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Abstract-Laser dynamics simulations have been carried out using a cellular automata model. 
The Shannon's entropy has been used to study the different emergent behaviors exhibited by the 
system, mainly the laser spiking and the laser constant operation. lt is also shown that the Shannon's 
entropy of the distribution of the populations of photons and electrons reproduces the laser stability 
curve, in agreement with the theoretical predictions from the laser rate equations and with the 
experimental results. © 2005 Elsevier Ltd. Ali rights reserved. 
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l. INTRODUCTION

Laser dynamics has been traditionally analyzed by solving a set of coupled differential rate 
equations which describe the interrelationships and transition rates among the electronic states in 
the laser active medium and the laser photons [1,2]. But rccently, an alternative approach based 
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on a cellular automata  (CA) model has been proposed [3], in which the laser properties arise as 
emergent phenomena from the collective effect of many locally interacting, simple components. 
In this paper we focus on the application of Shannon's entropy to recognize and classify the 

different types of behavior shown by the CA model. 
Cellular automata  are a class of spatially and temporally discrete mathematical  systems, char- 

acterized by local interaction and synchronous dynamical evolution. They  were first introduced 
in the 1950s by von Neumann [4] to investigate self-reproduction and since then have at tracted 
much interest because of its capability to generate complex behavior from sets of components 
which interact locally with relatively simple rules [5,6]. In the last two decades, CA have been 
extensively used to build models of a wide variety of physical systems [7,8], for example reaction- 
diffusion processes [9], fluid dynamics [10], magnetization in solids [11], growth phenomena [12], 
molecular excited-state dynamics [13], etc. Recently, CA have become more attractive because 
the inherent parallelism makes them very suitable to be naturally and efficiently implemented in 
parallel computers. High performance simulations of physical systems [14,15] can be carried out 

in this way. 
A laser cellular automata  model can be useful for two kinds of application: first, for cases in 

which the standard t reatment  cannot be applied--as happens in lasers governed by stiff differen- 
tial equations, with convergence problems--second, to take advantage of the cellular automata 
intrinsic parallel nature in order to efficiently implement three-dimensional simulations of laser 

devices in parallel computers. 
In this work, we study the following problem. In the laser cellular automata  model, laser field 

and population inversion may perform different kinds of temporal  behavior, depending on the 
values of the pumping probability, the life time of laser photons, and the upper laser level life 
time. The problem is how to find a magnitude to characterize all these possible outcomes of the 
system to be compared with the predictions of the traditional approach for laser dynamics (the 

laser rate equations) and with the experimental results. 
In order to address this problem, we choose the Shannon's entropy as such magnitude. In the 

laser CA model, two main kinds of temporal  behavior are found: an overdamped dynamics with 
almost null Shannon's entropy and an oscillating one with larger Shannon's entropy. With the 
Shannon's entropy, we locate these different kinds of behavior and check the agreement between 
the laser CA model results and the predictions of the laser rate equations. 

This paper is organized as follows. Section 2 describes the cellular automata  model that  has 
been used for the simulations. In Section 3, the results of the simulations are presented and 
analyzed using the Shannon's entropy. Finally, the conclusions are summarized in Section 4. 

2.  C E L L U L A R  A U T O M A T A  

M O D E L  

The model that  has been used is a cellular automaton defined on a two-dimensional square 
lattice of Arc -- 200 × 200 cells with periodic boundary conditions. Two variables ai(t) and ci(t) 
are associated to each node of this lattice. The first one, ai(t), represents the state of the 
electron in node i at a given time t. An electron in the laser ground state takes the value 
a~(t) = 0, while an electron in the upper laser state takes the value ai(t) -- 1. The second variable 
ci(t) C {0, 1 , 2 , . . . ,  M} represents the number of photons in node i at t ime t. A large enough 
upper value of M is taken to avoid saturation of the system. The neighborhood considered is the 
Moore neighborhood, each cell having nine neighbors: the ceil itself, its four nearest neighbors 
(situated in the positions north, south, east, and west) and the four next neighbors (in the 
positions northeast,  southeast, northwest and southwest). The time evolution of the CA is given 
by a set of transition rules which determine the state of any particular cell of the system at time 
t + 1 depending on the state of the cells included in its neighborhood at time t. These rules 
represent the different physical processes that  work at the microscopic level in a laser system. 
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R1. Pumping:  If  the electronic s tate  of a cell has a value of ai(t) = 0 in t ime t, then in t ime 
t + 1 tha t  s tate will have a value of ai(t + 1) = 1 with a probabil i ty ,k. 

R2. Stimulated Emission: If, in t ime t, the electronic state of a cell has a value of ai(t) = 1 
and the sum of the values of the laser photons states in the nine neighbor ceils is greater 

than  a certain threshold (which in our simulations has been taken to be 1), then in t ime 
t + 1 a new photon will be created in tha t  cell: ci(t + 1) = ci(t) + 1 and the electron will 

decay to the ground leveh ai(t + 1) = 0. 
R3. Photon Decay: A finite life t ime ~-~ is assigned to each photon when it is created. The 

photon will be destroyed ~-~ t ime steps after it is created. 
R4. Electron Decay: A finite life t ime ~-a is assigned to each electron tha t  is promoted from the 

ground level to the upper laser level. Tha t  electron will decay to the ground level again ~-~ 
t ime steps after it was promoted,  if it has not yet decayed by st imulated emission. To 
simplify the model as much as possible, we consider this decay is entirely nonradiative, 

i.e., we do not take into account spontaneous emission. Also, as in an ideal four level laser 
the population of level E1 is negligible, st imulated absorption has not been considered. 

In addition, a small continuous noise level of random photons in the laser mode is introduced 
at every t ime step, in order to represent the experimentally observed noise level, responsible of 
the initial laser start-up. This is done by making c~(t + 1) = c~(t) + 1 for a small number  of cells 
(< 0.01% of total) with randomly chosen positions. 

. S I M U L A T I O N  R E S U L T S  
A N D  S H A N N O N ' S  

E N T R O P Y  A N A L Y S I S  

Three parameters  determine the response of the system: the pumping probabil i ty (A), the life 

t ime of photons (~-c) and the life t ime of excited electrons (Ta). Initially, ai(O) = O, ci(O) = O, Vi, 
except a small fraction 0.01% of noise photons. We let the system evolve for 500 t ime steps. In 
each t ime step, the total  number of laser photons n(t) N = ~ i 2 1  ci(t), and the total  number of 

electrons in the upper  laser state (population inversion) N(t)  = ~N~ 1 ai(t) are measured. 

Running test  simulations for different values of the three parameters  of the system, two main 
types of behavior are observed: after a transient time, n(t) and N(t)  show either a constant value 
or correlated damped oscillations. We are interested in making a more systematic exploration of 
the behavior of the laser CA model in the whole parameters  space, and comparing it with the 
response of the laser rate equations. 

To this end, it should be interesting to find a magnitude to characterize the type of behavior 

shown by the system for each particular tr iad of values of the parameters .  As such a magnitude, 
the Shannon's  entropy S of the distribution of values taken by n(t) and N(t) ,  after running the 
simulation for a t ime interval, is calculated. This Shannon's  entropy is computed by dividing the 
range of values taken by n or N in 10 a equally spaced bins, and computing the frequency (fi) at 

which this value lies inside every particular nonvoid bin i. Then, S is calculated as 

s ( a ,  = - l o g s  (1)  
i = 1  

where rn is the number  of nonvoid bins. 
The Shannon's entropy S measures the dispersion of the distribution of values taken by the 

nmnber  of laser photons ~ (or the population inversion N).  If this number  is approximately 
constant (i.e., all the bins except one are void), S will tend to zero; if oscillations appear,  the 
probabili ty distribution becomes wider and S takes higher values; and finally the max imum value 
of S would result from an equiprobable distribution. Therefore, S can be used as a good indicator 
of the presence of oscillations in the system. The dependence of the Shannon's  entropy on two of 
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Figure  1. C o n t o u r  p lots  of  t he  S h a n n o n ' s  en t ropy of t he  d i s t r ibu t ion  of va lues  t aken  
by t he  n u m b e r  of  laser pho t ons  Sc (top) and  t he  popu la t i on  invers ion Sa (bo t tom) ,  
showing  the  dependence  of S wi th  t he  p u m p i n g  probabi l i ty  ,k and  t he  uppe r  laser  
level life t i me  ~-a for a fixed value  of the  cavi ty  life t ime  of Tc = 10. ~-a and  Tc are 
m e a s u r e d  in t i me  s teps .  S has  been c o m p u t e d  for a per iod  of t ime:  t E [250, 1000] 
t im e  steps.  

the parameters  of the system when the third parameter  is fixed is shown in Figure 1. Similar plots 
can be obtained for other values of the parameter  that  is fixed (~'c), showing areas in which S 
tends to zero, indicating a constant behavior (bright zones), and other areas in which S is higher, 

indicating an oscillatory behavior (dark zones). 

The results obtained by measuring S can be compared with the predictions of the laser rate 
equations for a wide range of values of the three parameters  of the system. The laser rate 

equations can be put in their s imples t - -bu t  still meaningful - - form as a system of two coupled 
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C on t ou r  plot  of t he  S h a n n o n ' s  en t ropy  of t he  d i s t r ibu t ion  of  t h e  n u m b e r  
of laser photons for a fixed value of % = 10 time steps. Low values of S~ (bright 
zones) indicate that the response of the system is nonoscillatory, while high values 
(dark zones) correspond to an oscillatory response. The black line is the theoretical 
stability curve. Points a and b correspond to the parameters for which the temporal 
evolut ion is shown  in Figure  3. (a): -R/Rt = 5, Ta/~-c = 18. (b): R/Rt = 16, 
~-a/~-c = 3. 

differential equations [1,2]. The first one gives the variation with time of the number of laser 

photons n(t) and the other one reflects the temporal variation of the population inversion N(t),  

dn(t) - K N(t)  n(t) - ~(nJ--Z, (2) 
dt ~'~ 

dN(t)  _ R N(t)  K N ( t )  n(t). (3) 
dt ~-~ 

Here, R is the pumping rate and K is a constant called "coupling constant". For the case of 

small amplitude fluctuations, a linearized small-signal analysis of these equations can be carried 

out, and two different situations arise. 

1. Overdamped System: The solutions for n(t) and N(t)  are real exponentials. The response 

to any perturbation dies out exponentially towards the steady state. 
2. Relaxation Oscillations: The solutions have an exponentially damped sinusoidal form. 

The response to any perturbation shows relaxation oscillations towards the steady state, 

with a fi'equency (usually called spiking frequency), 

a~sp= \ 2 7 a R t ]  TaTc R t  - 1  ' (4) 

Here, R is the laser pumping rate and Rt is the threshold laser pumping rate, which are 

linearly related to the pumping probability A and the threshold pumping probability At 
that  appear in the CA model [3], so that R / R t  = A/At. The threshold pumping probabil- 
ity At is calculated in the CA model as the smallest value of the pumping probability A 

for which after a transient time the number of laser photons is clearly greater than the 

number of noise photons introduced. 
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Figure 3. Temporal evolution of the system (number of laser photons and population 
i n v e r s i o n )  fo r  t h e  v a l u e s  o f  t h e  p a r a m e t e r s  m a r k e d  a s  a a n d  b p o i n t s  in F i g u r e  2. T h e  

v a l u e s  o f  t h e  p a r a m e t e r s  a r e  (a) :  A = 0 .0125 ,  r c  = 10, r~  - -  180. (b) :  A = 0 . 1 9 2 ,  
~-c = 10, ~-a = 30. H e r e ,  re  a n d  T~ a r e  m e a s u r e d  in t i m e  s t e p s .  L a t t i c e :  4 0 0  x 4 0 0  

cells .  

The necessary condition for the occurrence of the relaxation oscillations is that  Wsp be real, or 

equivalently, that  the quantity inside the square root in equation (4) be positive. This leads to 

the following condition, 

_ _  ( R / R t )  2 
~° > (5) 
T~ 4 ( R / R t  - 1)" 
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Damped oscillations appear  for values of the parameters  fulfilling condition (5), and a constant 

behavior appears  if this condition is not satisfied. The values of the parameters  for which these 
two situations appear  can be visualized by plotting the equation derived from condition (5) with 
an equal sign, using R/Rt  as x-axis and ra/rc as y-axis. The result is the black line in Figure 2. 
This function is the theoretical stability curve which separates areas of different behavior for the 
solution of the linearized small-signal laser rate equations: relaxation oscillations appear  above 
and to the right of this curve and an overdamped behavior below and to the left of it. 

In order to compare the behavior exhibited by the results of the laser cellular au tomata  model 
with these predictions from the laser rate equations, we have plotted in the same graph in Figure 2, 

the Shannon's entropy for the number of laser photons, using R/Rt  as x-axis and ra/r~ as y-axis. 
It  can be observed tha t  the Shannon's entropy follows the form of the theoretical stability curve. 

Areas of high S (dark zones)--which indicate an oscillatory behavior in the results of the laser 
CA m o d e ~ a p p e a r  above and to the right of this curve, and areas of low S (bright zones)--which 
indicate a constant behavior in the results of the laser CA m o d e l - - a p p e a r  below and to the left 

of it. This is in agreement with the solutions of the laser rate equations. 

Figure 3 shows the t ime evolution of n(t) and N(t) corresponding to the points a and b in 
Figure 2. Relaxation oscillations (also known as laser spiking) are found for point a, included in 
the zone of high entropy, and a constant behavior for point b, included in the zone of low entropy. 

The information obtained by the Shannon's entropy not only is in agreement with the results of 
the laser rate equations, but  is richer than tha t  obtained only from the stabili ty analysis of those 

equations, because it is able to quantify the ampli tude of the oscillatory behavior. Therefore, 
the Shannon's  entropy can be used as a parameter  to characterize the behavior exhibited by the 
laser CA model and to compare it with the dynamics predicted by the laser rate equations. 

4. C O N C L U S I O N S  

Along this paper  it was shown the usefulness of the Shannon's entropy concept to test the 

agreement between the different behaviors observed in the laser cellular au toma ta  model with 
those predicted by the stability analysis performed in the laser rate equations. This agreement re- 

inforces the confidence in the capability of laser cellular au tomata  as a modelling tool alternative 

to differential equa t ions- - to  describe laser physics. 
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