
Saraza-Canflanca et al.: Determination of the time constant distribution of a defect-centric Time-Dependent Variability model for sub-100nm FETs 1 

 
Abstract—The origin of some Time-Dependent Variability 

phenomena in FET technologies has been attributed to the 
charge carrier trapping/de-trapping activity of individual 
defects present in devices. Although some models have 
been presented to describe these phenomena from a so-
called defect-centric perspective, limited attention has been 
paid to the complex process that goes from the 
experimental data of the phenomena up to the final 
construction of the model and all its components, 
specifically the one that pertains to the time constant 
distribution. This paper presents a detailed strategy aimed 
at determining the defect time constant distribution, 
specifically tailored for small area devices, using data 
obtained from conventional characterization procedures. 

Index Terms—BTI, Characterization, FET devices, 
Modeling, Time-Dependent Variability 

I. INTRODUCTION 

IME-DEPENDENT-VARIABILITY (TDV) phenomena in 
FET technologies, such as Bias Temperature Instability 

(BTI) or Random Telegraph Noise (RTN), have been a subject 
of increasing attention [1]. A widely accepted hypothesis to 
explain the origin of these phenomena is the capture/emission 
of charge carriers in/from defects in the field-effect transistor, 
which, in small area devices, induce discrete shifts in the 
transistor threshold voltage and, these, in turn, cause discrete 
drain current shifts [2]. The parameters associated with the 
defects, namely the emission and capture times as well as the 
induced threshold voltage shifts, do not have the same value for 
all defects. Rather, their values follow probability distributions. 
Defect-centric models, such as the Probabilistic Defect 
Occupancy (PDO) model [3], have been proposed to account 
for the stochasticity of TDV phenomena in deeply-scaled 
technologies. Determination of the distribution of amplitude 
shifts has been dealt with in previous literature [4]-[6]. This 
paper focuses on how to determine, from experimental data, the 
distributions followed by the time constants of the defects, i.e., 
the capture/emission time (CET) maps [7]. 

To this end, a statistical analysis of the individual defects has 
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been proposed [7], for instance, by making use of time-
dependent defect spectroscopy (TDDS) [8]. High gate voltages 
are applied many times (e.g., 100) under the same voltage and 
timing conditions. The tracking of each defect (identified by the 
amplitude of the current shift) is performed to get the average 
times at which a charge is emitted and, thus, extract the 
corresponding emission time constant (e). This fact alone 
dramatically limits the range of time constants that can be 
accurately obtained to a small fraction of the experimental 
window. The reason for this is that the exact time at which a 
charge is actually emitted, i.e., its time-to-emission, can be 
anywhere in the range of several decades around the time 
constant value [9]. The defects with time constants that are not 
sufficiently below the upper limit of the experimental window 
may not undergo an emission event within the experimental 
timeframe in some of the repeated experiments described 
above. Therefore, the accuracy of the determination of such 
time constant decreases dramatically. A similar problem occurs 
if the time constant of the defect is not sufficiently above the 
lower limit of the experimental window. In summary, this 
approach finds difficulties in properly building the CET map 
because only a fraction of the defects would be accurately 
identified. Moreover, the approach is also very lengthy and 
prone to errors, since different defects with similar amplitudes 
could be mistaken for one another.  

An alternative solution was proposed in [7] and later 
developed in [10]-[12]: to match the integral of the CET map 
multiplied by the probability of occupation to the recovery 
traces of the threshold voltage of large devices, which contain 
hundreds or thousands of defects. To carry out this matching, 
an average threshold voltage shift and an average number of 
defects are considered. Although these works show a good 
result for the averaged impact of many defects in large devices, 
their ability to describe the experimental stochastic distributions 
of the phenomena in small area devices has not been yet 
demonstrated. In other words, there can be many combinations 
of distribution functions that account for the macroscopic 
averaged current degradation and recovery in large devices but 
that do not match the stochastic behavior in small devices. 
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This paper vindicates a method to determine the 
capture/emission time maps that is able to describe the 
stochastic behavior of small transistors from the experimental 
statistical study of such small transistors. Unlike previous 
approaches, (a) identification of the same individual defect 
across different experiments is not necessary, (b) the actual 
times at which emission events occur are accounted for, and (c) 
the experimental statistical distributions of times-to-emissions 
in recovery traces of small area devices are perfectly matched. 

II. CHARACTERIZATION STRATEGY 

 In the following, the employed measurement technique has 
been the well-known Measure-Stress-Measure (MSM) one 
[13], using the transistor array in [14] and the experimental 
setup in [15]. First, 600 pristine PMOS devices of W=80nm and 
L=60nm fabricated in a 1.2-V 65-nm CMOS technology are 
measured (i.e., before any stress voltage is applied) to obtain a 
reference. Then, 5 stress-measure cycles are applied to each 
device with exponentially increasing stress times between 1s 
and 10,000s. In the stress phases, the devices are biased with 
voltages over the nominal value (|𝑉௚௦ | = 2.5V) to enable the so-
called accelerated aging, during which charges are expected to 
get trapped into defects. In the recovery phases, the devices are 
biased below their nominal conditions (|𝑉௚௦| = 0.6V and |𝑉ௗ௦| = 
0.1V) and their drain current is measured for 100s. In these 
phases, charges are expected to get de-trapped from the defects. 
These de-trapping events are observed as sudden and discrete 
increases in the drain current, as can be seen in the experimental 
trace example in Fig. 1a. As it will be explained in the next 
Section, the time instants at which these de-trapping events 
occur, te, will be used to investigate the distribution of the time 
constants of the defects. In particular, only Single Emission 
Events (SEE) will be considered, being a SEE an emission of a 
charge from a defect if, later in the measurement window, such 
defect does not capture another charge. This is a normal practice 
in BTI characterization and does not imply a significant 
limitation. The only alternative emission/capture events that 

can appear in a current trace are illustrated with the 
experimental trace example in Fig. 1b. It can be seen that, 
together with several SEEs, a defect shows multiple charge 
trapping and de-trapping events. This is a defect that manifests 
as Random Telegraph Noise (RTN) at the low gate and drain 
voltages applied during the recovery phase. Therefore, it is not 
convenient to consider them during the parameter extraction 
procedure based on MSM since it would unnecessarily 
complicate the mathematical formulation. 
From the current traces, defect information is extracted using a 
Maximum Likelihood Estimation (MLE)-based method [16]. 
MLE estimates the parameters of a statistical model for the 
current levels of the experimental trace given the measured 
current samples. The background noise can be approximated by 
a Gaussian distribution which is independent of the different 
current levels induced by the threshold voltage shifts associated 
to charge carrier trapping/detrapping. Then, the measured 
current trace can be considered as samples of a probability 
density function (pdf) formed by the addition of different 
Gaussian distributions centered at the different current levels: 

𝑓ሺ𝐼 ฬ𝜃ሻ ൌ
1

𝐾√2𝜋𝜎ଶ
෍ 𝐴௝𝑒ି

ሺூିூಽೕሻమ

ଶఙమ

ெ

௝ୀଵ

 (1) 

where 𝜃 is the vector of parameters of the probability density 
function, 𝜎 represents the standard deviation of the background 
noise, 𝐼௅௝ is the value of each of the 𝑀 current levels, 𝐴௝ the 
value of its distribution height, and 𝐾 a normalization constant 
so that the area below the pdf is unity. 
The MLE method tries to identify the parameter values 𝜃 that 
make the measured data ሼ𝐼ଵ, ⋯ , 𝐼ேሽ the most probable, which 
can be easily formulated and solved as an optimization 
problem. Once the 𝑀 discrete current levels have been 
identified, the next step is to generate a clean or background-
noise-free current trace from the experimental one. For this, the 
current value of the closest of the 𝑀 current levels is assigned 
to each experimental current point. 
In the present case, defects that do not undergo a single 
emission event (i.e., defects that undergo both trapping and 
detrapping events, which induce current shifts of equal 
amplitude but opposite sign, as those in Fig. 1b) are removed 
from the clean trace, and only recovery detrapping events are 
left. With the experimental setup used [15] and this extraction 
algorithm, detrapping events with amplitudes down to 1.7nA 
have been detected. From the resulting clean recovery trace, the 
emission time instants (𝑡௘) and amplitudes of SEEs (∆𝐼஽) can be 
directly extracted.  

III. THEORETICAL BACKGROUND 

To analytically tackle the occurrence of a SEE during a 
measurement window, two fundamental requirements must be 
considered: (a) the defect must exist and be already occupied at 
the beginning of the recovery phase, and (b) it must undergo an 
emission during the measurement window without undergoing 
a capture event for the rest of the measurement window. These 
two requirements are mathematically formulated in the 
following. 

  

(a) 

(b) 

Fig. 1.  Examples of experimental current trace in a recovery phase: (a)
containing only SEEs and (b) containing SEEs and RTN trapping/de-
trapping events. Examples of time-to-emission and current shift of an
SEE are marked with arrows. 
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A. Requirement 1: The defect exists and is occupied at 
the start of the recovery phase 

The probability that a defect characterized by a given pair of 
time constants (e, c) exists is determined by the probability 
density function Pdef. In this work, a bivariate lognormal 
distribution has been considered [17] : 
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where le = log(e) and lc = log(c). Parameters 𝜇ఛ೐ and 𝜇ఛ೎ are 
the mean values of the emission and capture times’ logarithm, 
𝜎ఛ೐

and 𝜎ఛ೎
 are the standard deviations and 𝜌 is the correlation 

coefficient. An example of such distribution is represented in 
Fig. 2a for the set of model parameter values obtained in Section 
IV and indicated in Table II. Note also that time constants 
depend on the applied gate and drain biasing voltages [18]. The 
following exponential dependencies on the gate and drain 
voltages are assumed (with source and bulk short-circuited): 

𝜏௘ ൌ 𝜏௘଴10ఉ೐ሺห௏೒ೞหିห௏೒ೞೝ೐೑หሻ10ఊ೐ሺ|௏೏ೞ|ିห௏೏ೞೝ೐೑หሻ

𝜏௖ ൌ 𝜏௖଴10ఉ೎ሺห௏೒ೞหିห௏೒ೞೝ೐೑หሻ10ఊ೎ሺ|௏೏ೞ|ିห௏೏ೞೝ೐೑หሻ
 (3) 

The absolute values have been used for the voltages so that they 
take positive values for pMOS transistors. These voltage 
dependences are common in the literature and fit well with the 
experimental measurements [18]. Parameters 𝜏௘଴ and  
𝜏௖଴ correspond to the time constants for ห𝑉௚௦ห ൌ ห𝑉௚௦௥௘௙ห and 
|𝑉ௗ௦| ൌ ห𝑉ௗ௦௥௘௙ห. Here, we consider the reference voltages as 
those used during the recovery phase. Then, the distribution in 
(2) is evaluated at these voltages, so that 𝜏௘ ൌ 𝜏௘଴ and  𝜏௖ ൌ 𝜏௖଴, 
as depicted in Fig. 2a. In addition, the proposed method for the 
determination of the time constant distribution can also be 
applied in case a different mathematical formulation of the 
distribution function in (2) is proposed. 

To undergo a SEE, the defect must be occupied at the 
beginning of the recovery phase. This can be evaluated through 
the probability of occupation function (Pocc) [2], which provides 
the probability that a defect is occupied for a given biasing 
condition and time. Although only the Pocc at the beginning of 
each recovery phase is needed, it is necessary to evaluate its 
evolution throughout all previous stress-measure phases. Pocc 
can be formulated in differential form as [19]: 
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Then, since the exact timing and biasing conditions of each 
stress-measure phase are known, it is possible to easily solve 
(4) analytically to obtain the evolution of Pocc at each phase. 
Indeed, when solving (4), time constants (e, c) must be 
calculated according to (3) for each phase. For the sake of 
illustration, Fig. 2b displays the Pocc distribution at the end of 
one of the stress cycles. The product of the distributions in Fig. 
2a and Fig. 2b, illustrated in Fig. 2c, yields the probability of 
existence of charged defects at the end of one stress phase that 

could potentially produce a SEE during the subsequent 
recovery phase. The voltage coefficients in (3) can vary from 
defect to defect. In this paper, we will consider the mean value 
of such dependences. 

B. Requirement 2: The defect undergoes a SEE 

As defined above, a SEE implies an emission event during 
the measurement window that is not followed by a capture 
event. Since the emission of a charge from a defect can be 
modeled as a Markov process [20], the probability that a defect 
characterized by an emission time constant e emits a charge at 
time te is given by [19]: 

𝑃௘௠௜ሺ𝑡௘|𝜏௘ሻ ൌ
1
𝜏௘

𝑒ି௧೐/ఛ೐ (5) 

(a) 

(b)  

(c) 
  
Fig. 2.  An example of (a)  a bivariate lognormal distribution of the defect 
time constants, (b) a probability of occupation of the defects after the 
stress cycle of 1000s, (c) a distribution of charged defects at the end of 
the stress period. 𝜏௘଴ and 𝜏௖଴ are referred to |𝑉௚௦௥௘௙| = 0.6V and |𝑉ௗ௦௥௘௙| 
= 0.1V. Decimal logarithm has been used in all plots in this paper. 
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Analogously, the probability that the defect, characterized by a 
capture time constant c, captures a charge at a given time t after 
it has emitted one at time te is given by: 

𝑃௖௔௣ሺ𝑡|𝑡𝑒, 𝜏௖ሻ ൌ
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The probability that the charge is captured between te and the 
end of the measurement window 𝑡௠௔௫ is given by the definite 
integral of (6) between these limits. And vice versa, the 
probability that a defect, with capture time constant c, does not 
capture a charge, after emitting one at te, before the end of the 
measurement window 𝑡௠௔௫ will be given by one minus such 
definite integral: 
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Then, it must be considered that the measurement window 
has a lower limit 𝑡௠௜௡ (experimentally, this limit is, at least, the 
sampling rate of the current measurement instrument which, in 
this case, is 2ms), i.e., assuming that measurement procedures 
have started just after the recovery begins, SEEs happening 
below time 𝑡௠௜௡ of the recovery period will not be detected.  
During the measurement window, bounded by 𝑡௠௜௡ and 𝑡௠௔௫, 
the probability that a defect with certain time constants (e, c) 
experiences a detectable SEE is given by the product of (5), i.e., 
the defect emits a charge, and (7), i.e., the defect does not 
capture a charge before 𝑡௠௔௫: 

𝑃௦௘௘ሺ𝑡௘|𝜏௘, 𝜏௖ሻ ൌ 𝑃௘௠௜ሺ𝑡௘|𝜏௘ሻ ∙ 𝑃௡௢௖௔௣ሺ𝑡௘|𝜏௖ሻ (8) 

And, therefore the probability to detect a SEE at any time 
instant is: 
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Again, e and c in (9) must be calculated according to (3). 
Since SEEs occur during the recovery phase and the reference 
voltages have been considered as those of the recovery phase, 
𝜏௘ ൌ 𝜏௘଴ and  𝜏௖ ൌ 𝜏௖଴ in (9). 

C. SEE observation probability 

Finally, to detect a SEE, the defect, characterized by its time 
constants e and c, must be charged at the end of the stress 
phase (i.e., beginning of the recovery phase) and a SEE must 
occur during the measurement window. Mathematically, this is 
given by the product of (2), the solution of (4), and (9): 

𝑃௟௔௕௦௘௘ሺ𝑡௘, 𝜏௘, 𝜏௖ሻ ൌ
ൌ 𝑃ௗ௘௙ሺ𝜏௘, 𝜏௖ሻ ∙ 𝑃௢௖௖ሺ𝑡 ൌ 𝑡଴ሻ ∙ 𝑃௦௘௘ሺ𝑡௘|𝜏௘, 𝜏௖ሻ (10) 

where 𝑡଴ is the time instant at which the recovery phase starts. 
At the laboratory, only the time instants te at which SEEs 

occur can be measured. Actually, since they are statistically 

distributed, their cumulative distribution function (Fig. 2) can 
be calculated. Mathematically, it is possible to obtain the 
probability density function by integrating the three-
dimensional distribution in (10) for every possible value of  𝜏௘ 
and 𝜏௖: 

 

𝑃௟௔௕_௩௜௦_௧௘ሺ𝑡௘ሻ ൌ ඵ 𝑃𝑙𝑎𝑏𝑠𝑒𝑒ሺ𝑡𝑒, 𝜏𝑒, 𝜏𝑐ሻ𝑑𝜏𝑒𝑑𝜏𝑐 (11) 

The cumulative density function (cdf) can be easily obtained 
from the integration of equation (11), and this cdf will be fitted 
to the experimental cdf data, to determine the defect distribution 
in (2), as described in the next section. Notice that, unlike 
conventional approaches, there is no need to track individual 
defects in many MSM experiments on the same devices to 
determine their averaged time constants from the observed 
time-to-emissions. As discussed in Section I, this would limit, 
dramatically, the usability of the emission events observed in 
the laboratory to fit the time constant distribution. However, 
with the proposed approach, the distribution of time-to-
emissions is directly fitted and, hence, every single emission 
event observed in the laboratory is effectively used in the fitting 
procedure. 

IV.  FITTING OF EXPERIMENTAL DATA  

Red square symbols in Fig. 3 show the experimental cdf of 
the time instants at which SEEs are observed (i.e., 𝑡௘) for the 5 
MSM cycles of the characterization of 600 PMOS devices 
described in Section II. Table I shows the mean and variance of 
the number of SEEs detected per PMOS device at each of the 
five recovery cycles of the MSM procedure.  

To illustrate the proposed methodology, the defect time 
constant distribution that describes the time-to-emission 
distributions in Fig. 3 will be built. Note that, though the shape 
of the distributions is very similar, as expected, they are shifted 
towards larger emissions times with the stress time. The model 
parameters in (2) have been adjusted so that the cdf   
corresponding to (11) best fits the experimental SEEs in Fig. 3. 
The drain-source voltage 𝑉ௗ௦ has practically no change in this 
experiment; hence, the drain voltage dependence of the time 
constants can be neglected. The fitting is performed by 
minimizing the difference between both cdfs using Particle 
Swarm Optimization, a global optimization algorithm that does 
not require any initial estimate of the fitting parameters [21]. Its 
application yields the values of the distribution parameters for 
our case study in Table II. Notice that the mean and standard 
deviations correspond to a log-time scale and as such they are 
dimensionless. As stated in Section III, they are referred to the 
drain and gate reference voltages. The corresponding defect 
distribution is shown in Fig. 2a. Only a portion of the defects 
modeled by this distribution manifests as SEEs during the 

TABLE I 
MEAN AND VARIANCE OF THE NUMBER OF SEES PER DUT DETECTED AT 

EACH RECOVERY CYCLE 

Cycle 1 2 3 4 5 

Mean 1.355 1.742 2.151 2.502 2.926 
Variance 1.447 1.993 2.233 2.810 3.371 
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experimental window. Fig 4 shows the pdf in (11) for the 5 SM 
cycles using the time constant distribution in Table II.  
 Fig. 3 (continuous blue line) shows the representation of the 
cdf obtained from (11). A normalization factor has been applied 
to the cdfs so that they can be meaningfully compared to the 
experimental cdfs. Indeed, to get consistent optimization 
results, the normalization factor of the cdf is imposed to be the 
same for all cycles. It can be seen that there is an excellent 

agreement with the experimentally observed SEEs. Note that 
the differences between the simulated cdf and the experimental 
cdf are slightly larger for the first two plots. This is an expected 
statistical effect, because the stress times are much smaller in 
these plots and, hence, the number of trapped charges that can 
be emitted during the measurement windows are much smaller. 
Consequently, the results are less statistically significant and 
larger discrepancies between the experimental data and the 
fitted model are to be expected. 

 The results above have been obtained for the bivariate 
lognormal distribution in (2). However, the procedure is fully 
general and can be applied to any other distribution. For the 
sake of illustration, Fig. 5 shows the fitting results where an 
identical procedure is applied with a log-uniform distribution. 
It can be seen that the fitting to the experimental results is 
considerably worse in this case. 

 

 
Fig. 3.  Comparison of cdf of time of SEEs detected for 600 devices stressed at |𝑉௚௦| = 2.5V, for a recovery phase of 100s, and the representation 
of the cdf corresponding to (11) for the 5 SM cycles using the bivariate lognormal distribution in (2) with the parameters in Table II. 

TABLE II 
PARAMETERS EXTRACTED FOR THE CET MAP DISTRIBUTION 

𝝁𝝉𝒆
  ∗ 𝝁𝝉𝒄

  ∗ 𝝈𝝉𝒆
  ∗ 𝝈𝝉𝒄

 ∗ 𝝆  ∗ 𝜷𝒆 ሺ𝐕ି𝟏ሻ 𝜷𝒄ሺ𝐕ି𝟏ሻ 

0.43 4.19 2.64 9.80 0.5 1.53 -2.40 
* As these correspond to parameters of the bivariate lognormal 
distribution, time constants have been normalized to 1s before applying 
the logarithm. Decimal logarithm has been used in these parameters. 

 
Fig. 4.  Representation of (11) for the 5 SM cycles. 

 

 
 
Fig. 5.  Comparison of cdf of time of SEEs detected for 600 devices stressed at |𝑉௚௦| = 2.5V, for a recovery phase of 100s, and the representation
of the cdf for the 5 SM cycles using a bivariate log-uniform distribution. 
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 The quality of the fitting process can also be evaluated by 
comparing the behavior predicted by the defect-centric model 
and the model parameters in Table II, with the results obtained 
in the laboratory for measurement conditions that were not used 
for model fitting, spanning the duration of both stress and 
measurement phases. In particular, a set of 200 pristine PMOS 
devices of W=80nm and L=60nm has been considered. These 
200 devices were subjected to a stress voltage of |𝑉௚௦ | = 2.5V 
during 100,000s and the recovery of each device was measured 
during the first 1,000s. The corresponding cdf of the time-to 
emission is shown with red symbols in Fig. 6.  On the other 
hand, the defect density function in (2) was computed for the 
model parameters in Table II. The solution of equation (4) was 
used to calculate the probability of occupation at the end of the 
100,000s of stress phase. And, finally, equation (9) was used to 
compute the probability that a SEE occurs between 2ms and 
1,000s. The multiplication of these three probabilities and 
integration over all possible values of emission and capture time 
constants, as in equation (11), yields the predicted probability 
density function of the times-to-emission of the SEEs. Fig. 6 
shows the comparison between the cdf of the experimental 
results obtained in the laboratory (red symbols) and the cdf of 
the predicted values using the model parameters in Table II 
(blue curve). It can be observed that the fitting result is quite 
good despite the fact that due to the longer stress and recovery 
times only 200 devices were stressed in the lab, and, hence, the 
number of experimental distribution samples is considerably 
smaller, which reinforces the adequacy of the fitting procedure 
presented in this work. 

 Notice that the fitting procedure reported here is appropriate 
for small enough FETs, i.e., devices where charge de-trapping 
during the recovery phase is observed as sudden changes in 
current. As such behavior has been described for other 65nm 
technologies and below (see for instance, 45nm and 65nm bulk 
CMOS in [22], 28nm in [23], 8nm and 7nm FinFET in [24]), it 
is quite reasonable to state that the work can be readily adopted 
for 65nm technologies and below. As for the upper limit, 

though this would depend on the particular technology, it could 
be around 100nm in width and length. For larger devices, the 
number of defects is so high that the recovery traces obtained 
using an MSM characterization procedure are smooth curves 
and the time-to-emissions of SEEs can be hardly detected. The 
same consideration applies in older technologies, i.e., with 
channel lengths around 100nm and above. Nevertheless, 
although the fitting procedure involves the characterization of 
small transistors, the fitted model can also be applied to larger 
transistors since the behavior can be simulated as the collective 
contribution of a larger number of defects in each device. 

V. CONCLUSIONS 

Defect-centric models have been proposed to deal with the 
TDV observed in nanometric FET technologies. Although such 
models are fundamental to predicting the impact of TDV 
phenomena on circuits, their full and detailed determination has 
been often overlooked. As shown in this paper, going from 
experimental data to an accurate and trustworthy model is 
neither straightforward nor simple. To tackle this problem, this 
paper presents a detailed step-by-step procedure to construct a 
defect-centric model that allows retrieving the time constants 
associated with the defects by exploiting the experimental data 
from typical MSM tests. Unlike other approaches based on 
defect tracking and averaged time constants, the proposed 
method directly fits the distribution functions to the observed 
time-to-emissions, efficiently exploiting all experimental data 
obtained in the laboratory. 
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