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In this paper, a new computational topological framework for hypergraph analysis and recognition 
is developed. “Topology provides scale” is the principle at the core of this set of algebraic 
topological tools, whose fundamental notion is that of a scale-space topological model (𝑠2-model). 
The scale of this parameterized sequence of algebraic hypergraphs, all having the same Euler-

Poincaré characteristic than the original hypergraph 𝐺, is provided by its relational topology 
in terms of evolution of incidence or adjacency connectivity maps. Its algebraic homological 
counterpart is again an 𝑠2-model, allowing the computation of new topological characteristics 
of 𝐺, which far exceeds current homological analytical techniques. Both scale-space algebraic 
dynamical systems are hypergraph isomorphic invariants. The hypergraph isomorphism problem 
is attacked here to demonstrate the power of the proposed framework, by proving the ability of 
𝑠2-models to differentiate challenging cases that are difficult or even infeasible for state-of-the-art 
practical polynomial solvers. The processing, analysis, classification and learning power of the 
𝑠2-model, at both combinatorial and algebraic levels, augurs positive prospects with respect to its 
application to physical, biological and social network analysis.

1. Introduction

Detection and understanding of topological features and invariants of relational objects (such as graphs and hypergraphs) have 
recently gained increasing attention in the analysis of a wide variety of processes that are modeled by networks. In a different but 
related subject, it is well-known that one way to endow an image with a topology is to embed it into a one-parameter family of images, 
known as a scale-space representation [1]. The main goal of this paper is to develop a powerful topological analysis and representation 
learning framework for hypergraphs, which allows to progress in hard problems like those of hypergraph isomorphism, classification, 
matching and learning. The idea here is to redefine the notion of hypergraph in such a way that they can be managed as true cellular 
structures and to appropriately mimic the aforementioned classical scale-space modus operandi for such generalized hypergraph 
structures. The resulting systems, called topological scale-space models or simply 𝑠2 -models, are non-negative integer sequences of 
algebraic hypergraphs such that all of them have the same Euler-Poincaré characteristic and consecutive scale levels are connected by 
algebraic transition functions. The topological scale is provided by the incidence or adjacency connectivity degree of the hypergraph 
we want to analyze.
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Working with 𝑠2-models having the same number of vertices and edges in each hypergraph, the incidence 𝑠2-models compile 
much more uncorrelated information than adjacency ones. New combinatorial and algebro-topological invariants based on this type 
of construction are discovered. The high number and low correlation of these topological characteristics lay the foundations for 
a deep and complete topological analysis of hypergraphs. We demonstrate that the topological scale-space models presented here 
are isomorphism-invariant and that they constitute a powerful strategy for attacking, in particular, the Graph (GI) and Hypergraph 
Isomorphism (HI) problems, clearly outperforming current isomorphism solvers.

The paper is organized as follows. An overview of the state of the art is given in Section 2. In Section 3, basic combinatorial 
and algebraic topological notions, algorithms and techniques are introduced. Section 4 is devoted to theoretically develop the scale-

space models of the proposed framework. Section 5 is dedicated to the homological information transfer. Experiments showing the 
applicability of the proposed framework are presented in Section 6. Conclusions are discussed in Section 7.

2. Related works

In the last century, the interest of the mathematical community to progress in the generation of solutions of topological nature 
to data science problems has enormously increased [2]. The adaptation of topological techniques of reconstruction and analysis to 
the study of data from real systems is commonly known as Topological Data Analysis (TDA). The ubiquitous preprocessing used 
in TDA consists of transforming any kind of data into a sequence of topological approximation spaces ruled by different kinds of 
scale. The subsequent process is to analyze this topological data by calculating some topological invariant or characteristic on it. 
Currently, the most used type of scale is a geometrical one provided by the notion of filtration and persistent homology (PH). The 
homology of successive stages of a filtration in a topological space is the most used topological feature implemented in the analysis 
[3]. The relational structures of graphs and hypergraphs have been studied using these PH tools [4], [5]. With respect to the graph 
and hypergraph isomorphism problem, several approaches have been developed. In [6] for instance, dynamical systems are used to 
tackle this problem. However, most competitive graph isomorphism/automorphism solvers like Nauty/Traces, Bliss, Saucy, Conauto, 
and Dejavu fall within the individualization-refinement framework [7]. These tools alternate color-refinement techniques (such as 
the Weisfeiler-Leman test [8]) with backtracking steps. In [9] the authors prove the suitability of TDA to differentiate isomorphic 
graphs, demonstrating that PH is at least as expressive as a corresponding Weisfeiler–Leman test for graph isomorphism. In [10] a 
new TDA framework is proposed, in which the scale is purely based on the intrinsic connectivity information of the hypergraph and 
therefore no filtration or clique identification is needed. Its applications on connectome analysis have been published in [11]. An 
extension of this framework as well as its usability in testing GI and HI is proposed here.

3. Preliminaries

This section is divided in three parts: firstly, the relational setting of the proposed framework will be introduced, followed by its 
cellular and algebraic topological settings. Let us first introduce some basic concepts that will be used throughout the paper. Sets are 
denoted here using curly braces { }. A multiset is an ordered pair (𝐴, 𝑚𝐴) where 𝐴 is the underlying set of the multiset, formed by its 
distinct elements, and 𝑚𝐴 ∶ 𝐴 → ℕ is the function giving the multiplicity, that is, the number of occurrences of the element 𝑎 in the 
multiset as the number 𝑚𝐴(𝑎). From now on, we use the additive notation 

∑𝑟

𝑖=1𝑚𝐴(𝑎𝑖) ⋅ 𝑎𝑖 to represent the multiset ({𝑎1, … , 𝑎𝑟}, 𝑚𝐴). 
Given a finite set 𝐴, the set 2𝐴 (resp. 2

𝐴

) is the power set (resp. power multiset) of 𝐴. Given a finite set 𝐴 = {𝑎1, … , 𝑎𝑟}, the number 
𝑟 of elements of 𝐴 is denoted by |𝐴|. 𝔽 [𝐴] denotes the vector space of finite linear combinations of elements of 𝐴 with coefficients 
in some ring 𝔽 . Given a function ℎ ∶ 𝐴 → 𝐵 between two 𝐴 and 𝐵, the 𝔽 -linearization of ℎ, 𝔽 [ℎ] ∶ 𝔽 [𝐴] → 𝔽 [𝐵], is the linear map 
canonically associated to ℎ.

3.1. Relational setting

Classically, hypergraphs are defined as data capturing multiway (adjacency) relationships (edges) within a group of entities 
(vertices) [12]. We handle here a topological incidence version of the hypergraph combinatorial notion, in which edges are as 
well considered as primary entities (which are not necessarily identified with subsets of vertices) and potential multiple degrees of 
“contact” between entities are contemplated [13]. Note that the definition we plan to use throughout this paper generalizes the most 
commonly used one [14].

Definition 1. A (cellular) hypergraph is a tuple 𝐺 = ((𝑉 , 𝓁𝑉 ), (𝐸, 𝓁𝐸), ), where:

• The set of vertices 𝑉 and edges 𝐸 of a hypergraph are considered to be ordered by enumeration maps 𝓁𝑉 ∶ 𝑉 →ℕ and 𝓁𝐸 ∶𝐸 →ℕ
respectively;

• 𝐺 ∶ 𝑉 ×𝐸 →ℕ is the vertex-edge incidence map of 𝐺.

The degree of a vertex 𝑣0 ∈ 𝑉 is defined by |𝑣0| ∶= |{𝑒 ∈ 𝐸∕(𝑣0, 𝑒) ≠ 0}|. The degree of contact of a vertex 𝑣0 ∈ 𝑉 is defined by 
|𝑣0|𝑐 ∶=

∑
𝑒∈𝐸 (𝑣0, 𝑒). Analogously, the respective notions of degree and degree of contact for an edge can be defined. The following 

identities are straightforwardly proven: (a) 
∑

𝑣∈𝑉 |𝑣| =∑
𝑒∈𝐸 |𝑒| and (b) 

∑
𝑣∈𝑉 |𝑣|𝑐 =

∑
𝑒∈𝐸 |𝑒|𝑐 . An empty hypergraph 𝐺 = (𝑉 , 𝐸, 𝐺)

satisfies that 𝐺(𝑣, 𝑒) = 0, ∀(𝑣, 𝑒) ∈ 𝑉 ×𝐸. A classical graph structure is here understood as an hypergraph, such that the degree and 
2

contact degree of each edge are both 2.
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Fig. 1. A simple cellular hypergraph 𝐺, having |𝑉 | = 6 and |𝐸| = 5, represented under three different formats. From left to right: relational description, connectivity 
representation and vertex-edge incidence matrix.

Fig. 2. The connectivity graph 𝑔(𝐺) and hypergraph of minimum connectivity 𝑚(𝐺) of the hypergraph 𝐺 in Fig. 1. |𝑉 | = 11, |𝐸| = 9 in 𝑔(𝐺) and |𝑉 | = 6, |𝐸| = 5
in 𝑚(𝐺) (as in the original hypergraph 𝐺).

Associated to any non-empty hypergraph 𝐺 = (𝑉 , 𝐸, 𝐺), there are two key combinatorial structures: (a) its hypergraph of minimum 
connectivity 𝑚(𝐺) = (𝑉 , 𝐸, 𝑚(𝐺)), with all non-null degrees of contact of 𝑚(𝐺) equal to one. Formally, if 𝐺(𝑣, 𝑒) = 𝑛0, with 𝑛0 ∈ℕ, 
for a pair (𝑣, 𝑒) ∈ 𝑉 ×𝐸, then 𝑚(𝐺)(𝑣, 𝑒) = 1; (b) its (edge-weighted) connectivity graph 𝑔(𝐺) = (𝑉

⋃
𝐸, 𝑉 ×𝐸, 𝑔(𝐺)), whose incidence 

map satisfies that 𝑔(𝐺)(𝑎, (𝑣, 𝑒)) = 1 if and only if 𝐺(𝑣, 𝑒) ≠ 0 and 𝑎 = 𝑣 or 𝑎 = 𝑒, ∀𝑎, 𝑣, 𝑒 ∈ 𝑉
⋃

𝐸. The weight on the edge (𝑣, 𝑒) is 
precisely 𝐺(𝑣, 𝑒).

A non-empty hypergraph 𝐺 = ((𝑉 , 𝓁𝑉 ), (𝐸, 𝓁𝐸 ), 𝐺) can also be identified: (a) by using a boundary combinatorial map 𝜕𝐺 ∶𝐸 → 2
𝑉

defined by 𝜕𝐺(𝑒) ∶=
∑

𝑛𝑣 ⋅ 𝑣, s.t. 𝐺(𝑣, 𝑒) = 𝑛𝑣 ≠ 0; or (b) by using a vertex-edge incidence matrix 𝑀𝑣𝑒(𝐺) of dimensions |𝑉 | × |𝐸| with 
𝑀𝑣𝑒(𝐺)(𝑖, 𝑗) = 𝐺(𝑣, 𝑒) ∈ ℕ if 𝓁𝑉 (𝑖) = 𝑣; 𝓁𝐸(𝑗) = 𝑒, with 1 ≤ 𝑖 ≤ |𝑉 |, 1 ≤ 𝑗 ≤ |𝐸|. The different columns of 𝑀𝑣𝑒(𝐺) determine the 
multiset action of 𝜕 over the edges of 𝐺. Reciprocally, given a matrix 𝑀 ∈ ℕ

|𝑉 |×|𝐸|
, there is a hypergraph with |𝑉 | vertices and |𝐸|

edges having 𝑀 as its vertex-edge incidence matrix.

Fig. 1 shows three possible descriptions of a simple cellular hypergraph 𝐺: relational description, connectivity representation and 
vertex-edge incidence matrix. Its connectivity graph 𝑔(𝐺) and hypergraph of minimum connectivity 𝑚(𝐺) are depicted in Fig. 2.

From now on, we intentionally omit the enumeration functions and the function’s dependency on 𝐺, unless it is strictly necessary. 
The dual concepts of edge-vertex incidence relation 𝑑𝑢𝑎𝑙 , coboundary map 𝛿 ∶ 𝑉 → 2

𝐸
and edge-vertex incidence matrix 𝑀𝑒𝑣 can 

be straightforwardly constructed. Note that 𝑀𝑒𝑣 coincides with the transpose matrix 𝑀𝑇
𝑣𝑒

of the vertex-edge incidence matrix. The 
notion of hypergraph map using the aforementioned notation is now defined.

Definition 2. Let 𝑓 = (𝑓0, 𝑓1) ∶𝐺 = (𝑉 , 𝐸, ) →𝐺′ = (𝑉 ′, 𝐸′, ′) be a pair of maps 𝑓0 ∶ 𝑉 → 𝑉 ′ and 𝑓1 ∶𝐸 →𝐸′. 𝑓 is a hypergraph 
map if the following condition holds: 0 ≤ (𝑣, 𝑒) ≤ ′(𝑓0(𝑣), 𝑓1(𝑒)) ∀(𝑣, 𝑒) ∈ 𝑉 ×𝐸.

Given a sub-hypergraph 𝐺′ = (𝑉 ′, 𝐸′, ′) of 𝐺 (that means that 𝑉 ′ ⊂ 𝑉 , 𝐸′ ⊂ 𝐸 and (𝑣′, 𝑒′) ≥ ′(𝑣′, 𝑒′) ∀𝑣′, 𝑒′ ∈ 𝑉 ′ × 𝐸′) the 
inclusion map 𝑖𝑛𝑐 ∶𝐺′ →𝐺 is a hypergraph map.

Definition 3. A hypergraph isomorphism 𝐺 ≃ 𝐺′ between 𝐺 = (𝑉 , 𝐸, ) and 𝐺′ = (𝑉 ′, 𝐸′, ′) is a bijective hypergraph map 𝑓 =
(𝑓0, 𝑓1) ∶𝐺→𝐺′ and (𝑣, 𝑒) = ′(𝑓0(𝑣), 𝑓1(𝑒)), ∀𝑣 ∈ 𝑉 and ∀𝑒 ∈𝐸.

As usual in graph theory, given a hypergraph 𝐺 = (𝑉 , 𝐸, 𝑀𝑣𝑒) defined by its vertex-edge incidence matrix, permutations of rows 
or columns in 𝑀𝑣𝑒 generate hypergraphs that are isomorphic to 𝐺. The following result can be now deduced:

Proposition 1. Given a hypergraph 𝐺, its associated hypergraph of minimum connectivity 𝑚(𝐺) and its connectivity graph 𝑔(𝐺) are 
3

isomorphism invariants.
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At this point, considering the relational setting, the set of non-negative integers ℕ is employed without any algebraic operation, and 
the composition of hypergraph maps is missing. Subsection 3.3 provides an algebraic framework to properly work with hypergraphs 
and 𝑠2-models.

3.2. Celullar setting

Let us now recall the simplest topological characteristics of a hypergraph 𝐺 = (𝑉 , 𝐸, ), that is the Euler-Poincaré characteristic 
𝜒(𝐺) = |𝑉 | − |𝐸|. Due to Proposition 1, the Euler-Poincaré characteristic of the connectivity graph 𝜒(𝑔(𝐺)) = |𝑉 | + |𝐸| − |{(𝑣, 𝑒) ∈
𝑉 × 𝐸 (𝑣, 𝑒) ≠ 0}| is as well a hypergraph index of 𝐺 that is invariant up to isomorphism. For instance, for the hypergraph 𝐺 in 
Fig. 1, 𝜒(𝐺) = 𝜒(𝑚(𝐺)) = 6 − 5 = 1 and 𝜒(𝑔(𝐺)) = 11 − 9 = 2 (see Fig. 2).

As we are planning here to construct a topological analytical framework, relational hypergraphs need to be considered as true 
topological spaces and must be embedded within abstract cell complex structures (ACCs) [15]. Let us recall that an ACC is a classical 
structure consisting of a dimension-graded set of cells endowed with a transitive bounding relation connecting two cells of different 
dimensions. The most natural and simple method for a non-empty hypergraph 𝐺 = (𝑉 , 𝐸, ) to become an ACC (called 1D-cellulation) 
is to be used here. This ACC description (slightly different from the classical one) is simply given by 𝐴𝐶𝐶(𝐺) = (𝑉

⋃
𝐸, 𝑑𝑖𝑚, ), with 

dimension function 𝑑𝑖𝑚 ∶ 𝑉
⋃

𝐸 → {0, 1} defined by 𝑑𝑖𝑚(𝑣) = 0, ∀𝑣 ∈ 𝑉 and 𝑑𝑖𝑚(𝑒) = 1, ∀𝑒 ∈𝐸. Informally speaking, we only need 
to incorporate a dimension function to the hypergraph representation. From now on, any hypergraph 𝐺 is topologically analyzed 
by exclusively using its associated 1𝐷-cellulation and we confuse 𝐺 and 𝐴𝐶𝐶(𝐺). This choice is mainly motivated by the fact that 
a hypergraph can be identified with this cellular version in the sense that both use the same structural space (set of vertices and 
edges) and the notions between hypergraphs can be automatically transferred to their homologous notions in the context of 1D cell 
complexes. A wide variety of cellulation schemes based on the stronger notion of simplicial complex have been extensively treated in 
the literature: flag complex, neighborhood complexes, clique-based complexes, Whitney complex, etc. [16]. Let us limit to say that 
the framework developed here runs correctly for any kind of hypergraph’s cellulation.

3.3. Algebraic setting

We opt here for the hypergraph description 𝐺 = (𝑉 , 𝐸, 𝜕) in terms of the boundary function. Given hypergraph 𝐺 = (𝑉 , 𝐸, 𝜕), it is 
possible to construct an algebraic version of its 1D-cellulation in terms of the classical notion of chain complex [17].

First of all, let us embed the set of non-negative integer numbers ℕ into a ring algebraic structure (𝔽 , +𝔽 , ⋅𝔽 , 0𝔽 , 1𝔽 ). More formally, 
we deal here with a commutative Euclidean ring 𝔽 equipped with a map 𝜆𝔽 ∶ 𝔽 → ℕ, called euclidean or norm function, assigning a 
non-negative integer to each element of the ring, such that for each 𝑎, 𝑏 ∈ 𝔽 , 𝑏 ≠ 0𝔽 , there exist 𝑞, 𝑟 ∈ 𝔽 such that 𝑎 = 𝑞 ⋅𝔽 𝑏 +𝔽 𝑟, with 
𝜆𝔽 (𝑟) < 𝜆𝔽 (𝑏). Besides, it is well-known that there is a unique semiring map 𝜗𝔽 ∶ℕ→ 𝔽 determined by 𝜗𝔽 (1) = 1𝔽 . From now on, 𝔽 is 
chosen to be either a field or the ring of integer numbers.

A chain complex 𝐶∗(𝐺, 𝔽 ) associated to a hypergraph 𝐺 = (𝑉 , 𝐸, 𝜕) is a graded vector space over the ring 𝔽 (also called graded 
module in homological algebra) endowed with an algebraic boundary map. Formally, it is a family {𝐶𝑞 (𝐺, 𝔽 ), 𝔽𝑞[𝜕]}𝑞=0,1 where: (a) 
the sub-index 𝑞 represents dimension and 𝐶0(𝐺, 𝔽 ) = 𝔽 [𝑉 ], 𝐶1(𝐺, 𝔽 ) = 𝔽 [𝐸]; (b) the linear map 𝔽 [𝜕] = (𝔽0[𝜕], 𝔽1[𝜕]) ∶ 𝐶∗(𝐺, 𝔽 ) →
𝐶∗−1(𝐺, 𝔽 ), called differential of 𝐺 is defined by: 𝔽0[𝜕](𝑣) ∶= 0𝐹 ∀𝑣 ∈ 𝑉 (note that 𝐶−1(𝐺, 𝔽 ) is defined by the trivial or zero group) 
and 𝔽1[𝜕](𝑒) = 𝔽 [𝜕(𝑒)] = 𝔽 [

∑
𝑖 𝑛𝑣𝑖 ⋅ 𝑣𝑖] ∶=

∑
𝑖 𝜗𝔽 (𝑛𝑣𝑖 ) ⋅ 𝑣𝑖, ∀𝑒 ∈𝐸.

The elements of 𝐶𝑞(𝐺, 𝔽 ) are called 𝑞-chains, 𝑞 = 0, 1. A 𝑞-chain 𝑎 is called a 𝑞-cycle if 𝔽𝑞[𝜕](𝑎) = 0. If 𝑎 = 𝔽𝑞+1[𝜕](𝑏), for some 
𝑏 ∈ 𝐶𝑞+1(𝐺, 𝔽 ), then 𝑎 is called a 𝑞-boundary. Denote the 𝑞-cycles and 𝑞-boundaries vector spaces by 𝑍𝑞 and 𝐵𝑞 , respectively. We say 
that two 𝑞-cycles are homologous if 𝑎 − 𝑏 is a 𝑞-boundary. Define the 𝑞𝑡ℎ homology vector space 𝑞(𝐺, 𝔽 ) to be the quotient 𝑍𝑞∕𝐵𝑞 . 
For all 𝑞 = 0, 1, there exists a finite number of elements of 𝐶𝑞(𝐺, 𝔽 ) from which we can deduce all the elements of 𝑞(𝐺, 𝔽 ). Those 
elements are called homology generators of dimension 𝑞. We say that a representative q–cycle 𝑎 of a homology generator 𝛼 of 𝑞(𝐺, 𝔽 ) if 
𝛼 = 𝑎 +𝐵𝑞 . In this case, 𝛼 is also denoted by [𝑎] . Analogously, it is possible to define the codifferential {𝔽𝑞[𝛿]}𝑞=0,1 from 𝐶∗(𝐺, 𝔽 ) to 
𝐶∗+1(𝐺, 𝔽 ) and the cochain complex associated to 𝐺.

A chain map 𝑓 = (𝑓0, 𝑓1) ∶ 𝐶∗(𝐺, 𝔽 ) → 𝐶∗(𝐺′, 𝔽 ) between two chain complexes 𝐶∗(𝐺, 𝔽 ) and 𝐶∗(𝐺′, 𝔽 ) associated to their respective 
hypergraphs 𝐺 = (𝑉 , 𝐸, 𝜕) and 𝐺′ = (𝑉 ′, 𝐸′, 𝜕′) is a linear map such that 𝑓0 𝔽1[𝜕] = 𝔽1[𝜕′] 𝑓1. It induces a well-defined map on 
homology [𝑓 ] ∶∗(𝐺, 𝔽 ) →∗(𝐺, 𝔽 ) where [𝑓 ] ([𝑎]) = [𝑓𝑞(𝑎)], ∀𝑎 ∈ 𝐶𝑞(𝐺, 𝔽 ), 𝑞 = 0, 1.

It is straightforward to show that the 𝔽 -linearization of an isomorphism of hypergraphs 𝑓 = (𝑓0, 𝑓1) ∶ (𝑉 , 𝐸, 𝜕) ≃ (𝑉 ′, 𝐸′, 𝜕′) is a 
chain isomorphism and a cochain isomorphism.

As an example of the different settings that are considered here, matrix and connectivity representations of the relational, cellular 
and algebraic settings for the hypergraph in Fig. 1 are shown in Fig. 3. Note that for instance, 𝜕(𝑣5) = 2 ⋅ 𝑣3 + 𝑣4 + 𝑣5 in the relational 
setting, and 𝜕(𝑣5) = 𝑣4 + 𝑣5 in the algebraic one considering coefficients in the integers modulo 2, that is 𝔽 =ℤ2.

The following well known result can now be deduced:

Proposition 2. Given a hypergraph 𝐺 = (𝑉 , 𝐸, 𝜕), its chain complex 𝐶∗(𝐺, 𝔽 ) with coefficients in 𝔽 as well as its homology are hypergraph 
isomorphism invariants.

The chain complex 𝐶∗(𝐺) of a hypergraph 𝐺 = (𝑉 , 𝐸, 𝜕) can be seen as an algebraic hypergraph of the kind (𝑉 , 𝐸̃, 𝔽 [𝜕]), where 
𝑉 and 𝐸̃ are basis of the vector spaces 𝔽 [𝑉 ] and 𝔽 [𝐸], respectively. A particular relevant choice for 𝑉 and 𝐸̃ are the combinatorial 
4

basis 𝑉 and 𝐸. In what follows, chain complexes will be described in these terms.



Applied Mathematics and Computation 485 (2025) 128989H. Molina-Abril, M.J. Morón-Fernández, M. Benito-Marimón et al.

Fig. 3. Matrix and connectivity representations of the relational (left), cellular (center) and algebraic (right) settings for the hypergraph in Fig. 1, 𝐺 = (𝑉 , 𝐸, ) =
(𝑉 , 𝐸, 𝜕) = (𝑉 , 𝐸, 𝑀𝑣𝑒). The ground field 𝔽 chosen in this example for the algebraic setting is the finite field ℤ2 .

𝐺(1) = (𝑉 ,𝐸, 𝜕) 𝐺(2) = (𝑉 (2),𝐸(2), 𝜕(2)) ⋯
𝜌+(1)

𝜌−(2)

𝜌+(2)

𝜌−(3)

Fig. 4. Diagram showing the relations among the first two algebraic hypergraph components within a 𝑠2 -model 𝑆2({𝑉 (𝑠), 𝐸(𝑠), 𝜕(𝑠), 𝜌±(𝑠)}𝑠≥1) of a hypergraph 
𝐺 = (𝑉 , 𝐸, 𝜕).

4. Scale-space models of a hypergraph

In [10] an algebraic topological model of a geometric 𝑛-dimensional cell complex based on topological scale is presented. In 
this section, we design an improved and much more general scale-space model adapted to 1D-cellulations of hypergraphs, allowing 
a rich structural and dynamical topological analysis. In what follows, we omit the dependency with regards to 𝔽 when describing 
(co)differentials, chain complexes and scale-space representations. In particular, the linear maps 𝔽 [𝜕] and 𝔽 [𝛿]) are simply expressed 
by 𝜕 and 𝛿, respectively. Let us now define the main representational tool of this new TDA framework.

Definition 4. Let 𝐺 = (𝑉 , 𝐸, 𝜕) be a non-empty hypergraph. A scale-space model (𝑠2-model) 𝑆2({𝑉 (𝑠), 𝐸(𝑠), 𝜕(𝑠), 𝜌±(𝑠)}𝑠≥1) of 𝐺 is 
a one-parameter family of chain complexes 𝐺(𝑠) = (𝑉 (𝑠), 𝐸(𝑠), 𝜕(𝑠)) endowed with transition functions 𝜌+(𝑠) ∶ 𝐺(𝑠) → 𝐺(𝑠 + 1) and 
𝜌−(𝑠) ∶𝐺(𝑠) →𝐺(𝑠 − 1), ∀𝑠 ∈ℕ. More specifically, the following conditions must be satisfied for each scale 𝑠 of the model:

𝑆2.1. [Original hypergraph as initial state]: 𝐺(1) = 𝐶∗(𝐺) and 𝜌−(1) from 𝐶∗(𝐺) to the trivial vector space with one element is the 
unique admissible linear map between them;

𝑆2.2. [Preservation of the Euler-Poincaré characteristic]: |𝑉 (𝑠)| ⧵ |𝐸(𝑠)| = 𝜒(𝐺), being |𝑉 (𝑠)| and |𝐸(𝑠)| their respective basis dimen-

sions.

𝑆2.3. [Algebraic Hypergraph Components]: The map 𝜕(𝑠) ∶𝐺(𝑠) →𝐺(𝑠) is a differential for 𝐺(𝑠). The differential 𝜕(1) agrees with 𝜕;

𝑆2.4. [Chain compatibility of the transition maps]: The transition maps 𝜌±(𝑠) ∶𝐺(𝑠) →𝐺(𝑠 ± 1) are chain maps.

𝑆2.5: [Invariance of transition map compositions]: ∀𝑚, 𝑛 ≥ 1, the composition map (if doable) 𝜌−(𝑠 + 𝑛 −𝑚 +1) … 𝜌−(𝑠 + 𝑛)𝜌+(𝑠 + 𝑛 −
1) … 𝜌+(𝑠) ∶𝐺(𝑠) →𝐺(𝑠 + 𝑛 −𝑚) coincides with any other possible composition map from 𝐺(𝑠) to 𝐺(𝑠 + 𝑛 −𝑚) of 𝑛 maps 𝜌+(𝑠) and 
𝑚 maps 𝜌−(𝑠).

Summing up, a 𝑠2-model associated to a hypergraph 𝐺 is then a sequence of algebraic hypergraphs having the same Euler-Poincaré 
characteristic than 𝐺 and connected by appropriate transition maps. In homological algebra terms, an algebraic topological 𝑠2 -model is 
simply a particular direct-inverse system over the positive integers of 1-dimensional chain complexes [18]. From a calculus viewpoint, 
it can be seen as a special type of discrete algebraic dynamical system of hypergraphs.

A truncated 𝑠2-model containing the first 𝐤 ≥ 1 algebraic hypergraphs 𝐺(𝑠) and their corresponding transition maps is denoted by 
𝑆2
𝑘
({𝑉 (𝑠), 𝐸(𝑠), 𝜕(𝑠), 𝜌±(𝑠)}). Fig. 4 shows a diagram representing the first two levels of the 𝑠2-model for a hypergraph 𝐺 = (𝑉 , 𝐸, 𝜕).
Applicable choices for the linear transition functions in order that the [𝑆2 .4] condition holds can be: (a) (𝜌+(𝑠), 𝜌−(𝑠 + 1)) =

(𝑓 (𝑠), 𝑓−1(𝑠)), where 𝑓 (𝑠) ∶ 𝐺(𝑠) → 𝐺(𝑠 + 1) is a chain isomorphism, ∀𝑠 ≥ 1; (b) if 𝐺(𝑠) = 𝐺(1) ∀𝑠 ≥ 1, (𝜌+(𝑠), 𝜌−(𝑠 + 1)) = (𝑓, 𝑓 ), 
∀𝑠 ≥ 1, being 𝑓 ∶𝐺(1) →𝐺(1) a chain map.

Let us emphasize that it is also possible to see an 𝑠2-model in combinatorial terms, thanks to the euclidean function 𝜆𝔽 ∶ 𝔽 →
5

ℕ and the semiring map 𝜗𝔽 ∶ ℕ → 𝔽 . For instance, if 𝔽 is a field, the resulting combinatorial scale-space system of an 𝑠2 -model 
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𝑆2({𝑉 (𝑠), 𝐸(𝑠), 𝜕(𝑠), 𝜌+(𝑠)}𝑠≥1) is the sequence of the minimum connectivity hypergraphs of the components, having as transition 
maps the compositions 𝜆𝜌+(𝑠)𝜗.

Definition 5. Let 𝐺 = (𝑉 , 𝐸, 𝜕) and 𝐺′ = (𝑉 ′, 𝐸′, 𝜕′) be two non-empty hypergraphs. Let 𝑆2({𝑉 (𝑠), 𝐸(𝑠), 𝜕(𝑠), 𝜌±(𝑠)}𝑠≥1) and 
𝑆2({𝑉 ′(𝑠), 𝐸′(𝑠), 𝜕′(𝑠), 𝜌′±(𝑠)}𝑠≥1) be two 𝑠2-models respectively associated to them. A scale-space map (𝑠2-map) {𝑓 (𝑠)}𝑠≥1 =
{(𝑓0(𝑠), 𝑓1(𝑠))}𝑠≥1 ∶ 𝑆2({𝑉 (𝑠), 𝐸(𝑠), 𝜕(𝑠), 𝜌±(𝑠)}𝑠≥1) → 𝑆2({𝑉 ′(𝑠), 𝐸′(𝑠), 𝜕′(𝑠), 𝜌′±(𝑠)}𝑠≥1) is the one that satisfies:

(a) [Compatibility with boundary functions] Each pair (𝑓0(𝑠), 𝑓1(𝑠)) ∶𝐺(𝑠) →𝐺′(𝑠) is a chain map;

(b) [Compatibility with transition functions] 𝑓 (𝑠 ± 1)𝜌±(𝑠) = 𝜌′±(𝑠 ± 1)𝑓 (𝑠), ∀𝑠 ≥ 1.

Note that due to the fact that the map 𝑓 (0) does not exist, we consider that the condition 𝑓 (0)𝜌−(1) = 𝜌−1𝑓 (1) trivially holds. If 
each 𝑓 (𝑠) component map is bijective and its inverse is as well a chain map, then both models are 𝑠2-isomorphic via {𝑓 (𝑠)}𝑠≥1.

Definition 6. Being 𝑆2(𝑉 , 𝐸, {𝜕(𝑠), 𝜌±(𝑠)}𝑠) and 𝑆2(𝑉 ′, 𝐸′, {𝜕′, 𝜌′±(𝑠)}𝑠) two 𝑠2-models associated to 𝐺 = (𝑉 , 𝐸, 𝜕) and 𝐺′ =
(𝑉 ′, 𝐸′, 𝜕′) such that 𝑉 (𝑠) = 𝑉 , 𝐸(𝑠) = 𝐸 and respectively 𝑉 ′(𝑠) = 𝑉 ′, 𝐸′(𝑠) = 𝐸, ∀𝑠 ≥ 1. Associated to a hypergraph map 
𝑓 = (𝑓0, 𝑓1) ∶ 𝐺 = (𝑉 , 𝐸, 𝜕) → 𝐺′ = (𝑉 ′, 𝐸′, 𝜕′), the canonical map 𝑓𝑐 ∶= {𝑓𝑐 (𝑠)}𝑠≥1 = {𝑓𝑐

0 (𝑠), 𝑓
𝑐
1 (𝑠))}𝑠≥1 ∶ 𝑆2(𝑉 , 𝐸, {𝜕(𝑠), 𝜌±(𝑠)}𝑠) →

𝑆2(𝑉 ′, 𝐸′, {𝜕′(𝑠), 𝜌′±(𝑠)}𝑠) is the map satisfying that (𝑓𝑐
0 (𝑠), 𝑓

𝑐
1 (𝑠)) ∶𝐺(𝑠) →𝐺′(𝑠) agrees with the 𝔽 -linearization of the original map 

(𝑓0, 𝑓1) = (𝑓0(1), 𝑓1(1)) ∶𝐺(1) →𝐺′(1).

Note that the canonical map associated to a chain map is not, in general a 𝑠2 -map. This is due to a lack of support regarding 
differential or transition functions. For the sake of a better understanding of the new concepts, from now on, 𝑠2-models, having the 
same set of vertices and edges than 𝐺 will be considered. The next two subsections are devoted to distinguish two main types of 
𝑠2-models that can be defined depending on the type of relations within the model that is “prioritize”: adjacency vs incidence relation.

4.1. Adjacency 𝑠2-models

These 𝑠2-models are the simplest one and they follow the pattern 𝑆2(𝑉 , 𝐸, {𝜕(𝑠), 𝜌+(𝑠), 𝜌−(𝑠)}𝑠≥1), such that 𝜕(𝑠) = 𝜕, ∀𝑠 ≥ 1. A 
trivial example of an adjacency 𝑠2-model of 𝐺 = (𝑉 , 𝐸, 𝜕) with coefficients in 𝔽 is the structure 𝑆2(𝑉 , 𝐸, 𝜕, (1𝔽 [𝑉 ], 1𝔽 [𝐸]), (1𝔽 [𝑉 ], 1𝔽 [𝐸])). A 
more interesting system is inspired by the classical Weisfeiler-Lehman (WL) and color refinement algorithms. WL was firstly developed 
in [8] for the graph class, and in [19] a hypergraph version was proposed. Its application to machine learning as foundational pillar 
of graph neural networks is developed in [20,21]. An adaptation of this process to the 𝑠2-model setting is provided by the so-called 
color refinement (or simply 𝐶𝑅) 𝑠2-model, defined by 𝑆2(𝑉 , 𝐸, 𝜕, (𝜕𝛿, 𝛿𝜕), (𝜕𝛿, 𝛿𝜕)) in which the differential and transition maps are not 
dependent on 𝑠. Note that 𝛿𝜕 (resp. 𝜕𝛿) is the classical signless edge (resp. vertex) Laplacian matrix of 𝐺 [22]. As previously stated, 
an adjacency 𝑠2-model can be automatically generated if a unique chain map 𝑓 ∶ 𝐶∗(𝐺) → 𝐶∗(𝐺) determines all the transition maps 
𝜌+(𝑠) and 𝜌−(𝑠). The chain map (

∑𝑘

𝑖=0(−1𝔽 )
𝑖(𝜕𝛿)𝑖, 

∑𝑘

𝑖=0(−1𝔽 )
𝑖(𝛿𝜕)𝑖), for any 𝑘 ≥ 0, provides an important generalization of the 𝐶𝑅

𝑠2-model involving iterated Laplacian operators. Note that (𝜕𝛿)0 = (𝛿𝜕)0 = 1𝐶∗(𝐺).

4.2. Incidence 𝑠2-models: the boundary-scale case

Incidence 𝑠2-models for a hypergraph 𝐺 = (𝑉 , 𝐸, 𝜕) = (𝑉 , 𝐸, 𝑀) (being 𝑀 the vertex-edge incidence matrix of 𝐺) are systems 
𝑆2(𝑉 , 𝐸, {𝜕(𝑠), 𝜌±(𝑠)}𝑠) in which 𝜕(𝑠) ≠ 𝜕 for some 𝑠 > 1.

A first example of incidence 𝑠2-model given in matrix terms is provided by respective changes of basis for vertices and 
edges. Given two square invertible matrices 𝑃 ∈ 𝔽 |𝑉 |×|𝑉 | and 𝑄 ∈ 𝔽 |𝐸|×|𝐸|, we can construct the 𝑠2-model 𝑆2(𝑉 , 𝐸, {𝑃 𝑠−1 ∗ 𝑀 ∗
𝑄𝑠−1, (𝑃 , 𝑄−1), (𝑃−1, 𝑄)}𝑠≥1) where ∗ is the matrix multiplication operation with coefficients in the euclidean domain 𝔽 .

In order to investigate the applicability of 𝑠2-models in profoundly studying hypergraph’s connectivity, we focus here in a specific 
instance of this type of incidence models, that are named boundary-scale model. The main characteristic of this kind of representation, 
is that both, boundary and coboundary maps are deeply involved in every scale. With the aim of producing non-redundant and non-

correlated topological information, we work with 𝑘-truncated boundary-scale models, with 𝑘 no greater than half the diameter of the 
hypergraph.

Definition 7. Given a non-empty hypergraph 𝐺 = (𝑉 , 𝐸, 𝜕), the boundary-scale model of 𝐺 is the 𝑠2-model of the form: 𝑆2(𝑉 , 𝐸,

{𝜕(𝛿𝜕)𝑠, (𝜕𝛿, 1𝔽 [𝐸]), (1𝔽 [𝑉 ], 𝛿𝜕)}𝑠≥1).

Given a hypergraph 𝐺 = (𝑉 , 𝐸, 𝑀) (where 𝑀 is its vertex-edge incidence matrix), it is possible to redefine the boundary-scale 
model in matrix terms as follows: 𝑆2(𝑉 , 𝐸, {𝑀 ∗ (𝑀𝑇 ∗𝑀)𝑠−1, (𝑀 ∗𝑀𝑇 , 𝕀|𝐸|×|𝐸|), (𝕀|𝑉 |×|𝑉 |, 𝑀𝑇 ∗𝑀)}𝑠≥1), where 𝕀𝑛×𝑚 represents 
the identity matrix of dimensions 𝑛 ×𝑚. An example of the second and third level of this model for the hypergraph 𝐺 in Fig. 1 (being 
𝔽 the integers modulo 2 and graphically expressing its component chain complexes as (algebraic) hypergraphs) is shown in Fig. 5. 
Note that, for instance, the 1𝑠𝑡 and 2𝑛𝑑 Betti numbers are 𝛽0(𝐺(1)) = 2 and 𝛽1(𝐺(1)) = 1 on the initial hypergraph, while moving to 
6

the second and third levels of the model they become 𝛽0(𝐺(2)) = 3, 𝛽1(𝐺(2)) = 2, 𝛽0(𝐺(3)) = 4 and 𝛽1(𝐺(3)) = 3.
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Fig. 5. Algebraic setting of the hypergraph in Fig. 1 (top). Hypergraph components and its respective boundary and transition maps, of levels 𝑠 = 2 and 𝑠 = 3 for the 
boundary-scale 𝑠2-model of the hypergraph in Fig. 1 (bottom).

5. Homology of 𝒔𝟐-models

The passing to homology of an 𝑠2-model is analyzed here and leads to the main result of this paper. Note that the homology of the 
algebraic hypergraphs of the model can be taken with coefficients in a different ground ring than that employed for the construction 
of the 𝑠2-model. For the purpose of simplifying, we will consider here both rings to be the same.

The content of Appendix 𝐴 about homology computation using the classical Smith Normal Form factorization allows to determine 
the homology transfer within the context of scale-space models. The results obtained in this Section are valid for both, the free and 
torsion homology of a given 𝑠2-model. Let us start with the definition of the homology of a 𝑠2-model. To describe the resulting 
scale-space homological structure (𝑆2(𝑉 , 𝐸, {𝜕(𝑠), 𝜌±(𝑠)}𝑠)) we make use of the following tools:

• The homology of a chain complex 𝐺(𝑠) = (𝑉 , 𝐸, 𝑀(𝑠)) (being 𝑀(𝑠) its vertex-edge incidence matrix with coefficients in 𝔽 ) is 
represented by the algebraic hypergraph ∗(𝐺(𝑠)) = (

𝟎 (𝑀(𝑠)), 

𝟏 (𝑀(𝑠)), 𝐷

𝑆𝑁𝐹
(𝑀(𝑠))).

• Since 𝜌±(𝑠) ∶𝐺(𝑠) →𝐺(𝑠 ±1) is a chain map for each scale index 𝑠, then each [𝜌±(𝑠))] ∶∗(𝐺(𝑠)) →∗(𝐺(𝑠 ±1)) is well defined 
and can be computed using the classical linear algebra tools explained in Appendix A.

Definition 8. Let 𝐺 = (𝑉 , 𝐸, 𝜕) be a non-empty hypergraph and 𝐒2(𝐺) = 𝑆2(𝑉 , 𝐸, {𝜕(𝑠), 𝜌±(𝑠)}𝑠≥1) be an 𝑠2-model associated to it. 
The homology of the 𝑠2-model (𝐒2(𝐺)) is the new 𝑠2-model:

(𝐒2(𝐺)) = 𝑆2({

𝟎 (𝑀(𝑠)), 

𝟏 (𝑀(𝑠)),𝐷

𝑆𝑁𝐹
(𝑀(𝑠)), [𝜌±(𝑠)]}𝑠≥1)

Due to the fact that the transition maps are chain maps, the homology of an admissible composition of such maps coincides 
with the composition of its corresponding homology maps. That means, in particular, that condition [𝑆2.4] of 𝑠2-models holds. Note 
that the homology of an incidence 𝑠2-model is again incidence 𝑠2-models in which the sets of vertices and edges of the algebraic 
hypergraphs components are possibly different. Due to the fact that Smith Normal Form factorization of the vertex-edge incidence 
matrix of a hypergraph is a node and edge permutation invariant (see Appendix A), the fundamental result of this paper can be 
7

derived.
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Table 1

Connectivity representation of the hypergraph components of the boundary-scale 𝑠2-model in levels 𝑠 = 1, 2, 3, that are 
generated for the two graphs in cubic06. Vertices and edges are nodes on the left and right, respectively.

𝑠 = 1 𝑠 = 2 𝑠 = 3

𝑐
𝑢
𝑏
𝑖𝑐
06

−
0

𝑐
𝑢
𝑏
𝑖𝑐
06

−
1

Theorem 3. Let 𝐒2(𝐺) = 𝑆2(𝑉 , 𝐸, {𝜕(𝑠), 𝜌±(𝑠)})𝑠≥1 be a 𝑠2-model associated to a hypergraph 𝐺 = (𝑉 , 𝐸, 𝜕). Then, 𝐒2(𝐺) and (𝐒2(𝐺))
are hypergraph isomorphic invariants (up to 𝑠2-isomorphism).

Proof. Let us consider the matrix version 𝑆2(𝑉 , 𝐸, {𝑀(𝑠), 𝑇 +
∗ (𝑠), 𝑇 −

∗ (𝑠)}𝑠≥1) of the 𝑠2-model 𝐒2(𝐺), being 𝑇 ±
∗ = (𝑇 ±

0 , 𝑇 ±
1 ) the cor-

responding matrix form of the transition maps. Let us construct its associated 𝑠2-SNF-model 𝑆𝑁𝐹 (𝐒2(𝐺)) having at scale 𝑠, 
𝐶

𝑠𝑛𝑓

∗ (𝐺(𝑠)) = (𝑠𝑛𝑓

𝟎 (𝑀(𝑠)), 𝑠𝑛𝑓

𝟏 (𝑀(𝑠)), 𝐷𝑠𝑛𝑓 (𝑀(𝑠))) as chain complex components and 𝑠𝑛𝑓 (𝜌+(𝑠)) and 𝑠𝑛𝑓 (𝜌−(𝑠)) as transition maps. 
The resulting scale-space system, called the 𝑠2-SNF-model, is a true 𝑠2-model 𝑠2-isomorphic to the original system, due to the fact that 
the SNF factorization of the matrices determining the boundary and transition maps of the model simply boils down to basis changes 
for the vertices and edges of a hypergraph 𝐺. The 𝑠2-model ∗(𝐒2(𝐺)) is automatically extracted from this intermediary system. If 𝐺
and 𝐺′ are isomorphic hypergraphs, the 𝑠2-SNF-models of the corresponding 𝑠2-models 𝐒2(𝐺) and 𝐒2(𝐺′) are 𝑠2-isomorphic. This is 
due to the fact that the Smith Normal Form is a hypergraph invariant. Moreover, the algebraic boundary map of each chain complex 
component of both systems must be the same. In consequence, the appropriate composition of 𝑠2-isomorphisms linking the original 
𝑠2-models to their SNF versions provides us the desired 𝑠2-isomorphism between 𝐒2(𝐺) and 𝐒2(𝐺′). Now, we directly extract the ho-

mology of 𝐒𝟐(𝐺) from its 𝑠2-SNF-model. In fact, (𝐒2(𝐺)) is defined here using submatrices of the model connecting representative 
cycles of the corresponding homology vector spaces (𝐺(𝑠)) (see Appendix A). Then, by removing appropriate “vertices” and “edges” 
of the algebraic hypergraphs components of the isomorphic 𝑠2-SNF-models of 𝐺 and 𝐺′, it is a simple exercise to show that (𝐒2(𝐺))
and (𝐒2(𝐺′)) are 𝑠2-isomorphic. □

This theory can be analogously developed for free and torsion homology 𝑠2-models. The chain compatibility condition for tran-

sition maps in the 𝑠2-model definition can be relaxed (for instance, maps preserving cycles or boundaries) in such a way that some 
homological information of the 𝑠2-model is preserved up to hypergraph isomorphism. This important issue as well as the use of 
non-linear transition functions will be discussed in a future paper.

6. Isomorphism test algorithms for hypergraphs based on 𝒔𝟐-model

GI and HI are computable problems strictly related to the time efficiency of the algorithms to detect (and if positive, construct one) 
isomorphism between two combinatorial structures. It is well known that the GI problem is polynomial-time reducible to that of HI 
and vice versa [23]. A generic HI Test takes a hypergraph and returns a string certificate that is identical for isomorphic hypergraphs. 
In other words, the chosen certificate musts be a hypergraph invariant (also called topological index). If a certificate always outputs a 
different answer for non-isomorphic hypergraphs, it is called complete. It is well known that there is a complete certificate that can be 
computed in exponential time (obtained via the canonical labeling algorithm [24]), but there is no known complete certificate that 
can be obtained in polynomial time for a general hypergraph. The tree class is an exception to this fact [25]. We distinguish here 
three different types of HI Test algorithms based on an 𝑠2-model:

• Intra-analysis 𝑠2-HI. The certificate associated to the test exclusively depends on local or global hypergraph indices [26] applied 
8

to the corresponding hypergraph components of truncated 𝑠2-models of two given hypergraphs, as well as to their homology. If 
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this certificate is different for some scale of the model, then the hypergraphs are non-isomorphic. Examples of these indices are 
the sequence of vertex and/or edge degrees, the Euler-Poincaré characteristic of their connectivity graph 𝜒(𝑔(𝐺)) at each scale, 
the WL algorithm applied to each scale, etc.

• Inter-analysis 𝑠2-HI. Involves relationships determined by transition maps between vertices, edges and homology generators of 
the same dimension of different levels of the 𝑠2-model. These algorithms can be implemented using both adjacency and incidence 
𝑠2-models. For instance, considering the CR 𝑠2-model 𝑆2(𝑉 , 𝐸, 𝜕, (𝜕𝛿, 𝛿𝜕), (𝜕𝛿, 𝛿𝜕)), a certificate based on vertex inter-degree is 
defined for each vertex 𝑣 ∈ 𝑉 , as the formal sum 

∑
1≤𝑖≤𝑘 |(𝜕𝛿)𝑖−1(𝑣)|. Note that here the degree function | | goes from 𝔽 [𝑉 ] to 

𝔽 [ℕ 
⋃
{0}].

• Hybrid Scale-Space HI. This kind of certificates combines both, inter and intra analysis. An example of this type of algorithms 
is given by the following algorithm inspired in the WL-strategy. Given a truncated boundary-scale model with 𝑘 hypergraph 
components 𝑆2

𝑘
(𝑉 , 𝐸, {𝜕(𝛿𝜕)𝑠, (𝜕𝛿, 1𝐸), (1𝑉 , 𝛿𝜕)}𝑠), the certificate for each vertex 𝑣 ∈ 𝑉 is given by the formal sum 

∑
0≤𝑖≤𝑘(𝛿(𝜕𝛿)𝑖+

(𝜕𝛿)𝑖)(𝑣) in 𝔽 [𝑉
⋃

𝐸] and for each edge 𝑒 ∈𝐸 is 
∑

0≤𝑖≤𝑘(𝜕(𝛿𝜕)𝑖 +(𝛿𝜕)𝑖)(𝑒) in 𝔽 [𝑉
⋃

𝐸]. A homology-based certificate of this kind 
can be automatically derived.

Finally, HI inspection at any level (intra-analysis, inter-analysis or hybrid) based on invariant features of the matrix description of 
the 𝑠2-model need to be considered separately. We distinguish two main groups: Spectral and SNF based. Given any truncated 𝑠2-
model 𝑆2

𝑘
(𝑉 , 𝐸, {𝜕(𝑠), 𝜌±(𝑠)}𝑠), all the boundary 𝜕(𝑠) and transition 𝜌±(𝑠) functions can be expressed in 𝔽 -matrix form. Spectral-based 

(respectively SNF-based) 𝑠2-𝐻𝐼 test algorithms are those related to the eigenvalues and eigenvectors (resp. elementary divisors) on 
the euclidean domain 𝔽 of those matrices. To find efficient certificates resting on 𝑠2 -model approaches is out of the scope of this 
paper and will be studied in a near future.

6.1. Experiments testing graph isomorphism

In this subsection, we limit ourselves to provide a competitive GI testing algorithm demonstrating the discrimination power of the 
proposed framework. We use truncated boundary-scale 𝑠2-models with ℤ2 coefficients to pursue this goal. Note that SNF is applied 
in the following using the integers ℤ as ground ring (see Appendix A). More concretely, three main intra-analysis measures are to be 
tested for comparison among isomorphic and non-isomorphic graphs:

a) 𝜔𝑑 : The increasing ordered sequence of vertex’s degrees for each hypergraph generated at every scale of the 𝑠2-model.

b) 𝜔𝛽 : The ℤ2 Betti number sequences computed for each hypergraph generated at every scale of the 𝑠2-model. In this way, the 
free homology of each hypergraph is studied.

c) 𝜔𝑖: The increasing ordered sequence of elementary divisors, that are not equal to 1ℤ , of the incidence matrices (with coefficients 
in ℤ) for each hypergraph generated at every scale of the 𝑠2-model. In this way, the torsion homology (at dimension zero) of 
each hypergraph is studied.

As inter-analysis metric, we consider:

a) 𝜔𝜌+ : The ordered sequence of the SNF multisets of all matrices (with integer coefficients) corresponding to the composition of the 
𝜌+ transition maps generated throughout the model. These compositions are constructed as: 𝜌+(1) for the first level of the model, 
𝜌+(2)◦𝜌+(1) for the second, 𝜌+(3)◦𝜌+(2)◦𝜌+(1) for the third, and so on. Note that in boundary-scale models, 𝜌+(𝑠) = 𝜌+(1), ∀𝑠 ≥ 1.

b) 𝜔𝜌− : Similarly, the ordered sequence of the SNF multisets of all matrices (with integer coefficients) corresponding to the com-

position of the 𝜌− transition maps generated throughout the model. These compositions are constructed as: 𝜌−(2), 𝜌−(2)◦𝜌−(3), 
and so on. Note that in boundary-scale models, 𝜌−(𝑠) = 𝜌−(1), ∀𝑠 ≥ 1.

Here, we analyze to what extent the proposed model is capable of distinguishing between different non-isomorphic graphs. To 
do so, we use different data sets that are known to be challenging for graph isomorphism tests. Connected cubic graphs and minimal 
Cayley graphs [27,28], for example, cannot be distinguished by 1-WL. The strongly regular graphs database [29] contains instances 
that cannot be distinguished by 3-WL. Recent attempts based on Persistent Homology [9] and Graph Neural Networks [30] demon-

strate the limitations of these approaches when dealing with such datasets. Three levels of the boundary-scale 𝑠2 -model (from 𝑠 = 1
to 𝑠 = 3) have been generated for every database in our experiments. Table 2 shows the percentage of graphs that are univocally 
distinguished by using the metrics mentioned above for each level of the model. Note that level 𝑠 = 3 of the model is sufficient to 
distinguish every graph within these three datasets.

Table 3 shows the results obtained for the connected cubic graph database with three levels of the model. Each cubic set (cubic06, 
cubic08, cubic10, cubic12 and cubic14) contains non-isomorphic graphs (2, 5, 19, 85 and 509 graphs, respectively) that have the 
same number of vertices and edges. Most of them show different ordered sequences of degrees for the vertices of the generated 
hypergraphs throughout the model, 𝜔𝑑 (100%, 100%, 89.5%, 96.5% and 97.6% respectively). Graphs that were not distinguished 
by using this metric, have either unique 𝜔𝛽 , 𝜔𝑖, 𝜔𝜌− or 𝜔𝜌+ . In conclusion, every graph within the cubic database can be uniquely 
distinguished (see column 6 in Table 3). Table 1 shows the hypergraph components of the boundary-scale 𝑠2-model in levels 𝑠 = 1, 2, 3, 
which are generated for the two graphs in cubic06, showing how incidence relations change throughout the model. Considering these 
two cases, level 𝑠 = 1 of the model is sufficient to differentiate them (see Table 2), since the increasing ordered sequence of elementary 
9

divisors of the incidence matrices (𝜔𝑖) differs. Hypergraph representations were produced using PNNL’s open source HyperNetX [31].
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Table 2

Percentage of graphs that can be unequivocally distinguished by using boundary scale 𝑠2-
models with 𝑠 = 1, 𝑠 = 2 and 𝑠 = 3 levels. Metrics considered here are 𝜔𝑑 , 𝜔𝛽 , 𝜔𝑖 , 𝜔𝜌+ and 𝜔𝜌− .

𝑠 = 1 𝑠 = 2 𝑠 = 3 𝑠 = 1 𝑠 = 2 𝑠 = 3

cayley12-24 25 100.0 100.0 cayley60-150 0 92.0 100.0

cayley16-24 0 33.3 100.0 cayley60-180 0 100.0 100.0

cayley16-32 0 100.0 100.0 cayley63-126 0 100.0 100.0

cayley20-30 100 100.0 100.0 cayley63-189 0 100.0 100.0

cayley20-40 0 100.0 100.0 sr261034 0 10.0 100.0

cayley24-36 0 100.0 100.0 sr281264 0 25.0 100.0

cayley24-48 0 100.0 100.0 sr291467 0 0.0 100.0

cayley24-60 25 100.0 100.0 sr351899 0 0.4 100.0

cayley24-72 0 100.0 100.0 sr361446 0 0.6 100.0

cayley32-48 0 28.6 100.0 sr401224 0 21.4 100.0

cayley32-64 0 89.5 100.0 cubic06 100 100.0 100.0

cayley32-80 0 85.7 100.0 cubic08 20 100.0 100.0

cayley32-96 0 100.0 100.0 cubic10 0 68.4 100.0

cayley60-90 0 90.0 100.0 cubic12 0 80.0 100.0

cayley60-120 0 100.0 100.0 cubic14 0 40.1 100.0

Table 3

Results obtained for the connected cubic graph database. The last column 
shows the percentage of graphs that can be uniquely distinguished through-

out the 𝑠2 -model.

# 𝜔𝛽 𝜔𝑑 𝜔𝑖 𝜔−
𝜌

𝜔+
𝜌

Disting.

cubic06 2 0 100 100 0 0 100

cubic08 5 60 100 60 100 100 100

cubic10 19 5.3 89.5 84.2 68.4 42.1 100

cubic12 85 1.2 96.5 38.8 80 52.9 100

cubic14 509 0.2 97.6 22.6 47.3 37.1 100

Table 4

Results obtained for the strongly regular database. The last column shows 
the percentage of graphs that can be uniquely distinguished throughout 
the 𝑠2 -model.

# 𝜔𝛽 𝜔𝑑 𝜔𝑖 𝜔−
𝜌

𝜔+
𝜌

Disting.

sr16622 2 0 0 100 100 0 100

sr251256 15 0 0 0 100 0 100

sr261034 10 0 0 0 100 0 100

sr2812642 4 25 0 25 100 25 100

sr291467 41 0 0 0 100 0 100

sr351899 227 0 0 0.4 100 0.4 100

sr361446 180 0.6 0 0.6 100 0.6 100

sr4012243 28 3.6 0 21.4 100 3.6 100

Similar results for the strongly regular database are shown in Table 4. Datasets sr16622, sr251256, sr261034, sr281264, sr291467, 
sr351899, sr361446 and sr401224 contain 2, 15, 10, 4, 41, 227, 180 and 28 graphs, respectively. Each graph within each of these sets 
produces a unique ordered sequence of the SNF multisets of the transition map composition matrices generated throughout the model 
(𝜔𝜌− ) and it is, therefore, distinguishable from the others. Note, for instance, that the sr16622 dataset comprises 2 strongly regular 
graphs on 16 nodes, namely the Shrikhande and the 4×4 Rook’s graph, which are 3-WL equivalent [32]. Likewise, for the Cayley 
dataset, the vast majority of graphs are distinguishable using this metric (see Table 5). Only one pair of graphs within cayley24-48 and 
one pair in cayley60-90 produce the same 𝜔𝜌− . These two pairs are, however, distinguishable as they produce a different sequence 
of Betti numbers 𝜔𝛽 .

The explanation of why some metrics allow to distinguish within certain group of graphs and other metrics do not, requires a 
hard and exhaustive analysis (not only topological but also statistical) that is not intended to be treated in our experiments. We limit 
ourselves to give an intuitive interpretation in the case of the strongly regular graphs database. For this group with strong properties 
of local topological regularity involving adjacent and non-adjacent connected vertices, the ordered sequence of the SNF multisets of 
the transition map composition matrices generated throughout the model 𝜔−

𝜌
is, by far, the most discriminative metric (see Table 4). 

This fact could be explained considering that 𝜔−
𝜌

is a global measure that primarily deals with adjacent and non-adjacent edges, 
10

whereas the other metrics considered in our experiment mainly deal with vertex information.
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Table 5

Results obtained for the Cayley dataset. The last column shows the percentage 
of graphs that can be uniquely distinguished throughout the 𝑠2 -model.

# 𝜔𝛽 𝜔𝑑 𝜔𝑖 𝜔−
𝜌

𝜔+
𝜌

Disting.

cayley12-18 2 100 100 100 100 100 100

cayley12-24 4 50 100 100 100 50 100

cayley16-24 3 33.3 100 100 100 100 100

cayley16-32 3 100 33.3 100 100 100 100

cayley20-30 2 100 100 100 100 100 100

cayley20-40 5 40 100 100 100 60 100

cayley24-36 8 50 25 100 100 100 100

cayley24-48 20 45 30 100 90 65 100

cayley24-60 4 50 100 100 100 100 100

cayley24-72 4 50 50 100 100 50 100

cayley32-48 7 0 14.3 100 100 100 100

cayley32-64 19 10.5 5.3 89.5 100 89.5 100

cayley32-80 14 0 14.3 74.1 100 74.1 100

cayley32-96 12 8.3 0 100 100 100 100

cayley60-90 20 25 10 100 90 100 100

cayley60-12 68 14.7 16.2 63.2 100 58.8 100

cayley60-15 25 20 36 92 100 92 100

cayley60-18 31 9.7 48.4 100 100 74.2 100

cayley63-12 11 45.5 36.4 81.8 100 63.6 100

cayley63-18 4 100 100 100 100 100 100

7. Conclusions

A new framework of algebraic topological analysis of hypergraphs based on the notion of 𝑠2-model is developed here. An 𝑠2-

model is a kind of dynamical system satisfying some topological constraints, whose components are algebraic hypergraphs. We 
prove that the 𝑠2-model representation and its homology are hypergraph invariants (up to 𝑠2-model isomorphism). A boundary-

scale model with only three levels is employed here to demonstrate the applicability of this framework to topologically discriminate 
graphs. Note that hypergraph topological discrimination could similarly be tested. More concretely, the graph isomorphism problem 
is tackled here using databases that are difficult or out of reach for most isomorphism solvers. Furthermore, the proposed framework 
is susceptible to be extended in multiple mathematical directions, depending of the different types of notions involved in 𝑠2-models: 
dimension and cellulation (simplicial complex, clique, ....), topological identity (homology, homotopy, homeomorphism), topological 
scale parameters, ground ring chosen, relaxed conditions on 𝑠2-models, extension to attributed hypergraphs, etc. Advances in any of 
these aspects might impact the power of analysis, classification, matching and learning of the framework. Going further, the proposed 
framework appears as a universal strategy for processing the topology of complex networks, aiming to improve the efficiency and 
learning capacity of topological analysis, classification and recognition of relational patterns.
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Appendix A. Classical Homology Computation: Smith Normal Form

The following theoretical development about homology computation via Smith normal form has been extracted from [17] and 
adapted to the notation and nomenclature of the present paper. Let 𝐺(𝑉 , 𝐸, 𝜕) be a non-empty hypergraph, being 𝜕 ∶ 𝐸 → 2

𝑉

its 
boundary map. The linear map 𝔽 [𝜕] can be simply described by a matrix 𝑀 of dimensions |𝑉 | × |𝐸| = 𝑛 × 𝑚, with coefficients 
in 𝔽 . In fact, 𝑀 is obtained from the vertex-edge incidence matrix of 𝐺, applying the semiring function 𝜗 ∶ ℕ→ 𝔽 to each matrix 
coefficient. Let 𝑐𝑚𝑏

𝟎 (𝑀) = {𝐯1, … , 𝐯𝑛} and 𝑐𝑚𝑏

𝟏 (𝑀) = {𝐞1, … , 𝐞𝑚} be the combinatorial bases of vertices and edges of 𝐺, respectively. 
Bold notation is used for vertices and edges to emphasize their treatment as elements of a vector space. In fact, the chain complex 
associated to 𝐺 can be seen as an algebraic hypergraph of the form: 𝐶∗(𝐺) = (𝑐𝑚𝑏

𝟎 (𝑀), 𝑐𝑚𝑏

𝟏 (𝑀), 𝑀). Homology has been classically 
computed via the Smith Normal Form, 𝑀 =𝑈𝑆𝑁𝐹 (𝑀) ∗𝐷𝑆𝑁𝐹 (𝑀) ∗ 𝑉𝑆𝑁𝐹 (𝑀), where ∗ is the matrix multiplication with coefficients in 
𝔽 , 𝑈𝑆𝑁𝐹 (𝑀) and 𝑉𝑆𝑁𝐹 (𝑀) are invertible (over 𝔽 ) square matrices and 𝐷𝑆𝑁𝐹 (𝑀) is a diagonal matrix in which each non-null diagonal 
entry 𝑑𝑖𝑖 divides the next 𝑑𝑖+1,𝑖+1, 1 ≤ 𝑖 ≤ 𝑟(𝐺) − 1, for some 𝑟(𝐺) = 𝑟 ≤ min(𝑛, 𝑚) [17,33]. The multiset 𝑆𝑁𝐹 (𝐺) = {𝑑11, 𝑑22, … , 𝑑𝑟𝑟}
11

is called the multiset of elementary divisors of 𝐺. They are unique up to multiplication by units of 𝔽 . For 𝔽 = ℤ, there may be a first 
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index 𝑡(𝐺) = 𝑡 (1 ≤ 𝑡 ≤ 𝑟 ≤ min{𝑚, 𝑛}) such that 𝑑𝑡𝑡 ≠ 1ℤ. All the elementary divisors are normalized to 1𝔽 if the ground ring is a field, 
and in this case, 𝑡(𝐺) = 𝑟(𝐺).

It is also common knowledge that 𝑆𝑁𝐹 (𝑀) = 𝑆𝑁𝐹 (𝑀𝑇 ) = 𝑆𝑁𝐹 (𝑃 ∗𝑀 ∗𝑄), being 𝑃 ∈ 𝔽 |𝑉 |×|𝑉 | and 𝑄 ∈ 𝔽 |𝐸|×|𝐸| two permu-

tation matrices (that is, their coefficients are 0𝔽 or 1𝔽 and their inverses coincide with their transposes). Moreover a strong relation 
exists between the elementary divisors of the product of matrices with coefficients in 𝔽 and the product of elementary divisiors of 
the factor matrices [34].

In particular, 𝑆𝑁𝐹 (𝐺) = 𝑆𝑁𝐹 (𝐺′) for two isomorphic hypergraphs 𝐺 and 𝐺′. SNF matrix factorization can also be described as 
a chain isomorphism 𝑠𝑛𝑓 (𝐺) = (𝑈−1

𝑠𝑛𝑓
(𝑀), 𝑉𝑠𝑛𝑓 (𝑀))) from 𝐶∗(𝐺) to the chain complex 𝐶𝑠𝑛𝑓

∗ (𝐺). In fact, the matrices 𝑈𝑠𝑛𝑓 (𝑀) ∈ 𝔽 |𝑉 |×|𝑉 |

and 𝑉𝑠𝑛𝑓 (𝑀) ∈ 𝔽 |𝐸|×|𝐸| can be interpreted as respective changes of basis in 𝔽 [𝑉 ] and 𝔽 [𝐸]. Let 𝑠𝑛𝑓

𝟎 (𝑀) = {𝐰1, … , 𝐰𝑛} and 𝑠𝑛𝑓

1 (𝑀) =
{𝐜1, 𝐜2, … , 𝐜𝑚} be the bases of 𝔽 [𝑉 ] and 𝔽 [𝐸], respectively, with respect to which the matrix 𝐷𝑠𝑛𝑓 (𝑀) is defined. Then, the chain 
complex 𝐶𝑠𝑛𝑓

∗ (𝐺) is defined as an algebraic hypergraph of the kind (𝑠𝑛𝑓

𝟎 (𝑀), 𝑠𝑛𝑓

𝟏 (𝑀), 𝐷𝑠𝑛𝑓 (𝑀)), where:

• The sets 𝑓

𝟎 (𝑀) = {𝐰𝑟+1, … , 𝐰𝑛} and 𝑓

𝟏 (𝑀) = {𝐜𝑟+1, … , 𝐜𝑚} are, respectively, basis of the free part of the 0𝑡ℎ and 1𝑠𝑡 homology 
vector spaces of 𝐺. Note that homology of dimension one is always free. Hence, the free part of homology (or, simply, the 
free homology) of 𝐺 can be rewritten as an algebraic hypergraph of the kind 𝑓∗(𝐺) = (𝑓

𝟎 (𝑀), 𝑓

𝟏 (𝑀), 𝐷𝑓

𝑆𝑁𝐹
(𝑀)), where 

𝐷
𝑓

𝑆𝑁𝐹
(𝑀) is the submatrix of 𝐷𝑆𝑁𝐹 (𝑀) obtained after removing its first 𝑟 rows and columns. In fact, the matrix 𝐷𝑓

𝑆𝑁𝐹
(𝑀) is 

the zero matrix (all its element are 0𝔽 ) of dimensions (𝑛 − 𝑟) × (𝑚 − 𝑟). Precisely, the 𝑞𝑡ℎ Betti number 𝛽𝑞(𝐺) represents the rank 
(number of linearly independent generators) of the free part of the 𝑞𝑡ℎ homology vector space. Therefore, 𝛽0(𝐺, 𝔽 ) = |𝑉 | − 𝑟

and 𝛽1(𝐺, 𝔽 ) = |𝐸| − 𝑟. In consequence, the Euler-Poincaré characteristic 𝜒(𝐺) of the hypergraph 𝐺 can be computed using the 
formula 𝜒(𝐺) ∶= 𝛽0(𝐺, 𝔽 ) ⧵ 𝛽1(𝐺, 𝔽 ) = 𝑛 −𝑚.

• The sets 

𝟎 (𝑀) = {𝐰𝑡, … , 𝐰𝑛} and 

𝟏 (𝑀) = {𝐜𝑡, … , 𝐜𝑚} are, respectively, bases of representative cycles of the 0𝑡ℎ and 
1𝑠𝑡 homology vector spaces of 𝐺. The homology of 𝐺 can be rewritten as an algebraic hypergraph of the kind ∗(𝐺) =
(

𝟎 (𝑀), 

𝟏 (𝑀), 𝐷

𝑆𝑁𝐹
(𝑀)), where 𝐷

𝑆𝑁𝐹
(𝑀) is the submatrix of 𝐷𝑆𝑁𝐹 (𝑀) obtained after removing its first 𝑡 − 1 rows and 

columns.

• Assuming that 𝑡(𝐺) exists, the torsion part of the homology (or, simply, torsion homology) of a hypergraph 𝐺 can be determined in 
the following way. The sets of vectors 𝑡

𝟎 (𝑀) = {𝐰𝑡, … , 𝐰𝑟} and 𝑡

𝟏 (𝑀) = {𝐜𝑡, … , 𝐜𝑟} are necessary. The torsion homology 
of 𝐺 can be rewritten as an algebraic hypergraph 𝑡∗(𝐺) = (𝑡

𝟎 (𝑀), 𝑡

𝟏 (𝑀), 𝐷𝑡

𝑆𝑁𝐹
(𝑀)), where 𝐷𝑡

𝑆𝑁𝐹
(𝑀) is the submatrix of 

𝐷𝑆𝑁𝐹 (𝑀)) obtained after removing its first 𝑡 −1 rows and columns, and the last 𝑟 +1 rows and columns. In the case in which 𝔽 is 
a field, 𝑡 = 𝑟 +1 and homology of 𝐺 at both dimension 0 and 1 is free. For 𝔽 =ℤ, the representative cycle of a torsion homology 
class defined by the elementary divisor 𝑑𝑖𝑖 ≠ 1ℤ (with 𝑡 ≤ 𝑖 ≤ 𝑟) is specified by the couple (𝐰𝑖, 𝐜𝑖).

Let 𝐺 = (𝑉 , 𝐸, 𝑀(𝐺)) and 𝐺′ = (𝑉 ′, 𝐸′, 𝑀(𝐺′) be two non-empty hypergraphs, being 𝑀(𝐺) ∈ 𝔽 |𝑉 |×|𝐸| and 𝑀(𝐺′) ∈ 𝔽 |𝑉 ′|×|𝐸′|

their respective vertex-edge incidence matrices with coefficients in 𝔽 . Let 𝑞 = (𝑞0, 𝑞1) ∶ 𝐶∗(𝐺) → 𝐶∗(𝐺′) be a chain map defined 
by an associated pair (𝑄0, 𝑄1) of matrices (𝑄0 ∈ 𝔽 |𝑉 |×|𝑉 ′| and 𝑄1 ∈ 𝔽 |𝐸|×|𝐸′|). The SNF factorizations (𝑄𝑖 = 𝑈𝑆𝑁𝐹 (𝑄𝑖) ∗𝐷𝑆𝑁𝐹 (𝑄𝑖) ∗
𝑉𝑆𝑁𝐹 (𝑄𝑖), 𝑖 = 0, 1) of the square matrices 𝑄0 and 𝑄1, and the multisets 𝑆𝑁𝐹 (𝑄𝑖) (with 𝑖 = 0, 1) are both invariants up to permutation 
of vertices and edges in 𝐺 and 𝐺′. On the other hand, it is possible to determine the image of homology generators via the chain map 
𝑞. Let 𝐺 = (𝑉 , 𝐸, 𝑀(𝐺)) and 𝐺′ = (𝑉 ′, 𝐸′, 𝑀(𝐺′) be two non-empty hypergraphs, being 𝑀(𝐺) ∈ 𝔽 |𝑉 |×|𝐸| and 𝑀(𝐺′) ∈ 𝔽 |𝑉 ′|×|𝐸′|

their respective vertex-edge incidence matrices with coefficients in 𝔽 . There are two chain isomorphisms 𝑠𝑛𝑓 (𝐺) = (𝑈−1
𝑠𝑛𝑓

(𝑀(𝐺)), 
𝑉𝑠𝑛𝑓 (𝑀(𝐺))) ∶ 𝐶∗(𝐺) → 𝐶

𝑠𝑛𝑓

∗ (𝐺) and 𝑠𝑛𝑓 (𝐺′) = (𝑈−1
𝑠𝑛𝑓

(𝑀(𝐺′)), 𝑉𝑠𝑛𝑓 (𝑀(𝐺))) ∶ 𝐶∗(𝐺′) → 𝐶
𝑠𝑛𝑓

∗ (𝐺′).
The chain map (𝑠𝑛𝑓 (𝑞0), 𝑠𝑛𝑓 (𝑞1)) from (𝑠𝑛𝑓

𝟎 (𝑀(𝐺)), 𝑠𝑛𝑓

𝟏 (𝑀(𝐺)), 𝐷𝑠𝑛𝑓 (𝑀(𝐺))) to (𝑠𝑛𝑓

𝟎 (𝑀(𝐺′)), 𝑠𝑛𝑓

𝟏 (𝑀(𝐺′)), 𝐷𝑠𝑛𝑓 (𝑀(𝐺′))) is 
defined in matrix terms by:

• 𝑠𝑛𝑓 (𝑞0) =𝑈𝑠𝑛𝑓 (𝑀(𝐺′)) ∗𝑄0 ∗𝑈−1
𝑠𝑛𝑓

(𝑀(𝐺)) and

• 𝑠𝑛𝑓 (𝑞1) = 𝑉 −1
𝑠𝑛𝑓

(𝑀(𝐺′)) ∗𝑄1 ∗ 𝑉𝑠𝑛𝑓 (𝑀(𝐺)).

Restricting 𝑠𝑛𝑓 (𝑞𝑖) (𝑖 = 0, 1) to the corresponding bases of representative cycles of homology vector spaces of 𝐺 and 𝐺′, unequivocally 
determines the associated homology map [𝑞] between their algebraic homology hypergraphs ∗(𝐺) and ∗(𝐺′). That amounts to 
removing from the matrix defining 𝑠𝑛𝑓 (𝑞𝑖) (𝑖 = 0, 1) its first 𝑡(𝐺′) − 1 rows and 𝑡(𝐺) − 1 columns. In this way, the following classical 
result can be constructively proven:

Theorem 4. Given two non-empty isomorphic hypergraphs, their (co)homological graded vector spaces with coefficient in 𝔽 are chain iso-

morphic.

Proof. If 𝑞 = (𝑄0, 𝑄1) ∶ 𝐺 ≃ 𝐺′ is an isomorphism given in permutation matrix terms between 𝐺 and 𝐺′, then the map [𝑞] ∶
∗(𝐺) →(𝐺′) generated as before is the desired chain isomorphism. □
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Analogous results can be established for the free and torsion homologies.
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