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Abstract

In this paper, we study the asymptotic behavior of the thermomicropolar fluid flow through a thin channel
with rough boundary. The flow is governed by the prescribed pressure drop between the channel’s ends and
the heat exchange through the rough wall is allowed. Depending on the limit of the ratio between channel’s
thickness and the wavelength of the roughness, we rigorously derive different asymptotic models clearly
showing the roughness-induced effects on the average velocity and microrotation. To accomplish that, we
employ the adaptation of the unfolding method to a thin-domain setting.
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1 Introduction

The model of micropolar fluid, proposed by Eringen [17] has been extensively studied both in the engineering and
mathematical literature, due to its practical importance. Being able to take into consideration the microstructure
of the fluid particles and capture the effects of its rotation, the micropolar fluid model describes the motion of
numerous real fluids better than the classical Navier-Stokes equations. Liquid crystals, animal blood, muddy
fluids, certain polymeric fluids or even water in models with small scales are the typical examples. The rotation
of the fluid particles is mathematically described by introducing the microrotation field (along with the standard
velocity and pressure fields) and, accordingly, a new governing equation coming from the conservation of angular
momentum. The model of thermomicropolar fluid, introduced also by Eringen [18], represents an essential ge-
neralization of the micropolar fluid model acknowledging the variations of the fluid temperature as well. In such,
non-isothermal, regime, the micropolar equations are being coupled with the heat conduction equation leading to
a very complex system of PDEs. In particular, the 2D system describing the steady-state flow of incompressible,
isotropic, thermomicropolar fluid flow between two horizontal plates in dimensionless form reads as follows (see
e.g. [19], [24],[36]):

1

N
ﬁ((u -V)u+ Vp) = Au + m(2vlw + Au) + RaTe, +f,

div(u) =0,
(1.1)

%(u~Vw) = LAw +

2
Pr T N(rot(u) —2w) + g,

u-VT = AT + DV-+w - VT.
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In the above system, the velocity vector field is denoted by u, the pressure by p, w represents the microrotation
and T is the temperature of the fluid. The external sources of linear and angular momentum are given by the
functions f = (f1, f2) and g, respectively. We denote by e; = (0,1) € R? the unit upward vector, whereas the
positive constants appearing in (1.1) represent the following (see e.g. [23]):

e N is the coupling parameter, i.e. the relation between the Newtonian and microrotation viscosities,
e M is the relation between the moment of inertia and geometry,
e [ is the couple stress parameter, i.e. the relation between the geometry and the properties of the fluid,

e D is the micropolar heat conduction parameter, i.e. the relation between the micropolar thermal conduction
and the geometry,

e Pr is the Prandtl number, i.e. the relation between the kinematic viscosity and the thermal diffusivity,

e Ra is the Rayleigh number, i.e. the relation between the coefficients of thermal expansion and conductivity
and the geometry.

Throughout the mathematical literature, one can find many papers on the rigorous derivation of the asymptotic
models describing the isothermal flow of a micropolar fluid, see e.g. [6], [7], [8], [15], [16], [28], [29]. Although
there have been a number of recent papers concerning engineering applications of the thermomicropolar fluid
model (see e.g. [12], [20], [21], [31]), the rigorous treatments for such models are very sparse. Most recently,
the system (1.1) has been studied in [25] for the thermicropolar flow through a thin channel with smooth walls,
namely:

Q= {(z1,22) ER? 1 11 Ew, 0< a2 <e}, w=(-1/2,1/2).

The flow is assumed to be governed by the prescribed pressure drop between channel’s ends, given by ¢g_; /5 and
q1/2, and the heat exchange between the fluid inside the channel and the exterior medium is allowed through
the upper wall by using Newton’s cooling law. Using the asymptotic analysis with respect to the thickness of
the channel, a higher-order asymptotic solution has been rigorously derived. In particular, assuming that f; and
g only depends on the horizontal variable and after a dilatation in the vertical variable, it is proved that the
average velocity U*” = (U, US§") and the microrotation W at the main-order term are respectively given by:

11

av 11-N 1/2 av av :
V=0 q-1/2q1/2+Pr/1/2f1(£)d€ , Vgt =0, W =oog(@), mw. (1.2)

Moreover, the explicit expressions for the pressure approximation is obtained and for the average of the tem-
perature as well, acknowledging the effects of fluid’s microstructure through the presence of the couple stress
parameter L and the micropolar heat conduction parameter D.

In great majority of the applications, the domain boundaries are not perfectly smooth, i.e. they contain some
irregularities. Thus, in the present paper, we aim to generalize the results from [25] to a case of a thin channel
with an irregular upper wall described by
T1
T2 = n&h (7> ’
€

where 7. is the thickness of the roughness, ¢ is the period of the roughness and h is a positive and periodic
function (see Section 2). This kind of thin rough domain has been extensively studied for the isothermal flows,
see [5], [26] for the classical Newtonian fluid flow, [3] for the flow of the generalized Newtonian fluid and [34] for
the micropolar fluid flow. In these papers, a critical size has been found between the thickness of the domain 7).
and the period of the roughness ¢, which is given by

A= lim £ € [0, +o0].

e—>0 €

The critical case, A € (0,400), corresponds to the case in which the thickness and period of the roughness are
proportional. The subcritical case, A = 0, corresponds to a very smooth roughness, and the supercritical case,
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A = 400, corresponds to the case of a highly oscillating boundary.

As far as the authors know, the flow of a thermomicropolar fluids has not been yet considered in the above
described setting. The supercritical case, due to the highly oscillating boundary, leads to the conclusion that
the velocity and microrotation are zero in the roughness zone (see e.g. [34]) so, in the sequel, we study the
asymptotic behavior of the solution in the critical and the subcritical case. By applying reduction of dimension
techniques together with an adaptation of the unfolding method (see Section 3) to capture the microgeometry
of the roughness, depending on the relation of € and 7., we rigorously derive the following expressions for the
average velocity and microrotation:

1-N 1/2 1 .
Ui' =ax—p— (412 @2+ PT/ [@de |, U =0, W* =by=g(z1), nw. (1.3)
r -1/2 L

where ay,by € RT are obtained through local problems depending on the value of A € [0,400) and give the
roughness-induced effects on the velocity and microrotation. In the critical case A € (0,+c0), the parameters
ax, by are computed through local PDE problems (see Section 4, Theorem 4.3). However, in the subcritical case
A = 0, the parameters ag, by can be explicitly computed (see Section 5, Theorem 5.3). In both cases, we obtain
the same expression for the pressure as in [25]. Moreover, the average of the temperature is obtained through a
nonlinear problem in the critical case and is explicitly given in the subcritical case. Since the obtained findings
are amenable for the numerical simulations, we believe that it could prove useful in the engineering practice as
well.

2 Formulation of the problem and preliminaries

In this section, we first define the thin, rough domain and some sets necessary to study the asymptotic behavior
of the solutions. Next, we introduce the problem considered in the thin domain and also, the rescaled problem
posed in the domain of fixed height.

2.1 The domain and some notation

Let us denote w = (—1/2,1/2) C R. We consider a thin domain with a rapidly oscillating thickness defined by
QO ={z=(z1,22) €ER? : 21 €w, 0<xp < he(z1)}, (2.4)

Here, the function h.(x1) = n-h (x1/€) represents the real gap between the two surfaces. The small parameter 7).
is related to the film thickness and the small parameter ¢ is the wavelength of the roughness. Here, we consider
that 7. is of order smaller or equal than ¢, i.e. we consider

Ne~e or 1. <Ke. (2.5)

Function h € W1 >°(R), Z’-periodic with Z’ = (—1/2,1/2) the cell of periodicity in R, and there exist huyin and
hmax such that

0 < hmin = zrlneuZl’ h(Zl), Pmax = erleag, h(zl) :
We define the boundaries of Q¢ as follows

Iy= {(Il,l‘g) €ER? : 1y €Ew, 29 = O}, i = {(zl,xg) €ER? : 1y €w, xo = he(xl)}

N ={(z1,22) ER® : 3y =4, 0<za < he(z1)}, i=-1/2,1/2.
We also define the respective rescaled sets

Q° = w x (0,h(z1/)), T5=wx{h(z1/e)} and %% ={i} x (0,h(i/e)), i=—1/2,1/2.
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Related to the microstructure of the periodicity of the boundary, we consider that the domain w is divided
by a mesh of size e: for k' € Z, each cell Z}, . = ek’ +eZ'. We define T. = {k' € Z : Z}, _Nw # 0}.
In this setting, there exists an exact finite number of periodic sets Z,’C,,E such that k' € T.. Also, we define
Zire = Zps . % (0,h(z1)) and Z = Z' x (0,h(z1)), which is the reference cell in R*. We define the boundaries
Do = 2Z' x {0}, Ty = Z' x {h(z1)}, B = {i} x {i} x (0,h(i)), i = —1/2,1/2. The quantity hyayx allows us to
define the extended sets Q@ = w X (0, hmax) and I'y = w X {Apax}-

In order to apply the unfolding method, we will use the following notation. For &’ € Z, we define x : R — Z by
I*i(xl) =k = xr1 € Zk',l . (26)

Remark that x is well defined up to a set of zero measure in R (the set Ugez0Y%,1). Moreover, for every € > 0,
we have .
K (—1) =k <=1 €Zy ..
€

We denote by C' a generic constant which can change from line to line.

We use the following notation for the partial differential operators:

82(I>5 82(1)5 aQ(DE 82(1)5 (92908 62(,05
A(I)E _ 1 1 2 2 A € _
( 0z? 03 ) ! ( 0z? 2 ) 7 Ox? + 0z%’

gy 005 005 o _ 005 005 . . (O¢° 0
le(‘l) )_ 8x1 + 6%2’ I"Ot(q) )_ 81’1 8902’ v v = 81'27 31’1 ’

where ¢ = (95, P%) is a vector function and ¢° is a scalar function defined in Q°.

Moreover, for ®¢ = (&5, ®5) a vector function and @° a scalar function defined in QF, after a dilatation in the
vertical variable, we will use the following operators

_ 2Q¢ 1 929¢ 2Qe 1 92d¢ 2 e 1 923¢
A%@a:(a Ly 1>e1—|—<8 2 | 9 2>eQ’A~E 590_’_ ¢

x2 02 0292 dx2 2 0292 ne? = dx2 " n2 9z2°

e o0 1 095 - 205 1 095 N 105  0p°
d ) = 1 i 2 t Pe) = 2 - 1 1l ~e S _ .
vy, (2°) 0z * Ne Oz’ roty. (®°) Or1 1. Oz’ N Ne Ozg ' Oz

For ¢ = (¢1,¢2) and 9 = (¥1,¢2), we define ® by

(p&Y)ij = @iy, i=1, j=1,2. (2.7)

Finally, we introduce some functional spaces. L{ is the space of functions of L? with zero mean value. Let
C%(Z) be the space of infinitely differentiable functions in R? that are Z'-periodic. By L% (Z) (resp. W;E’Q(Z))7
1 < ¢ < 400, we denote its completion in the norm L9(Z) (resp. W4(Z)) and by L{ ,(Z) the space of functions
in L% (Z) with zero mean value.
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2.2 The problem
The governing equations in dimensionless form are given by

1 N
B (0" V)u© + Vpf) = Au® + m(2Vlwf + Au®) + RaT®ey 4+ f°  in QF,
div(u®) =0 in Q°,
(2.8)
M 2N
ﬁ(us -Vw®) = LAw® + = N(rot(us) —2w®) 4+ ¢° in Q°,
u® - VT = AT® + DV+w® - VI® in Q°.
We complete the above system with the following boundary conditions on the bottom
u" =0, w=0, T7°=0 only, (2.9)
the following conditions on the lateral boundaries
1
u®-ep =0, w'=0 T°=0, p°= ?qi on X5, i ={-1/2,1/2}, (2.10)
€
and the following boundary conditions on the top boundary
uw =0, w'=0, VI° -n=Nus(G°—T°) onlTf5. (2.11)

Here, u® = (u§, u5) represents the velocity field, p® the pressure, w® the microrotation and 7 the temperature.
The external body forces are given by £¢ = (f§, f5) and the external body torque by g=.

We make the following assumptions:

— The Robin boundary condition (2.11)5 comes from Newton’s cooling law and describes the heat exchange
through the upper wall between the exterior medium and the fluid inside the channel. Due to domain’s
microstructure, it is assumed that the exterior temperature G¢ = G(x1/¢) with G € L*(Z’') a given Z'-
periodic and bounded function depending only on the longitudinal variable.

— Following previous result [25], we consider that the Nusselt number Nus depends on ¢, whereas all the
other characteristic numbers are kept independent of €. In fact, we compare the Nusselt number Nus to
the small parameter of the height 7.. Namely, we consider the following scaling of the Nusselt number

Nus=mn.k, k=0O(1). (2.12)

— We assume that the external source functions are independent of the variable x5 and take the following
scaling
1 1 .
f° = E(fl(xl)a()% g6 = 729(1‘1)7 with flyg € L2(w)' (213)

€ €

Under the previous assumptions, the well-posedness of the problem (2.8)-(2.11) can be established using the
methods from [23] (see also [22]) and prove that there exists a unique weak solution (u®,w®,p®,7¢) € H(QF)? x
HY(QF) x LE(Q°) x HL(QF).
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Our aim is to study the asymptotic behavior of u., we, pe and T° when ¢ and 7. tend to zero and identify
homogenized models coupling the effects of the thickness of the domain and the roughness of the boundary. For
this, we use the dilatation in the variable x5 given by
T2
29 = —, 2.14
? Ne ( )
in order to have the functions defined in the open set with fixed height SNIE and the rescaled boundaries fi and
Y%, 4= —1/2,1/2. Then, using the change of variables (2.14) in (2.8)-(2.11), we obtain the following rescaled
system

1 N - ~
B (0 V)0 + V. 57) = Ay 0° + _—N(zv#swg + A, 0) 4+ RaT ey + £ in Q°,
div,_ (2°) =0 in Q°,
(2.15)
M . - _ 2N . . 5
E(u8 -V ) = LA, @ + m(rotns (%) —20°%) + ¢°  in QF,
0 -V, T° = A, T° + DV 0° -V, T° inQ°,
with the boundary conditions }
=0, w*=0, T°=0 only, (2.16)
. 1 ~
Wee =0, =0, TT=0, §F = e on ¥ i={-1/21/2}, (2.17)
€
W =0, @° =0, V,T° n=nk(G —T°) onls, (2.18)

The unknown functions in the above system are given by G°(x1, 22) = u®(x1,1:22), p°(x1,22) = p*(x1,n:22),

w(x1, 22) = we (w1, Ne22) and f’s(xl,zg) =T¢(x1,n:22) for a.e. (x1,22) € Q°.

Our goal then is to describe the asymptotic behavior of this new sequences u., W, p. and T¢ when ¢ and 7e tend
to zero. To do this, we establish the a priori estimates and introduce the adaptation of the unfolding method
in Section 3. We obtain the limit model of the critical case (7. & ¢) in Section 4 and of the sub-critical case
(n. < €) in Section 5.

3 A priori estimates

This section is devoted to derive the a priori estimates of the unknowns and is divided in three parts. First, we
deduce the a priori estimates for velocity, microrotation and temperature and second, we derive the estimates
for pressure. Finally, we introduce the adaptation of the unfolding method and derive the a priori estimates of
the unfolded functions.

3.1 Estimates for velocity, microroration and temperature

To derive the desired estimates, let us recall some well-known technical results (see, e.g. [25]).

Lemma 3.1 (Poincaré and Ladyzhenskaya inequalities). For all p € H*(QF) such that ¢ =0 on T'g, there hold
the following inequalities

1
lellzzey < OnellVellzz@eyz,  lellzi@e) < Cné IVellLzae)2- (3.19)

Moreover, from the change of variables (2.14), there hold the following rescaled estimates

3 ~
H@Hp(ﬁa) < Cns||vng¢||L2(§s)2v H‘:Z’Hm(ﬁa) < Cné ||vng‘P||L2(§a)2- (3.20)
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Lemma 3.2 (Trace estimates). For all ¢ € H(QF) such that ¢ = 0 on Ty, there hold the following trace
estimates:

1
lellzrsy < Cn2 Vel L2 (ae)2s (3.21)

Moreover, for every case, the rescaled function satisfies the following estimate
- 1 -
||30||L2(f§) <Cne 2 angwnp@s)zv (3.22)

Proof. Since the upper boundary I'j is not flat, one needs to take into account the variations of the normal
direction n in order to estimate the L?-norm of the trace of a function ¢ € H(Q°). Intregrating on vertical

lines, we obtain
N 2 'NE
|l do = /|w1, <x1>>|2¢ + () | (2)] da
re €

1
< C(14ne 2/|w1, (1)) [Pdry

he(w1)
/ / (%zga(acl,xg)d:vg
w [JO

7]5/ |8z2<,0($1,$2)‘2d3;‘1dg;2.
Qe

2

N

IN

C(1+n2?) day

|-

< C(1+nZe™?)

Then, since 7. < € or 1. = ¢, it holds
(ol do < Co [ 10usplan, o) diadaa
re Qs
which implies (3.21).

For the rescaled function, proceeding analogously, we get

/\leda— /|<p1:1, xl/g))|\/ <)2

()]

Nl=

< o)t [ fotan, /o)) P
s (z1/e) 2
< C(1+e7?) 2/ / Opy P(x1, w2)dx2| day
1
< C(1+5 )2773/ N2 00y @(@1, 2)|*dar das.
Qe

Then, we have that
[ o < O [ i 0nplan, ) Pdod,
e Qs
which implies (3.22).
O

Corollary 3.3. For G°(r1) = G(z1/¢) with G € L*(Z') and Z'-periodic function, we have the following estimate
1G*|l2rsy < C. (3.23)

Proof. The proof follows the line of estimates (3.21) and (3.21), just taking into account that G € L?(Z").
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Lemma 3.4 (A priori estimates). Let (u®, w®,T¢) be the solution of the problem (2.8)-(2.11). Then there hold
the following estimates

1 _1

||u5||L2(Qs)2 S Cn527 ||Vu5||L2(QE)2x2 S C/r]g 2, (324)
1 _1

[wllLze) < Cn2,  [[Vw|lr2e)2 < Cne ®, (3.25)
5 3

||TEHL2(Qe) S 07]52, ||VTE||L2(Q.5)2 S 07752 . (326)

Moreover, from the change of variables (2.14), there hold the following estimates for the rescaled unknowns

||ﬁs||L2(§a)2 < 07 ||vn5ﬁ€||L2(§s)2x2 < 07721, (327)
||w€||L2(§a) < Oa ||vn5ﬁ’€||L2(§s)2 < CTIQl, (328)
HTEHLz(ﬁs) < 077?, ||vnET€HL2(ﬁe)2 < Cne. (3.29)

Proof. We divide the proof in four steps.

Step 1. First, we multiply (2.8)3 by w®, integrate over ¢ to obtain

L/ |Vw€|2dx—|—7/ |w®|? dx
Qs

M (3.30)
=5 e(us-Vw Yyw® dx + m/arot Hwdr + — 2 /ngsdx.
For the first term on the right-hand side, since div(u®) = 0 and w® = 0 on 99°, we get
/ (u® - Vo )w' dz = %/ u® - V|ut|?de = 7%/9 |w|?div(u®) dz = 0. (3.31)

For the rest of the terms of the right-hand side, using the Cauchy-Schwarz inequality and the Poincaré inequality
(3.19), we get

/ rot(u®)w® dzx

< ||Vu€||L2(QE)2X2HwEHLQ(QE) < C77€||VUEHL2(QE)2X2||vw€||L2(QE)2,

(3.32)
1 1
o /Q gw® dzidzra| < n22(|gll 200 w20 < Cne 2 | Vwr | 1202
Then, taking into account (3.31) and (3.32) in (3.30), we get
IVa® || L2y < C (n€||vu€\|L2(Q€) n n;f) . (3.33)
Step 2. We multiply (2.8)4 by T¢, integrate over ¢ to obtain
/ |VT€|2dx+775k/ |T¢|? do
Qe re
(3.34)

= / (W -VTTdx +D | (V*w® - V)TT® dx + nsk/ G°T* do.

I
1

Qe

For the first term on the right-hand side of (3.34), since u® = 0 on 9%, div(u®) = 0 in Q¢ and T° = 0 on X,
i=-1/2,1/2, we get

1 1
/ (0 - V)TT* dx = 5/ u® - V|T|2dr = —5/ |T¢|2divu® dz = 0. (3.35)
€ £ Qe
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For the second term on the right-hand side of (3.34), we have

1 1
V+w® - VTeT® do = 5/ Viw® - V(T%)2%de = —= | Vw® x (V(T9)?)dx

Qe € 2 Qe
1 € €\2 1 € €12
=3 werot(V(T¢)*)dx — B rot(w*V(T%)*)dx (3.36)
Qs Qs
1 1 orTe oTe
=3 /5 n x (wEV(Tg)Q)dx =3 /E w® <6m2 T°nq — 021 T€n2> dx =0,
where we have used that w® = 0 on 99°, the identity
oTe oTe 0%T* oTe oT*¢ 0%T* oTe 9T*¢
t(V(T%)%) = 1ot [ 2-—T°,2—T° ) =2 T° —2——T° -2 =0
rot(V(T*)%) =ro ( o1 2 on ) 8220, 072 02, 02,0 Bz, 23

and
ow* L 0T*

T¢ dxidxe = — dxidxs.
[ (9932 L1 /st 6:62 L1

It remains to estimate the third term of the right-hand side of (3.34). To do this, from Caychy-Schwarz’s
inequality, Lemma 3.2 applied to T and Corollary 3.3, we get

3
<N G\l p2@e) T2 (rey < Cn2 (IVTF| L2 (0e)z- (3.37)

nsk/ G°T* do
i

Then, taking into account (3.35) - (3.37) in (3.34), we have

3
HVTE”LZ(QE) < CnZ, (3.38)
which is the second estimate in (3.26). From the Poincaré inequality (3.19), we get the first estimate in (3.26).

Step 3. We multiply (2.8); by u®, integrate over €2° to obtain

1 1 2N
v 52d - = €. cut d ey 1, €d
W Q€| u®|®dz Pr QE(u V)uu x—|—1_N/SEVw u® dz
1
+Ra/ETE(e2~uE)dx+g o fi(er -u®)dx, (3.39)

+ L / d 11 / d
— —q_ ce1dry — — — -eqdxs.
Pr ngq 1/2 - @ - €1ax2 Pr ngq1/2 - @ €1 ax2

—1/2 1/2

The first term on the right-han side of (3.39) satisfies

1 1
/ (u® - V)uu® dzideg = 5/ u® - V|u® 2dedey = 75/ [u®|?div u® dzydas = 0. (3.40)
= Qe e

We estimate the rest of the terms on the right-hand side of (3.39) by using the Poincaré inequality (3.19) and
using (3.33), we get

/ Vlwsug dx < ||VU}E||L2(Q5)||u5||L2(Qs) < C’I]EHVUJEHsz(QE)z||VUEHL2(Qa)2><2

1
< 077§||vu5”%2(95)2><2 + 7752 ||v1.16||]:2(95)2><27

/ T (ez-u)dx| < [T 200 llu]lL2(0e)2 < Ol T¢ | 12(0) VO[] L2 (0222 (3.41)

z
< C7752 ||Vu€||L2(QE)2x2,

_1
2 | Autde| <02 filleee el Leeye < Cnz 2| VU] p2ge)2xe,
QE
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and
1 1 1> I : I
2 Pr q—1/2 u® - eg dr —q1/2 u®-ejdry| = |d1V(((J—1/2 + (Q1/2 *(]—1/2)(55+ 1/2))u|
Nz 2, ¢,

_ _1
< 0775 2||1||L2(Qs)||U_E||L2(Qs)2 < (e 2 HquHLQ(QE)QXZ.
(3.42)
Taking into account (3.40) and estimates (3.41) in (3.39), we get

_1
[Vu®||L2qeyzxz < Cne 2,

which is the second estimate (3.24). By using the Poincaré inequality, we get the first estimate in (3.24). For
the microrotation, from (3.33), we get the estimates of the microrotation (3.25).

Step 4. Finally, the estimates of the rescaled unknown are obtained by applying to estimates of the unknowns
the change of variables (2.14).

O

3.2 The extension of (u°,w*,7¢) to the whole domain

The sequence of solutions (G¢, we, TE) is defined in a varying set (NZE, but not defined in a fixed domain independent
of e. In order to pass to the limit if ¢ tends to zero, convergences in fixed Sobolev spaces (defined in ) are
used, which requires first that (G, w®, T¢) be extended to the whole domain 2. We extend each unknown in the
following:

— From the boundary conditions satisfied by u® and @w®, we extend them by zero in (2 \ Q¢ and denote the
extensions by U® and W€, respectively.

~ For the temperature T¢, we use the extension operator described in [27, Lemma 2.3] called ¢ which allows
us to extend functions from H!(Q¢), which are zero on the lateral boundaries, to H' (). Moreover, this

extension satisfies ~ R
||PE(<P>HL2(Q) < C”‘anz(ﬁs)a

- - 1 -
10 P20 < € (10081100, + 10:815 e ) (3.43)

10:P(@)IL2(0) < CllO2 Pl 12 (5e )

for every function @ € H*(€).). Thus, we denote by 6° the extension of T¢, i.c. §5 = P=(T*).

We have the following result.

Lemma 3.5 (Estimates of extended functions). The extended functions (U, W¢,0°) of (4w, T¢) satisfy the
following estimates

Hﬁ6||L2(Q)2 <, ||vn6fje||L2(Q)2><2 < CT];I, (344)
IWellL2@) <C, IV Wl L2z < Onz Y, (3.45)
1611 20y < CnZ, V0 6%l 202 < O (3.46)

Proof. Estimates for the extension of U® and W¢ are obtained straightforward from (3.27) and (3.28), respec-
tively. For the extension of the temperature 6°, from (3.29) and (3.43), we deduce (3.46).
O

10
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3.3 Estimates for pressure

Let us first give a more accurate estimate for pressure p°. For this, we need to recall a version of the decomposition
result for p® whose proof can be found in [11, Corollary 3.4] (see also [8, 10]).

Proposition 3.6. The following decomposition for p* € L2(Q°) holds
p° =15+ i, (3.47)

where p§ € H(w), which is independent of x2, and p5 € L*(QF). Moreover, the following estimates hold

3
ne 1Pl w) + 1Pillz20e) < ClIVP |H-1(00)2,
that is .
196111 ) < Cne 2(IVD =100y, [IPTll22(00) < CIVP®[[H-1(02)2- (3.48)
We denote by 5 the rescaled function associated with pS defined by 75 (21, 22) = (21, 7.22) for ae. (x1,22) € QF.

As consequence, we have the following result.

Corollary 3.7. The pressures pg, p; and p5 satisfy the following estimates

HpgllHl(w) < 0775_27

) (3.49)
[pillz2(0e) < Cne 2, ||15§HL2(§5) < 077;1-
Proof. Thank to (3.48), we just need to obtain the estimate for Vp® given by
1
VD[l -1 (0e)2 < Cne 2, (3.50)

to derive (3.49). To do this, we consider ¢ € Hj (), and taking into account the variational formulation (3.62),
we get

P
(V%00 = —3 TN/ Vusrvwdﬂc—/ (u® - V)u“pdr
— a. .
21]\113\7; ; VJ‘w5~<pd:E+PrRa/ T¢ (e p)dx (3.51)
Pr

+1’}72 o fl(el . QO) dz.

g

Estimating the terms on the right-hand side of (3.51) using Lemmas 3.1 and 3.4, we get

Pr R _1
'1 _N o Vue : vgﬁdfﬂ < C||Vu ||L2(Qs)2><2||VSOHL2(Q€)2><2 < 0775 2 ||S0||H(%(S)E)2,
/ (11E . V)uggadx < HUSHL4(Qs)2||V11€||L2(Qs)2x2||50||L4(Qs)2
< C”eHVuEHQLz(Qe)zwHV<P||L2(QE)2X? < H‘PHH&(QE)%
2N Pr 1
‘ 1-N Jo Viwtpdz| < ClIVwillrzeepllelizzoa: < 2 llelng ez,
7
‘PTRG/ T(e2-p)dx| < ClT¢||r2(00) lleliz2e)2 < Cn el ez
QE
Pr 72 -1
2 filer-@)dz| < On [l fillz2ee) lellLze)z < Cne 2ol a1 ez
€ €

11
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which together with (3.51) gives

_1
(VD) <Cme ® ||80||H5(QE)2, Vo e Hy(Q°)2

This gives the desired estimate (3.50), which finishes the proof.

3.4 Adaptation of the unfolding method

The change of variables (2.14) does not provide the information we need about the behavior of rescaled unknown
in the microstructure associated to €2.. To solve this difficulty, we use an adaptation of the unfolding method
(see [13],[14] for more details) introduced to this context in [3] (see also related methods for different domains
with roughness [9], [30], [32], [33], [34] and for thin porous media [1], [2], [4], [35]).

Let us recall that this adaptation of the unfolding method divides the domain KN)E in cubes of lateral length &
and vertical length h(z1). Thus, given the unknowns u¢,w®,T¢, p§ and p§, we define

0 (z1,2) =10° (5/—@ (%) + 62’1,22) a.e. (r1,2) Ewx Z, (3.52)
W (z1,2) = 0° (En (%) +521,Zg) ae. (r,2) EwX Z, (3.53)
. - x

T¢(z1,2) =1T° (EH (?1) + 521,22) a.e. (r1,2) Ewx Z, (3.54)
pg(z1,21) = p§ (EIQ (%) +521> ae. (r1,21) EwxZ'. (3.55)
pi(x1,2) =P (sn (%) + 521,22) a.e. (r1,2) Ewx Z. (3.56)

where the function & is defined by (2.6).

Remark 3.8. For k' € T., the restriction of (ﬁs,uﬁs,fs,ﬁi) to Zy, . x Z does not depend on x1, while as a
function of z it is obtained from (ﬁs,u?s,és,ﬁi) by using the change of variables
x, — ek’

21 = )
€

which transform Zy . into Z. Analogously, the restriction of pg to Z,'C,)E x Z' does not depend on 1, while as a
function of z; it is obtained from pf by using the previous change of variables.

We are now in position to obtain estimates for the unfolded unknowns (¢, w®, Te, D5, 05)-

Lemma 3.9. There exists a constant C' > 0 independent of €, such that 0%, W°, Ts, D and p§ defined by
(3.52)—(3.56) respectively satisfy

10° | 2w z)2 < O, (1020 L2(wxz)y2 < Cent, [02,0% | 2(wx 22 < C, (3.57)
0% | L2wxz) S Cs [10:,0% || L2(wxz) < Cenzty [|0:0° | L2wxz) < C, (3.58)
HTE”LQ(UJXZ) < 077?, Hazl,fSHL?(wa) < Cene, ||822T€‘|L2(w><Z) < CTI? (359)
Hﬁ8||L2(wa/) < 0775_2v ||621ﬁ8”L2(w><Z’) < 06775_2a ||ﬁ;:||L2(w><Z) < 0775_1 (360)

12
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Proof. From the proof of Lemma 4.9 in [3] in the case p = 2, we have the following properties concerning the
estimates of a function ¢° and its respective unfolding function ¢°:

||32)E||LQ(W><Z)2 = ||¢EHL2(§5)2,
||6z1¢6||L2(w><Z)2X1 = 5H8E1¢EHL2 Q)2 ||82290 ||L2 wX Z)? ”6@90 HLZ Qe)2 - (3~61)
(©°) (€9)

Thus, combining previous estimates of ¢° with estimates for u®, w®, T given in Lemma 3.4 and estimate for pj
given in Corollary 3.7, we respectively get (3.57), (3.58), (3.59) and (3.60).
O

3.5 Weak variational formulation
We give the equivalent weak variational formulation of system (2.8)-(2.11) and the rescaled system (2.15)-(2.18),

which will be useful in next sections in order to obtain the limit system taking into account the effects of the
rough boundary.

Taking into account the decomposition of the pressure and
(Vp®, p) / 02, p5(71) 1 dr1d2z — /N p5 div(p) dardze, Vo € Hy(9°)?,
then, the weak variational formulation for system (2.8)-(2.11) is the following

1 1 1 .
TN /QE Vu® - Vedz + B /E Oz, 05(21) 1 dryday — Br Ep‘i div(y) dx

(3.62)
1
=5 QE(uE.V) god:chm/EVJ‘wE cpdx+Ra/ T¢ (e - cp)d:rJr—/ filer - ¢)dx
L Vw*® Vz/de—l—i/ w dx
" M E 2N 1 (8:63)
=5 . (u® - Vo) de + TN/, rot(u®)y dx + n—g o g dx,
VT -Vodr + nsk/ T ¢pdo
Qs s
' (3.64)
= —/ (u*-V)T°¢dx+ D Viw® - VT¢dr +nk | Ge¢do.
Qs Qs re
for every ¢ € H} ()2, ¢ € H}(Q°) and ¢ € H(Q°) such that ¢ =0 on 9Q° \ I'5.
The equivalent weak variational formulation for the rescaled system (2.15)-(2.18) reads as follows
L Vﬁ€V~dd+1/86()~dd ! p div,, ¢dxid
— . —_— _—— 1
1-N Jg '™ ne P 41022 T 5 e 1 Po(T1) p1aT1dze — 5o - pi div,_ @dzridz
1 - e 2N 1o~ =
=~5r /ys(u8 -V )u@dridze + TN /{~2 V. 0 - pdrrdag (3.65)

. 1
-|—]%0,\/~ TE(GQ . Qb) d.’EleQ + ? ~ fl(el . ()5) dl’leQ,
€ e Qs

13
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/ V. 0° Vnewdx1d22+m/gw wdxldzg

(3.66)
= Pr 3 (u -V 0% ) dwydzo + ﬁ/gm’k N dedzy + — 2 /E Y dxidze,

V). T -V, ¢dridz + k;/~ T°ddo
! (3.67)

- 7/~ (ﬁE.Vne)TEQNdeld22+D/~ Vrtzbe~vnsfgq~5dx1d22+k/~ G do.
£ Qs

55
i
for every ¢ € HL(QF)2,4) € HL(QF) and ¢ € H'(QF) such that ¢ = 0 on 9Q° \ T'%, and @(z1, 20) = @(x1,1:22),

1/;(x1,22) = (1, ne22) and g{)(xl,zg) = ¢(x1,ne22) for ae. (x1,29) € QF.

Next, according previous estimates of the unfolding functions, we consider as test functions in (3.65)-(3.67) the

following ones
0% (21, 22) = N2p(x1,m1 /6, 22) with p(z1,2) € D(w; CF(2)?),

Ve (21, 22) = n2(21, 01 /8, 22)  with  (z1,2) € D(w; Cy(2)),
¢%(x1,22) = @(x1, 21 /€, 22) with ¢(z1,2) € D(w; CF(Z)).
Taking into account this, the formulation (3.65) reads

1 - 1 1 .
1-N /sz W?Vngus Vi@ drydzs + B /{N2 0204, 05 (1) 05 drydze — B /5 n2p divy, ¢° dr1dz

1 - - 2N -
=5 /ﬁs N2 (W -V, )0 ¢° doydze + TN /ﬁe nEVf?;wegoE dzydzs (3.68)

JFR‘Z/~ n2Te(ex - ) dzydzo + | fi(er - ¢°) daides,
Qe

the formulation (3.66) reads

L/~ N2V 0° - Vi p° daydzy + —/ WY dridzs
o u (3.69)
=—— nZ(a° -V, 0% )Y drydes + ——— / n2rot,, (0°)y° dridze + / g° dzrdze,
Pr Jg < 1—-N Jg N Qe
and the formulation (3.67) reads reads
/ V). T% -V, 6% deidzs + k| T°¢° do
Qs rs
(3.70)
= —/N (@ -V, )T°¢° doidzs +D/~ Vo " -V, T°¢% daydzy + k | G7¢° do.
€ QE FT
By the unfolding change of variables (see [3], [34] for more details), we get
1 - -
ﬁn? /ﬁa (0° -V, )u®¢® daidze
772 = Ne
= —P—iﬂ - utRu’ mlgpdflfleQ + Pi’r < e 822’&,;{16 . gpdl‘leQ + /“5 ﬂ;ﬁzQﬁf . gpdl‘leQ)
n2e=! o Ne R R R
== / W°®a° - 0, pdridz + — / 0.,050° - pdxi1dz + / U50,,0° - pdxi1dz | + O,
Pr wXZ Pr wXZ wXZ

14
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where the operation @ is defined by (2.7) and O, tends to zero. With this and by applying the unfolding change
of variables to the rest of the terms in (3.68), we get

1 _ e 1 e
m wXZ’I]?FJ 282111 -8zl<pdz1dz+ m wxzaz2u -822@d$1d2
+— ne=1o, Do w1 derdz — L 7725—1]5? 0., p1 dr1dz — L / NP Ozy 2 dzrdz
Pr oJ><ZE ! Pr o.J><Z8 ' Pr wXxZ :
772571 = Ne 2
= 1t / a*®u° - 9, pdridz — — (/ 0,,050° - o dr1dz +/ N-050,,0%p dwldz) (3.71)
Pr wXZ Pr wXZ wXZ
2N 2N
+— 0,0 1 dr1dz — ——— n?e_l&z W o dr1dz
1-N wXZ : 1-N wXZ !
+Ra/ n21% (ey - @) dxydz + filer - ) dx1dz + O,
wXZ wXZ

with O, devoted to tend to zero.

Analogously, applying the unfolding change of variables to the equation (3.69), we get

4N
L/ 77?5_2@11135 0., ¥ dridz + L/ 02, W° 0,0 dxdz + —— / ngww dridz
wXZ w wXZ

Ny 1-N
M M
=—— n2e 150, 0 Y doydz — — 0150, dr1dz
Pr wxZ T Juxz
2N 2N (8:72)
+m " nte 10,05 drydz — 1N /wxz Ne 02 WS dz1d2
+/ g dridz + Ok,
wxZ
with O, devoted to tend to zero.
Finally, from (3.70), we deduce
5—2/ 0,,T° 0, ¢ dr1dz + 77;2/ 0., T° 0,6 dz,dz
wxZ wXZ
— o [ (0 V)T odnd: (373)
wXZ

+D/ v;ﬁws.vns,g(n;2T€)¢dz1dz+k/ G ¢drido + O..
wXZ

w><F1

where we use the operators V, . = (1.610,,0,,) and V- _ = (9., —n.e~'9z,) and O is devoted to tend to
Z€T0.

Here, we have used (3.22) and (3.29), which gives

1

k / T°¢° do| < C|IT°|| a(pyy < Cnee™ IV Tl o ey < CZe™2 =0,

Iy

and by the unfolding change of variables with respect to x1, the periodicity of h(z1) and G(z1), it holds

k/~ G°¢°do =k | G(z1/e)¢®do = / - G(z1)¢dxrdo + O,.
rs wxI'y

I
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4 Homogenized model in the critical case

It corresponds to the critical case when the thickness of the domain is proportional to the wavelength of the
roughness, with A the proportionality constant, that is 7. ~ ¢, with n./e = A\, 0 < A < +o0.

Let us introduce some notation which will be useful along this section. For a vectorial function v = (v1,v2) and
a scalar w, we introduce the operators Vy, Ay, divy and by

(VXV)Z'J = A&‘Zlvi, (V)\V)Lg = 3@% fori=1,2,
A\v =N v+d2v, Vyiw=(A\,w,0,w),
divav = A0, v1 + Dyva,  Viw® = (8,w, —A., w)" .

Next, we give some compactness results about the behavior of the sequences (ﬁs, we, 55, 2§, D5) and the related
unfolding functions (G°,we,T*, p§, p5) satisfying the a priori estimates given in Lemma 3.5, Corollary 3.7 and
Lemma 3.9 respectively.

Lemma 4.1. For a subsequence of e still denote by €, we have the following convergence results:

(i) (Velocity) There exist U = (Uy,Uz) € HY0, hmax; L*(w)?), with U = 0 on 23 = {0, hmax} and Uy = 0,
such that

U~ U  in HY(0, hmax; L2 (w)?), (4.74)
hnlax ~
Oz, / Ui(x1,22)dzy | =0 inw, (4.75)
0

and 0 = (G1,4g) € L*(w; Hy(Z))?, with 0 = 0 on zp = {0,h(21)} such that it hold [,a(x1,2)dz =

fohmax U(z1, 22) dzo with fz tia(x1, 2) dz = 0, and moreover
0 = in L2 (w; HY(Z)?), (4.76)

divpyi=0 inwx Z, (4.77)
Oz, (/ Q1 (x1, 2) dz) =0 nw. (4.78)
z

(ii) (Microrotation) There exist W € H'(0, hyax; L?(w)), with W =0 on zy = {0, hmax}, such that
We =W in H(0, hmax; L (w)), (4.79)

and W € L*(w; Hy(Z)), with w = 0 on zp = {0, h(21)} such that [,(v1,2)dz = fohmx W (x1,20) dz, and
moreover

W = in L} (w; HY(Z)). (4.80)
(iii) (Temperature) There exist @ € H (0, hpax; L*(w)), with 6 = 0 on 2, = {0}, such that
n=20° =0 in HY(0, hpay; L2 (w)), (4.81)

and T € L2(w; Hy(2)), with T =0 on 2z = {0}, such that [,T(z1,2)dz = fohm"“‘ 0(x1, ) dzy, and
moreover

2T =T in L*(w; HY(Z)). (4.82)
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(iv) (Pressure) There exist three functions p € Li(w) N H(w), independent of zo with p(i) = q;, i = —1/2,1/2,
Po € Lz(w;H#(Z’)) and p1 € L2(w;L2#(Z)) such that

nipg —p in H'(w), (4.83)
e 10, py — 0.,p+ 0,00 in L*(w; L*(Z")), n.p5 — P in L*(w; L2(2)). (4.84)

Proof. We will only give some remarks and, for more details, we refer the reader to Lemmas 5.2-i) and 5.4-1) in [3].

We start with the extension U°. Estimates (3.44) imply the existence of U € H'(0, huax; L*(w)?) such that
convergence (4.74) holds, and the continuity of the trace applications from the space of U such that ||U||2 and
0., U2 are bounded to L?(I'y) and to L?(I'y) implies U = 0 on I'; and Ty. Next, from the free divergence
condition div,, (fJE) = 0, it can be deduced that Us is independent of z,, which together with the boundary
conditions satisfied by Ug on zg = {0, Amax } implies that UQ = 0. Finally, from the free divergence condition and

the convergence (4.74) of Ue, it is straightforward the corresponding free divergence condition in a thin domain
given in (4.75).

Concerning °, estimates given in (3.57) imply the existence of @ € L?(w; H'(Z)?) such that convergence (4.76)
holds. It can be proved the Z’-periodicity of 4, and applying the unfolding change of variables to the free
divergence condition div,_ . = 0, passing to the limit, we get divergence condition (4.77). Finally, it can be
proved that [, G(zy,2)dz = foh“"‘"‘ U(x1, z3) dzo which together with U = 0 implies foh"‘a" Uy(1, 20) dzy = 0,
and together with property (4.75) implies the divergence condition given in (4.78).

We continue proving (ii). From estimates (3.45), convergence (4.79) and that W =0on 2z = {0, hymax } are

obtained straighfordward. The proofs of the convergence of W¢ and identity |, Lwdz = foh"““ W dz, are similar
to the ones of G°.

We continue with (#74). The proof is similar to (i¢), but we have to take into account estimates (3.46) and that
the dirichlet boundary condition for temperature is imposed on the bottom and not on the top.

We finish the proof with (iv). From estimates of p§ and 5§, and the classical compactness result for the unfolding
method for a bounded sequence in H!, we get convergences for (4.83) and (4.84);. Estimate for p$ implies
convergence (4.84)s. From the boundary conditions of p° on x1 = {—1/2,1/2}, the decomposition of the pressure
and the convergences of pj and p5, it holds the boundary conditions for p. Finally, since p° has mean value zero,
from the decomposition of the pressure, we have

Oz/N ngﬁs dmleQZ/h(xl/E)nfpgdxl—I—/N ngﬁi dxidzs.
£ w QE

2

Taking into account that h is z-periodic, the convergence of 12

g to p and that

<Cn. =0,

/~ ngﬁi dr1dzo

/ hdzl/ﬁdmlz(),

we get

and so that p has null mean value in w.
O

Using previous convergences, in the following theorem we give the two-pressured homogenized system satisfied
by (a,w, P, T).
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Theorem 4.2 (Limit unfolded problems). In the case ne =~ €, with n:/e = X, 0 < A < 400, then the functions
u,w, T and p given in Lemma 4.1 satisfy

o (0,p) € L2(w;H;&(Z)2) x (L3(w) N HY(w)) is the unique solution of the two-pressure homogenized Stokes

problem

1 R 1 . .
,mAAqu TVAq: (fl(xl)Prﬁxlp(xl)> e inwXZ,

divya mw X Z,

u
O, < U1 (1,2 )

/ odz =0 in w,
z

pli)=q i=-1/2,1/2,
G(x1,2) € L2(W;Li(2)).

0
0 onwx (Touly),
0 inw, (4.85)

o W€ L¥(w; H#(Z)) is the unique solution of the Laplace problem

—LAw =g(x1) nwXxZ,
. (4.86)
w=0 onwx (TuuTy),
o T € L2(w; H%&(Z)) is the unique solution of the nonlinear problem
—A\T =DV - VAT =0 inwxZ,
T=0 onz=wxly, (4.87)

Vol -n= kEG(z1) onw X Iy

Proof. We only have to prove (4.85)1, (4.86); and (4.87)1,3. The rest follows from Lemma 4.1. We divide the
proof in three steps, where we are going to pass to the limit in variational formulation (3.71)-(3.73), taking into
account that n./e = A, 0 < A < +00.

Step 1. To prove (4.85)1, we consider (3.71) with ¢ replaced by ¢° = (A(e/n:)p1,p2) with ¢ = (p1,¢2) €
D(w; CF(Z )2). This gives the following variational formulation:

1
m/ . nsf_lAazlai 821%01 d$1dz + m/ Z _26z1ﬂg 8,21(,02 d.’Ele
wX WX

1

er/ Z)‘(5/77€)amﬂ§ 02,01 dxlderiN/ 02, U5 0y, 02 dx1d2
w X

1 P 1 . 1 .
+?A(E/na)/ n2e 10,95 0z, p1 drrdz — Br ANp5 0, 1 dxrdz — ﬁ/ Nep; 0z, @2 dr1dz

wXZ T Juxz wXZ
2 -1

_nze e S N . e
Br /WZuE@)uE 0, ¢ dz1dz — P—T </wxzaz2u§u5 %) dmldz—i—/wxzug(?@uawe dacldz>

2N R 2N _ .
+m NeA(€ /)0, 0% p1 dwrdz — m/wxzﬁéf 102, 0° g daydz

+Ra/ UETE 2 dxldz+/ Me/ne) f1 1 dardz + O,
wxZ wXZ
(4.88)
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where O; is devoted to tends to zero when € — 0. Below, let us pass to the limit when £ tends to zero in each
term of (4.88):

e For the first fourth terms in the left-hand side of (4.88), taking into account convergence (4.76) and that
that . /e = A and A(e/n.) — 1, we get that

ﬁ /wXZ Nee A0, 45 0., o1 drydz + ﬁ /w><Z n2e 20,15 0., p2 dr1dz
1 . 1 .
+m /w><Z Ae/ne)0y, 07 02,01 derdz + TN /wxz 02, U5 0,y 02 dx1d2
converges to
;/ )\28Z1ﬁ5 -0, pdxidz + ;/ 0,,0° - 0,0 dzr1dz = #‘/ Vau - Viapdzidz.
1=N Joxz =N Juxz 1=N Juxz

e For the fifth to eighth terms in the left hand side of (4.88), taking into account that A(e/n.) — 1 and the
convergences (4.83) and (4.84), we have the following convergences

1 P 1 i )
Pj/\(e/ns)/wxznfe 10,95 1 derdz — ijw (02, + 02, p0) p1 dr1dz,

XZ
1//\A58 dxyd 1/A58 dridz — 1/ p1 divap drid
- . r1dz — — . r1dz = —— ivapdridz.
Pr).., NeP1 Oz, $1 A1 Pr wxzﬁe]ﬁ 2 P2 4T Pr w><Zp1 AP QT
e For the first three terms in the right-hand side of (4.88), by taking into account the estimates (3.57), we
get
nie”! fe s - 2_—1ne)2 2_ -1
S [ au 0,67 dnids| < O 6 B 10l e < Ce T 0,
wXZ
and

A (/ 8,850 - 5° dzlder/ ﬂ;@ZQﬁEQEdeldz>‘
Pr wXZ wXZ

< N[0 L2(wx 2)2 102, 0| L2 (wx 2)2 |0l Lo (wx 2)2
< Cne. — 0.
Then, we deduce that the convective terms satisfy
2.1

&/ R 8, 7% duydz — 2= / ., 0505 - &° dxlder/ 450,05 daidz | — 0.
Pr wXZ Pr wXZ wXZ

e For the fourth and fifth terms in the right-hand side of (4.88), by taking into account convergence (4.80),

we have
2N 2N

1-N s NeA(e/Me) 02,0 p1 dwrdz — m/ 2 nZe 0., gy dxrdz — 0.
wX w X

e For the sixth term in the right-hand side of (4.88), by taking into account convergence (4.82), we get

Ra/ n?TE podxidz — 0.
wXZ

e For the last term in the right-hand side of (4.88), by taking into account that A(e/n.) — 1, we get

/ Ae/ne) frerdeidz — f1p1dridz.
wXZ

wXZ
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Therefore, by previous convergences, and taking ¢ := po/A + p1 € L*(w; L% (Z)), we deduce that the limit
variational formulation is given by the following one
1

1
—_— V)\fl-V)\gOdlde—Ff/
Pr

_ 1 -
1=N Juxz wxzawlp(el 1) duydz — ﬁ/ Gdivapdridz

wXZ

(4.89)
= f1(e1-@)dxidz.

wXZ

By density, (4.89) holds for every function ¢ € L2(W;H;E(Z)2> and is equivalent to the system (4.85);. We
also remark that (4.89) admits a unique solution, and then the convergence is for the complete sequences of the
unknowns.

Step 2. Next, we prove (4.86);. Let us pass to the limit when € tends to zero in each term of the variational
formulation (3.72):

e For the first two terms in the left-hand side of (3.72), by using convergence (4.80) and 7./ — X, we get

L/ 77?672(921’@)6 0¥ dr1dz + L/ 02, W 0y, dx1dz — L Vaw -V dzdz.
wXZ wXZ wXZ

e For the third term in the left-hand side of (3.72), by using convergence (4.80), we have

AN

m WXZ’I]SUA]E’(/) d.Z'le — 0.

e For the first two terms in the right-hand side of (3.72), by using estimates (3.57) and (3.58), we get

M 1A N 1A N
’_Pr/ Z77§€ Y050, 0% drydz| < CnZe™ |u® || p2(wx 2)2 10200 L2 (wx 2) < O,
wX
M ~E ~E ‘e ~E
_Pi’/‘ nauza,mw ¢d$1d2‘ < 0776”11 ||L2(w><Z)2||azzw ||L2(w><Z) < Cne
wXZ
Thus, we get
M A R M . .
—ﬁ/wxznfa La50,, 0% drydz — ﬁ/wxzneugﬁzgwswdxldz — 0.
e For the third and fourth terms in the right-hand side of (3.72), by using estimates (3.57) and (3.58), we
get
2N 2_—1g ae 2_—1 e
1-N nee” 03¢ durdz| < OnZe™ (|05, 0% L2 wx 2)2 < Ce,
- wxZ
2N ~E ~e
TN N0z, 7Y dr1dz| < Cnel|02, 0% L2 (wx 2)2 < COne.
- wxZ
Thus, we have
2N

2N
2 —19 4 N
e 0,5 drydz — —— 0,05 dr1dz — 0.
1 N/X 2 L5 Y day N/X N0, UTY dxy

Then, from the above convergences, we get that the limit variational formulation for w is given by

L/ Vaw -V dridz = / g dridz. (4.90)
wXZ wXZ
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By density, (5.117) holds for every function ¢ in L?(w; H}(Z)) and is equivalent to problem (4.86). We remark
that (5.117) admits a unique solution, and then the complete sequence w® converges to the unique solution
w(zxy, 2).

Before passing to the next step, we need to prove that V,_.%° converges strongly to Vi in L?(w x Z)?. To do
this, we take @° as test function in (3.72) and @ in (5.117). Then, it is easy to prove that

1
lim |V, e |? doydz = —/ gwdridz = / |Vaw|? deydz
4 L wXZ wxXZ

e—0 WX

This together with the weak convergence of V,,_ -1° to Vi in L?(wx Z)?, it gives the desired strong convergence.

Step 3. To prove (4.87)1.4, we take into account that the variational formulation (3.73) can be written as follows

77?572 / 77;2821TE 0, ¢ dridz + 77;2 / 8Z2T5 0, dz1dz
WX Z w

X Z
:475/ (ﬁﬁ.vw)fqudxldz (4.91)
wXZ
+D Z Vi %V (072 T°) ¢ dwidz + k/ - G¢dzido + O,
wX wxI'y

where O, tends to zero. Below, we pass to the limit in every terms:

e For the first two terms in the left-hand side of (5.118), by using convergence (4.82), we get

ngg—z/ no20.,1° azlqbda:ldz—i—nE_Q/ 0.,1°0,,¢ durdz — VT - Vapdadz.
wXZ wXZ wXZ

e For the first term in the right-hand side of (5.118), by using estimates (3.57) and (3.59), we get

’—775 [ (59, 0) Fodoids| < Onlallisunzpl V. o 120) < O,
wxZ

so we have

—1e / (ﬁf : V,,E,S)i% dz1dz — 0.
wXZ

e For the second term in the right-hand side of (5.118), by using convergences (4.82) and the strong conver-
gence of v;aws to Vi, we get

D/ Vrjz_sysws : Vns,s(n£2ff)¢dx1dz — D/ Vﬁ(ﬁ) VT ¢ dzidz.
wXxXZ wXZ

Then, using previous convergences, we get that the limit variational formulation for T is given by

V,\T-V,\qﬁdxldz:D/ V§w~VATA¢dx1dz+k/  G(z1)¢dxdo. (4.92)
wXZ

wXZ wxI'y

By density, (4.92) holds for every function ¢ in L?(w; H. # (Y)) and is equivalent to problem (4.87). We remark that

(4.92) admits a unique solution, and then the complete sequence Te converges to the unique solution T(xl, z).

O

Finally, we give the main result concerning the homogenized flow.
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Theorem 4.3 (Main result for the critical case). Consider (U, W, é,ﬁ) given in Lemma 4.1. Let us define the
average velocity, microrotation and temperature respectively by

Pmax ~ hmax ~ Rmax -
U (zq) = / Ul(x1,29)dze, W (1) = / W(x1, 22) dze, T (1) = / 0(x1, z2) dzo.
0 0 0
We have the following:

o The average velocity is given by

1-N 1/2 .
U = ay q-1/2 — Q12 + PT/ [i©de), Us(z1) =0 inw, (4.93)
Pr —1/2

where ay € R is given by
i = / Vau () d,
z

with (u?, 7%) € H},(Z)* x L3,(Z) the solution of the local Stokes problem

bl bl ;
—Au” + V™ =e mn Z,
diviu =0 in Z,

ut =0 on 2y ={0,h(21)}, (4.94)

/ ull (2)dz = 0.
z

o The pressure p is given by

1/2 1 T
p(1) =q 172 — <Q1/2 —q1/2 +P7“/1/2 f1(6) df) (351 + 2) + Pr/1/2 f&)ds in w. (4.95)

e The average microrotation is given by

1
W (xq) = b,\Eg(xl) n w, (4.96)

where by € R is given by
b)\:/ IVaw? (2)|? dz,
z

with w € H;E(Z) the solution of the local Laplace problem

—Aw? =1 in Z, (4.97)
w =0 on ze = {0,h(z1)}. .
o The average temperature is given by
T (x1) = / T (z1,2)dz  in w, (4.98)
z

with T € L?(w; H;E(Z)) the unique solution of the nonlinear local problem

D
—ANTY — fg(ml)(Vﬁubl VT =0 in wxZ,
T =0 on wx fo,

VoT% - n=kG(z1) on wx I;.
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Proof. First, we proceed to eliminate the microscopic variable z in the effective linear problems (4.85) and (4.86).
To do that, we consider the following identification

a(z1,2) = (L= N) (file) = 400 Ple) ) 0(2), dlar.2) = Pr(fi(er) = $ode, Plan)) 7(2),

w(xy,2) =
where (ub, %) and w"! satisfies (4.94) and (4.97), respectively.

From the identities for velocity [, 1 (21, 2) dz = foh"“ax Uy (1, 22) dzy and [, iz dz = 0, and for the microrotation

Jyw(xr, 2)dz = foh"““" W (21, 22) dz given in Lemma 4.1, by linearity we deduce that U is given by

1 - .
U = (1= ) (o) = o 0ien) ) UF =0, in

and W is given by (4.96).
Next, the divergence condition with respect to the variable z; given in (4.75) together with the expression of

U gives that
Ui = ax(1 = N) (fi(21) = p;0up(21)) = C1, C1ER. (4.99)

Then, integrating with respecto to 1, and taking into account that p(—1/2) = g_1 2, it holds

B =i~ g O (mvg) o [ r@as

Finally, since p(1/2) = q1 /2, we deduce

ax(1— N 2
C = % <q—1/2 —q1/2 +P7“/1/2 f1(6) d§> :

This implies (4.95). Then, by using the expression of p, we deduce that the average velocity Uf** is given by (4.93).

Finally, the formula for 7*" follows from (4.93)3 and the identity | P T (z1,2)dz = foh‘“""‘ é(xl, 29) dzo by renaming
T =T,
O

5 Homogenized model in the subcritical case

It corresponds to the case when the wavelength of the roughness is much greater than the film thickness, i.e.,
Ne < €, which is equivalent to A = 0.

We start by giving some compactness results about the behavior of the extended sequences (U=, We, 6%, p5, 55)
and the related unfolding functions (G°, @, 7=, p§, p5) satisfying the a priori estimates given in Lemmas 3.5 and
Lemma 3.9 respectively.

Lemma 5.1. For a subsequence of € still denote by €, we have the following convergence results:
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(i) (Velocity) There exist U = (01,02) € HY(0, hax; L*(w)?), with U=0o0n2z = {0, hmax} and U, = 0,
such that

U~ U  in HY0, hyax; L2 (w)?), (5.100)

Amax ~
811 </ Ul(:rl,yg) dy2> =0 m w. (5101)
0

and @ = (1, tz) € H (0, h(21); L3 (w x Z)?), with =0 on 22 = {0, h(z1)} and Gy =0, such that it hold

Sz, 2)dz = fohm" U(x1, 22) dzy with [, t2(x1, 2) dz = 0, and moreover

af = in HY0,h(z1); L?(w x Z')?), (5.102)

h(z1)
9., / 1dzo | =0 inwxZ’, (5.103)
0

o, </Z iy (21, 2) dz) =0 inw. (5.104)

(ii) (Microrotation) There exist W € H'(0, hax; L*(w)), with W = 0 on zo = {0, hmax }, such that
We =W in HY(0, hmay; L (w)), (5.105)
and W € Hl(O,h(zl);Li(w x Z')), with w = 0 on zy = {0,h(z1)} such that it hold [,w(xy,z)dz =

I
fo "W (2, 22) dza, and moreover

W = in HY(0,h(z1); L2 (w x Z')). (5.106)
(iii) (Temperature) There exist 0 € H' (0, hmax; L?(w)), with @ = 0 on zy = {0}, such that
n720° — 0 in HY(0, hmax; L? (w)), (5.107)

and T € H'Y (0, h(z1); L (w x Z")), with T =0 on 2 = {0}, such that [, T(z1,2)dz = foh""‘“‘ (21, 22) dzs,
and moreover

=2 =T in HY(0,h(z1); L*(w x Z")). (5.108)

(iv) (Pressure) There exist three functions p € L3(w) N HY(w), independent of zp with with p(i) = q;, i =
—1/2,1/2, po € L*(w; H(Z")) and p1 € L*(w; L4 (Z)) such that

nipy —p in HY(w), (5.109)
e 10, py — 0.,p+ 0,00 in L*(w; L*(Z")), n.p5 —p1  in L*(w; L3(2)). (5.110)

Proof. Proof The proof of (%) is similar to the critical case, but we have to take into account that applying the
unfolded change of variables to the divergence condition div,,_(i.) = 0 and multiplying by 7., we get

%azlai +0.,05 = 0. (5.111)
Passing to the limit, since 1. < ¢, we get 0,,12 = 0, which means that 45 is independent of z3. Due to the

boundary conditions on the top and bottom, it holds that @iz = 0. Now, multiplying (5.111) by en- 1y with ¢
independent of zy and integrating by parts, we get

h(z1)
/ / 4§ dzo | 0z, pdx1dzr = 0.
wxZ' 0
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Passing to the limit and integrating by parts, we get (5.103). For more details, we refer the reader to the proof
of Lemmas 5.2-1) and 5.4-ii) in [3] (see also [34]). The proofs of (ii), (#i7) and (iv) are similar to the critical case,
so we omit it.

O
Using previous convergences, in the following theorem we give the two-pressured homogenized system satisfied
by (a,w, P, T).
Theorem 5.2 (Limit unfolded problems). In the case . < €, then the functions 4, W, T and p given in Lemma
5.1 satisfy
e (4,p) € HY(0,h(z1); Li (wx Z") x (LE(w) N HY (w)) with Gy = 0 is the unique solution of the two-pressure
homogenized reduced Stokes problem

1 . 1 . 1 N .
_magzul + ﬁahpo = fl(‘rl) - ﬁaﬂﬁp(‘%’l) inw X Z,

h(z1)
02, / U1dzo | =0 inwx 2,
0

ih =0 onwx (TouUTy), (5.112)
0

m w,

N=q i=-1/2,1/2,

o W€ L¥(w; H#(Z)) is the unique solution of the Laplace problem

—LI2 = g(z1) inwxZ,
o (5.113)
w=0 onwx (ToUTIYy),
o T e L2(w; H%&(Z)) is the unique solution of the nonlinear problem
3§2T =0 inwxZ,
T=0 onz=wxly, (5.114)
0., T =kG(z) onwxTy.

Proof. We divide the proof in three steps.

Step 1. To prove (5.112)1, we consider in (3.71) where ¢(2’,2) € D(w; C3(Z)?) with o = 0 in w x Z. This
gives the following variational formulation:

1 1
-~ ; n2e™20,, 15 0., 1 dridz + 1w / ; 02,07 04,01 dx1d2
w X w X
1 _ R 1 1
+ﬁ ; 17?5 18zlp8 p1dridz — B ; nfe 1p§ 0., 1 dr1dz
w X w X
7725_1 " (5.115)
= 1t / w5 0,, 1 dridz — — / 0., 05051 dzrdz + / 50,0591 dz1dz
Pr wXZ Pr wXZ wXZ
IN .
+— N0, W1 drrdz + fro1deidz + O,
1-N wXZ wXxZ
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where O; is devoted to tends to zero when € — 0. Below, let us pass to the limit when £ tends to zero in each
term of the previous variational formulation:

e For the first two terms in the left-hand side of (5.115), taking into account convergence (5.102) and that
ne/e — 0, we get that

1

TN /wXZ n2e 20,45 0., 01 dridz — 0,

1 R 1 A
m/wxzazzui 822§01 dm1dz — m/dxzazzul 822g01 d$1d2’

e For the third term on the left hand side of (5.115), taking into account that convergence of the pressures
(5.110) and 7. /e — 0, we have the following convergence s

1 _ e 1 - .
ﬁ/wxzn?&? 15211)0(,01 dridz — ﬁ/u;xz(ﬁxlp+821p0) p1dridz,

1

_FT /wxzngg_lﬁi azl ©®1 dridz — 0.

e For the first three terms in the right-hand side of (5.115), by taking into account the estimates (3.57), we
get

2. —1
’,755 ~AE ANE
R u5au50 dri1dz
Pr /w><Z 1 an

<n2e 00|72 (o 221102 @l Lo (wx 2)2 < CnZe™! = 0,

e < / 0., 0505 ¢y dwidz + / 450,15 1 dmldz')‘
Pr wXZ wXZ

< el[ 0% L2 (wx 2)2 102, 0| L2 (w22 | Pl Low (0 2)2

< Cn. — 0.

Then, we deduce that the convective terms satisfy

2.1
Tt / U050, 01 derdz — T (/ 0., 54501 dr1dz + / 150,05 01 dmldz) — 0.
Pr wxZ Pr wxZ wXxZ
e For the fourth term in the right-hand side of (5.115), by taking into account convergence (5.106), so we
have oN
m wxz?’]gazzw‘ggﬁl dl‘1d2 — 0.

Therefore, by previous convergences, we deduce that the limit variational formulation is given by the following
one

1 . 1 5 1 .
m/wxzazi,ul 822()01 d$1d2+P7r[JXZaxlp@1 d.’Ele-f—Pir/wxzazlpong dlL’le:/ fl ©1 dl’le

wXZ
(5.116)

By density, (5.116) holds for every function ¢ in the H?(0, h(zl);Li(w x Z')) and is equivalent to problem
(5.112);. We remark that (5.116) admits a unique solution, and then the complete sequences converge.

Step 2. Next, we prove that w satisfies problem (5.113). Below, let us pass to the limit when & tends to zero in
each term of the previous variational formulation (3.72):
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e For the first two terms in the left-hand side of (3.72), by using convergence (4.80) and 7. /e — 0, we get

L/ nte20,,0° 0,1 dr1dz — 0,
wXZ

L/ 02, W 0y, dx1dz — L/ 02,0 - 0,7 dz1dz,
wXZ w

XZ

and so,

L/ nte 20, 0° lewdxldz—f—L/ 0, 0° 8Z21/de1dz—>L/ 0,1 0,7 dwydz.
wXZ w

XZ wXZ

e For the third term of the left-hand side of (3.72), by using convergence (4.80), we have
4N

-~ N2 drydz — 0.

wXZ

e For the first two terms in the right-hand side of (3.72), by using estimates (3.57) and (3.58), we get

M 1. . SETTIN .
’_Pr/ nZe” 50, WY dardz| < CnZe” M| 2(wx 2)2 (|02 0% || L2 (wx 2) < Ces
wXZ
M ~E ~e i NE
~ B NeU502, WY dr1dz| < Cne||08 || L2 (wx 2)2 |02, 0% || L2 (wx 2) < One.
wxZ
Thus, we get
M N . M . .
B /wxzngs Y50, deydz — B /wxznaugazQwEw dx1dz — 0.
e For the third and fourth terms in the right-hand side of (3.72), by using estimates (3.57) and (3.58), we
get
2N 2 —1g e 2_—1 e
m n:€ 621U21/1d£€1d2 < 07]56 ||821u ||L2(u.1><Z)2 < 0775,
- wXxZ
IN . .
TN N0z, 1) dridz| < One |02, 0% || 2 (wx z)2 < Cne.
- wxZ
Thus, we have
2N 2N

1-N

7/ nPe 10,05 drydz — 7/ N:0.,05v drydz — 0.
wXZ 1 wXZ
Then, from the above convergences, we get that the limit variational formulation for w is given by

L/ 8Z2u§822@[1dx1dz:/ g dridz. (5.117)
wXZ wXZ

By density (5.117) holds for every function + in H'(w; L3 (w x Z')) and is equivalent to problem (5.113);. We
remark that (5.117) admits a unique solution, and then the complete sequence converges.

Step 3. Next, we prove that T satisfies problem (5.114). we take into account that the variational formulation
(3.73) can be written as follows

nte? / n=20,,1¢ 8., ¢ dr1dz 4+ n_ > / 0.,T° - 8,,¢ dr1dz
wXZ wXZ

= —ns/ (ﬁE-VnE,s)T€¢dm1dz (5.118)
wXZ

+D V#E,ewa-Vns,a(n;2fa)¢da:1dz+k/  Gédaido + O,

wXZ wxTI'y
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where we use the operators V,_. = (1.6710,,,0,,) and V- _ = (9,,, —n.e19,,). Below, we pass to the limit in

MNe €
every terms:

e For the first two terms in the left-hand side of (3.73), by using convergence (5.108) and 7. /e — 0, we get

77?5‘2/ nE_QQZITE 0., ¢ dridz — 0,
WX Z

no2 / 9.,T° 0.,¢ drdz — / 0., T 8., ¢ dx1dz,
wXZ wXZ
and so,

d,,T° 622¢dac1dz—>/ 0.,T 0., dxydz.

wXZ

77?6‘2/ nz20.,T° 5Z1¢dx1dz+n§2/
wXZ wXZ

e For the first term in the left-hand side of (3.73), by using estimates (3.57) and (3.59), we get

’_778/ (ﬁs : vng,e)T€¢dxle < CnaHﬁs‘IL2(w><Z)2”VnE,ETE”Lz(wa) < 0773,
wXZ

so we have

_775/ (flg . VnE,E)TE¢ dridz — 0.
wXZ

e For the second term in the right-hand side of (3.73), by using convergences (5.108), the strong convergence
of vmﬁf to (9.,,0) (it can be proved as in the critical case) and the weak convergence of V,,_ . (n-21*)

to (0,0,,T), we get
D \%

Ne €
wXZ

W -V, (72T%) b dardz — 0.

Then, using previous convergences, we get that the limit variational formulation for T is given by

/ 8Z2T8Z2¢dx1dz=k/  Gl21)ddardo. (5.119)
wXZ wxI'y

By density (4.92) holds for every function ¢ in H'(w; L (w x Z')). We remark that (4.92) admits a unique
solution, and then the complete sequence converges.

O

Finally, we give the main result concerning the homogenized flow.

Theorem 5.3 (Main result for the subcritical case). Consider (U, W,é,ﬁ) gwen in Lemma 5.1. Let us define
the average velocity, microrotation and temperature respectively by

hmax

hmax hmax _
U’“’(xl) = / U(IEl,ZQ)dZQ, Wav(Il) = W(Il,ZQ) dZQ, T(w(llil) = / 9(1‘1,22) dZQ.
0 0

0
We have the following:
e The average velocity is given by
1-N 1/2 .
Ut = ay dip-apt P A©de). UFT=0 i, (5.120)
Pr —1/2

where ag € R s given by

_L h? 2-hn? v h*(€)d B d 5.121
w=g5 ), W (2w [ @) ) (5121)
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o The pressure p is given by

1/2 1 T
p(r1) =q_1/2 — (q_1/2 —q2+ Pr/ f1(6) df) (:El + 2) + Pr/ f1(§)d¢  inw. (5.122)

—1/2 —1/2

e The average microrotation is given by

1
We(x1) = bofg(acl) inw, (5.123)
where by € R is given by
1 Uz
bo = 7/ h3(2’1) le. (5124)
12 ) 42
o The average temperature is given by
T = cok  in w, (5.125)
where ¢y € R is given by
1 12
Co — */ hQ(Zl)G(Zl) le. (5126)
2/ 1

Proof. First, we start with the velocity by proceeding to eliminate the microscopic variable z in the effective
linear problem (5.112). To do that, as in the critical case, we consider the following identification

@y (21,2) = —(1 = N) (fr(@1) — B85, B(21)) uPl(2),  pola1,2) = —Pr (fi(z1) — $700,0(x1)) 7 (2).

From the identities for velocity U = fohma" U, (21,29) dzg = fz @1 (x1,2) dz and Gy = 0 given in Lemma 5.1, by
linearity we deduce that U%’ is given by

1 =~ av :
U’ = —ag(1 — N) <f1(9c1) - Prawlp(asl)> Us® =0, inw. (5.127)

aoz/ul{l dz,
z

where (u®!, %) satisfies the following local reduced problem

with ag given by

—8Z2ubl + 0., =-1 inwxZ,

h(z1)
., / uldzy | =0 mwxZ,
0 (5.128)

w'=0 onwx (foufl),

Oz, (/ u dz) =0 inw.
z

Now, we observe that we can obtain more accurate expressions for ag, because problem (5.128) is an ordinary
differential equation with respect to the variable zo and it can be solved. Thus, from the boundary conditions
on the top and bottom, we get

1
ull(z) = 3 (14 0,7 (25 — h(21)22) . (5.129)
Taking into account that foh(zl) ubl(2) dzg = —h(z1)%(1 + 0., 7 (21))/12 and the expression of ag, we get
1
a0 =15 h3(21) (1 + 05,7 (21)) det, (5.130)
Z/
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where, by using (5.112),, then 7 € L, (Z’) /R is the solution of the second order ordinary differential equation
with respect to z; with periodic boundary conditions on Z’, given by

hB(Zl)aglﬂ'bl(Zl) — 3h2(2'1) dh (21)3zl7rbl(z1) = *3h2(21)572h1(21) n Z/,

dz (5.131)
7l (—1/2) = 7 (1/2).
Solving this equation, we obtain an expression for 7%, up to a constant,
1/2 B z1 .
™ (z1) = — / h3(€) d¢ / WA (E)dE+2 +1/2+C, CEeR, 2z €Z.
~1/2 ~1/2
This implies that
1/2 -1
0oy mth(z1) = — / R (&) d¢ ) hP(z)+1, = €Z,
—1/2
and so, from (5.130), we get
1 e 1/2 -1
ap = —— R3(z1) | 2 — A3 (21) / R3 (&) dé¢ dz;. (5.132)
12 ~1/2 —1/2

From condition (5.101), by taking into account the expression of U*” and the boundary conditions of p, we get
the expression for pressure p given in (5.122).

Finally, taking into account the expressions of (5.122), (5.127) and (5.132), then the average velocity can be
written as (5.120)-(5.121).

Next, we focus on the microrotation. We eliminate the microscopic variable z in the effective linear problem
(5.113). To do that, as in the critical case, we consider the following identification

g(‘rl)wbl(z)7

w(zry, 2) = T

where w® € H#(Z) is the solution of the local problem

2wl =—-1 in_Z ( )
. . 5.133
w=0 on FO @] Fl.

This implies that
1
w'(z) = —3 (25 — h(z1)22)

and taking into account that foh(zl) w® dzy = h3(z1)/12 and that W (z1) = [, dz, we get

g(x1) 1

w by = —
W L VT 12,

hS (Zl) le,

which is (5.123)-(5.124).

Finally, we obtain the expression of the average of the temperature. To do this, we solve the problem (5.114),
which gives the expression for T’

T(x1,2) = kG(z1)z2, nwx Z.
Taking into account that T%"(z1) = [, T dz, we easily get (5.125)-(5.126).
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