝜀. (4.10)

Since 𝛿 > 1, it is clear that the sequence of domains ̃︀Ω𝜀 converges (for instance, in the sense of Hausdorff
complementary topology) to the limit domain Ω defined by

Ω = 𝜔 × (0, ℎ) ⊂ R2 × R.

We denote by Γ := 𝜔 × {0} the lower boundary of Ω.
The next step of the analysis is to identify the effective system satisfied by these rescaled functions.

4.2. Effective system

In this subsection, we give the result concerning the asymptotic behaviour of the rescaled functions ̃︀u𝜀, ̃︀w𝜀,̃︀𝑝𝜀. Depending on the relation between the amplitude parameter 𝛿 and the period parameter ℓ, we obtain three
different regimes, that we call critical, sub-critical and super-critical. Here, we state the result in the critical
case; the other cases will be discussed in Remark 4.5. The proof of the corresponding results is given in Section 5.

Theorem 4.4. Assume that the asymptotic regimes (4.1) and (4.2) and conditions (4.5) and (4.7) hold. Assume
that 𝛿, ℓ satisfy the relation 𝛿 = 3

2ℓ−
1
2 (critical case). Let (u𝜀,w𝜀, 𝑝𝜀) be a sequence of weak solutions of (2.18)–

(2.25). Then, there exist ̃︀u′, ̃︀w′ ∈ 𝐻1(0, ℎ;𝐿2(𝜔))2 and 𝑝 ∈ 𝐻1(𝜔) ∩ 𝐿2
0(𝜔) such that the rescaled functions̃︀u𝜀, ̃︀w𝜀, ̃︀𝑝𝜀 satisfy

̃︀u𝜀 ⇀ (̃︀u′, 0) in 𝐻1(0, ℎ;𝐿2(𝜔))3, 𝜀̃︀w𝜀 ⇀ (̃︀w′, 0) in 𝐻1(0, ℎ;𝐿2(𝜔))3,

𝜀2̃︀𝑝𝜀 → 𝑝 in 𝐿2(Ω).
(4.11)
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The triplet (̃︀u′, ̃︀w′, 𝑝) is the unique solution of the following problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−𝜕2

𝑦3
̃︀u′ +∇𝑦′𝑝− 2𝑁2rot𝑦3 ̃︀w′ = 0 in Ω,

−𝑅𝑐𝜕2
𝑦3
̃︀w′ + 4𝑁2 ̃︀w′ − 2𝑁2rot𝑦3̃︀u′ = 0 in Ω,

div𝑦′
∫︁ ℎ

0

̃︀u′(𝑦′, 𝑦3) d𝑦3 = 𝑆 in 𝜔,

(4.12)

with the boundary conditions

̃︀u′ = 0, ̃︀w′ = 0 on 𝜔 × {ℎ}, (4.13)

𝜕𝑦3̃︀u′ = − 2
𝛼

[̃︀w′]⊥ + 𝐸𝜆̃︀(u′ · 𝑒′1) 𝑒′1 on Γ, 𝑅𝑐𝜕𝑦3 ̃︀w′ = −2𝑁2𝛽[̃︀u′]⊥ +𝑅𝑐𝐹𝜆̃︀(w′ · 𝑒′1) 𝑒′1 on Γ. (4.14)

Coefficients 𝐸𝜆, 𝐹𝜆 ∈ R appearing in boundary conditions (4.14) are defined by

𝐸𝜆 =
∫︁
̂︀𝑄

⃒⃒⃒
𝐷𝑧
̂︀𝜑1,𝜆

⃒⃒⃒2
d𝑧, 𝐹𝜆 =

∫︁
̂︀𝑄

⃒⃒⃒
𝐷𝑧
̂︀𝜑2,𝜆

⃒⃒⃒2
d𝑧, (4.15)

where
(︁̂︀𝜑𝑖,𝜆, ̂︀𝑞𝑖,𝜆)︁ ∈ 𝒱3 × 𝐿2

♯

(︁ ̂︀𝑄)︁, 𝑖 = 1, 2, are respectively the solutions of

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−∆𝑧
̂︀𝜑1,𝜆 +∇𝑧̂︀𝑞1,𝜆 = 0 in R2 × R+,

div𝑧 ̂︀𝜑1,𝜆 = 0 in R2 × R+,̂︀𝜑1,𝜆
3 (𝑧′, 0) = 𝜆𝜕𝑧1Ψ(𝑧′ · 𝑒′1) on R2 × {0},

−𝜕𝑧3 ̂︀𝜑1,𝜆
1 = 0, −𝜕𝑧3 ̂︀𝜑1,𝜆

2 = 0 on R2 × {0},

(4.16)

and ⎧⎪⎪⎨⎪⎪⎩
−∆𝑧

̂︀𝜑2,𝜆 = 0 in R2 × R+,̂︀𝜑2,𝜆
3 (𝑧′, 0) = 𝜆𝜕𝑧1Ψ(𝑧′ · 𝑒′1) on R2 × {0},

−𝜕𝑧3 ̂︀𝜑2,𝜆
1 = 0, −𝜕𝑧3 ̂︀𝜑2,𝜆

2 = 0 on R2 × {0}.

(4.17)

Remark 4.5. Theorem 4.4 can be adapted easily to describe the two other asymptotic regimes:

– In the sub-critical case 𝛿 > 3
2ℓ−

1
2 , the riblets are so small that there is no effect of roughness, so we obtain

the nonzero boundary conditions on Γ,

𝜕𝑦3̃︀u′ = − 2
𝛼

[̃︀w′]⊥ on Γ, 𝑅𝑐𝜕𝑦3 ̃︀w′ = −2𝑁2𝛽[̃︀u′]⊥ on Γ.

Thus, we deduce that the model obtained in [9, 10] even holds for a very slightly rough boundary.
– In the super-critical case 1 < 𝛿 < 3

2ℓ −
1
2 , the effect of the riblets is maximal. Thus, boundary conditions

given in (4.14) are replaced by

̃︀u′ · 𝑒′1 = ̃︀w′ · 𝑒′1 = 0 on Γ, 𝜕𝑦3̃︀u′ · 𝑒′2 = 𝜕𝑦3 ̃︀w · 𝑒′2 = 0 on Γ. (4.18)

Thus, we deduce that the roughness is so strong that the fluid adheres to the boundary and fluid elements
cannot rotate on the fluid-solid interface in the 𝑥1-direction.
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4.3. Generalized micropolar Reynolds equations

In this subsection, we obtain a generalized Reynolds equation associated to the homogenized micropolar
system given in Theorem 4.4 (critical case). For the sake of simplicity, we will consider a 2D domain characteristic
of the lubrication assumption. Thus, we consider in Theorem 4.4 that the flow does not depend on the 𝑦2-
coordinate, and that velocity component ̃︀𝑢2 and micropolar component ̃︀𝑤1 are zero. Hence, we address the
following limit problem posed in Ω = (0, 1)× (0, ℎ):{︃

−𝜕2
𝑦3̃︀𝑢1 + 𝜕𝑦1𝑝+ 2𝑁2𝜕𝑦3 ̃︀𝑤2 = 0 in Ω,

−𝑅𝑐𝜕2
𝑦3 ̃︀𝑤2 + 4𝑁2 ̃︀𝑤2 − 2𝑁2𝜕𝑦3̃︀𝑢1 = 0 in Ω,

(4.19)

completed with the boundary conditions

̃︀𝑢1 = 0, ̃︀𝑤2 = 0 on Γ1 = (0, 1)× {ℎ}, (4.20)

𝜕𝑦3̃︀𝑢1 =
2
𝛼
̃︀𝑤2 + 𝐸𝜆̃︀𝑢1 on Γ = (0, 1)× {0}, 𝑅𝑐𝜕𝑦3 ̃︀𝑤2 = −2𝑁2𝛽̃︀𝑢1 on Γ, (4.21)

and the incompressibility condition

𝜕𝑦1

∫︁ ℎ

0

̃︀𝑢1(𝑦1, 𝑦3) d𝑦3 = 𝑆 in (0, 1). (4.22)

We give in the appendix the expression of (�̃�1, �̃�2), solution of system (4.19)–(4.21), in terms of 𝑝 (see
Lems. A.1 and A.2). Putting these expressions in (4.22) will lead to the corresponding Reynolds equations
that take into account the roughness-induced effects.

Theorem 4.6. In the critical case 𝛿 = 3
2ℓ−

1
2 , the pressure 𝑝 satisfies the following Reynolds equation∫︁ 1

0

Θ𝜆𝜕𝑦1𝑝(𝑦1) 𝜕𝑦1𝜃(𝑦1) d𝑦1 =
∫︁ 1

0

𝑆𝜃(𝑦1) d𝑦1, ∀𝜃 ∈ 𝐻1(0, 1), (4.23)

with Θ𝜆 defined in the case 𝛼 ̸= 1 by

Θ𝜆 =
ℎ3

3(1−𝑁2)
− (1− 𝜂𝜆)

3ℎ3

4(1−𝑁2)

−
(︂

2𝑁2

𝑘

[︂
𝑐ℎ(𝑘ℎ)− 1

𝑘
− 𝜂𝜆ℎ𝑠ℎ(𝑘ℎ)

]︂
+
𝛾𝛼
2
ℎ2(1− 2𝜂𝜆)− (1− 𝜂𝜆)

[︂
𝛾𝛼ℎ+

2𝑁2

𝑘
𝑠ℎ(𝑘ℎ)

]︂)︂
𝐴

−
(︂

2𝑁2

𝑘

[︂
𝑠ℎ(𝑘ℎ)
𝑘

− 𝜂𝜆ℎ𝑐ℎ(𝑘ℎ)
]︂
− (1− 𝜂𝜆)(1 + 𝑐ℎ(𝑘ℎ))ℎ

𝑁2

𝑘

)︂
𝐵, (4.24)

and in the case 𝛼 = 1 by

Θ𝜆 =− 1
2(1−𝑁2)

(︂
ℎ3

3
− 𝜇𝜆ℎ

3

)︂
− (1− 𝜇𝜆)

ℎ2

𝑘(1−𝑁2)
1− 𝑐ℎ(𝑘ℎ)
𝑠ℎ(𝑘ℎ)

−
[︂

1
1−𝑁2

(︂
ℎ2

2
− 𝜇𝜆ℎ

2

)︂
+ (1− 𝜇𝜆)

ℎ

𝑘(1−𝑁2)
1− 𝑐ℎ(𝑘ℎ)
𝑠ℎ(𝑘ℎ)

]︂
𝐴′

−
[︂

2𝑁2

𝑘

(︂
𝑠ℎ(𝑘ℎ)
𝑘

− 𝜇𝜆ℎ𝑐ℎ(𝑘ℎ)
)︂
− (1− 𝜇𝜆)

2𝑁2

𝑘

(︂
ℎ+

(1− 𝑐ℎ(𝑘ℎ))2

𝑘 𝑠ℎ(𝑘ℎ)

)︂]︂
𝐵′, (4.25)

where 𝐴,𝐴′, 𝐵 and 𝐵′ are defined in Lemmas A.1 and A.2 in the appendix.
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Remark 4.7. It is worth mentioning that the effective expressions given in Lemmas A.1 and A.2, and The-
orem 4.6 are explicitly corrected by the roughness-induced coefficient 𝐸𝜆. Indeed, by putting 𝐸𝜆 = 0, which
implies 𝜂𝜆 = 𝜇𝜆 = 1 (i.e., no roughness introduced), we obtain the same expressions as derived in [9], which
also corresponds to the sub-critical case 𝛿 > 3

2ℓ−
1
2 .

Using the explicit expressions from Lemmas A.1, A.2 and Theorem 4.6, it is possible to develop �̃�1, �̃�2 and 𝑝 in
powers of 𝜆2. This will be useful in the numerical computations from Section 6. However, since the corresponding
formulas are rather long, we have gathered them in the appendix for the sake of clarity (see Cor. A.3).

Finally, we give the micropolar Reynolds equation corresponding to the super-critical case 1 < 𝛿 < 3
2ℓ−

1
2 . As

in the critical case, its derivation is based on explicit expressions of the velocity and microrotation (see Lem. A.4
in the appendix).

Theorem 4.8. In the super-critical case 1 < 𝛿 < 3
2ℓ−

1
2 , the pressure 𝑝 satisfies the following Reynolds equation∫︁ 1

0

Θ𝜕𝑦1𝑝(𝑦1) 𝜕𝑦1𝜃(𝑦1) d𝑦1 =
∫︁ 1

0

𝑆𝜃(𝑦1) d𝑦1, ∀𝜃 ∈ 𝐻1((0, 1)), (4.26)

with Θ defined by

Θ =
ℎ3

12(1−𝑁2)
− 2𝑁2

𝑘

[︂
𝑐ℎ(𝑘ℎ)− 1

𝑘
− ℎ

2
𝑠ℎ(𝑘ℎ)

]︂
𝐴′′ − 2𝑁2

𝑘

[︂
𝑠ℎ(𝑘ℎ)
𝑘

− ℎ

2
(𝑐ℎ(𝑘ℎ) + 1)

]︂
𝐵′′,

where 𝐴′′ and 𝐵′′ are defined in Lemma A.4.

5. Proofs of the main results

We start by proving the existence and uniqueness of solution of problem (2.18)–(2.25).

Proof of Theorem 4.2. Let J𝜀 ∈ 𝐻1(Ω𝜀)3 be a sequence of free divergence lift functions satisfying (4.3) and
(4.4). Replacing u𝜀 by v𝜀 + J𝜀 in the weak formulation (2.30), we see that (u𝜀,w𝜀, 𝑝𝜀) is a weak solution to
system (2.18)–(2.25) if and only if (v𝜀,w𝜀, 𝑝𝜀) ∈ V0

𝜀 ×V𝜀 × 𝐿2
0(Ω𝜀) and satisfies for any (𝜙,𝜓) ∈ V𝜀 ×V𝜀∫︁

Ω𝜀

𝐷v𝜀 : 𝐷𝜙d𝑥−
∫︁

Ω𝜀

𝑝𝜀 div𝜙d𝑥+𝑅𝑀

∫︁
Ω𝜀

𝐷w𝜀 : 𝐷𝜓 d𝑥− 2𝑁2

∫︁
Ω𝜀

(∇× v𝜀) · 𝜓 d𝑥

− 2𝑁2

∫︁
Ω𝜀

w𝜀 · (∇× 𝜙) d𝑥+ 4𝑁2

∫︁
Ω𝜀

w𝜀 · 𝜓 d𝑥− 2
(︂

1
𝛼
−𝑁2

)︂∫︁
Γ0

𝜀

(w𝜀 × n𝜀) · 𝜙d𝜎

− 2𝑁2𝛽

∫︁
Γ0

𝜀

(v𝜀 × n𝜀) · 𝜓 d𝜎

= −
∫︁

Ω𝜀

𝐷J𝜀 : 𝐷𝜙d𝑥+ 2𝑁2

∫︁
Ω𝜀

(∇× J𝜀) · 𝜓 d𝑥+ 2𝑁2𝛽

∫︁
Γ0

𝜀

(J𝜀 × n𝜀) · 𝜓 d𝜎. (5.1)

Equation (5.1) justifies the introduction of the bilinear forms𝒜𝜀 : (V𝜀×V𝜀)2 → R and ℬ𝜀 : (V𝜀×V𝜀)×𝐿2
0(Ω𝜀) →

R respectively defined by

𝒜𝜀((v,w), (𝜙,𝜓)) =
∫︁

Ω𝜀

𝐷v : 𝐷𝜙d𝑥−
∫︁

Ω𝜀

𝑝𝜀 div𝜙d𝑥+𝑅𝑀

∫︁
Ω𝜀

𝐷w : 𝐷𝜓 d𝑥

− 2𝑁2

∫︁
Ω𝜀

(∇× v) · 𝜓 d𝑥− 2𝑁2

∫︁
Ω𝜀

w · (∇× 𝜙) d𝑥+ 4𝑁2

∫︁
Ω𝜀

w · 𝜓 d𝑥

− 2
(︂

1
𝛼
−𝑁2

)︂∫︁
Γ0

𝜀

(w × n𝜀) · 𝜙d𝜎 − 2𝑁2𝛽

∫︁
Γ0

𝜀

(v × n𝜀) · 𝜓 d𝜎, (5.2)
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and
ℬ𝜀((v,w), 𝑞) = −

∫︁
Ω𝜀

𝑞 div v d𝑥, (5.3)

and of the linear form ℒ𝜀 : V𝜀 ×V𝜀 → R defined by

ℒ𝜀(𝜙,𝜓) = −
∫︁

Ω𝜀

𝐷J𝜀 : 𝐷𝜙d𝑥+ 2𝑁2

∫︁
Ω𝜀

(∇× J𝜀) · 𝜓 d𝑥+ 2𝑁2𝛽

∫︁
Γ0

𝜀

(J𝜀 × n𝜀) · 𝜓 d𝜎. (5.4)

Hence, (u𝜀,w𝜀, 𝑝𝜀) is a weak solution to system (2.18)–(2.25) if and only if (v𝜀,w𝜀, 𝑝𝜀) ∈ V𝜀×V𝜀×𝐿2
0(Ω𝜀) and

satisfies the following mixed formulation

𝒜𝜀((v,w), (𝜙,𝜓)) + ℬ𝜀((𝜙,𝜓), 𝑝𝜀) = ℒ𝜀(𝜙,𝜓) ∀(𝜙,𝜓) ∈ V𝜀 ×V𝜀, (5.5)
ℬ𝜀((v𝜀,w𝜀), 𝑞) = 0 ∀𝑞 ∈ 𝐿2(Ω𝜀). (5.6)

The existence and uniqueness of the solution (v𝜀,w𝜀, 𝑝𝜀) to the mixed formulation (5.5) and (5.6) is established
in [9], in the case where the oscillating boundary Γ0

𝜀 is replaced by a flat boundary 𝜔 × {0}. For the sake
of completeness, we recall the main steps of the proof, highlighting the differences that are implied by the
oscillations of the lower boundary Γ0

𝜀.
First, let us state some useful quantitative inequalities.

Trace inequality on Γ0
𝜀. Since the lower boundary Γ0

𝜀 is not flat, one needs to take into account the variations
of the normal direction n𝜀 in order to estimate the 𝐿2-norm of the trace of a function 𝜓 ∈ V𝜀. To this end, we
introduce the quantity 𝜏𝜀 defined by

𝜏𝜀 := sup
𝑥′∈𝜔

√︁
1 + |∇𝑥′Ψ𝜀(𝑥′)|2.

We also denote by ℎ𝜀 the height of the domain Ω𝜀, defined by

ℎ𝜀 := sup
𝑥′∈𝜔

(𝜀ℎ+ Ψ𝜀(𝑥′)) = 𝜀 sup
𝑥′∈𝜔

(︂
ℎ+ 𝜆𝜀𝛿−1Ψ

(︂
1
𝜀ℓ
𝑥′ · 𝑒′1

)︂)︂
.

In particular, lim𝜀→0 ℎ𝜀/𝜀 = ℎ. With this notation, there holds the trace inequality

∀𝜓 ∈ V𝜀 ‖𝜓‖𝐿2(Γ0
𝜀)3 ≤

√︀
𝜏𝜀ℎ𝜀‖𝐷𝜓‖𝐿2(Ω𝜀)3×3 . (5.7)

In fact, this inequality holds true for any vector field 𝜓 ∈ 𝐻1(Ω𝜀)3 vanishing on Γ1
𝜀. By density, it is enough to

prove it for any 𝜓 ∈ 𝐻1(Ω𝜀)3 ∩ 𝐶1(Ω𝜀)3 such that 𝜓|Γ1
𝜀

= 0. Integrating on vertical lines, we obtain∫︁
Γ0

𝜀

|𝜓|2 =
∫︁
𝜔

|𝜓(𝑥′,−Ψ𝜀(𝑥′))|
2
√︁

1 + |∇𝑥′Ψ𝜀(𝑥′)|2 d𝑥′

≤ 𝜏𝜀

∫︁
𝜔

|𝜓(𝑥′,−Ψ𝜀(𝑥′))|
2 d𝑥′

≤ 𝜏𝜀

∫︁
𝜔

⃒⃒⃒⃒
⃒
∫︁ 𝜀ℎ

−Ψ𝜀(𝑥′)

𝜕𝑥3𝜓(𝑥′, 𝑥3) d𝑥3

⃒⃒⃒⃒
⃒
2

d𝑥′

≤ 𝜏𝜀

∫︁
𝜔

(︂
𝜀ℎ+ sup

𝜔
Ψ𝜀

)︂(︃∫︁ 𝜀ℎ

−Ψ𝜀(𝑥′)

|𝜕𝑥3𝜓(𝑥′, 𝑥3)|2 d𝑥3

)︃
d𝑥′

≤ 𝜏𝜀ℎ𝜀

∫︁
Ω𝜀

|𝐷𝜓|2 d𝑥.

This proves (5.7).
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Poincaré inequality. In the same fashion, Poincaré inequality in V𝜀 reads

∀𝜙 ∈ V𝜀 ‖𝜙‖𝐿2(Ω𝜀)3 ≤ ℎ𝜀‖𝐷𝜙‖𝐿2(Ω𝜀)3×3 . (5.8)

Relation between ‖∇ × 𝜙‖𝐿2(Ω𝜀)3 and ‖𝐷𝜙‖𝐿2(Ω𝜀)3×3 . Let us recall that for any vector field 𝜙 ∈ V𝜀,∫︁
Ω𝜀

(︀
|div𝜙|2 + |∇ × 𝜙|2

)︀
d𝑥 =

∫︁
Ω𝜀

|𝐷𝜙|2 d𝑥+
∫︁

Γ0
𝜀

((𝜙 · ∇)n𝜀) · 𝜙d𝜎, (5.9)

(see, for instance, [20], formula (IV.23)). In particular, if the lower boundary Γ0
𝜀 was flat, the identity ‖∇ ×

𝜙‖2𝐿2(Ω𝜀)3 = ‖𝐷𝜙‖2𝐿2(Ω𝜀)3×3 would hold for any 𝜙 ∈ V0
𝜀 , since the remaining term

∫︀
Γ0

𝜀
((𝜙 · ∇)n𝜀) · 𝜙d𝜎 would

vanish. However, in the present geometric configuration, one cannot expect this term to be zero in general. In
fact, a classical estimate reads ⃒⃒⃒⃒

⃒
∫︁

Γ0
𝜀

((𝜙 · ∇)n𝜀) · 𝜙d𝜎

⃒⃒⃒⃒
⃒ ≤ Lip(n𝜀) ‖𝜙‖2𝐿2(Γ0

𝜀)3 ,

where Lip(n𝜀) is the Lipschitz constant of the normal vector field n𝜀, locally extended in a neighborhood of
the surface {𝑥3 = Ψ𝜀(𝑥′)} (in the sense of [20], Sect. 3.4). However, using definition of Ψ𝜀 given in (2.17) and
condition (2.2) on parameters 𝛿, ℓ, it turns out that in the general case where ‖𝜕2

11Ψ‖∞ > 0, Lip(n𝜀) is of order
𝜀𝛿−2ℓ, hence diverging since 𝜀𝛿−ℓ goes to zero. As a result, we cannot use identity (5.9) to estimate the 𝐿2 norms
of div𝜙 and ∇× 𝜙 over Ω𝜀 by the 𝐿2 norm of 𝐷𝜙, as is done in [9] in the case of a flat boundary.

Instead, we rely on the following elementary estimate:

‖∇ × 𝜙‖𝐿2(Ω𝜀)3 ≤
√

2‖𝐷𝜙‖𝐿2(Ω𝜀)3×3 ∀𝜙 ∈ 𝐻1(Ω𝜀)3. (5.10)

The presence of the constant
√

2 in the previous estimate is at the origin of the term 2𝑁2 in condition (4.7),
which was simply 𝑁2 in the case of a flat surface, as established in [9].

Existence and uniqueness of the solution of the mixed formulation (5.5) and (5.6). Using Cauchy–Schwarz
inequality and inequalities (5.7), (5.8) and (5.10), it is easy to see that 𝒜𝜀,ℬ𝜀 and ℒ𝜀 are continuous on their
respective domains of definition, for any fixed value of parameter 𝜀. Hence, noticing that by definition of V0

𝜀 ,

V0
𝜀 ×V𝜀 =

{︀
(𝜙,𝜓) ∈ V𝜀 ×V𝜀, ℬ𝜀((𝜙,𝜓), 𝑞) = 0 for any 𝑞 ∈ 𝐿2

0(Ω𝜀)
}︀
,

and denoting by ‖(·, ·)‖V𝜀×V𝜀 the norm defined by

‖(𝜙,𝜓)‖V𝜀×V𝜀 =
(︁
‖𝐷𝜙‖2𝐿2(Ω𝜀)3×3 + ‖𝐷𝜓‖2𝐿2(Ω𝜀)3×3

)︁1/2

the existence and uniqueness of the solution (v𝜀,w𝜀, 𝑝𝜀) to the mixed formulation (5.5) and (5.6) result from
the following properties (see [33], paragraph 4.1 p. 57):

(i) coerciveness of 𝒜𝜀: there exists 𝜂 = 𝜂(𝜀) > 0 such that

∀(𝜙,𝜓) ∈ V0
𝜀 ×V𝜀 𝒜𝜀((𝜙,𝜓), (𝜙,𝜓)) ≥ 𝜂

(︁
‖𝐷𝜙‖2𝐿2(Ω𝜀)3×3 + ‖𝐷𝜓‖2𝐿2(Ω𝜀)3×3

)︁
,

(ii) inf-sup condition: there exists 𝑐 = 𝑐(𝜀) > 0 such that

inf
𝑞∈𝐿2

0(Ω𝜀)
sup

(𝜙,𝜓)∈V𝜀×V𝜀

ℬ𝜀((𝜙,𝜓), 𝑞)
‖(𝜙,𝜓)‖V𝜀×V𝜀

‖𝑞‖𝐿2
0(Ω𝜀)

≥ 𝑐.
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The inf-sup condition (ii) can be proved using the exact same arguments as in the proof of Theorem 2.2
in [9], that relies on the solvability in 𝐻1

0 (Ω𝜀)3 of equation div𝜙 = 𝑞, for an arbitrary 𝑞 ∈ 𝐿2
0(Ω𝜀), with natural

estimates.
To establish the coerciveness condition (i), we use Hölder inequality, Poincaré inequality (5.8), the trace

inequality (5.7) and estimate (5.10) to obtain the lower estimate

𝒜𝜀((𝜙,𝜓), (𝜙,𝜓)) =
∫︁

Ω𝜀

|𝐷𝜙|2 d𝑥+𝑅𝑀

∫︁
Ω𝜀

|𝐷𝜓|2 d𝑥− 4𝑁2

∫︁
Ω𝜀

(∇× 𝜙) · 𝜓 d𝑥+ 4𝑁2

∫︁
Ω𝜀

|𝜓|2 d𝑥

− 2
(︂

1
𝛼
−𝑁2

)︂∫︁
Γ0

𝜀

(𝜓 × n𝜀) · 𝜙d𝜎 − 2𝑁2𝛽

∫︁
Γ0

𝜀

(𝜙× n𝜀) · 𝜓 d𝜎

≥ ‖𝐷𝜙‖2𝐿2(Ω𝜀)3×3 +𝑅𝑀‖𝐷𝜓‖2𝐿2(Ω𝜀)3×3 − 4𝑁2
√

2‖𝐷𝜙‖𝐿2(Ω𝜀)3×3‖𝜓‖𝐿2(Ω𝜀)3 (5.11)

+ 4𝑁2‖𝜓‖2𝐿2(Ω𝜀)3 − 2𝛾 𝜏𝜀ℎ𝜀 ‖𝐷𝜙‖𝐿2(Ω𝜀)3×3‖𝐷𝜓‖𝐿2(Ω𝜀)3×3 ,

where 𝛾 is the defined by (4.6).
Now, by condition (4.7), there exists 𝑐1 > 0 satisfying

𝛾ℎ

𝑅𝑐
< 𝑐1 <

1− 2𝑁2

𝛾ℎ
, (5.12)

and by Young inequality,

‖𝐷𝜙‖𝐿2(Ω𝜀)3×3‖𝐷𝜓‖𝐿2(Ω𝜀)3×3 ≤ 𝑐1
2𝜀
‖𝐷𝜙‖2𝐿2(Ω𝜀)3×3 +

𝜀

2𝑐1
‖𝐷𝜓‖2𝐿2(Ω𝜀)3×3 .

By continuity, there exists a real number 𝑐2 satisfying 0 < 𝑐2 < 1, and such that

𝑐1 <
1− 2𝑁2

𝑐2

𝛾ℎ
, (5.13)

and we also have

‖𝐷𝜙‖𝐿2(Ω𝜀)3×3‖𝜓‖𝐿2(Ω𝜀)3 ≤
√

2
4𝑐2

‖𝐷𝜙‖2𝐿2(Ω𝜀)3×3 +
𝑐2√

2
‖𝜓‖2𝐿2(Ω𝜀)3 .

Going back to estimate (5.11), we obtain

𝒜𝜀((𝜙,𝜓), (𝜙,𝜓)) ≥ 𝐴𝜀‖𝐷𝜙‖2𝐿2(Ω𝜀)3×3 + 𝜀2𝐵𝜀‖𝐷𝜓‖2𝐿2(Ω𝜀)3×3 + 4𝑁2(1− 𝑐2)‖𝜓‖2𝐿2(Ω𝜀)3 , (5.14)

where 𝐴𝜀, 𝐵𝜀 are defined by

𝐴𝜀 = 1− 2𝑁2

𝑐2
− 𝑐1𝛾𝜏𝜀

ℎ𝜀
𝜀
, 𝐵𝜀 = 𝑅𝑐 −

𝛾𝜏𝜀
𝑐1

ℎ𝜀
𝜀
·

In particular, there holds

lim
𝜀→0

𝐴𝜀 = 1− 2𝑁2

𝑐2
− 𝑐1𝛾ℎ, lim

𝜀→0
𝐵𝜀 = 𝑅𝑐 −

𝛾

𝑐1
ℎ.

Using conditions (5.12) and (5.13), we conclude that for 𝜀 small enough, 𝒜𝜀 is coercive. �

5.1. A priori estimates and convergences

In this subsection we give a priori estimates and convergence results for the rescaled functions ̃︀u𝜀, ̃︀w𝜀, ̃︀𝑝𝜀.
Also, in order to take into account the effects of the rough boundary, we will introduce the unfolding method
before proceeding with the proof of the Theorem 4.4.
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Proposition 5.1. Assume that the asymptotic regimes (4.1) and (4.2) and conditions (4.5) and (4.7) hold.
Then, there exists a constant 𝐶 > 0, independent on 𝜀, such that for any 0 < 𝜀 < 𝜀0, the solution (u𝜀,w𝜀, 𝑝𝜀)
satisfies the estimates

‖u𝜀‖𝐿2(Ω𝜀)3 ≤ 𝐶𝜀
1
2 , ‖𝐷u𝜀‖𝐿2(Ω𝜀)3×3 ≤ 𝐶𝜀−

1
2 , (5.15)

‖w𝜀‖𝐿2(Ω𝜀)3 ≤ 𝐶𝜀−
1
2 , ‖𝐷w𝜀‖𝐿2(Ω𝜀)3×3 ≤ 𝐶𝜀−

3
2 , (5.16)

‖𝑝𝜀‖𝐿2(Ω𝜀) ≤ 𝐶𝜀−
3
2 , ‖∇𝑝𝜀‖𝐻−1(Ω𝜀)3 ≤ 𝐶𝜀−

1
2 . (5.17)

Moreover, the rescaled solution (̃︀u𝜀, ̃︀w𝜀, ̃︀𝑝𝜀) defined by (4.10) satisfies the estimates:

‖̃︀u𝜀‖𝐿2(̃︀Ω𝜀)3 ≤ 𝐶, ‖𝜕𝑦3̃︀u𝜀‖𝐿2(̃︀Ω𝜀)3 ≤ 𝐶, ‖𝐷𝑦′̃︀u𝜀‖𝐿2(̃︀Ω𝜀)3×2 ≤ 𝐶𝜀−1, (5.18)

‖̃︀w𝜀‖𝐿2(̃︀Ω𝜀)3 ≤ 𝐶𝜀−1, ‖𝜕𝑦3 ̃︀w𝜀‖𝐿2(̃︀Ω𝜀)3 ≤ 𝐶𝜀−1, ‖𝐷𝑦′ ̃︀w𝜀‖𝐿2(̃︀Ω𝜀)3×2 ≤ 𝐶𝜀−2, (5.19)

‖̃︀𝑝𝜀‖𝐿2(̃︀Ω𝜀) ≤ 𝐶𝜀−2, ‖𝜕𝑦3̃︀𝑝𝜀‖𝐻−1(̃︀Ω𝜀) ≤ 𝐶𝜀−1, ‖∇𝑦′̃︀𝑝𝜀‖𝐻−1(̃︀Ω𝜀)2 ≤ 𝐶𝜀−2. (5.20)

Proof of Proposition 5.1. According to Theorem 4.2, there exists 𝜀0 > 0 such that for any 0 < 𝜀 < 𝜀0, there
exists a unique weak solution (u𝜀,w𝜀, 𝑝𝜀) ∈ 𝐻1(Ω𝜀)3 × 𝐻1(Ω𝜀)3 × 𝐿2

0(Ω𝜀) to system (2.18)–(2.25). Now, we
obtain the estimates on the velocity and microrotation and then, we obtain the estimates for the pressure.

Estimates on u𝜀, w𝜀, ̃︀u𝜀 and ̃︀w𝜀. Using Hölder inequality, inequalities (5.7) and (5.8), and estimate (5.10), we
obtain for any (𝜙,𝜓) ∈ V𝜀 ×V0

𝜀 :

ℒ𝜀(𝜙,𝜓) ≤ ‖𝐷J𝜀‖𝐿2(Ω𝜀)3×3‖𝐷𝜙‖𝐿2(Ω𝜀)3×3 + 2𝑁2‖∇ × J𝜀‖𝐿2(Ω𝜀)3ℎ𝜀‖𝐷𝜓‖𝐿2(Ω𝜀)3×3

+ 2𝑁2𝛽‖J𝜀‖𝐿2(Γ0
𝜀)3
√
𝜏𝜀
√︀
ℎ𝜀‖𝐷𝜓‖𝐿2(Ω𝜀)3×3 (5.21)

≤ ‖𝐷J𝜀‖𝐿2(Ω𝜀)3×3‖𝐷𝜙‖𝐿2(Ω𝜀)3×3 + 2𝑁2
√︀
ℎ𝜀 𝐶𝜀‖𝐷𝜓‖𝐿2(Ω𝜀)3×3 ,

where 𝐶𝜀 is defined by 𝐶𝜀 =
√

2
√
ℎ𝜀‖𝐷J𝜀‖𝐿2(Ω𝜀)3×3 +𝛽

√
𝜏𝜀‖J𝜀‖𝐿2(Γ0

𝜀)3 . Notice that, by properties (4.4) satisfied
by J𝜀, there exists a constant 𝐶 > 0 such that 𝐶𝜀 ≤ 𝐶 for any 𝜀 > 0.

To obtain estimates (5.15) and (5.16), we test against (𝜙,𝜓) = (v𝜀,w𝜀) in (5.5) and use inequalities (5.21)
and (5.14) to obtain

𝐴𝜀‖𝐷v𝜀‖2𝐿2(Ω𝜀)3×3 + 𝜀2𝐵𝜀‖𝐷w𝜀‖2𝐿2(Ω𝜀)3×3 ≤ ‖𝐷J𝜀‖𝐿2(Ω𝜀)3×3‖𝐷v𝜀‖𝐿2(Ω𝜀)3×3 + 2𝑁2
√︀
ℎ𝜀 𝐶𝜀‖𝐷w𝜀‖𝐿2(Ω𝜀)3×3 .

Last inequality can be written equivalently as

𝐴𝜀

(︂
‖𝐷v𝜀‖𝐿2(Ω𝜀)3×3 − 1

2𝐴𝜀
‖𝐷J𝜀‖𝐿2(Ω𝜀)3×3

)︂2

+ 𝜀2𝐵𝜀

(︂
‖𝐷w𝜀‖𝐿2(Ω𝜀)3×3 − 𝑁2

𝜀2𝐵𝜀

√︀
ℎ𝜀𝐶𝜀

)︂2

≤ 1
4𝐴𝜀

‖𝐷J𝜀‖2𝐿2(Ω𝜀)3×3 +
𝑁4

𝜀2𝐵𝜀
ℎ𝜀𝐶

2
𝜀 .

Since 𝜏𝜀, 𝑏𝜀/𝜀,𝐴𝜀, 𝐵𝜀 and 𝐶𝜀 are uniformly bounded, using assumptions (4.4), we deduce than the right hand
side of the previous inequality is bounded by 𝐶/𝜀 for a certain constant 𝐶 > 0. This implies the following
bounds:

‖𝐷v𝜀‖𝐿2(Ω𝜀)3×3 ≤ 𝐶𝜀−1/2, ‖𝐷w𝜀‖𝐿2(Ω𝜀)3×3 ≤ 𝐶𝜀−3/2.

Hence, using Poincaré inequality (5.8), the relation u𝜀 = v𝜀 + J𝜀 and properties (4.4) satisfied by J𝜀, we obtain
the desired estimates (5.15) and (5.16). Finally, estimates (5.18) and (5.19) are direct consequences of the
rescaling (4.10).
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Estimates on 𝑝𝜀 and ̃︀𝑝𝜀. In order to estimate ∇𝑝𝜀 in 𝐻−1(Ω𝜀)3, we test against 𝜙 ∈ 𝐻1
0 (Ω𝜀)3 in (2.28) :

⟨∇𝑝𝜀, 𝜙⟩𝐻−1(Ω𝜀)3×𝐻1
0 (Ω𝜀)3 = −

∫︁
Ω𝜀

𝑝𝜀 div𝜙d𝑥

= −
∫︁

Ω𝜀

𝐷u𝜀 : 𝐷𝜙d𝑥+ 2𝑁2

∫︁
Ω𝜀

w𝜀 · (∇× 𝜙) d𝑥.

Using Hölder inequality and estimate (5.10), we deduce⃒⃒⃒
⟨∇𝑝𝜀, 𝜙⟩𝐻−1(Ω𝜀)3×𝐻1

0 (Ω𝜀)3

⃒⃒⃒
≤
(︁
‖𝐷u𝜀‖𝐿2(Ω𝜀)3×3 + 2𝑁2

√
2‖w𝜀‖𝐿2(Ω𝜀)3×3

)︁
‖𝐷𝜙‖𝐿2(Ω𝜀)3×3 .

We conclude from the upper bounds (5.15) and (5.16) that ‖∇𝑝𝜀‖𝐻−1(Ω𝜀)3 ≤ 𝐶𝜀−1/2, where 𝐶 depends only on
𝑁 .

Finally, to estimate 𝑝𝜀 in 𝐿2
0(Ω𝜀), we apply the following inequality, whose proof is given in Corollary 4.2 of

[24]:

‖𝑝𝜀‖𝐿2
0(Ω𝜀) ≤

𝐶

𝜀
‖∇𝑝𝜀‖𝐻−1(Ω𝜀)3 .

This proves (5.17). Finally, estimates (5.20) are direct consequences of the rescaling (4.10), which concludes the
proof of Proposition 5.1. �

As a consequence of the a priori estimates stated in Proposition 5.1, and the fact that Ω ⊂ ̃︀Ω𝜀 and |̃︀Ω𝜀∖Ω| → 0,
we have the following convergences for rescaled solutions ̃︀u𝜀, ̃︀w𝜀 restricted to the limit domain Ω.

Lemma 5.2. Assume that the asymptotic regimes (4.1) and (4.2) and conditions (4.5) and (4.7) hold. Then,
for a subsequence of 𝜀, still denoted by 𝜀, there exist ̃︀u′, ̃︀w′ ∈ 𝐻1(0, ℎ;𝐿2(𝜔))2 with ̃︀u′(𝑥′, ℎ) = ̃︀w′(𝑥′, ℎ) = 0 for
a.e. 𝑥′ ∈ 𝜔, and

div𝑦′
∫︁ ℎ

0

̃︀u′(𝑦′, 𝑦3) d𝑦3 = 𝑆 in 𝐻−1(𝜔), (5.22)

such that

̃︀u𝜀|Ω ⇀ (̃︀u′, 0) in 𝐻1(0, ℎ;𝐿2(𝜔))3, (5.23)

𝜀̃︀w𝜀|Ω ⇀ (̃︀w′, 0) in 𝐻1(0, ℎ;𝐿2(𝜔))3. (5.24)

Proof. The space 𝐻1(0, ℎ;𝐿2(𝜔)) is a Hilbert space for the norm

‖𝑣‖𝐻1(0,ℎ;𝐿2(𝜔)) =
(︁
‖𝑣‖2𝐿2(Ω) + ‖𝜕𝑦3𝑣‖2𝐿2(Ω)

)︁1/2

.

By estimates (5.18) and (5.19), ̃︀u𝜀|Ω and 𝜀̃︀w𝜀|Ω are bounded in 𝐻1(0, ℎ;𝐿2(𝜔))3, so there exist ̃︀u and ̃︀w such
that for a subsequence of 𝜀, still denoted by 𝜀, we have

̃︀u𝜀|Ω ⇀ ̃︀u and 𝜀̃︀w𝜀|Ω ⇀ ̃︀w in 𝐻1
(︀
0, ℎ;𝐿2(𝜔)

)︀3
. (5.25)

By continuity of the trace operator from 𝐻1(0, ℎ;𝐿2(𝜔)) into 𝐿2(𝜔 × {ℎ}), the conditions ̃︀u𝜀(𝑥′, ℎ) = −𝜀𝑆𝑒3
and 𝜀̃︀w𝜀(𝑥′, ℎ) = 0 for a.e. 𝑥′ ∈ 𝜔 pass to the limit, yielding ̃︀u(𝑥′, ℎ) = ̃︀w(𝑥′, ℎ) = 0 for a.e. 𝑥′ ∈ 𝜔.

Now, we prove that ̃︀𝑢3 = 0. Since u𝜀 is divergence free, using definition (4.10), the rescaled function ̃︀u𝜀
satisfies

div𝑦′ ̃︀u′𝜀 +
1
𝜀
𝜕𝑦3̃︀𝑢𝜀,3 = 0 a.e. in ̃︀Ω𝜀, (5.26)

so for any 𝜑 ∈ 𝐶∞𝑐 (Ω),

0 =
∫︁

Ω

div𝑦′ ̃︀u′𝜀 𝜑 d𝑦 +
∫︁

Ω

1
𝜀
𝜕𝑦3̃︀𝑢𝜀,3 𝜑d𝑦 = −

∫︁
Ω

̃︀u′𝜀 · ∇𝑦′𝜑 d𝑦 +
∫︁

Ω

1
𝜀
𝜕𝑦3̃︀𝑢𝜀,3 𝜑d𝑦.
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Hence,
∫︀
Ω
𝜕𝑦3̃︀𝑢𝜀,3 𝜑d𝑥 = 𝜀

∫︀
Ω
̃︀u′𝜀 · ∇𝑦′𝜑 d𝑥 and using (5.25), we deduce that

∫︀
Ω
𝜕𝑦3̃︀𝑢3 𝜑 d𝑥 = 0. As a result, ̃︀𝑢3

does not depend on 𝑦3, and since it vanishes on 𝑦3 = ℎ, it is identically null.
Next, we prove the divergence equation (5.22). Using condition (2.19), integration by parts, boundary condi-

tions (2.21), (2.23) and the change of variables (4.8), we have for any 𝜑 ∈ 𝐶∞𝑐 (𝜔)

0 =
∫︁

Ω𝜀

(div u𝜀)𝜑(𝑥′) d𝑥

= −
∫︁

Ω𝜀

u′𝜀 · ∇𝑥′𝜑 d𝑥+
∫︁

Γ1
𝜀

𝑢𝜀,3 𝜑d𝜎

= −𝜀
∫︁
̃︀Ω𝜀

̃︀u′𝜀 · ∇𝑦′𝜑(𝑦′) d𝑦 − 𝜀𝑆

∫︁
𝜔

𝜑(𝑦′) d𝑦′.

Noticing that, by the bound (5.18) and Hölder inequality, there holds lim𝜀→0

∫︀
̃︀Ω𝜀∖Ω |̃︀u𝜀|2d𝑦 = 0, we deduce that

−
∫︁

Ω

̃︀u′𝜀 · ∇𝑦′𝜑(𝑦′) d𝑦 = 𝑆

∫︁
𝜔

𝜑(𝑦′) d𝑦′ +𝑂𝜀.

Using the weak convergence (5.25), we can pass to the limit in the previous equality and obtain

𝑆

∫︁
𝜔

𝜑(𝑦′) d𝑦′ = −
∫︁

Ω

̃︀u′ · ∇𝑦′𝜑(𝑦′) d𝑦

=
∫︁
𝜔

div𝑦′

(︃∫︁ ℎ

0

̃︀u′(𝑦′, 𝑦3) d𝑦3

)︃
𝜑(𝑦′) d𝑦′,

which proves (5.22).
Finally, it remains to prove that ̃︀𝑤3 = 0. To do this, for any 𝜓 ∈ 𝐶∞𝑐 (Ω), we consider 𝜓𝜀 = 𝜀𝜓(𝑥′, 𝑥3/𝜀)𝑒3

as test function in the variational formulation (2.29). Applying the change of variables (4.8) and extending the
integrals to Ω, we get

𝑅𝑐

∫︁
Ω

𝜀𝜕𝑦3 ̃︀𝑤𝜀,3𝜕𝑦3𝜓3 d𝑦 + 4𝑁2

∫︁
Ω

𝜀 ̃︀𝑤𝜀,3𝜓 d𝑦 = 2𝑁2

∫︁
Ω

𝜀Rot𝑥′̃︀u′𝜀𝜓3 d𝑦 +𝑂𝜀.

Integrating by parts the right-hand side, we get

𝑅𝑐

∫︁
Ω

𝜀𝜕𝑦3 ̃︀𝑤𝜀,3𝜕𝑦3𝜓3 d𝑦 + 4𝑁2

∫︁
Ω

𝜀 ̃︀𝑤𝜀,3𝜓 d𝑦 = 2𝑁2

∫︁
Ω

𝜀[̃︀u′𝜀]⊥∇𝑦′𝜓3 d𝑦 +𝑂𝜀.

Using convergences (5.25), when 𝜀 tends to zero, we get

𝑅𝑐

∫︁
Ω

𝜕𝑦3 ̃︀𝑤3 𝜕𝑦3𝜓 d𝑦 + 4𝑁2

∫︁
Ω

̃︀𝑤3𝜓 d𝑦 = 0. (5.27)

Next, we prove that ̃︀𝑤3(𝑦′, 0) = 0 for a.e. 𝑥′ ∈ 𝜔. The condition w𝜀 · n𝜀 = 0 on Γ0
𝜀 can be rewritten as follows

𝜀�̃�𝜀,1

(︁
𝑦′,−Ψ̃𝜀(𝑦′)

)︁
𝜆𝜀𝛿−ℓ𝜕1Ψ

(︂
1
𝜀ℓ
𝑦′ · 𝑒′1

)︂
+ 𝜀�̃�𝜀,3

(︁
𝑦′,−Ψ̃𝜀(𝑦′)

)︁
= 0 a.e. 𝑦′ ∈ 𝜔.

Multiplying this equality by 𝜓 ∈ 𝐶∞𝑐 (𝜔) and integrating on 𝜔, we get∫︁
𝜔

𝜀�̃�𝜀,1

(︁
𝑦′,−Ψ̃𝜀(𝑦′)

)︁
𝜆𝑒𝛿−ℓ𝜕1Ψ

(︂
1
𝜀ℓ
𝑦′ · 𝑒′1

)︂
𝜓(𝑦′) d𝑦′ +

∫︁
𝜔

𝜀�̃�𝜀,3

(︁
𝑦′,−Ψ̃𝜀(𝑦′)

)︁
𝜓(𝑦′) d𝑦′ = 0. (5.28)
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We can write the second term of (5.28) as follows∫︁
𝜔

𝜀�̃�𝜀,3

(︁
𝑦′,−Ψ̃𝜀(𝑦′)

)︁
𝜓(𝑦′) d𝑦′ =

∫︁
𝜔

𝜀�̃�𝜀,3(𝑦′, 0)𝜓(𝑦′) d𝑦′ −
∫︁
𝜔

(︃∫︁ 0

−Ψ̃𝜀(𝑦′)

𝜀𝜕𝑦3�̃�𝜀,3(𝑦′, 𝑠) d𝑠

)︃
𝜓(𝑦′) d𝑦′.

Then, since 𝜀w̃𝜀|Ω is bounded in 𝐻1(0, ℎ;𝐿2(𝜔))3, by continuity of the trace operator from 𝐻1(0, ℎ;𝐿2(𝜔))3

into 𝐿2(𝜔 × {0})3 and convergence (5.25), we have that∫︁
𝜔

𝜀�̃�𝜀,3(𝑦′, 0) d𝑦′ =
∫︁
𝜔

𝜀�̃�3(𝑦′, 0) d𝑦′ +𝑂𝜀.

Moreover, from the Cauchy–Schwarz inequality, estimate (5.19)2 and |̃︀Ω−𝜀 | → 0 (recall that ‖̃︀Ψ𝜀‖𝐿∞ ≤ 𝐶𝜀𝛿−1),
then ⃒⃒⃒⃒

⃒
∫︁
𝜔

∫︁ 0

−Ψ̃𝜀(𝑦′)

𝜀𝜕𝑦3(𝑦′, 𝑠) d𝑠𝜙(𝑦′) d𝑦′
⃒⃒⃒⃒
⃒ ≤

(︂∫︁
̃︀Ω𝜀

|𝜀𝜕𝑦3�̃�𝜀,3|2
)︂ 1

2
(︂∫︁
̃︀Ω−𝜀
|𝜙(𝑦′)|2

)︂ 1
2

= 𝑂𝜀,

and so, we get that ∫︁
𝜔

𝜀�̃�𝜀,3

(︁
𝑦′,−Ψ̃𝜀(𝑦′)

)︁
d𝑦′ =

∫︁
𝜔

𝜀�̃�3(𝑦′, 0) d𝑦′ +𝑂𝜀.

A similar argument works for the first term of (5.28) works replacing 𝜙(𝑦′) by 𝜆𝜀𝛿−ℓ𝜕1Ψ( 1
𝜀ℓ 𝑦

′ · 𝑒′1)𝜙(𝑦′), which
goes to 0 in 𝐿∞(𝜔).

Then, from the above, passing to the limit in (5.28), we get∫︁
𝜔

̃︀𝑤3(𝑦′, 0)𝜙(𝑦′) d𝑦′ = 0,

which is equivalent to ̃︀𝑤3(𝑦′, 0) = 0 for a.e. 𝑦′ ∈ 𝜔.
Finally, from (5.27) and taking into account that ̃︀𝑤3(𝑦′, ℎ) = ̃︀𝑤3(𝑦′, 0) = 0 for a.e. 𝑦′ ∈ 𝜔, it is easily deduced

that ̃︀𝑤3 = 0, which ends the proof. �

In order to give the convergence of the rescaled pressure ̃︀𝑝𝜀, let us give a more accurate estimate for pressure
𝑝𝜀. For this, we need to recall a decomposition result for 𝑝𝜀 whose proof can be found in Corollary 4.2 of [24].

Proposition 5.3. The following decomposition for 𝑝𝜀 ∈ 𝐿2
0(Ω𝜀) holds

𝑝𝜀 = 𝑝0
𝜀 + 𝑝1

𝜀, (5.29)

where 𝑝0
𝜀 ∈ 𝐻1(𝜔), which is independent of 𝑥3, and 𝑝1

𝜀 ∈ 𝐿2(Ω𝜀). Moreover, the following estimates hold⃦⃦
𝑝0
𝜀

⃦⃦
𝐻1(𝜔)

≤ 𝐶𝜀−
3
2 ‖∇𝑝𝜀‖𝐻−1(Ω𝜀)3 , ‖𝑝1

𝜀‖𝐿2(Ω𝜀) ≤ 𝐶‖∇𝑝𝜀‖𝐻−1(Ω𝜀)3 . (5.30)

From this result, we are able to give the convergence result for ̃︀𝑝𝜀. We denote by ̃︀𝑝1
𝜀 the rescaled function

associated with 𝑝1
𝜀, defined by ̃︀𝑝1

𝜀(𝑦) = 𝑝1
𝜀(𝑦

′, 𝜀𝑦3) for a.e. 𝑦 ∈ ̃︀Ω𝜀.
Corollary 5.4. Previous result implies the existence of 𝑝 ∈ 𝐻1(𝜔) and ̃︀𝑝1 ∈ 𝐿2(Ω) satisfying

𝜀2𝑝0
𝜀 ⇀ 𝑝 in 𝐻1(𝜔), 𝜀̃︀𝑝1

𝜀|Ω ⇀ ̃︀𝑝1 in 𝐿2(Ω), (5.31)

and moreover
𝜀2̃︀𝑝𝜀|Ω → 𝑝 in 𝐿2(Ω). (5.32)



1276 M. BONNIVARD ET AL.

Proof. From (5.30) and (5.17)2, we get⃦⃦
𝑝0
𝜀

⃦⃦
𝐻1(𝜔)

≤ 𝐶𝜀−2, ‖𝑝1
𝜀‖𝐿2(Ω𝜀) ≤ 𝐶𝜀−

1
2 , (5.33)

and after rescaling 𝑝1
𝜀, last inequality becomes

‖̃︀𝑝1
𝜀‖𝐿2(̃︀Ω𝜀) ≤ 𝐶𝜀−1.

Previous estimates and the fact that Ω ⊂ ̃︀Ω𝜀 and
⃒⃒⃒̃︀Ω𝜀 ∖ Ω

⃒⃒⃒
→ 0 imply (5.31). The strong convergence (5.32) for

the complete pressure ̃︀𝑝𝜀 is a direct consequence of (5.31) and the decomposition (5.29). �

5.2. Unfolding method

In order to capture the behaviour of u𝜀, w𝜀 and 𝑝1
𝜀 (introduced in Prop. 5.3) near the rough boundary Γ𝜀,

we need to introduce a new change of variables, which is adapted from the unfolding method (see [2, 24, 26]).
To do this, for u𝜀,w𝜀 ∈ 𝐻1(Ω𝜀)3 satisfying boundary conditions (2.21)–(2.23), 𝑝1

𝜀 ∈ 𝐿2(Ω𝜀), and 𝜌 > 0, we set̂︀u𝜀, ̂︀w𝜀 and ̂︀𝑝1
𝜀 by

̂︀u𝜀(𝑥′, 𝑧) = u𝜀

(︂
𝜀ℓ𝜅

(︂
𝑥′

𝜀ℓ

)︂
+ 𝜀ℓ𝑧′, 𝜀ℓ𝑧3

)︂
, (5.34)

̂︀w𝜀(𝑥′, 𝑧) = w𝜀

(︂
𝜀ℓ𝜅

(︂
𝑥′

𝜀ℓ

)︂
+ 𝜀ℓ𝑧′, 𝜀ℓ𝑧3

)︂
, (5.35)

̂︀𝑝1
𝜀(𝑥

′, 𝑧) = 𝑝1
𝜀

(︂
𝜀ℓ𝜅

(︂
𝑥′

𝜀ℓ

)︂
+ 𝜀ℓ𝑧′, 𝜀ℓ𝑧3

)︂
, (5.36)

for a.e. (𝑥′, 𝑧) ∈ 𝜔𝜌 × ̂︀𝑍𝜀, where 𝜔𝜌 is defined by (3.1) and

̂︀𝑍𝜀 =
{︀
𝑧 ∈ 𝑍 ′ × R : −𝜀𝛿−ℓΨ(𝑧′ · 𝑒′1) < 𝑧3 < 𝜀1−ℓℎ

}︀
.

Remark 5.5. For every 𝑘′ ∈ 𝐼𝜌,𝜀, the functions ̂︀u𝜀, ̂︀w𝜀 and ̂︀𝑝1
𝜀 restricted to 𝐶𝑘

′

𝜀ℓ × ̂︀𝑍𝜀 are independent of 𝑥′.
However, as functions depending on 𝑧, they are obtained from their original functions by means of

𝑧′ =
𝑥′ − 𝜀ℓ𝑘′

𝜀ℓ
, 𝑧3 =

𝑥3

𝜀ℓ
, (5.37)

that converts 𝑄𝑘
′

𝜀ℓ in ̂︀𝑍𝜀.
Thanks to the estimates satisfied by u𝜀, w𝜀 and 𝑝1

𝜀 given in (5.15), (5.17) and (5.33)2, respectively, we have
the following compactness results.

Lemma 5.6. Consider two sequences u𝜀,w𝜀 ∈ V𝜀 satisfying (5.15)2 and (5.16)2, respectively. Define ̃︀u𝜀, ̃︀w𝜀 ∈
𝐻1
(︁̃︀Ω𝜀)︁3

by (4.10), so that (5.23) and (5.24) hold. Set 𝛿 ≤ 3
2ℓ−

1
2 . Then,

(i) If 𝛿 < 3
2ℓ−

1
2 , it holds

̃︀𝑢1(𝑥′, 0)𝜕𝑦1Ψ(𝑧′ · 𝑒′1) = 0, a.e. (𝑥′, 𝑧′) ∈ 𝜔 × 𝑍 ′, (5.38)̃︀𝑤1(𝑥′, 0)𝜕𝑦1Ψ(𝑧′ · 𝑒′1) = 0, a.e. (𝑥′, 𝑧′) ∈ 𝜔 × 𝑍 ′. (5.39)
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(ii) If 𝛿 = 3
2ℓ−

1
2 , there exist ̂︀u, ̂︀w ∈ 𝐿2(𝜔,𝒱3), where 𝒱 is the space of functions ̂︀𝜙 : R2 × (0,+∞) ↦→ R such

that ̂︀𝜙 ∈ 𝐻1
#

(︁ ̂︀𝑄𝑀)︁, for every 𝑀 > 0, and ∇̂︀𝜙 ∈ 𝐿2
#

(︁ ̂︀𝑄)︁3

, satisfying

̂︀𝑢3(𝑥′, 𝑧′, 0) = −𝜆𝜕𝑦1Ψ(𝑧′ · 𝑒′1)̃︀𝑢1(𝑥′, 0), a.e. (𝑥′, 𝑧′) ∈ 𝜔 × 𝑍 ′, (5.40)̂︀𝑤3(𝑥′, 𝑧′, 0) = −𝜆𝜕𝑦1Ψ(𝑧′ · 𝑒′1) ̃︀𝑤1(𝑥′, 0), a.e. (𝑥′, 𝑧′) ∈ 𝜔 × 𝑍 ′, (5.41)

and such that, for any 𝜌,𝑀 > 0, the sequences ̂︀u𝜀 and ̂︀w𝜀, respectively given by (5.34) and (5.35), satisfy

𝜀
1−ℓ
2 𝐷𝑧̂︀u𝜀 ⇀ 𝐷𝑧̂︀u in 𝐿2

(︁
𝜔𝜌 × ̂︀𝑄𝑀)︁3×3

, 𝜀
3−ℓ
2 𝐷𝑧 ̂︀w𝜀 ⇀ 𝐷𝑧 ̂︀w in 𝐿2

(︁
𝜔𝜌 × ̂︀𝑄𝑀)︁3×3

. (5.42)

Moreover, if one assumes div u𝜀 = 0 in Ω𝜀, then ̂︀u satisfies

div𝑧̂︀u = 0 in 𝜔 × ̂︀𝑄. (5.43)

Proof. This result is a direct consequence of Lemma 5.4 from [24], applied to the sequences 𝜀2u𝜀 and 𝜀3w𝜀. �

Lemma 5.7. We consider 𝑝1
𝜀 ∈ 𝐿2(Ω𝜀) such that (5.33)2 holds. Then, there exists ̂︀𝑝1 ∈ 𝐿2

(︁
𝜔 × ̂︀𝑄)︁ satisfying,

up to a subsequence, the convergence

𝜀
1+ℓ
2 ̂︀𝑝1

𝜀 ⇀ ̂︀𝑝1 in 𝐿2
(︁
𝜔𝜌 × ̂︀𝑄𝑀)︁ ∀𝜌,𝑀 > 0. (5.44)

Proof. It is a direct consequence of Lemma 5.5 from [24], applied to the sequence 𝜀2𝑝1
𝜀. �

We are now in position to prove Theorem 4.4 in the critical case 𝛿 = 3
2ℓ−

1
2 , which is the most relevant from

the mechanical point of view since it describes the coupling effects between the riblets and nonzero boundary
conditions.

Proof of Theorem 4.4. Let us consider 𝛿 = 3
2ℓ−

1
2 with ℓ > 1.

First of all, Lemma 5.2 and Corollary 5.4 implies the existence of ̃︀u′, ̃︀w′ ∈ 𝐻1(0, ℎ;𝐿2(𝜔))2 such that (4.13),
and 𝑝 ∈ 𝐻1(𝜔) so that convergences of ̃︀u𝜀, ̃︀w𝜀 and ̃︀𝑝𝜀 given in (4.11) hold. Also, we have that the divergence
condition (4.12)3 holds. From Corollary 5.4, the sequences 𝑝0

𝜀 and 𝑝1
𝜀 satisfy convergences given in (5.31).

We recall the variational formulation given by (2.28) and (2.29). For 𝜙,𝜓 ∈ V𝜀, (u𝜀,w𝜀, 𝑝𝜀) satisfies∫︁
Ω𝜀

𝐷u𝜀 : 𝐷𝜙d𝑥−
∫︁

Ω𝜀

𝑝𝜀 div𝜙d𝑥− 2𝑁2

∫︁
Ω𝜀

w𝜀 · (∇× 𝜙) d𝑥− 2
(︂

1
𝛼
−𝑁2

)︂∫︁
Γ0

𝜀

(w𝜀 × n𝜀) · 𝜙d𝜎 = 0, (5.45)

𝜀2𝑅𝑐

∫︁
Ω𝜀

𝐷w𝜀 : 𝐷𝜓 d𝑥− 2𝑁2𝛽

∫︁
Γ0

𝜀

(u𝜀 × n𝜀) · 𝜓 d𝜎 + 4𝑁2

∫︁
Ω𝜀

w𝜀 · 𝜓 d𝑥− 2𝑁2

∫︁
Ω𝜀

(∇× u𝜀) · 𝜓 d𝑥 = 0. (5.46)

Now, we want to pass to the limit in the above variational formulations. To do this, we will use appropriate
test functions 𝜙𝜀, 𝜓𝜀. We divide the proof in four steps.

Step 1. Definition of the test functions. Lemma 5.6 gives the existence of ̂︀u, ̂︀w ∈ 𝐿2
(︀
𝜔;𝒱3

)︀
satisfying (5.40),

(5.41) and (5.43). Thanks to this, we consider the following test functions. For any ̃︀𝜙, ̃︀𝜓 ∈ 𝐶1
𝑐 (𝜔× (−ℎ, ℎ))3,

with 𝜙3 = 𝜓3 = 0, ̂︀𝜙, ̂︀𝜓 ∈ 𝐶1
𝑐

(︁
𝜔;𝐶1

#

(︁ ̂︀𝑄)︁)︁3

satisfying⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐷𝑧 ̂︀𝜙(𝑥′, 𝑧) = 0 a.e. in {𝑧3 > 𝑀} for some 𝑀 > 0,̃︀𝜙′(𝑦′, 𝑦3) = ̃︀𝜙′(𝑦′, 0) when 𝑦3 ≤ 0,̂︀𝜙(𝑥′, 𝑧′, 𝑧3) = ̂︀𝜙(𝑥′, 𝑧′, 0) when 𝑧3 ≤ 0,

𝜆 𝜕𝑧1Ψ(𝑧′ · 𝑒′1)̃︀𝜙1(𝑦′, 0) + ̂︀𝜙3(𝑦′, 𝑧′, 0) = 0,

(5.47)
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𝐷𝑧
̂︀𝜓(𝑥′, 𝑧) = 0 a.e. in {𝑧3 > 𝑀} for some 𝑀 > 0,̃︀𝜓′(𝑦′, 𝑦3) = ̃︀𝜓′(𝑦′, 0) when 𝑦3 ≤ 0,̂︀𝜓(𝑥′, 𝑧′, 𝑧3) = ̂︀𝜓(𝑥′, 𝑧′, 0) when 𝑧3 ≤ 0,

𝜆 𝜕𝑧1Ψ(𝑧′ · 𝑒′1) ̃︀𝜓1(𝑦′, 0) + ̂︀𝜓3(𝑦′, 𝑧′, 0) = 0,

(5.48)

and a function 𝜁 ∈ 𝐶∞(R) such that

𝜁(𝑠) =

⎧⎪⎨⎪⎩
1 when 𝑠 <

1
3
,

0 when 𝑠 >
2
3
,

(5.49)

we set 𝜙𝜀, 𝜓𝜀 ∈ 𝐻1(Ω𝜀)3 as follows⎧⎪⎪⎨⎪⎪⎩
𝜙′𝜀(𝑥) = 𝜀̃︀𝜙′(︁𝑥′, 𝑥3

𝜀

)︁
+ 𝜀

1+ℓ
2 ̂︀𝜙′(︁𝑥′, 𝑥

𝜀ℓ

)︁
𝜁
(︁𝑥3

𝜀

)︁
,

𝜙𝜀,3 = 𝜀
1+ℓ
2 ̂︀𝜙3

(︁
𝑥′,

𝑥

𝜀ℓ

)︁
𝜁
(︁𝑥3

𝜀

)︁
− 𝜀ℓ ̂︀𝜙1

(︁
𝑥′,

𝑥

𝜀ℓ

)︁
𝜆𝜕𝑥1Ψ

(︂
1
𝜀ℓ
𝑥′ · 𝑒′1

)︂
𝜁
(︁𝑥3

𝜀ℓ

)︁
,⎧⎪⎪⎨⎪⎪⎩

𝜓′𝜀(𝑥) = ̃︀𝜓′(︁𝑥′, 𝑥3

𝜀

)︁
+ 𝜀

ℓ−1
2 ̂︀𝜓′(︁𝑥′, 𝑥

𝜀ℓ

)︁
𝜁
(︁𝑥3

𝜀

)︁
,

𝜓𝜀,3 = 𝜀
ℓ−1
2 ̂︀𝜓3

(︁
𝑥′,

𝑥

𝜀ℓ

)︁
𝜁
(︁𝑥3

𝜀

)︁
− 𝜀ℓ−1 ̂︀𝜓1

(︁
𝑥′,

𝑥

𝜀ℓ

)︁
𝜆𝜕𝑥1Ψ

(︂
1
𝜀ℓ
𝑥′ · 𝑒′1

)︂
𝜁
(︁𝑥3

𝜀ℓ

)︁
·

Since ̃︀𝜙′(𝑥), ̃︀𝜓′(𝑥), ̂︀𝜙′(𝑥′, 𝑧) and ̂︀𝜓(𝑥′, 𝑧) are zero when 𝑥′ is out of a compact subset of 𝜔, (5.47) and (5.48),
then 𝜙𝜀, 𝜓𝜀 are such that

𝜙𝜀 = 𝜓𝜀 = 0 on 𝜕Ω𝜀 ∖ Γ0
𝜀, 𝜙𝜀 · n𝜀 = 𝜓𝜀 · n𝜀 = 0 on Γ0

𝜀.

So, we are able to consider 𝜙𝜀 and 𝜓𝜀, respectively, as test functions in (5.45) and (5.46). The difficulty
now is to obtain the limit of every terms of (5.45) and (5.46). For this, we observe that from the conditions
𝐷𝑧 ̂︀𝜙 = 𝐷𝑧

̂︀𝜓 = 0 a.e. in {𝑧3 > 𝑀} and (5.49), it follows

𝜙𝜀(𝑥) = 𝜀
(︁̃︀𝜙′(︁𝑥′, 𝑥3

𝜀

)︁
, 0
)︁

+ 𝑔𝜀 in Ω𝜀, (5.50)

𝐷𝜙𝜀(𝑥) =
2∑︁
𝑖=1

𝜕𝑦3 ̃︀𝜙𝑖(︁𝑥′, 𝑥3

𝜀

)︁
𝑒𝑖 ⊗ 𝑒3 + 𝜀

1−ℓ
2 𝐷𝑧 ̂︀𝜙(︁𝑥′, 𝑥

𝜀ℓ

)︁
+ ℎ𝜀(𝑥) in Ω𝜀, (5.51)

𝜓𝜀(𝑥) =
(︁ ̃︀𝜓′(︁𝑥′, 𝑥3

𝜀

)︁
, 0
)︁

+ 𝑔𝜀 in Ω𝜀, (5.52)

𝐷𝜓𝜀(𝑥) = 𝜀−1
2∑︁
𝑖=1

𝜕𝑦3
̃︀𝜓𝑖(︁𝑥′, 𝑥3

𝜀

)︁
𝑒𝑖 ⊗ 𝑒3 + 𝜀−

1+ℓ
2 𝐷𝑧

̂︀𝜓(︂𝑥′, 𝑥
𝑟𝜀

)︂
+ ℎ̆𝜀(𝑥) in Ω𝜀, (5.53)

where 𝑔𝜀, 𝑔𝜀 ∈ 𝐶0(Ω𝜀)3, ℎ𝜀, ℎ̆𝜀 ∈ 𝐶0(Ω𝜀)3×3 (thanks to ℓ > 1) are such that

𝜀−3

∫︁
Ω𝜀

|𝑔𝜀|2d𝑥 ≤ 𝐶
(︁
𝜀ℓ+1 + 𝜀3(ℓ−1)

)︁
= 𝑂𝜀, (5.54)

𝜀−2

∫︁
Γ0

𝜀

|𝑔𝜀|2 d𝜎 ≤ 𝐶𝜀ℓ−1 = 𝑂𝜀, (5.55)
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𝜀−1

∫︁
Ω𝜀

|ℎ𝜀|2d𝑥 ≤ 𝐶𝜀3
(︂
𝜀ℓ−2 + 𝜀ℓ−4 +

1
𝜀

)︂
= 𝑂𝜀, (5.56)

𝜀−1

∫︁
Ω𝜀

|𝑔𝜀|2d𝑥 ≤ 𝐶
(︁
𝜀ℓ−1 + 𝜀3(ℓ−1)

)︁
= 𝑂𝜀, (5.57)∫︁

Γ0
𝜀

|𝑔𝜀|2 d𝜎 ≤ 𝐶𝜀ℓ−1 = 𝑂𝜀, (5.58)

𝜀

∫︁
Ω𝜀

|ℎ̆𝜀|2d𝑥 ≤ 𝐶𝜀3
(︂
𝜀ℓ−2 + 𝜀ℓ−4 +

1
𝜀

)︂
= 𝑂𝜀. (5.59)

We remark that functions 𝑔𝜀, 𝑔𝜀, ℎ𝜀 and ℎ̆𝜀 and previous estimates are devoted to identify terms of the
variational formulation that are negligible in the asymptotic analysis.

Step 2. Passing to the limit in variational formulation (5.45). We can pass to the limit in every term of (5.45).
– 1st term of (5.45). From (5.15), (5.51) and (5.56), we deduce∫︁

Ω𝜀

𝐷u𝜀 : 𝐷𝜙𝜀 d𝑥 =
∫︁

Ω+
𝜀

𝜕𝑥3u
′
𝜀(𝑥) · 𝜕𝑦3 ̃︀𝜙′(︁𝑥′, 𝑥3

𝜀

)︁
d𝑥+ 𝜀

1−ℓ
2

∫︁
Ω+

𝜀

𝐷u𝜀(𝑥) : 𝐷𝑧 ̂︀𝜙(︁𝑥′, 𝑥
𝜀ℓ

)︁
d𝑥+𝑂𝜀. (5.60)

Observe that main order terms are defined in Ω+
𝜀 = 𝜔 × (0, 𝜀ℎ). To obtain this, here we have used that,

in Ω−𝜀 = 𝜔 × (−Ψ𝜀(𝑥′), 0),

𝜀
1−ℓ
2

∫︁
Ω−𝜀

𝐷u𝜀(𝑥) : 𝐷𝑧 ̂︀𝜙(︁𝑥′, 𝑥
𝜀ℓ

)︁
d𝑥 = 𝑂𝜀,

Last estimate results from Cauchy–Schwarz inequality, the estimate of 𝐷u𝜀 given in (5.15) and the
estimate ∫︁

Ω−𝜀

⃒⃒⃒
𝜀

1−ℓ
2 𝐷𝑧 ̂︀𝜙⃒⃒⃒2 d𝑥 ≤ 𝐶𝜀1−ℓ

⃒⃒
Ω−𝜀
⃒⃒

= 𝐶𝜀1−ℓ+𝛿 = 𝐶𝜀
1+ℓ
2 .

Also, we have used that∫︁
Ω𝜀

𝐷u𝜀 : ℎ𝜀 d𝑥 ≤ ‖𝐷u𝜀‖𝐿2(Ω𝜀)3×3‖ℎ𝜀‖𝐿2(Ω𝜀)3×3 ≤ 𝐶𝜀−
1
2 ‖ℎ𝜀‖𝐿2(Ω𝜀)3×3 = 𝑂𝜀.

Now, using the dilatation (4.8) and (4.11)1, we get∫︁
Ω+

𝜀

𝜕𝑥3u
′
𝜀(𝑥) · 𝜕𝑦3 ̃︀𝜙(︁𝑥′, 𝑥3

𝜀

)︁
d𝑥 =

∫︁
Ω

𝜕𝑦3̃︀u′𝜀(𝑦) · 𝜕𝑦3 ̃︀𝜙′(𝑦) d𝑦 =
∫︁

Ω

𝜕𝑦3̃︀u′(𝑦) · 𝜕𝑦3 ̃︀𝜙′(𝑦) d𝑦 +𝑂𝜀.

Next, from the unfolding (5.37), the hypothesis of the support of 𝐷𝑧 ̂︀𝜙 and (5.42)1, we deduce

𝜀
1−ℓ
2

∫︁
Ω+

𝜀

𝐷u𝜀(𝑥) : 𝐷𝑧𝜙
(︁
𝑥′,

𝑥

𝜀ℓ

)︁
d𝑥 =

∫︁
𝜔× ̂︀𝑄𝑀

𝐷𝑧

(︁
𝜀

1−ℓ
2 ̂︀u𝜀(𝑥′, 𝑧))︁ : 𝐷𝑧 ̂︀𝜙(𝑥′, 𝑧) d𝑥′d𝑧 +𝑂𝜀

=
∫︁
𝜔× ̂︀𝑄

𝐷𝑧̂︀u(𝑥′, 𝑧) : 𝐷𝑧 ̂︀𝜙(𝑥′, 𝑧) d𝑥′d𝑧 +𝑂𝜀,

(5.61)

where ̂︀𝑄𝑀 = 𝑍 ′ × (0,𝑀) and ̂︀𝑄 = 𝑍 ′ × (0,+∞). For more details of the unfolding change, we refer to
[24]. Then, we have that (5.60) is given by∫︁

Ω𝜀

𝐷u𝜀 : 𝐷𝜙d𝑥 =
∫︁

Ω

𝜕𝑦3̃︀u′(𝑦) · 𝜕𝑦3 ̃︀𝜙′(𝑦) d𝑦 +
∫︁
𝜔× ̂︀𝑄

𝐷𝑧̂︀u(𝑥′, 𝑧) : 𝐷𝑧 ̂︀𝜙(𝑥′, 𝑧) d𝑥′d𝑧 +𝑂𝜀. (5.62)
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– 2nd term of (5.45). Using the decomposition (5.29), (5.50) and (5.54), we have that

−
∫︁

Ω𝜀

𝑝𝜀 div𝜙𝜀 d𝑥 =
∫︁

Ω𝜀

∇𝑥′𝑝0
𝜀(𝑥

′) · 𝜙′𝜀(𝑥) d𝑥−
∫︁

Ω𝜀

𝑝1
𝜀(𝑥) div𝜙𝜀(𝑥) d𝑥.

Applying the change of variables (4.8) and (5.31)1 to the first integral, we get∫︁
Ω𝜀

∇𝑥′𝑝0
𝜀(𝑥

′) · 𝜙′𝜀(𝑥) d𝑥 = 𝜀

∫︁
Ω+

𝜀

∇𝑥′𝑝0
𝜀(𝑥

′) · ̃︀𝜙′(︁𝑥′, 𝑥3

𝜀

)︁
d𝑥+𝑂𝜀

=
∫︁

Ω

𝜀2∇𝑦′𝑝0
𝜀(𝑦

′) · ̃︀𝜙′(𝑦) d𝑦 +𝑂𝜀 =
∫︁

Ω

∇𝑦′𝑝(𝑦′) · ̃︀𝜙′(𝑦) d𝑦 +𝑂𝜀.

Here, we have used that∫︁
Ω𝜀

∇𝑥′𝑝0
𝜀(𝑥

′)𝑔𝜀(𝑥) d𝑥 ≤
⃦⃦
∇𝑥′𝑝0

𝜀(𝑥
′)
⃦⃦
𝐿2(Ω𝜀)

‖𝑔𝜀‖𝐿2(Ω𝜀) ≤ 𝐶𝜀−
3
2 ‖𝑔𝜀‖𝐿2(Ω𝜀) = 𝑂𝜀.

For the second integral, using the change of variables (5.37) and (5.44) (see [24] for more details), we
obtain∫︁

Ω𝜀

𝑝1
𝜀(𝑥)div𝜙𝜀(𝑥) d𝑥 = 𝜀

1−ℓ
2

∫︁
Ω+

𝜀

𝑝1
𝜀(𝑥) div𝑧 ̂︀𝜙(︁𝑥′, 𝑥

𝜀ℓ

)︁
d𝑥+𝑂𝜀

=
∫︁
𝜔× ̂︀𝑄𝑀

𝜀
1+ℓ
2 ̂︀𝑝1

𝜀(𝑥
′, 𝑧) div𝑧 ̂︀𝜙(𝑥′, 𝑧) d𝑥′d𝑧 +𝑂𝜀 =

∫︁
𝜔× ̂︀𝑄

̂︀𝑝1(𝑥′, 𝑧) div𝑧 ̂︀𝜙(𝑥′, 𝑧) d𝑥′d𝑧 +𝑂𝜀.

Then, we get

−
∫︁

Ω𝜀

𝑝𝜀 div𝜙𝜀 d𝑥 =
∫︁

Ω

∇𝑦′𝑝(𝑦′) · ̃︀𝜙′(𝑦) d𝑦 −
∫︁
𝜔× ̂︀𝑄

̂︀𝑝1(𝑥′, 𝑧) div𝑧 ̂︀𝜙(𝑥′, 𝑧) d𝑥′d𝑧 +𝑂𝜀. (5.63)

– 3rd term of (5.45). Using (5.51), (5.56), the change of variables (4.8) and (5.24), we have

−2𝑁2

∫︁
Ω𝜀

w𝜀 · (∇× 𝜙𝜀) d𝑥 = −2𝑁2

∫︁
Ω+

𝜀

w𝜀(𝑥) ·
(︁

rot𝑦3 ̃︀𝜙(︁𝑥′, 𝑥3

𝜀

)︁)︁
d𝑥+𝑂𝜀

= −2𝑁2

∫︁
Ω

𝜀̃︀w′
𝜀(𝑦) · rot𝑦3 ̃︀𝜙′(𝑦) d𝑦 +𝑂𝜀

= −2𝑁2

∫︁
Ω

̃︀w′(𝑦) · rot𝑦3 ̃︀𝜙′(𝑦) d𝑦 +𝑂𝜀. (5.64)

Among others, here we have used that∫︁
Ω𝜀

w𝜀 · (∇× 𝑔𝜀)(𝑥) d𝑥 ≤ ‖w𝜀‖𝐿2(Ω𝜀)3‖ℎ𝜀‖𝐿2(Ω𝜀)3×3 ≤ 𝐶𝜀−
1
2 ‖ℎ𝜀‖𝐿2(Ω𝜀)3×3 = 𝑂𝜀.

Integrating by parts by using the formula (2.27), we then get

−2𝑁2

∫︁
Ω𝜀

w𝜀 · (∇× 𝜙𝜀) d𝑥 = −2𝑁2

∫︁
Ω

rot𝑦3 ̃︀w′(𝑦) · ̃︀𝜙′(𝑦) d𝑦 − 2𝑁2

∫︁
Γ

[̃︀w′]⊥(𝑦) · ̃︀𝜙′(𝑦) d𝜎 +𝑂𝜀. (5.65)

– 4th term of (5.45). From w𝜀 = 0 on Γ1
𝜀 and estimate (5.16), we obtain∫︁

Γ0
𝜀

|w𝜀|2d𝜎 ≤ 𝐶𝜀

∫︁
Ω𝜀

|𝐷w𝜀|2 d𝑥 ≤ 𝐶𝜀−2.
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Then, from (5.50), (5.55) and (5.47)2, we deduce

−2
(︂

1
𝛼
−𝑁2

)︂∫︁
Γ0

𝜀

(w𝜀 × n𝜀) · 𝜙𝜀 d𝜎

= −2
(︂

1
𝛼
−𝑁2

)︂
𝜀

∫︁
𝜔

(︁
w𝜀

(︁
𝑥′,−𝜆𝜀

3ℓ−1
2 Ψ

(︁𝑥1

𝜀ℓ

)︁)︁
× n𝜀

)︁
· ̃︀𝜙(𝑥′, 0)

×

√︃
1 + 𝜆2

(︁
𝜀

ℓ−1
2

)︁2
⃒⃒⃒⃒
𝜕𝑥1Ψ

(︂
1
𝜀ℓ
𝑥′ · 𝑒′1

)︂⃒⃒⃒⃒2
d𝑥′ +𝑂𝜀

= −2
(︂

1
𝛼
−𝑁2

)︂
𝜀

∫︁
𝜔

(︂
w𝜀

(︂
𝑥′,−𝜆𝜀

3ℓ−1
2 Ψ

(︂
𝑥′

𝜀ℓ

)︂)︂
× n

)︂
· ̃︀𝜙(𝑥′, 0) d𝑥′ +𝑂𝜀,

where n = (0, 0,−1). Here we have used that∫︁
Γ0

𝜀

(w𝜀 × n𝜀) · 𝜙𝜀 d𝜎 ≤ ‖w𝜀‖𝐿2(Γ0
𝜀)3‖𝑔𝜀‖𝐿2(Γ0

𝜀)3 ≤ 𝐶𝜀−1‖𝑔𝜀‖𝐿2(Γ0
𝜀)3 = 𝑂𝜀.

By means of integration in the variable 𝑥3, we get∫︁
𝜔

⃒⃒⃒
𝜀w𝜀

(︁
𝑥′,−𝜆𝜀

3ℓ−1
2 Ψ

(︁𝑥1

𝜀ℓ

)︁)︁
− 𝜀w𝜀(𝑥′, 0)

⃒⃒⃒2
d𝑥′ ≤ 𝐶𝜀

3ℓ+3
2

∫︁
Ω𝜀

|𝐷w𝜀|2 d𝑥 ≤ 𝐶𝜀
3ℓ−1

2 . (5.66)

Then, from w𝜀(𝑥′, 0) = ̃︀w𝜀(𝑥′, 0) and (5.24), we obtain

−2
(︂

1
𝛼
−𝑁2

)︂∫︁
Γ0

𝜀

(w𝜀 × n𝜀) · 𝜙𝜀 d𝜎 = −2
(︂

1
𝛼
−𝑁2

)︂∫︁
𝜔

(𝜀̃︀w𝜀(𝑦′, 0)× n) · ̃︀𝜙(𝑦′, 0) d𝑦′ +𝑂𝜀

= −2
(︂

1
𝛼
−𝑁2

)︂∫︁
𝜔

[̃︀w′]⊥(𝑦′, 0) · ̃︀𝜙′(𝑦′, 0) d𝑦′ +𝑂𝜀.

(5.67)

By considering (5.62), (5.63), (5.65) and (5.67), then we get that ̃︀u′, ̃︀w′, 𝑝, ̂︀u and ̂︀𝑝1 satisfy∫︁
Ω

𝜕𝑦3̃︀u′(𝑦) · 𝜕𝑦3 ̃︀𝜙′(𝑦) d𝑦 +
∫︁
𝜔× ̂︀𝑄

𝐷𝑧̂︀u(𝑥′, 𝑧) : 𝐷𝑧 ̂︀𝜙(𝑥′, 𝑧) d𝑥′d𝑧 +
∫︁

Ω

∇𝑦′𝑝(𝑦′) · ̃︀𝜙′(𝑦) d𝑦

−
∫︁
𝜔× ̂︀𝑄

̂︀𝑝1(𝑥′, 𝑧) div𝑧 ̂︀𝜙(𝑥′, 𝑧) d𝑥′d𝑧 − 2𝑁2

∫︁
Ω

rot𝑦3 ̃︀w′(𝑦) · ̃︀𝜙′(𝑦) d𝑦

− 2
𝛼

∫︁
𝜔

[̃︀w′]⊥(𝑦′, 0) · ̃︀𝜙′(𝑦′, 0) d𝑦′ = 0

(5.68)

for any ̃︀𝜙′ ∈ 𝐶1
𝑐 (𝜔 × (−ℎ, ℎ))2, ̂︀𝜙 ∈ 𝐶1

𝑐

(︁
𝜔;𝐶1

#

(︁ ̂︀𝑄)︁)︁3

satisfying (5.47), and then, by arguments of density,

for any ̃︀𝜙′ ∈ 𝐻1(0, ℎ;𝐿2(𝜔))2 and any ̂︀𝜙 ∈ 𝐿2(𝜔;𝒱)3 satisfying

̃︀𝜙(𝑥′, ℎ) = 0 a.e. 𝑥′ ∈ 𝜔, 𝜆𝜕𝑧1Ψ(𝑧′ · 𝑒′1)̃︀𝜙1(𝑥′, 0) + ̂︀𝜙3(𝑥′, 𝑧′, 0) = 0 a.e. (𝑥′, 𝑧′) ∈ 𝜔 × 𝑍 ′.

By considering ̃︀𝜙′ = 0 in (5.68), we get that (̂︀u, ̂︀𝑝1) ∈ 𝒱3 × 𝐿2
#

(︁ ̂︀𝑄)︁ solves⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−∆𝑧̂︀u +∇𝑧̂︀𝑝1 = 0 in R2 × R+,

div𝑧̂︀u = 0 in R2 × R+,̂︀𝑢3(𝑥′, 𝑧′, 0) = −𝜆𝜕𝑧1Ψ(𝑧′ · 𝑒′1)̃︀𝑢1(𝑥′, 0) on R2 × {0},

𝜕𝑧3̂︀u′ = 0 on R2 × {0},

(5.69)
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a.e. 𝑥′ in 𝜔. Setting
(︁̂︀𝜑1,𝜆, ̂︀𝑞1,𝜆)︁ by (4.16), we derive

𝐷𝑧̂︀u(𝑥′, 𝑧) = −̃︀𝑢1(𝑥′, 0)𝐷𝑧
̂︀𝜑1,𝜆(𝑧), a.e. in R2 × R+,̂︀𝑝1(𝑥′, 𝑧) = −̃︀𝑢1(𝑥′, 0)̂︀𝑞1,𝜆(𝑧), a.e. in R2 × R+. (5.70)

Next, by considering ̃︀𝜙′ ∈ 𝐻1(0, ℎ;𝐿2(𝜔))2, ̃︀𝜙′(𝑥′, ℎ) = 0, a.e. 𝑥′ ∈ 𝜔, as test function in (5.68), settinĝ︀𝜙 by ̂︀𝜙(𝑥′, 𝑧) = −̃︀𝜙1(𝑥′, 0)̂︀𝜑1,𝜆(𝑧),

and taking into account (5.70), we obtain∫︁
Ω

𝜕𝑦3̃︀u′(𝑦) · 𝜕𝑦3 ̃︀𝜙′(𝑦) d𝑦 +
∫︁

Ω

∇𝑦′𝑝(𝑦′) · ̃︀𝜙′(𝑦) d𝑦 − 2𝑁2

∫︁
Ω

rot𝑦3 ̃︀w′(𝑦) · ̃︀𝜙′(𝑦) d𝑦

+𝐸𝜆
∫︁
𝜔

̃︀𝑢1(𝑦′, 0) ̃︀𝜙1(𝑦′, 0) d𝑦′ − 2
𝛼

∫︁
𝜔

[̃︀w′]⊥(𝑦′, 0) · ̃︀𝜙′(𝑦′, 0) d𝑦′ = 0,
(5.71)

where 𝐸𝜆 ∈ R is given by (4.15)1.
Step 3. Passing to the limit in the variational formulation (5.46). This step is similar to the previos step, so

we will only give some details.
– 1st term of (5.46). Analogously to the first step of the previous variational formulation, we deduce

𝜀2𝑅𝑐

∫︁
Ω𝜀

𝐷w𝜀 : 𝐷𝜓𝜀 d𝑥 = 𝜀𝑅𝑐

∫︁
Ω+

𝜀

𝜕𝑥3w
′
𝜀(𝑥) · 𝜕𝑦3 ̃︀𝜓′(︁𝑥′, 𝑥3

𝜀

)︁
d𝑥

+ 𝜀
3−ℓ
2 𝑅𝑐

∫︁
Ω+

𝜀

𝐷w𝜀(𝑥) : 𝐷𝑧
̂︀𝜓(︁𝑥′, 𝑥

𝜀ℓ

)︁
d𝑥+𝑂𝜀,

(5.72)

and by using the changes of variables, we can pass to the limit in every terms by obtaining

𝜀2𝑅𝑐

∫︁
Ω𝜀

𝐷w𝜀 : 𝐷𝜓𝜀 d𝑥 = 𝑅𝑐

∫︁
Ω

𝜕𝑦3 ̃︀w′(𝑦) · 𝜕𝑦3 ̃︀𝜙′(𝑦) d𝑦 +𝑅𝑐

∫︁
𝜔× ̂︀𝑄

𝐷𝑧 ̂︀w(𝑥′, 𝑧) : 𝐷𝑧
̂︀𝜓(𝑥′, 𝑧) d𝑥′d𝑧 +𝑂𝜀.

(5.73)
– 2nd term of (5.46). From u𝜀 = 0 on Γ1

𝜀 and the estimate (5.15), we get∫︁
Γ0

𝜀

|u𝜀|2d𝜎 ≤ 𝐶𝜀

∫︁
Ω𝜀

|𝐷u𝜀|2 d𝑥 ≤ 𝐶.

Using this, and proceeding analogously to the development of the fourth term in (5.45), we get

−2𝑁2𝛽

∫︁
Γ0

𝜀

(u𝜀 × n𝜀) · 𝜓𝜀 d𝜎 = −2𝑁2𝛽

∫︁
𝜔

[̃︀u′(𝑦′, 0)]⊥ · ̃︀𝜓′(𝑦′, 0) d𝑦′ +𝑂𝜀. (5.74)

– 3rd term of (5.46). Applying (5.57), the change of variables (4.8) and convergence (5.24), we have

4𝑁2

∫︁
Ω𝜀

w𝜀 · 𝜓𝜀 d𝑥 = 4𝑁2

∫︁
Ω

w′
𝜀(𝑥) · ̃︀𝜓′(︁𝑥′, 𝑥3

𝜀

)︁
d𝑥+𝑂𝜀

= 4𝑁2

∫︁
Ω

𝜀̃︀w′
𝜀(𝑦) · ̃︀𝜓′(𝑦) d𝑦 +𝑂𝜀 = 4𝑁2

∫︁
Ω

̃︀w′(𝑦) · ̃︀𝜓′(𝑦) d𝑦 +𝑂𝜀. (5.75)

– 4th term of (5.46). Similarly to (5.64) and taking into account convergence (5.23), we have

−2𝑁2

∫︁
Ω𝜀

(∇× u𝜀) · 𝜓𝜀 d𝑥 = −2𝑁2

∫︁
Ω

rot𝑦3̃︀u′(𝑦) · ̃︀𝜓′(𝑦) d𝑦 +𝑂𝜀. (5.76)
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Finally, from (5.73) to (5.76), we have obtained

𝑅𝑐

∫︁
Ω

𝜕𝑦3 ̃︀w′(𝑦) · 𝜕𝑦3 ̃︀𝜓′(𝑦) d𝑦 +𝑅𝑐

∫︁
𝜔× ̂︀𝑄

𝐷𝑧 ̂︀w(𝑥′, 𝑧) : 𝐷𝑧
̂︀𝜓(𝑥′, 𝑧) d𝑥′d𝑧 + 4𝑁2

∫︁
Ω

̃︀w′(𝑦) · ̃︀𝜓′(𝑦) d𝑦

−2𝑁2

∫︁
Ω

rot𝑦3̃︀u′(𝑦) · ̃︀𝜓′(𝑦) d𝑦 − 2𝑁2𝛽

∫︁
𝜔

[̃︀u′(𝑦′, 0)]⊥ · ̃︀𝜓′(𝑦′, 0) d𝑦′ = 0,
(5.77)

for any ̃︀𝜓′ ∈ 𝐶1
𝑐 (𝜔 × (−1, 1))2, ̂︀𝜓 ∈ 𝐶1

𝑐

(︁
𝜔;𝐶1

#

(︁ ̂︀𝑄)︁)︁3

satisfying (5.47), and by argument of density, for

any ̃︀𝜓′ ∈ 𝐻1
(︀
0, 1;𝐿2(𝜔)

)︀2, ̂︀𝜓 ∈ 𝐿2(𝜔;𝒱)3 satisfying

̃︀𝜓(𝑥′, 1) = 0, a.e. 𝑥′ ∈ 𝜔, 𝜆𝜕1Ψ(𝑧1) ̃︀𝜓1(𝑥′, 0) + ̂︀𝜓3(𝑥′, 𝑧′, 0) = 0, a.e. (𝑥′, 𝑧′) ∈ 𝜔 × 𝑍 ′.

Similarly tot he previous step, we eliminate ̂︀w from (5.77). To do this, we consider ̃︀𝜓′ = 0 in (5.77),

which gives that ̂︀w ∈ 𝒱3 × 𝐿2
#

(︁ ̂︀𝑄)︁3

solves

⎧⎪⎨⎪⎩
−∆𝑧 ̂︀w = 0 in R2 × R+,̂︀𝑤3(𝑥′, 𝑧′, 0) = −𝜆𝜕1Ψ(𝑧1) ̃︀𝑤1(𝑥′, 0) on R2 × {0},

𝜕𝑧3 ̂︀w′ = 0 on R2 × {0},

(5.78)

a.e. 𝑥′ in 𝜔. Setting ̂︀𝜑2,𝜆 by (4.17), we derive

𝐷𝑧 ̂︀w(𝑥′, 𝑧) = − ̃︀𝑤1(𝑥′, 0)𝐷𝑧
̂︀𝜑2,𝜆(𝑧), a.e. in R2 × R+, (5.79)

Next, by considering ̃︀𝜓′ ∈ 𝐻1(0, ℎ;𝐿2(𝜔))2, ̃︀𝜓′(𝑥′, ℎ) = 0, a.e. 𝑥′ ∈ 𝜔 as test function in (5.77), defininĝ︀𝜓 by ̂︀𝜓(𝑥′, 𝑧) = − ̃︀𝜓1(𝑥′, 0)̂︀𝜑2,𝜆(𝑧),

and from (5.79), we deduce

𝑅𝑐

∫︁
Ω

𝜕𝑦3 ̃︀w′(𝑦) · 𝜕𝑦3 ̃︀𝜓′(𝑦) d𝑦 + 4𝑁2

∫︁
Ω

̃︀w′(𝑦) · ̃︀𝜓′(𝑦) d𝑦 − 2𝑁2

∫︁
Ω

rot𝑦3̃︀u′(𝑦) · ̃︀𝜓′(𝑦) d𝑦

+𝑅𝑐𝐹𝜆
∫︁
𝜔

̃︀𝑤1(𝑦′, 0) ̃︀𝜓1(𝑦′, 0) d𝑦′ − 2𝑁2𝛽

∫︁
𝜔

[̃︀u′(𝑦′, 0)]⊥ · ̃︀𝜓′(𝑦′, 0) d𝑦′ = 0,
(5.80)

where 𝐹𝜆 is given by (4.15)2.
Step 4. Conclusion. Since 𝜙′ and ̃︀𝜓′ are arbitrary, we derive from (5.71) and (5.80) that (̃︀u′, ̃︀w′, 𝑝) satisfies the

system (4.12)1,2 with boundary conditions (4.14). To ensure that the whole sequences ̃︀u𝜀, ̃︀w𝜀, 𝜀̃︀𝑝𝜀 converge,
it remains to prove the existence and uniqueness of weak solution of the effective system (4.12)–(4.14).

Note that we can always reduce the non vanishing divergence problem (4.12)–(4.14) to a free divergence
problem by considering the lift function J ∈ 𝐻1(Ω)3 such that⎧⎪⎨⎪⎩

div𝑦J = 0 in Ω,
J · 𝑛 = 0 on Γℓ,
J = −𝑆𝑒3 on Γ1,
J = 0 on Γ,
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and hence using the change of unknowns U′ = u′ − J′. Therefore, it is sufficient to study the existence and
uniqueness of the weak solution of the problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−𝜕2
𝑦3
̃︀u′ +∇𝑦′𝑝− 2𝑁2rot𝑦3 ̃︀w′ = 𝜕2

𝑦3J
′ in Ω,

−𝑅𝑐𝜕2
𝑦3
̃︀w′ + 4𝑁2 ̃︀w′ − 2𝑁2rot𝑦3̃︀u′ = 2𝑁2rot𝑦3J

′ in Ω,

div𝑦′
∫︁ ℎ

0

̃︀u′(𝑦′, 𝑦3) d𝑦3 = 0 in 𝜔.

with the boundary conditions

̃︀u′ = 0, ̃︀w′ = 0 on 𝜔 × {ℎ},

𝜕𝑦3̃︀u′ = − 2
𝛼

[̃︀w′]⊥ + 𝐸𝜆̃︀(u′ · 𝑒′1) 𝑒′1 on Γ, 𝑅𝑐𝜕𝑦3 ̃︀w′ = −2𝑁2𝛽[̃︀u′]⊥ +𝑅𝑐𝐹𝜆̃︀(w′ · 𝑒′1) 𝑒′1 on Γ.

The existence and uniqueness of this problem follows the lines of the proof of Theorem 4.2 with a flat bottom,
taking into account suitable spaces and the new boundary terms 𝐸𝜆̃︀u′ · 𝑒′1 and 𝑅𝑐𝐹𝜆 ̃︀w′ · 𝑒′1 and the new source
terms 𝜕2

𝑦3J
′ and 2𝑁2rot𝑦3J

′ in the variational formulation. �

The proofs of Lemmas A.1, A.2 and A.4 and Corollary A.3 are given in the appendix. We finish this section
by providing the proofs of Theorems 4.6 and 4.8.

Proof of Theorem 4.6. Using (4.22), we obtain

−
∫︁ 1

0

(︃∫︁ ℎ

0

̃︀𝑢1(𝑦1, 𝑦3) d𝑦3

)︃
𝜕𝑦1𝜃(𝑦1) d𝑦1 =

∫︁ 1

0

𝑆𝜃(𝑦1) d𝑦1, ∀ 𝜃 ∈ 𝐻1((0, 1)).

From Lemmas A.1 and A.2, by averaging (A.1) and (A.3) we obtain∫︁ ℎ

0

̃︀𝑢1(𝑦1, 𝑦3) d𝑦3 = −Θ𝜆𝜕𝑦1𝑝(𝑦1).

�

Proof of Theorem 4.8. Using (4.22), we obtain

−
∫︁ 1

0

(︃∫︁ ℎ

0

̃︀𝑢1(𝑦1, 𝑦3) d𝑦3

)︃
𝜕𝑦1𝜃(𝑦1) d𝑦1 =

∫︁ 1

0

𝑆𝜃(𝑦1) d𝑦1, ∀ 𝜃 ∈ 𝐻1((0, 1)).

From Lemma A.4, by averaging (A.10)1, we obtain∫︁ ℎ

0

̃︀𝑢1(𝑦1, 𝑦3) d𝑦3 = −Θ𝜕𝑦1𝑝(𝑦1).

�

6. Application to squeeze-film bearing

As a an application of the results presented in Section 4, we consider in this section a squeeze-film bearing
composed of two parallel plates separated by a micropolar fluid film. The lower surface is at rest and composed of
a rough material, while the smooth upper surface is under normal squeeze motion. Hence, the distance between
the plates is a decreasing function of time, which is expected to go to zero as the fluid is squeezed out of the
gap. We assume that the motion of the upper plate is slow, so that the inertial effects can be neglected and the
behaviour of the bearing can be captured by a quasi-static model.
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6.1. Derivation of the model

Let 𝑇0 > 0 be the characteristic time of the motion. Following the notation from Section 2, we denote by 𝐿
the horizontal dimension of the bearing and by ℎ𝑐(𝑇0𝑡) the distance between the plates at time 𝑡, where 𝑡 stands
for the dimensionless time variable and ℎ > 0 is an adimensional constant. We introduce the small parameter
𝜀(𝑡) = 𝑐(𝑇0𝑡)/𝐿 and assume that, at each time 𝑡, the fluid flow is described by the system (2.5)–(2.12) with
𝜀 = 𝜀(𝑡), where all the constant 𝜈, 𝜈𝑟, 𝑐𝑎, 𝑐𝑑, 𝛼, 𝛽 are fixed. However, the velocity 𝑉 of the upper plate is related
to the load 𝑊 applied on the bearing, which is assumed to be independant on 𝑡, through the implicit relation

𝑊 =
∫︁

Γ𝜀(𝑡)

𝑝𝜀(𝑡). (6.1)

We assume that the rough bottom is composed of periodically distributed riblets, described by a given
function Ψ of the form

Ψ(𝑥1) = 𝐿ΛΨ
(︂

1
𝐿𝑀

𝑥1

)︂
(6.2)

where Λ,𝑀 > 0 correspond respectively to the amplitude and period of the ribbed surface, divided by 𝐿, and
where the function Ψ is 1-periodic and regular, and satisfies (2.3).

Using the notation introduced in Section 2, for a given time 𝑡, the fluid domain Ω𝜀(𝑡) is given by

Ω𝜀(𝑡) =
{︀

(𝑥′, 𝑥3) ∈ (𝐿𝜔)× R, −Ψ𝜀(𝑡)(𝑥1) < 𝑥3 < ℎ𝐿𝜀(𝑡)
}︀
,

where according to definition (2.1), the function Ψ𝜀(𝑡) takes the form

Ψ𝜀(𝑡)(𝑥1) = 𝐿𝜆(𝑡)𝜀(𝑡)𝛿(𝑡)Ψ
(︂

1
𝐿𝜀(𝑡)ℓ(𝑡)

𝑥1

)︂
. (6.3)

Since the geometry of the lower plate is, in fact, independent on time, Ψ𝜀(𝑡) coincides with the fixed profile Ψ
given by (6.2). Hence, parameters 𝜆(𝑡), 𝛿(𝑡) satisfy

𝜆(𝑡) 𝜀(𝑡)𝛿(𝑡) = Λ and 𝜀(𝑡)ℓ(𝑡) = 𝑀. (6.4)

Considering the critical regime 𝛿(𝑡) = 3
2ℓ(𝑡)−

1
2 , the parameters ℓ(𝑡), 𝛿(𝑡), 𝜆(𝑡) can thus be expressed as functions

of 𝜀(𝑡),𝑀,𝐿, and in particular the parameter 𝜆(𝑡) is given by 𝜆(𝑡) = Λ 𝜀(𝑡)
1
2−

3
2

ln 𝑀
ln 𝜀(𝑡) , which simplifies to

𝜆(𝑡) =
Λ

𝑀3/2
𝜀(𝑡)1/2. (6.5)

Analogously to (2.15), we introduce the dimensionless pressure 𝑝𝜀(𝑡) defined by 𝑝𝜀(𝑡) = 𝐿
𝑉0(𝜈+𝜈𝑟)𝑝𝜀(𝑡), and

accordingly, the adimensional load 𝑊 = 𝑊
𝐿𝑉0(𝜈+𝜈𝑟) . Defining also the rescaled pressure ̃︀𝑝𝜀(𝑡), the constraint (6.1)

can be rephrased as ∫︁
𝜔

̃︀𝑝𝜀(𝑡)(𝑦′, ℎ) d𝑦′ = 𝑊. (6.6)

Since the system is independent on the 𝑥2-direction, we take 𝜔 = (0, 1) and apply Theorems 4.4 and 4.6 to
approximate ̃︀𝑝𝜀(𝑡) by 𝑝𝜆(𝑡),𝑆(𝑡)/𝜀(𝑡)2, where 𝑝𝜆(𝑡),𝑆(𝑡) is the solution of Reynolds equation (4.26), with 𝜆 = 𝜆(𝑡)
and 𝑆 = 𝑆(𝑡), 𝑆(𝑡) being fixed consistently with relation (6.6).

Indeed, for a given time 𝑡, if one assumes that 𝜀(𝑡) has been computed, all roughness parameters 𝜆(𝑡), ℓ(𝑡), 𝛿(𝑡)
are then prescribed by relations (6.4) and by the critical relation 𝛿(𝑡) = 3

2ℓ(𝑡)−
1
2 . Setting 𝜆 = 𝜆(𝑡), ℓ = ℓ(𝑡), 𝛿 =

𝛿(𝑡), the state of the system at time 𝑡 is thus described by (2.18)–(2.25), where 𝜀 takes the value 𝜀(𝑡). All other
parameters being fixed (equal to their values at instant 𝑡), we can define a sequence of problems (2.18)–(2.25),
where 𝜀 ∈ (0, 𝜀(𝑡)) is the only parameter that is let to zero. Since 𝛿 and ℓ are bound by relation 𝛿 = 3

2ℓ−
1
2 , and
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𝜀(𝑡) is small, we can apply the asymptotic analysis result from Theorems 4.4 and 4.6 to replace the solution of
problem (2.18)–(2.25), with 𝜀 = 𝜀(𝑡), by the solution of the effective problem (4.12)–(4.14).

Let us point that this strategy aims at approximating the configuration of the system at each instant 𝑡, from
a computational point of view, by the limit provided by Theorems 4.4 and 4.6. The study of the physical limit
of the system when 𝜀(𝑡) goes to zero (which implies that 𝜆(𝑡) also goes to zero by relation (6.5)) is beyond the
scope of the paper. In particular, the value of the physical parameter 𝜀(𝑡), albeit small, remains greater than
the positive quantity 𝜀0/2 throughout the simulations.

As is usual in the lubrication field, we impose Dirichlet boundary conditions for the pressure on 𝑥1 ∈ {0, 1},
instead of the Neumann boundary conditions implicitly contained in the weak formulation (4.26). We obtain
the relation ∫︁ 1

0

𝑝𝜆(𝑡),𝑆(𝑡)(𝑦1) d𝑦1 = 𝜀(𝑡)2𝑊. (6.7)

Since Reynolds equation (4.26) is linear with respect to 𝑆, there holds 𝑝𝜆(𝑡),𝑆(𝑡) = 𝑆(𝑡) 𝑝𝜆(𝑡),1 (where 𝑝𝜆(𝑡),1

satisfies (4.26) with 𝜆 = 𝜆(𝑡) and 𝑆 = 1) so that 𝑆(𝑡) is given by

𝑆(𝑡) =
𝜀(𝑡)2𝑊∫︀ 1

0
𝑝𝜆(𝑡),1(𝑦1) d𝑦1

· (6.8)

Using relations (4.2) and (2.15)5, the normal velocity of the upper plate at time 𝑡, which is given by −𝐿ℎ
𝑇0
𝜀′(𝑡),

can thus be expressed by −𝐿ℎ
𝑇0
𝜀′(𝑡) = 𝑉0 𝜀(𝑡)𝑆(𝑡), yielding the differential equation

𝜀′(𝑡) = −𝑇0𝑉0𝑊

𝐿ℎ

𝜀(𝑡)3∫︀ 1

0
𝑝𝜆(𝑡),1(𝑦1) d𝑦1

, (6.9)

where 𝜆(𝑡) depends on 𝜀(𝑡) through relation (6.5).
Since 𝑝𝜆(𝑡),1 satisfies

−Θ𝜆(𝑡)𝜕
2
𝑦1𝑝

𝜆(𝑡),1 = 1 in (0, 1), 𝑝𝜆(𝑡),1(0) = 𝑝𝜆(𝑡),1(1) = 0,

is can be expressed by the explicit formula 𝑝𝜆(𝑡),1(𝑦1) = 𝑦1(1−𝑦1)
2Θ𝜆(𝑡)

so the ODE (6.9) can be rewritten

𝜀′(𝑡) = −12𝑇0𝑉0𝑊

𝐿ℎ
Θ𝜆(𝑡) 𝜀(𝑡)3. (6.10)

Equations of motion. Denoting respectively by 𝜅 and 𝜒 the dimensionless constants

𝜅 =
Λ2

𝑀3
, 𝜒 =

12𝑇0𝑉0𝑊

𝐿ℎ

the model can be summarized by the system of equations{︂
𝜀′(𝑡) = −𝜒Θ𝜆(𝑡) 𝜀(𝑡)3

𝜆(𝑡) =
√︀
𝜅𝜀(𝑡)

(6.11)

which needs to be completed with the definition of an initial state 𝜀0 > 0 such that 𝜀(0) = 𝜀0.
To facilitate the comparison with the numerical results presented in [9,14,18], we introduce the dimensionless

parameter

𝛿 =
𝑅𝑐

2𝑁2𝛽
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Table 1. Second derivative of 𝜆 ↦→ Θ𝜆 at 𝜆 = 0, computed using the exact formula of Θ𝜆 or
the asymptotic development Θ0 − 𝐶𝑗𝐸𝜆

2Θ1, for the set of parameters given in Figure 2.

𝜈𝑏

(︁
𝜕2Θ𝜆
𝜕𝜆2

)︁

|𝜆=0
−2𝐶𝑗𝐸Θ1

0.1 −17.7344 −17.7346
1 −2.97108 −2.97109

and define the relative viscosity coefficient 𝜈𝑏 by 𝜈𝑏 = 𝜈𝑏/𝜈, where 𝜈𝑏 is the boundary viscosity and 𝜈 is the
classical viscosity of the fluid. By definition of 𝛼 (see (2.13)), this coefficient can be expressed as

𝜈𝑏 =
1− 𝛼𝑁2

1−𝑁2
·

Hence, the solution 𝑡 ↦→ 𝜀(𝑡) to the system (6.11) depends on the following set of parameters:

– parameters 𝑁,𝑅𝑐 characterizing the physical properties of the micropolar fluid,
– 𝜈𝑏, 𝛿 characterizing the interaction between the micropolar fluid and the upper wall,
– 𝐸, 𝜅 related to the geometry of the rough pattern,
– ℎ, 𝜒 associated with characteristic dimensions of the model,
– and the initial datum 𝜀0.

Since we are mostly interested in the combined effects of micropolarity and roughness, we will simply put
ℎ = 1 and 𝜒 = 1 in the sequel.

In the aim of estimating the influence of the parameters on the performance of the squeeze-film bearing,
for each set of parameters, we solve numerically the associated system (6.11) (with 𝜒 = 1) by a second-order
Runge-Kutta method, and compute the “half-life time” 𝑇half, i.e. the first instant 𝑡 such that 𝜀(𝑡) < 𝜀0/2, which
means that the width of the bearing has been divided by two. In our analysis, the configurations giving rise to
the highest values of 𝑇half will be considered the most efficient from a mechanical perspective.

6.2. Numerical results

6.2.1. Determination of the initial width 𝜀0
In order to ensure the stability of our numerical method, we choose to determine a small initial value 𝜀0 that

guarantees that, for each tested set of parameters, the computed value of 𝜀(𝑡) decreases during the simulation,
which means by the ODE 𝜀′(𝑡) = −Θ𝜆(𝑡) 𝜀(𝑡)3 that the function Θ𝜆(𝑡) should remain positive. To this aim, we
take advantage of the asymptotic development of function Θ𝜆 as 𝜆 goes to zero, given in Corollary A.3:

Θ𝜆 = Θ0 − 𝐶𝑗𝐸𝜆
2Θ1 +𝑂(𝜆4),

with 𝑗 = 𝛼 if 𝛼 ̸= 1, 𝑗 = 𝑁 if 𝛼 = 1. As a validation of the above formula, we have plotted in Figure 2 the exact
quantity Θ𝜆 (given by (4.24)) and its approximation Θ0 − 𝐶𝑗𝐸𝜆

2Θ1 as functions of 𝜆, using 2 different sets of
parameters corresponding respectively to a case where 𝛼 ̸= 1 and 𝛼 = 1. We have also computed numerically
the second derivative

(︁
𝜕2Θ𝜆

𝜕𝜆2

)︁
|𝜆=0

and, in each case, given the expected value −2𝐶𝑗𝐸Θ1 (see Tab. 1).

For each set of parameters, we use the approximation Θ𝜆 ≈ Θ0 − 𝐶𝛼𝐸𝜆
2Θ1 to estimate an initial value 𝜀0

such that the associated value of 𝜆, given by 𝜆0 = (𝜅𝜀0)1/2 (see (6.5)), satisfies Θ𝜆0 > 0. Keeping in mind that
𝜀0 should be small so that the Reynolds equation gives a good approximation of the pressure, we introduce a
threshold 𝜀max and set

𝜀0 = min
(︂

Θ0

𝜅𝐶𝑗𝐸Θ1
, 𝜀max

)︂
.

We check a posteriori that the solution 𝜀(𝑡) to the ODE (6.9) is indeed a decreasing function of time.
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Figure 2. Example of function Θ𝜆 and its asymptotic development Θ0 − 𝐶𝑗𝐸𝜆
2Θ1 plotted

against 𝜆, for the set of parameters 𝑁 = 0.3, 𝑅𝑐 = 0.1, 𝛿 = 1, 𝐸 = 10, and with 𝜈𝑏 = 0.1 (case
𝛼 ̸= 1, left) and 𝜈𝑏 = 1 (case 𝛼 = 1, right).

Figure 3. 𝑇half plotted against 𝑁 , for 𝛿 = 1, 𝐸 = 0 and different values of 𝑅𝑐 ∈
{0.025, 0.05, 0.1, 0.2}, with 𝜈𝑏 ∈ {0.05, 0.1, 0.2, 0.4}.



GENERALIZED REYNOLDS EQUATION FOR MICROPOLAR FLOWS 1289

Figure 4. 𝑇half plotted against 𝑁 , for 𝛿 = 1, 𝐸 = 10 and different values of 𝑅𝑐 ∈
{0.025, 0.05, 0.1, 0.2}, with 𝜈𝑏 ∈ {0.05, 0.1, 0.2, 0.4}.

6.2.2. Influence of parameters 𝑁,𝑅𝑐, 𝜈𝑏, 𝛿, 𝐸

Since the model under study depends on many parameters, in order to perform comparisons, we have chosen
to unify the presentation of the numerical results by plotting the half-life time 𝑇half as a function of 𝑁 ∈ [0, 0.7]
(which ensures that condition 𝑁2 ≤ 1/2 is fulfilled), after normalization by its value for 𝑁 = 0, for different
values of 𝑅𝑐 ∈ {0.025, 0.05, 0.1, 0.2}, using various sets of parameters 𝜈𝑏, 𝛿, 𝐸.

Influence of 𝜈𝑏. We have plotted in Figures 3 and 4 the results obtained with 𝐸 = 0 and 𝐸 = 10 respectively,
considering different values of parameter 𝜈𝑏 ∈ {0.05, 0.1, 0.2, 0.4} and for a fixed 𝛿 = 1. It appears that modifying
𝜈𝑏 does not have much of an impact of the computed value of 𝑇half, at least qualititatively. Consequently, we
have decided to fix this parameter and impose 𝜈𝑏 = 0.1 in the rest of the simulations.

Influence of 𝑁,𝑅𝑐. On the opposite, 𝑇half is very sensitive to the couple of parameters (𝑁,𝑅𝑐). It appears that
increasing 𝑁 from the initial value 𝑁 = 0 leads, at first, to a slow increasing of 𝑇half, up to a certain value of
𝑁 . Then, the dependence of 𝑇half on 𝑁 is strongly affected by the value of 𝑅𝑐. For instance, in the case 𝐸 = 10
(Fig. 4), the maximal value 𝑅𝑐 = 0.2 leads to a gradual increasing of the slope of the curve, up to 𝑁 = 0.7,
whereas the minimal value 𝑅𝑐 = 0.025 corresponds to a reduction of 𝑇half as 𝑁 increases, ending up with a
division by a factor 2 with respect to the initial value for 𝑁 = 0.
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Figure 5. Examples of function Ψ associated, from left to right, with 𝑉 -shape, 𝑈 -shape and
blade riblets, normalized by (2.3).

Figure 6. Examples of rough geometries associated with functions Ψ𝜀(𝑥1) defined by (6.3)
and (6.4), with 𝐿 = 2,𝑀 = 0.5 and Λ = 𝑀3/2. Each riblet profile is described by the corre-
sponding function Ψ plotted in Figure 5.

Table 2. Value of 𝐸 associated with three riblet profiles given in Figure 5: the 𝑉 -shape,
𝑈 -shape and blade riblets.

Riblet profile 𝑉 -shape 𝑈 -shape Blade

Value of 𝐸 12.12 62.85 93.24

Influence of 𝐸. In order to estimate the possible values of 𝐸 encountered in practical applications, we consider
the example of three riblet profiles that are often used in the engineering literature, namely, the 𝑉 -shape, the
𝑈 -shape and the blade riblets. We have plotted in Figure 5 the corresponding Ψ functions, normalized by (2.3),
and in Figure 6, a possible rough geometry defined as the graph of the function −Ψ𝜀, defined by (6.3) and (6.4).
To compute the energy 𝐸 associated with each of these riblet profiles, we have solved system (4.16) (in case
𝜆 = 1) by a finite element method using FreeFem++ software [35], implementing a Taylor-Hood approximation
for the velocity-pressure pair, i.e., 𝑃2 elements for the velocity field and 𝑃1 elements for the pressure. The results
are summarized in Table 2.

Even though the computed values of 𝐸 associated with the previous examples of riblets are of order 10 to
100, it turns out that the results of our simulations are very stable when 𝐸 exceeds 10, so we have chosen to
represent in Figure 7 the range of values of 𝐸 that produces the most significant changes in the behaviour of
the model, which is 𝐸 ∈ [0, 10] for 𝛿 = 1 and 𝜈𝑏 = 0.1. In the case 𝐸 = 0, i.e. in the absence of roughness,
raising 𝑁 from 𝑁 = 0 results at first in a slight increase of 𝑇half. Then, this behaviour reverses and for larger
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Figure 7. 𝑇half plotted against 𝑁 , for 𝜈𝑏 = 0.1, 𝑅𝑐 ∈ {0.025, 0.05, 0.1, 0.2} and 𝛿 = 1. From
left to right and top to bottom: 𝐸 = 0, 𝐸 = 1, 𝐸 = 3, 𝐸 = 5, 𝐸 = 7 and 𝐸 = 10.
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Figure 8. 𝑇half plotted against 𝑁 , for 𝜈𝑏 = 0.1, 𝑅𝑐 ∈ {0.025, 0.05, 0.1, 0.2} and 𝐸 = 5. From
left to right and top to bottom: 𝛿 = 0.7, 𝛿 = 0.8, 𝛿 = 1, 𝛿 = 1.2, 𝛿 = 2 and 𝛿 = 10.
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Figure 9. 𝐶𝛼Θ1/Θ0 (top, left) and Θ1/Θ0 (top, right) plotted against 𝑁 , normalized by the
value at 𝑁 = 0, for 𝜈𝑏 = 0.1, 𝛿 = 1, 𝐸 = 5 and different values of 𝑅𝑐 ∈ {0.025, 0.05, 0.1, 0.2}.
Bottom: 𝑇half plotted against 𝑁 for the same sets of parameters.

values of 𝑁 , we observe a significant reduction of 𝑇half, for all the tested values of 𝑅𝑐. Raising the value of 𝐸
produces a visible change in the model, whose behaviour gets more and more dependent on parameter 𝑅𝑐. As
𝐸 increases, the function 𝑁 ↦→ 𝑇half becomes monotonic for the highest values of 𝑅𝑐 (𝑅𝑐 = 0.1 and 𝑅𝑐 = 0.2).
This means that for certain micropolar fluids, the roughness of the upper plate may contribute to enhance the
performance of the squeeze-film bearing, in the sense that 𝑇half becomes larger.

Influence of 𝛿. We conclude this numerical study by investigating the impact of the slip length 𝛿 on the behaviour
of the bearing. We have used values from 𝛿 = 0.7 to 𝛿 = 10, a range for which a significant change occurs in
the simulations (see Fig. 8). We observe that small values of 𝛿 favor an enhancement of the performance of
the bearing, for 𝑅𝑐 ∈ {0.1, 0.2}. On the opposite, large values of 𝛿 such as 𝛿 = 10 will typically reduce the
performance of the micropolar fluid lubrication, with respect to lubrication with a Newtonian fluid, with the
exception of the largest value or parameter 𝑅𝑐 = 0.2, where a slight increase of 𝑇half occurs.

6.2.3. Interpretation in terms of pressure using Corollary A.3

As presented in Section 6.1, we have assumed in this study that 𝜆 and 𝜀 satisfy a relation of the form
𝜆 = (𝜅𝜀)1/2, with 𝜅 = Λ2/𝑀3 (see (6.5)), where 𝜀 is small. Consequently, 𝜆 itself is a small parameter, so one
can apply the asymptotic developments obtained in Corollary A.3 to shed a light on the observed behaviour of
the model. Indeed, for a small value of 𝜆, equation (6.8) shows that the vertical velocity of the upper plate is
inversely proportional to

∫︀ 1

0
𝑝𝜆,1(𝑦1) d𝑦1, which can be approximated by∫︁ 1

0

𝑝𝜆,1(𝑦1) d𝑦1 ≈
∫︁ 1

0

(︀
𝑝0(𝑦1) d𝑦1 + 𝐶𝛼𝐸𝜆

2𝑝1(𝑦1)
)︀

d𝑦1

≈
∫︁ 1

0

(︂
1 + 𝐶𝛼𝐸

Θ1

Θ0
𝜆2

)︂
𝑝0(𝑦1) d𝑦1,
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Figure 10. 𝐶𝛼Θ1/Θ0 (top, left) and Θ1/Θ0 (top, right) plotted against 𝑁 , normalized by the
value at 𝑁 = 0, for 𝜈𝑏 = 0.1, 𝛿 = 10, 𝐸 = 5 and different values of 𝑅𝑐 ∈ {0.025, 0.05, 0.1, 0.2}.
Bottom: normalized value of 𝑇half plotted against 𝑁 for the same sets of parameters.

where 𝑝0, 𝑝1 are the respective solutions of (A.7) and (A.8) with 𝑆 = 1. In particular, at first order in 𝜆, there
holds (in case 𝛼 ̸= 1) ∫︀ 1

0
𝑝𝜆,1(𝑦1) d𝑦1 −

∫︀ 1

0
𝑝0(𝑦1) d𝑦1∫︀ 1

0
𝑝0(𝑦1) d𝑦1

≈ 𝐶𝛼𝐸
Θ1

Θ0
𝜆2.

As a result, the behaviour of the system appears to be driven by the factor 𝐶𝛼𝐸Θ1
Θ0

, in the sense that
increasing this quantity should result in reducing the velocity of the upper plate subject to a given load, thus
increasing 𝑇half and enhancing the performance of the bearing. However, as shown in Figures 9 and 10, the
behaviour of 𝑇half as a function of 𝑁 and 𝑅𝑐 seems more appropriately described by the ratio Θ1

Θ0
than by the

quantity 𝐶𝛼𝐸
Θ1
Θ0

itself. This suggests that computing the quotient Θ1
Θ0

using the explicit formulas provided by
Corollary A.3 may be a valuable tool to predict and compare the relative performance of squeeze-film bearings,
depending on the physical parameters associated with the system.

7. Conclusion

We may conclude from these simulations that, at least for a moderate range of 𝑁 values and for small values
of slip length 𝛿, the model predicts an enhancement of the performance of the bearing lubricated by a micropolar
fluid, with respect to a bearing lubricated by a Newtonian fluid. This feature is generally affected by the value of
parameter 𝑅𝑐, in the sense that large values of 𝑅𝑐 favor the enhancement of the performance of the squeeze-film
bearing. Also, the introduction of a rough geometry for the lower plate, characterized by roughness parameter
𝐸, usually results in enlarging the range of 𝑁 values for which lubrication with a micropolar fluid gets more
efficient than lubrication with a Newtonian fluid.
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Appendix A.

This section completes Section 4.3 by providing the explicit formulas for the solution (�̃�1, �̃�2) to system (4.19),
in the critical case (Lems. A.1 and A.2) and in the super-critical case (Lem. A.4). In the critical case, we also
give the first terms of the developments of �̃�1, �̃�2, 𝑝 and the coefficient Θ𝜆 appearing in Reynolds equation (4.26)
in powers of 𝜆2 (see Cor. A.3). We conclude the appendix by the proofs of these statements.

Lemma A.1. For 𝛼 ̸= 1, the solutions of system (4.19) with boundary conditions (4.20)–(4.21) are:

�̃�1(𝑦1, 𝑦3) =
(︂[︂

2𝑁2

𝑘
(𝑠ℎ(𝑘𝑦3)− 𝜂𝜆𝑠ℎ(𝑘ℎ)) + 𝛾𝛼(𝑦3 − 𝜂𝜆ℎ)− (1− 𝜂𝜆)

(︂
𝛾𝛼 +

2𝑁2

𝑘ℎ
𝑠ℎ(𝑘ℎ)

)︂]︂
𝐴

+
[︂

2𝑁2

𝑘
(𝑐ℎ(𝑘𝑦3)− 𝜂𝜆𝑐ℎ(𝑘ℎ)) + (1− 𝜂𝜆)

2𝑁2

𝑘

(︁
−1 +

𝑦3
ℎ

(1− 𝑐ℎ(𝑘ℎ))
)︁]︂
𝐵

+
1

2(1−𝑁2)
[︀
𝑦2
3 − ℎ2 + (1− 𝜂𝜆)(𝑦3ℎ+ ℎ2)

]︀)︂
𝜕𝑦1𝑝(𝑦1), (A.1)

̃︀𝑤2(𝑦1, 𝑦3) =
(︂[︂
𝑐ℎ(𝑘𝑦3) +

𝛾𝛼
2
− (1− 𝜂𝜆)

(︂
𝛾𝛼
2

+
𝑁2

𝑘ℎ
𝑠ℎ(𝑘ℎ)

)︂]︂
𝐴

+
[︂
𝑠ℎ(𝑘𝑦3) + (1− 𝜂𝜆)(1− 𝑐ℎ(𝑘ℎ))

𝑁2

𝑘ℎ

]︂
𝐵 +

1
2(1−𝑁2)

[︂
𝑦3 + (1− 𝜂𝜆)

ℎ

2

]︂)︂
𝜕𝑦1𝑝(𝑦1),

where

𝑘 = 2𝑁

√︃
1−𝑁2

𝑅𝑐
,

𝛾𝛼
2

=
1− 𝛼𝑁2

𝛼− 1
, 𝜂𝜆 =

(︂
1 +

𝛼ℎ

𝛼− 1
𝐸𝜆

)︂−1

, (A.2)

𝐴 =
𝐿

2(1−𝑁2)

(︂
ℎ

2
(1 + 𝜂𝜆)

[︂
4𝑁4𝜂𝜆(1− 𝑐ℎ(𝑘ℎ)) +

𝑅𝑐
𝛽
𝑘2

]︂
−
[︂
𝑘𝑠ℎ(𝑘ℎ) + (1− 𝜂𝜆)(1− 𝑐ℎ(𝑘ℎ))

𝑁2

ℎ

]︂[︂
𝑅𝑐
𝛽
− 2𝑁2ℎ2𝜂𝜆

]︂)︂
,

𝐵 =
𝐿

2(1−𝑁2)

(︂
𝑁2ℎ(1 + 𝜂𝜆)𝜂𝜆

[︀
𝛾𝛼𝑘ℎ+ 2𝑁2𝑠ℎ(𝑘ℎ)

]︀
+ 𝑘

[︂
𝑅𝑐
𝛽
− 2𝑁2ℎ2𝜂𝜆

]︂[︂
𝑐ℎ(𝑘ℎ) +

𝛾𝛼
2
− (1− 𝜂𝜆)

(︂
𝛾𝛼
2

+
𝑁2

𝑘ℎ
𝑠ℎ(𝑘ℎ)

)︂]︂)︂
,

𝐿 = −
(︂[︂

𝛾𝛼
2

+ 𝑐ℎ(𝑘ℎ)− (1− 𝜂𝜆)
(︂
𝛾𝛼
2

+
𝑁2

𝑘ℎ
𝑠ℎ(𝑘ℎ)

)︂]︂[︂
4𝑁4𝜂𝜆(1− 𝑐ℎ(𝑘ℎ)) +

𝑅𝑐
𝛽
𝑘2

]︂
+ 2𝑁2𝜂𝜆

[︂
𝑠ℎ(𝑘ℎ) + (1− 𝜂𝜆)(1− 𝑐ℎ(𝑘ℎ))

𝑁2

𝑘ℎ

]︂[︀
𝛾𝛼𝑘ℎ+ 2𝑁2𝑠ℎ(𝑘ℎ)

]︀)︂−1

.

Lemma A.2. For 𝛼 = 1, the solutions of system (4.19) with boundary conditions (4.20)–(4.21) are

�̃�1(𝑦1, 𝑦3) =
(︂[︂

2𝑁2

𝑘
(𝑐ℎ(𝑘𝑦3)− 𝜇𝜆𝑐ℎ(𝑘ℎ))− (1− 𝜇𝜆)

2𝑁2

𝑘

(︂
1− (1− 𝑐ℎ(𝑘ℎ))

𝑠ℎ(𝑘𝑦3)
𝑠ℎ(𝑘ℎ)

)︂]︂
𝐵′ (A.3)

+
1

2(1−𝑁2)
(︀
𝑦2
3 − 𝜇𝜆ℎ

2
)︀
− (1− 𝜇𝜆)

ℎ2

1−𝑁2

𝑠ℎ(𝑘𝑦3)
𝑠ℎ(𝑘ℎ)

+
[︂

1
1−𝑁2

(𝑦3 − 𝜇𝜆ℎ)− (1− 𝜇𝜆)
ℎ

1−𝑁2

𝑠ℎ(𝑘𝑦3)
𝑠ℎ(𝑘ℎ)

]︂
𝐴′
)︂
𝜕𝑦1𝑝(𝑦1),

�̃�2(𝑦1, 𝑦3) =
(︂[︂
𝑠ℎ(𝑘𝑦3) + (1− 𝜇𝜆)(1− 𝑐ℎ(𝑘ℎ))

𝑐ℎ(𝑘𝑦3)
𝑠ℎ(𝑘ℎ)

]︂
𝐵′
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+
𝑦3

2(1−𝑁2)
− (1− 𝜇𝜆)

𝑘ℎ2

2𝑁2(1−𝑁2)
𝑐ℎ(𝑘𝑦3)
𝑠ℎ(𝑘ℎ)

+
[︂

1
2(1−𝑁2)

− (1− 𝜇𝜆)
𝑘ℎ

2𝑁2(1−𝑁2)
𝑐ℎ(𝑘𝑦3)
𝑠ℎ(𝑘ℎ)

]︂
𝐴′
)︂
𝜕𝑦1𝑝(𝑦1),

where

𝜇𝜆 =
(︂

1− 𝑁2

1−𝑁2

𝑠ℎ(𝑘ℎ)
𝑘

𝐸𝜆

)︂−1

, (A.4)

𝐴′ = 𝐿′
(︂[︂

4𝑁4𝜇𝜆(1− 𝑐ℎ(𝑘ℎ)) +
𝑅𝑐
𝛽
𝑘2

]︂[︂
ℎ− (1− 𝜇𝜆) cotℎ(𝑘ℎ)

ℎ2𝑘

2𝑁2

]︂
− 𝑘[𝑠ℎ(𝑘ℎ) + (1− 𝜇𝜆) cotℎ(𝑘ℎ)(1− 𝑐ℎ(𝑘ℎ))]

[︂
𝑅𝑐
𝛽
− 2𝑁2ℎ2𝜇𝜆

]︂)︂
𝐵′ = 𝑘

𝐿′

2(1−𝑁2)

(︂
2𝑁2ℎ2𝜇𝜆 +

𝑅𝑐
𝛽
− (1− 𝜇𝜆) cotℎ(𝑘ℎ)

ℎ𝑘

𝑁2

𝑅𝑐
𝛽

)︂
,

𝐿′ = −
(︂[︂

1− (1− 𝜇𝜆) cotℎ(𝑘ℎ)
ℎ𝑘

𝑁2

]︂[︂
4𝑁4𝜇𝜆(1− 𝑐ℎ(𝑘ℎ)) +

𝑅𝑐
𝛽
𝑘2

]︂
(A.5)

+ 4𝑁2ℎ𝑘𝜇𝜆[𝑠ℎ(𝑘ℎ) + (1− 𝜇𝜆) cotℎ(𝑘ℎ)(1− 𝑐ℎ(𝑘ℎ))]
)︂−1

.

Let us define

𝐶𝛼 =
𝛼ℎ

𝛼− 1
, 𝐶𝑁 =

𝑁2

1−𝑁2

𝑠ℎ(𝑘ℎ)
𝑘

, 𝐸 =
∫︁
̂︀𝑄

⃒⃒⃒
𝐷𝑧
̂︀𝜑1,1
⃒⃒⃒2

d𝑧

as consequence of the previous results, we get the following developments in powers of 𝜆, which will be useful
for the numerical part.

Corollary A.3. We obtain the following developments:

�̃�1(𝑦1, 𝑦3) = 𝑣0(𝑦3)𝜕𝑦1𝑝0(𝑦1) + 𝐶𝑗𝐸𝜆
2(𝑣1(𝑦3)𝜕𝑦1𝑝0(𝑦1) + 𝑣0(𝑦3)𝜕𝑦1𝑝1(𝑦1)) +𝑂(𝜆4),

�̃�2(𝑦1, 𝑦3) = 𝜛0(𝑦3)𝜕𝑦1𝑝0(𝑦1) + 𝐶𝑗𝐸𝜆
2(𝜛1(𝑦3)𝜕𝑦1𝑝0(𝑦1) +𝜛0(𝑦3)𝜕𝑦1𝑝1(𝑦1)) +𝑂(𝜆4),

𝑝(𝑦1) = 𝑝0(𝑦1) + 𝐶𝑗𝐸𝜆
2𝑝1(𝑦1) +𝑂(𝜆4),

Θ𝜆 = Θ0 − 𝐶𝑗𝐸𝜆
2Θ1 +𝑂(𝜆4), (A.6)

where 𝑗 = 𝛼 if 𝛼 ̸= 1 and 𝑗 = 𝑁 if 𝛼 = 1. Here, 𝑝0 satisfies the following equation∫︁ 1

0

Θ0𝜕𝑦1𝑝0(𝑦1)𝜕𝑦1𝜃(𝑦1) d𝑦1 =
∫︁ 1

0

𝑆𝜃(𝑦1) d𝑦1, ∀𝜃 ∈ 𝐻1(0, 1), (A.7)

and 𝑝1 the following one∫︁ 1

0

Θ0𝜕𝑦1𝑝1(𝑦1)𝜕𝑦1𝜃(𝑦1) d𝑦1 =
∫︁ 1

0

Θ1𝜕𝑦1𝑝0(𝑦1)𝜕𝑦1𝜃(𝑦1) d𝑦1, ∀𝜃 ∈ 𝐻1(0, 1). (A.8)

In particular, 𝑝1 is given by 𝑝1(𝑦1) = Θ1
Θ0
𝑝0(𝑦1).

For 𝛼 ̸= 1, 𝑣𝑖, 𝜛𝑖, Θ𝑖, 𝑖 = 0, 1, are defined as follows

𝑣0(𝑦3) =
1

2(1−𝑁2)

(︂
−
[︂

2𝑁2

𝑘
(𝑠ℎ(𝑘𝑦3)− 𝑠ℎ(𝑘ℎ)) + 𝛾𝛼(𝑦3 − ℎ)

]︂
𝐿0𝐴0

− 2𝑁2

𝑘
(𝑐ℎ(𝑘𝑦3)− 𝑐ℎ(𝑘ℎ))𝐿0𝐵0 + 𝑦2

3 − ℎ2

)︂
,
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𝑣1(𝑦3) =
1

2(1−𝑁2)

(︂
−
[︂

2𝑁2

𝑘ℎ
𝑠ℎ(𝑘ℎ) + 𝛾𝛼

]︂
(ℎ− 1)𝐿0𝐴0 −

2𝑁2

𝑘ℎ
(1− 𝑐ℎ(𝑘ℎ))(𝑦3 − ℎ)𝐿0𝐵0

−
[︂

2𝑁2

𝑘
(𝑠ℎ(𝑘𝑦3)− 𝑠ℎ(𝑘ℎ)) + 𝛾𝛼(𝑦3 − ℎ)

]︂
𝐿0(𝐴1 + 𝐿0𝐿1𝐴0)

− 2𝑁2

𝑘
[𝑐ℎ(𝑘𝑦3)− 𝑐ℎ(𝑘ℎ)]𝐿0(𝐵1 + 𝐿0𝐿1𝐵0) + 𝑦3ℎ+ ℎ2

)︂
,

𝜛0(𝑦3) =
1

2(1−𝑁2)
[−(𝑐ℎ(𝑘𝑦3) + 𝛾𝛼)𝐿0𝐴0 − 𝑠ℎ(𝑘𝑦3)𝐿0𝐵0 + 𝑦3],

𝜛1(𝑦3) =
1

2(1−𝑁2)

[︂
−(𝑐ℎ(𝑘𝑦3) + 𝛾𝛼)𝐿0(𝐴1 + 𝐿0𝐿1𝐴0) +

(︂
𝛾𝛼
2

+
𝑁2

𝑘ℎ
𝑠ℎ(𝑘ℎ)

)︂
𝐿0𝐴0

− 𝑠ℎ(𝑘𝑦3)𝐿0(𝐵1 + 𝐿0𝐿1𝐵0)− (1− 𝑐ℎ(𝑘ℎ))
𝑁2

𝑘ℎ
𝐿0𝐵0 +

ℎ

2

]︂
Θ0 =

ℎ3

3(1−𝑁2)

− 1
2(1−𝑁2)

[︂(︂
2𝑁2

𝑘

(︂
𝑐ℎ(𝑘ℎ)− 1

𝑘
− ℎ𝑠ℎ(𝑘ℎ)

)︂
− 𝛾𝛼

2
ℎ2

)︂
𝐿0𝐴0 +

2𝑁2

𝑘

(︂
𝑠ℎ(𝑘ℎ)
𝑘

− ℎ𝑐ℎ(𝑘ℎ)
)︂
𝐿0𝐵0

]︂
,

Θ1 =
3ℎ3

4(1−𝑁2)
− 1

2(1−𝑁2)

[︂(︂
2𝑁2

𝑘

(︂
𝑐ℎ(𝑘ℎ)− 1

𝑘
− ℎ𝑠ℎ(𝑘ℎ)

)︂
− 𝛾𝛼

2
ℎ2

)︂
𝐿0(𝐴1 + 𝐿0𝐿1𝐴0)

+
(︂
−2𝑁2

𝑘
𝑠ℎ(𝑘ℎ)(1− ℎ)− 𝛾𝛼ℎ(1− ℎ)

)︂
𝐿0𝐴0 +

2𝑁2

𝑘

(︂
𝑠ℎ(𝑘ℎ)
𝑘

− ℎ𝑐ℎ(𝑘ℎ)
)︂
𝐿0(𝐵1 + 𝐿0𝐿1𝐵0)

+
(︂

2𝑁2

𝑘
ℎ𝑐ℎ(𝑘ℎ)− (1 + 𝑐ℎ(𝑘ℎ))ℎ

𝑁2

𝑘

)︂
𝐿0𝐵0

]︂
,

where 𝐴𝑖, 𝐵𝑖, 𝐿𝑖, 𝑖 = 0, 1 are given by

𝐴0 = ℎ

[︂
4𝑁4(1− 𝑐ℎ(𝑘ℎ)) +

𝑅𝑐
𝛽
𝑘2

]︂
− 𝑘𝑠ℎ(𝑘ℎ)

[︂
𝑅𝑐
𝛽
− 2𝑁2ℎ2

]︂
,

𝐴1 = −ℎ
[︂
4𝑁4(1− 𝑐ℎ(𝑘ℎ)) +

𝑅𝑐
𝛽

𝑘2

2

]︂
− 2𝑁2ℎ2𝑘𝑠ℎ(𝑘ℎ)− (1− 𝑐ℎ(𝑘ℎ))

𝑁2

ℎ

𝑅𝑐
𝛽
,

𝐵0 = 2𝑁2ℎ
[︀
𝛾𝛼𝑘ℎ+ 2𝑁2𝑠ℎ(𝑘ℎ)

]︀
+ 𝑘

[︂
𝑅𝑐
𝛽
− 2𝑁2ℎ2

]︂[︁
𝑐ℎ(𝑘ℎ) +

𝛾𝛼
2

]︁
,

𝐵1 = −𝛾𝛼
2
𝑘

[︂
2𝑁2ℎ2 +

𝑅𝑐
𝛽

]︂
− 𝑠ℎ(𝑘ℎ)

[︂
4𝑁4ℎ+

𝑅𝑐
𝛽

𝑁2

ℎ

]︂
+ 2𝑁2ℎ2𝑘𝑐ℎ(𝑘ℎ),

𝐿0 =
(︂[︁𝛾𝛼

2
+ 𝑐ℎ(𝑘ℎ)

]︁[︂
4𝑁4(1− 𝑐ℎ(𝑘ℎ)) +

𝑅𝑐
𝛽
𝑘2

]︂
+ 2𝑁2 𝑠ℎ(𝑘ℎ)

[︀
𝛾𝛼𝑘ℎ+ 2𝑁2 𝑠ℎ(𝑘ℎ)

]︀)︂−1

,

𝐿1 = 4𝑁4(1− 𝑐ℎ(𝑘ℎ))
[︂
𝛾𝛼 + 𝑐ℎ(𝑘ℎ) +

𝑁2

𝑘ℎ
𝑠ℎ(𝑘ℎ)

]︂
+
𝑅𝑐
𝛽
𝑘2

[︂
𝛾𝛼
2

+
𝑁2

𝑘ℎ
𝑠ℎ(𝑘ℎ)

]︂
+ 2𝑁2

[︂
𝑠ℎ(𝑘ℎ)− 𝑁2

𝑘ℎ
(1− 𝑐ℎ(𝑘ℎ))

]︂[︀
𝛾𝛼𝑘ℎ+ 2𝑁2𝑠ℎ(𝑘ℎ)

]︀
. (A.9)

For 𝛼 = 1, 𝑣𝑖, 𝜛𝑖, Θ𝑖, 𝑖 = 0, 1, are defined as follows

𝑣0(𝑦3) = − 𝑁2

(1−𝑁2)
(︀
𝑐ℎ(𝑘𝑦3)− 𝑐ℎ(𝑘ℎ)

)︀
𝐿′0𝐵

′
0 +

1
2(1−𝑁2)

(︀
𝑦2
3 − ℎ2

)︀
− 1

1−𝑁2
(𝑦3 − ℎ)𝐿′0𝐴

′
0,
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𝑣1(𝑦3) = − 𝑁2

1−𝑁2

(︀
𝑐ℎ(𝑘𝑦3)− 𝑐ℎ(𝑘ℎ)

)︀
𝐿′0(𝐵′1 − 𝐿′0𝐿

′
1𝐵

′
0)− 𝑁2

1−𝑁2
(1− 𝑐ℎ(𝑘ℎ))

𝑠ℎ(𝑘𝑦3)
𝑠ℎ(𝑘ℎ)

𝐿′0𝐵
′
0

+
ℎ2

1−𝑁2

(︂
−1

2
+
𝑠ℎ(𝑘𝑦3)
𝑠ℎ(𝑘ℎ)

)︂
− 1

1−𝑁2
(𝑦3 − ℎ)𝐿′0(𝐴′1 − 𝐿′0𝐿

′
1𝐴

′
0)− 𝐿′0𝐴

′
0

(︂
−1 +

𝑠ℎ(𝑘𝑦3)
𝑠ℎ(𝑘ℎ)

)︂
,

𝜛0(𝑦3) = − 𝑘

2(1−𝑁2)
𝑠ℎ(𝑘𝑦3)𝐿′0𝐵

′
0 +

𝑦3
2(1−𝑁2)

− 1
2(1−𝑁2)

𝐿′0𝐴
′
0,

𝜛1(𝑦3) = − 𝑘

2(1−𝑁2)
𝑠ℎ(𝑘𝑦3)𝐿′0(𝐵′1 − 𝐿′0𝐿

′
1𝐵0) +

𝑘

2(1−𝑁2)
(1− 𝑐ℎ(𝑘ℎ))

𝑐ℎ(𝑘𝑦3)
𝑠ℎ(𝑘ℎ)

𝐿′0𝐵
′
0

× 𝑘ℎ2

2𝑁2(1−𝑁2)
𝑐ℎ(𝑘𝑦3)
𝑠ℎ(𝑘ℎ)

− 1
2(1−𝑁2)

𝐿′0(𝐴′1 − 𝐿′0𝐿
′
1𝐴

′
0)− 𝑘ℎ

2𝑁2(1−𝑁2)
𝑐ℎ(𝑘𝑦3)
𝑠ℎ(𝑘ℎ)

𝐿′0𝐴
′
0,

Θ0 =
ℎ3

3(1−𝑁2)
− ℎ2

2(1−𝑁2)
𝐿′0𝐴

′
0 +

𝑁2

1−𝑁2

(︂
𝑠ℎ(𝑘ℎ)
𝑘

− ℎ 𝑐ℎ(𝑘ℎ)
)︂
𝐿′0𝐵

′
0,

Θ1 = − ℎ2

1−𝑁2

(︂
ℎ

2
+

1− 𝑐ℎ(𝑘ℎ)
𝑘 𝑠ℎ(𝑘ℎ)

)︂
+

ℎ2

2(1−𝑁2)
𝐿′0(𝐴′1 − 𝐿′0𝐿

′
1𝐴

′
0) +

ℎ

1−𝑁2

(︂
ℎ+

1− 𝑐ℎ(𝑘ℎ)
𝑘 𝑠ℎ(𝑘ℎ)

)︂
𝐿′0𝐴

′
0

− 𝑁2

1−𝑁2

(︂
𝑠ℎ(𝑘ℎ)
𝑘

− ℎ 𝑐ℎ(𝑘ℎ)
)︂
𝐿′0(𝐵′1 − 𝐿′0𝐿

′
1𝐵

′
0)

− 𝑁2

1−𝑁2

(︂
−ℎ 𝑐ℎ(𝑘ℎ) +

[︂
ℎ+

(1− 𝑐ℎ(𝑘ℎ))2

𝑘 𝑠ℎ(𝑘ℎ)

]︂)︂
𝐿′0𝐵

′
0.

where 𝐴′𝑖, 𝐵
′
𝑖, 𝐿

′
𝑖, 𝑖 = 0, 1 are given by

𝐴′0 = ℎ

[︂
4𝑁4(1− 𝑐ℎ(𝑘ℎ)) +

𝑅𝑐
𝛽
𝑘2

]︂
− 𝑘 𝑠ℎ(𝑘ℎ)

[︂
𝑅𝑐
𝛽
− 2𝑁2ℎ2

]︂
,

𝐴′1 = ℎ
[︀
4𝑁4(1− 𝑐ℎ(𝑘ℎ)) + 2𝑁2ℎ𝑘𝑠ℎ(𝑘ℎ)

]︀
+
𝑅𝑐
𝛽
𝑘 cotℎ(𝑘ℎ)

[︂
1− 𝑐ℎ(𝑘ℎ) +

𝑘2ℎ2

2𝑁2

]︂
,

𝐵′0 = 2𝑁2ℎ2 +
𝑅𝑐
𝛽
,

𝐵′1 = 2𝑁2ℎ2 + cotℎ(𝑘ℎ)
ℎ𝑘

𝑁2

𝑅𝑐
𝛽
,

𝐿′0 =
(︂

4𝑁4(1− 𝑐ℎ(𝑘ℎ)) +
𝑅𝑐
𝛽
𝑘2 + 4𝑁2ℎ𝑘𝑠ℎ(𝑘ℎ)

)︂−1

,

𝐿′1 = 4𝑁4(1− 𝑐ℎ(𝑘ℎ)) + cotℎ(𝑘ℎ)
𝑘3ℎ

𝑁2

𝑅𝑐
𝛽

+ 4𝑘ℎ𝑁2𝑠ℎ(𝑘ℎ).

Lemma A.4. In the super-critical case 1 < 𝛿 < 3
2ℓ−

1
2 , the solutions of system (4.19) with boundary conditions

̃︀𝑢1 = ̃︀𝑤2 = 0 on Γ1, ̃︀𝑢1 = 𝜕𝑦3 ̃︀𝑤2 = 0 on Γ,

are

�̃�1(𝑦1, 𝑦3) =
(︂

2𝑁2

𝑘

[︁
𝑠ℎ(𝑘𝑦3)− 𝑦3

ℎ
𝑠ℎ(𝑘ℎ)

]︁
𝐴′′

+
2𝑁2

𝑘

[︁
𝑐ℎ(𝑘𝑦3)− 𝑦3

ℎ
(𝑐ℎ(𝑘ℎ)− 1)− 1

]︁
𝐵′′ +

1
2(1−𝑁2)

[︀
𝑦2
3 − 𝑦3ℎ

]︀)︂
𝜕𝑦1𝑝(𝑦1),

�̃�2(𝑦1, 𝑦3) =
(︂[︂
𝑐ℎ(𝑘𝑦3)− 𝑁2

𝑘ℎ
𝑠ℎ(𝑘ℎ)

]︂
𝐴′′
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+
[︂
𝑠ℎ(𝑘𝑦3)− 𝑁2

𝑘ℎ
(𝑐ℎ(𝑘ℎ)− 1)

]︂
𝐵′′ +

1
2(1−𝑁2)

[︂
𝑦3 −

ℎ

2

]︂)︂
𝜕𝑦1𝑝(𝑦1), (A.10)

where

𝐴′′ =
1

2(1−𝑁2)
𝐿′′
[︂
−ℎ

2
+
𝑠ℎ(𝑘ℎ)
𝑘

− 𝑁2

𝑘2ℎ
(𝑐ℎ(𝑘ℎ)− 1)

]︂
,

𝐵′′ = − 1
2(1−𝑁2)

[︂
𝑐ℎ(𝑘ℎ)
𝑘

− 𝑁2

𝑘2ℎ
𝑠ℎ(𝑘ℎ)

]︂
,

𝐿′′ =
[︂
𝑐ℎ(𝑘ℎ)− 𝑁2

𝑘ℎ
𝑠ℎ(𝑘ℎ)

]︂−1

.

In the rest of the appendix, we give the proofs of Lemmas A.1, A.2, A.4 and Corollary A.3.

Proof of Lemma A.1. Let us start with system (4.19)–(4.21). Integrating (4.19)1 in 𝑦3, we obtain

𝜕𝑦3̃︀𝑢1(𝑦1, 𝑦3) = 𝜕𝑦1𝑝(𝑦1) 𝑦3 + 2𝑁2 ̃︀𝑤2(𝑦1, 𝑦3) +𝐾1(𝑦1), (A.11)

where 𝐾1 is an unknown function. Putting (A.11) into (4.19)2, we obtain

𝜕2
𝑦3 ̃︀𝑤2(𝑦1, 𝑦3)− 4𝑁2

𝑅𝑐
(1−𝑁2) ̃︀𝑤2(𝑦1, 𝑦3) = −2𝑁2

𝑅𝑐
𝜕𝑦1𝑝(𝑦1) 𝑦3 −

2𝑁2

𝑅𝑐
𝐾1(𝑦1), (A.12)

whose solution can be written as

̃︀𝑤2(𝑦1, 𝑦3) = 𝑐1(𝑦1)𝑒𝑘𝑦3 + 𝑐2(𝑦1)𝑒−𝑘𝑦3 +
𝑦3

2(1−𝑁2)
𝜕𝑦1𝑝(𝑦1) +

𝐾1(𝑦1)
2(1−𝑁2)

, (A.13)

where 𝑐𝑖(𝑦1), 𝑖 = 1, 2 are unknown functions and 𝑘 = 2𝑁

√︃
1−𝑁2

𝑅𝑐
.

Putting (A.13) in (A.11), we obtain

𝜕𝑦3̃︀𝑢1(𝑦1, 𝑦3) =
1

1−𝑁2
𝜕𝑦1𝑝(𝑦1) 𝑦3 + 2𝑁2

(︀
𝑐1(𝑦1)𝑒𝑘𝑦3 + 𝑐2(𝑦1)𝑒−𝑘𝑦3

)︀
+
𝐾1(𝑦1)
1−𝑁2

· (A.14)

Integrating (A.14), we get

̃︀𝑢1(𝑦1, 𝑦3) =
2𝑁2

𝑘

(︁
𝐴(𝑦1)𝑠ℎ(𝑘𝑦3) + �̃�(𝑦1)𝑐ℎ(𝑘𝑦3)

)︁
+

𝑦2
3

2(1−𝑁2)
𝜕𝑦1𝑝(𝑦1) +

𝐾1(𝑦1)
1−𝑁2

𝑦3 +𝐾2(𝑦1), (A.15)

where
𝐴(𝑦1) = 𝑐1(𝑦1) + 𝑐2(𝑦1), �̃�(𝑦1) = 𝑐1(𝑦1)− 𝑐2(𝑦1),

and 𝐾2(𝑦1) is an unknown function. ̃︀𝑤2 in (A.13) can also be written as follows:

̃︀𝑤2(𝑦1, 𝑦3) = 𝐴(𝑦1)𝑐ℎ(𝑘𝑦3) + �̃�(𝑦1)𝑠ℎ(𝑘𝑦3) +
𝑦3

2(1−𝑁2)
𝜕𝑦1𝑝(𝑦1) +

𝐾1(𝑦1)
2(1−𝑁2)

· (A.16)

Using (A.14) and (A.16) in the boundary condition (4.21)1, we obtain

𝐾1(𝑦1)− 𝐸𝜆
𝛼(1−𝑁2)
𝛼− 1

𝐾2(𝑦1) = 𝛾𝛼(1−𝑁2)𝐴(𝑦1) + 𝐸𝜆
𝛼(1−𝑁2)
𝛼− 1

2𝑁2

𝑘
�̃�(𝑦1) (A.17)
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with 𝛾𝛼 defined in (A.2). Using the condition ̃︀𝑢1 = 0 on Γ1 in (A.15), (A.17) and taking into account 𝜂𝜆 defined
in (A.2), we obtain

𝐾2(𝑦1) = −𝜂𝜆
(︂

2𝑁2

𝑘
𝑠ℎ(𝑘ℎ) + ℎ𝛾𝛼

)︂
𝐴(𝑦1)− 𝜂𝜆

(︂
2𝑁2

𝑘
𝑐ℎ(𝑘ℎ) + 𝐸𝜆

𝛼ℎ

𝛼− 1
2𝑁2

𝑘

)︂
�̃�(𝑦1)− 𝜂𝜆

ℎ2

2(1−𝑁2)
𝜕𝑦1𝑝(𝑦1).

Plugging this expression in (A.17) yields

𝐾1(𝑦1) = (1−𝑁2)
[︂
𝛾𝛼 − 𝐸𝜆

𝛼

𝛼− 1
𝜂𝜆

(︂
2𝑁2

𝑘
𝑠ℎ(𝑘ℎ) + ℎ𝛾𝛼

)︂]︂
𝐴(𝑦1)

+ 𝐸𝜆
𝛼(1−𝑁2)
𝛼− 1

2𝑁2

𝑘

[︂
1− 𝜂𝜆

(︂
𝑐ℎ(𝑘ℎ) + 𝐸𝜆

𝛼ℎ

𝛼− 1

)︂]︂
�̃�(𝑦1)− 𝐸𝜆

𝛼ℎ2

2(𝛼− 1)
𝜂𝜆𝜕𝑦1𝑝(𝑦1).

Taking into account that

𝜂𝜆 =
(︂

1 +
𝛼ℎ

𝛼− 1
𝐸𝜆

)︂−1

⇔ 𝜂−1
𝜆 − 1 =

𝛼ℎ

𝛼− 1
𝐸𝜆 ⇔ 1− 𝜂𝜆 =

𝛼ℎ

𝛼− 1
𝐸𝜆𝜂𝜆,

we rewrite 𝐾1 and 𝐾2 as follows

𝐾1(𝑦1) = (1−𝑁2)
[︂
𝛾𝛼 −

1− 𝜂𝜆
ℎ

(︂
2𝑁2

𝑘
𝑠ℎ(𝑘ℎ) + ℎ𝛾𝛼

)︂]︂
𝐴(𝑦1)

+
2𝑁2

𝑘ℎ
(1−𝑁2)(1− 𝑐ℎ(𝑘ℎ))(1− 𝜂𝜆)�̃�(𝑦1)− (1− 𝜂𝜆)

ℎ

2
𝜕𝑦1𝑝(𝑦1). (A.18)

𝐾2(𝑦1) = − 𝜂𝜆

(︂
2𝑁2

𝑘
𝑠ℎ(𝑘ℎ) + ℎ𝛾𝛼

)︂
𝐴(𝑦1)− 2𝑁2

𝑘
(𝜂𝜆(𝑐ℎ(𝑘ℎ)− 1) + 1)�̃�(𝑦1)− 𝜂𝜆

ℎ2

2(1−𝑁2)
𝜕𝑦1𝑝(𝑦1). (A.19)

From condition ̃︀𝑤2 = 0 on Γ1 and (4.21)2, we obtain, using (A.18) and (A.19), the following system

𝑄

(︃
𝐴

�̃�

)︃
=

⎛⎜⎜⎜⎝
− ℎ

4(1−𝑁2)
(1 + 𝜂𝜆)

𝑅𝑐

𝛽 − 2𝑁2ℎ2𝜂𝜆

2(1−𝑁2)

⎞⎟⎟⎟⎠𝜕𝑦1𝑝(𝑦1)

where 𝑄 is the matrix defined by

𝑄 =

⎛⎜⎜⎝
𝛾𝛼

2 + 𝑐ℎ(𝑘ℎ)− 1−𝜂𝜆

2ℎ

(︁
ℎ𝛾𝛼 + 2𝑁2

𝑘 𝑠ℎ(𝑘ℎ)
)︁

𝑠ℎ(𝑘ℎ) + 1−𝜂𝜆

ℎ (1− 𝑐ℎ(𝑘ℎ))𝑁
2

𝑘

2𝑁2𝜂𝜆

(︂
𝛾𝛼ℎ+

2𝑁2

𝑘
𝑠ℎ(𝑘ℎ)

)︂
− 4𝑁4

𝑘 𝜂𝜆(1− 𝑐ℎ(𝑘ℎ))− 𝑅𝑐

𝛽 𝑘

⎞⎟⎟⎠. (A.20)

The, the solution of this system is given by

𝐴(𝑦1) = 𝐴𝜕𝑦1𝑝(𝑦1), �̃�(𝑦1) = 𝐵𝜕𝑦1𝑝(𝑦1),

where 𝐴 and 𝐵 are solution of

𝑄

(︃
𝐴

𝐵

)︃
=

1
2(1−𝑁2)

⎛⎜⎜⎝ −ℎ
2

(1 + 𝜂𝜆)

𝑅𝑐
𝛽
− 2𝑁2ℎ2𝜂𝜆

⎞⎟⎟⎠,
Computing 𝐴, 𝐵, then ̃︀𝑢1 and ̃︀𝑤2 are obtained by (A.15) and (A.16) as functions of 𝑝 and of known data. �
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Proof of Lemma A.2. The beginning of the proof is as in Lemma A.1. Using (A.14)–(A.16) in the boundary
condition (4.21)1, for 𝛼 = 1, we obtain

𝐴(𝑦1) = − 𝐸𝜆
2(1−𝑁2)

𝐾2(𝑦1)− 𝑁2

1−𝑁2

𝐸𝜆
𝑘
�̃�(𝑦1). (A.21)

with 𝑘 given in (A.2). Using the condition ̃︀𝑢1 = 0 on Γ1 in (A.15), taking (A.21) into account, we obtain

𝐾2(𝑦1) = −𝜇𝜆
ℎ

1−𝑁2
𝐾1(𝑦1) +

2𝑁2

𝑘
(𝜇𝜆(1− 𝑐ℎ(𝑘ℎ))− 1)�̃�(𝑦1)− 𝜇𝜆

ℎ2

2(1−𝑁2)
𝜕𝑦1𝑝(𝑦1), (A.22)

with 𝜇𝜆 defined in (A.4). Using the definition of 𝜇𝜆, we rewrite 𝐴 as follows

𝐴(𝑦1) =− (1− 𝜇𝜆)
1

2𝑁2(1−𝑁2)
𝑘ℎ

𝑠ℎ(𝑘ℎ)
𝐾1(𝑦1) + (1− 𝜇𝜆)

1− 𝑐ℎ(𝑘ℎ)
𝑠ℎ(𝑘ℎ)

�̃�(𝑦1)

− (1− 𝜇𝜆)
1

2𝑁2(1−𝑁2)
𝑘ℎ2

𝑠ℎ(𝑘ℎ)
𝜕𝑦1𝑝(𝑦1). (A.23)

From the conditions ̃︀𝑤2 = 0 on Γ1 and (4.21)2, using (A.22) and (A.23) the following system is obtained

𝑄′

(︃
𝐾1

�̃�

)︃
=

⎛⎜⎜⎜⎝
1

2(1−𝑁2)

(︂
−ℎ+ (1− 𝜇𝜆) cotℎ(𝑘ℎ)

ℎ2𝑘

2𝑁2

)︂
𝑅𝑐

𝛽 − 2𝑁2ℎ2𝜇𝜆

2(1−𝑁2)

⎞⎟⎟⎟⎠𝜕𝑦1𝑝(𝑦1),

where 𝑄′ is the matrix defined by

𝑄′ =

⎛⎝ 1
2(1−𝑁2)

(︀
1− (1− 𝜇𝜆) cotℎ(𝑘ℎ) 𝑘ℎ𝑁2

)︀
𝑠ℎ(𝑘ℎ) + (1− 𝜇𝜆) cotℎ(𝑘ℎ)(1− 𝑐ℎ(𝑘ℎ))

2𝑁2ℎ
1−𝑁2𝜇𝜆

−4𝑁4

𝑘 𝜇𝜆(1− 𝑐ℎ(𝑘ℎ))− 𝑅𝑐

𝛽 𝑘

⎞⎠.
The solution of this system is given by

𝐾1(𝑦1) = 𝐴′𝜕𝑦1𝑝(𝑦1), 𝐵(𝑦1) = 𝐵′𝜕𝑦1𝑝(𝑦1),

where 𝐴′ and 𝐵′ are solution of

𝑄′

(︃
𝐴′

𝐵′

)︃
=

⎛⎜⎜⎜⎝
1

2(1−𝑁2)

(︂
−ℎ+ (1− 𝜇𝜆) cotℎ(𝑘ℎ)

ℎ2𝑘

2𝑁2

)︂
𝑅𝑐

𝛽 − 2𝑁2ℎ2𝜇𝜆

2(1−𝑁2)

⎞⎟⎟⎟⎠.
Computing 𝐴′, 𝐵′, then ̃︀𝑢1 and ̃︀𝑤2 are obtained as functions of 𝑝 and of known data. �

Proof of Corollary A.3. We first remark that the roughness parameter 𝐸𝜆 given in Theorem 4.4 satisfies

𝐸𝜆 =
∫︁
̂︀𝑄
|𝐷𝑧

̂︀𝜑1,𝜆|d𝑧 = 𝜆2

∫︁
̂︀𝑄

⃒⃒⃒
𝐷𝑧
̂︀𝜑1,1
⃒⃒⃒
d𝑧 = 𝜆2𝐸.

We explain the case 𝛼 ̸= 1 (for the case 𝛼 = 1 proceed similarly). Using power series of 𝜆2 and omitting terms
of order 𝑂(𝜆4), there holds

𝜂𝜆 = (1 + 𝐶𝛼𝐸𝜆
2)−1 ∼ 1− 𝐶𝛼𝐸𝜆

2, with 𝐶𝛼 =
𝛼ℎ

𝛼− 1
,
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𝜂2
𝜆 = (1 + 𝐶𝛼𝐸𝜆

2)−2 ∼ 1− 2𝐶𝛼𝐸𝜆2.

Using the development of 𝜂𝜆 in terms of 𝜆2 in 𝐴,𝐵 and 𝐿 given in Lemma A.1, we get

𝐴 = − 1
2(1−𝑁2)

𝐿0

(︀
𝐴0 + 𝐶𝛼𝐸𝜆

2[𝐴1 + 𝐿0𝐿1𝐴0]
)︀
,

𝐵 = − 1
2(1−𝑁2)

𝐿0

(︀
𝐵0 + 𝐶𝛼𝐸𝜆

2[𝐵1 + 𝐿0𝐿1𝐵0]
)︀
,

𝐿 = −𝐿0

(︀
1 + 𝐿0𝐿1𝐶𝛼𝐸𝜆

2
)︀
,

with 𝐴𝑖, 𝐵𝑖 and 𝐿𝑖, 𝑖 = 0, 1 given by (A.9). Next, developing the pressure as 𝑝(𝑦1) = 𝑝0(𝑦1) + 𝐶𝛼𝐸𝜆
2𝑝1(𝑦1) +

𝑂(𝜆4) and using previous development of 𝐴,𝐵 and 𝐿 in the expressions of �̃�1 and �̃�2 given in (A.1), we get the
expressions (A.6).

Finally, using again the development of 𝐴,𝐵 and 𝐿 given above, the development of 𝑝 and the development
of �̃�1 in the Reynolds equation (4.26), we deduce that 𝑝0 and 𝑝1 satisfy (A.7) and (A.8), respectively. Combining
the equations on 𝑝0 and 𝑝1, one easily sees that Θ0

Θ1
𝑝1 and 𝑝0 satisfy the same equation, hence they are equal

by uniqueness of the solution to (A.7). �

Proof of Lemma A.4. The beginning of the proof is as in Lemma A.1. In this case, we consider the bound-
ary conditions given in (4.18). Thus, using (A.15) and boundary conditions �̃�1(𝑦1, 0) = 0 and �̃�1(𝑦1, ℎ) = 0,
respectively, we have

𝐾2(𝑦1) = − 2𝑁2

𝑘 �̃�(𝑦1),

𝐾1(𝑦1) = −2𝑁2(1−𝑁2)
𝑘ℎ

𝑠ℎ(𝑘ℎ)𝐴(𝑦1)− 2𝑁2(1−𝑁2)
𝑘ℎ

(𝑐ℎ(𝑘ℎ)− 1)�̃�(𝑦1)− ℎ

2
𝜕𝑦1𝑝(𝑦1),

with 𝑘 given in (A.2). From the boundary conditions �̃�2(𝑦1, ℎ) = 0 and 𝜕𝑦3�̃�2(𝑦1, 0) = 0, the following system
is obtained

𝑄′′

(︃
𝐴

�̃�

)︃
=

⎛⎜⎜⎝
−ℎ

4(1−𝑁2)

− 1
2(1−𝑁2)𝑘

⎞⎟⎟⎠𝜕𝑦1𝑝(𝑦1),

where 𝑄′′ is the matrix defined by

𝑄′′ =

(︃
𝑐ℎ(𝑘ℎ)− 𝑁2

𝑘ℎ 𝑠ℎ(𝑘ℎ) 𝑠ℎ(𝑘ℎ)− 𝑁2

𝑘ℎ (𝑐ℎ(𝑘ℎ)− 1)

0 1

)︃
.

The solution of this system is given by

𝐴(𝑦1) = 𝐴′′𝜕𝑦1𝑝(𝑦1), �̃�(𝑦1) = 𝐵′′𝜕𝑦1𝑝(𝑦1),

where 𝐴′′ and 𝐵′′ are solution of

𝑄′′

(︃
𝐴′′

𝐵′′

)︃
=

⎛⎜⎜⎝
−ℎ

4(1−𝑁2)

− 1
2(1−𝑁2)𝑘

⎞⎟⎟⎠.
Computing 𝐴′′, 𝐵′′, then ̃︀𝑢1 and ̃︀𝑤2 are obtained as functions of 𝑝 and of known data. �
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