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Abstract: We present an analysis of the feasibility of executing a parallel bioinspired model
of laser dynamics, based on cellular automata (CA), on the usual target platform of this kind
of applications: a heterogeneous non-dedicated cluster. As this model employs a synchronous
cellular automaton, using the SPMD (Single Program, Multiple Data) paradigm, it is not clear in
advance if an appropriate efficiency can be obtained on this kind of platform. We have evaluated
its performance including artificial load to simulate other tasks or jobs submitted by other users. A
dynamic load balancing strategy with two main differences from most previous implementations
of CA based models has been used. First, it is possible to migrate load to cluster nodes initially not
belonging to the pool. Second, a modular approach is taken in which the model is executed on top
of a dynamic load balancing tool—the Dynamite system— gaining flexibility. Very satisfactory
results have been obtained, with performance increases from 60% to 80%.
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1 Introduction

Cellular Automata (CA) are a class of spatially and temporally

discrete mathematical systems characterized by local interac-

tion and synchronous dynamical evolution (Ilachinski, 2001).

They provide an excellent approach for modeling and simulat-

ing complex systems that has been used over the recent years

in many fields of science and technology (Sloot and Hoekstra,

2007; Chopard and Droz, 1998). A CA-based model for simu-

lating laser dynamics was introduced in Guisado et al. (2003).

As shown there and in a recent review of the subject in Guisado

et al. (2007), the model reproduces much of the phenomenol-

ogy of laser systems and is an alternative to the standard mod-

eling approach based on differential equations. This model can

be very useful for situations such as lasers ruled by stiff differ-

ential equations, difficult boundary conditions, very small de-

vices, etc. A parallel implementation of this model, necessary

to carry out realistic 2D simulations of specific laser systems

or for 3D simulations, was presented in Guisado et al. (2006).

In addition, it was found that the parallel implementation of-

fers a good performance running on small dedicated computer

clusters (Guisado et al., 2006). In this CA-based model of laser

dynamics, information about the state of the cells included in

the borders of the different partitions of the system must be ex-

changed after each time step, as represented in Fig. 1. This im-

plies that it must be waited until all the computing nodes have

finished for each time step before proceeding, i.e. the system

operates in a lock-step mode. Therefore, the performance of the

parallel implementation is limited by the slowest running task.

A group of overloaded nodes which execute the computations

slower than the majority of the nodes can degrade the overall

performance. As the usual platform for executing this kind of

applications are non-dedicated (and often heterogeneous) clus-

ters, it raises the following question: Can this algorithm have a

reasonably good performance when running on such platforms?

In order to answer this question we have studied the efficiency

of the algorithm on these conditions when using a dynamic

load balancing strategy to optimize the use of the computing

resources.

Sequential CA-based simulations can be used for education

or for very simple systems, but in order to simulate real world

phenomena (which need 3D or large 2D CA) parallel implemen-

tations running on high performance parallel computers must be

used since very long computing time or memory requirements

are needed (Talia, 2000; Bandini and Magagnini, 2001). As CA

normally operate in a lock-step mode, it is essential that some

of the computing nodes are not overloaded with respect to the

rest and thus dynamic load balancing is an important issue and

has been previously studied in different forms. Several parallel

implementations of CA focus on distributing the active cells be-

tween the nodes for CA in which some of the cells may become

idle for a number of time steps (Sloot et al., 1999; Cannataro

et al., 1995; D’Ambrosio and Spataro, 2007) or on moving cells

from heavily loaded nodes to more unloaded ones (Mazzariol

et al., 2000; Kohring, 1995; Cortés et al., 2003). In other cases,

the size of the partitions to be handled by each cluster node is
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adjusted, see for instance Refs. Fabero et al. (1996); Weimar

(1997). These approaches can balance the load when some

nodes are overloaded. But they are unable to migrate the jobs to

new nodes which did not originally participate in the computa-

tion of the CA. This possibility would offer more flexibility for

a real non-dedicated parallel computing environment and hence

we have opted for using a dynamic load balancing approach that

allows it in our present work.

Most of the parallel CA approaches directly implement the

dynamic load balancing algorithm on the own CA algorithm.

An example (in addition to most of the previously cited works)

is offered by the P-CAM system (Schoneveld and de Ronde,

1999), a specialized framework for parallel complex systems

simulations which directly integrates data decomposition and

dynamic load balancing into the framework functionality. In-

stead, we have chosen to execute the CA over a software tool

which transparently implements the dynamic load balancing.

This modular approach is more flexible, as changes can be in-

troduced in the CA algorithm and in the dynamic load balancing

algorithm without affecting each other. In addition, the load bal-

ancing tool can easily be changed. The tool that has been used is

Dynamite (van Albada et al., 1999), an automated load balanc-

ing system that can migrate individual tasks which are part of a

parallel program running with a message passing library. Dy-

namite is based on Dynamic PVM (Overeinder et al., 1996), a

re-implementation of the PVM message passing library (Geist

et al., 1994) that includes the load balancing functionality. It

monitors the utilization of the cluster nodes and migrates tasks

when some of them get under-utilized or over-utilized as de-

fined by configurable thresholds. The Dynamite system is com-

posed of three separate parts (see Iskra et al. (2000b) and Iskra

et al. (2000a) for a complete description): the load-monitoring

subsystem, the scheduler—which determines when a migration

becomes necessary, which tasks will be involved and which par-

ticular allocation will be adopted—and the task migration soft-

ware. We have chosen Dynamite because of its maturity, flex-

ibility and availability. However, other recent good dynamic

load balancing systems which could also be used to execute

this kind of simulations are the CAMELotGrid system (Folino

and Spezzano, 2007), which is a specific tool to manage CA

computations, and the general purpose framework designed by

Vadhiyar and Dongarra, implemented and tested in the GrADS

system (Vadhiyar and Dongarra, 2005). An advantage of both

systems over Dynamite is their possibility of integration on a

grid computing environment. However, we decided to use a

cluster computing environment because this is more adequate

for the execution of a parallel CA (a high performance comput-

ing application) due to the low latency of the communications

in comparison to a grid computing environment, which gener-

ally would be more adequate for running multiple executions

of a complete CA for different values of the parameters (a high

throughput computing application).

2 Simulation experiments

In the simulations a laser device is modeled by a two-

dimensional, multivariable, partially probabilistic CA corre-
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Figure 1: In the parallel implementation of a CA, information of the state of the cells included in the borders of each partition of

the system has to be communicated to the neighboring partition to be used in the computation corresponding to the next time step.

In this example, the CA has been partitioned into parallel stripes. Each partition is assigned to a different processing node.

sponding to a transverse section of the active medium in the

laser cavity. The state of the CA cells represent electrons and

laser photons and the set of transition rules defines the time evo-

lution of the system. After specifying an initial state, the system

is allowed to evolve for a number of iterations. In each time

step, two macroscopic magnitudes (representing the total num-

ber of laser photons and of electrons in a particular energy state)

are measured by counting the number of CA cells on a specific

state. The response of the system depends on three parameters:

the pumping probability (λ), the lifetime of photons (τc) and the

lifetime of excited electrons (τa). A parallel implementation of

this CA laser model for distributed-memory parallel computers

using the message passing paradigm, discussed in Guisado et al.

(2007), has been employed. A one-dimensional data decom-

position is used in which the CA grid is vertically partitioned

in stripes and each sub-domain is assigned to a different node.

Two additional columns of ghost cells have been included at

both sides of each sub-domain, as shown in Fig. 1, to store the

state of neighboring cells belonging to different sub-domains.

The master-slave programming model has been used: a mas-

ter program divides the CA grid in sub-domains and sends each

to a slave program running on a different node, which calculates

its time evolution. Algorithm descriptions of the master and

slave programs are shown in Algs. 1 and 2, where operations

involving communication between nodes have been indicated

with a leading * character.

At the beginning of each iteration the state of the bound-

ary cells is directly exchanged between slave programs com-

puting neighboring partitions, using two couples of PVM send

and receive routines (pvm send and pvm recv). The routine

pvm recv is blocking, so it waits until the specified message

has arrived. Therefore, this exchange plays the role of a syn-

chronization point between all the slave programs. This is il-

lustrated in Fig. 2 which shows a detail of the tasks executed

by each node and the messages transferred between different

nodes versus time, once the computation has started. This fig-

ure also shows that computation periods are much longer than

communication periods, so that the application achieves a high

computation-to-communication ratio, of the order of 10. More

details and precise definitions of this parallel CA laser model

can be found in Refs. Guisado et al. (2006); Guisado et al.

(2006); Guisado et al. (2007).

In order to study the performance of the parallel application

we have executed the same experiment under controlled con-

ditions on the cluster, including artificial loads to simulate a

normal non-dedicated cluster use. The particular experiment

involved the computation of the time evolution of the system

during 10, 000 time steps for a single value of the system pa-

rameters: λ = 0.0125, τc = 10, τa = 180. External load

was simulated by a sequential C program with a simple assign

instruction involving double precision numbers, inside a loop

statement that iterates for a specified period of time. A simi-

lar procedure was used for example in Vadhiyar and Dongarra

(2005). The compilation of this program was carried out with-

out any optimization to better obtain the desired loading result.

In order to study the effect introduced by different levels of ex-

ternal load, the execution time was measured when running the

artificial load on a number of cluster nodes ranging from 0 to 5,

using both normal PVM or the modified PVM version included

in the Dynamite load balancing system. The artificial load was

intended to simulate the normal use of a non-dedicated high

performance computing cluster for different users. Normally,

to achieve the best performance possible, a cluster user would

not run more than one process of her application on any clus-

ter node. For that reason, only one artificial load process was

executed on each cluster node. The parallel CA application has

been executed using 6 slave nodes plus a master node and a to-

tal of 10 nodes were available on the cluster. Inmediately after

starting the CA application, the artificial load task has been ini-

tiated on a number of nodes, which range from 0 to 5 nodes and

are always nodes to which one of the slave CA applications has

been initially allocated also. The artificial load tasks kept on

running for a time longer than the total execution time of the

CA application.
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Algorithm 1 Pseudo code diagram for the master program

Input data

* Spawn slave programs

Partition the initial data of the automaton

* Send common information and initial data to each slave

for time step = 1 to maximum time step do

* Collect partial results from slaves

Perform intermediate calculations with partial results

Output data to follow execution

end for

* Terminate slave programs

Perform final calculations

Output final results

Algorithm 2 Pseudo code diagram for the slave program

* Receive common information and initial data from master

* Exchange boundary cells state with slaves computing neighboring partitions

for time step = 1 to maximum time step do

for each cell in the array do

Apply transition rules

end for

Calculate populations after this time step

Optional additional calculations on intermediate results

* Send populations and other intermediate results to master

end for

Table 1: Execution time and improvement due to load balancing when the application is run with and without load balancing and

running artificial external load on a different number of cluster nodes. Normal PVM was used for configurations without load

balancing and the Dynamite system for configurations with load balancing.

Configuration Execution time (s) Improvement

No load balancing with artificial load 1895.08 -

Load balancing with load on 1 node 384.59 80 %

Load balancing with load on 2 nodes 564.76 70 %

Load balancing with load on 3 nodes 611.12 68 %

Load balancing with load on 4 nodes 1595.75 16 %

Load balancing with load on 5 nodes 1833.82 3 %

No load, with and without load balancing 233.43 -

3 Results and Discussion

The execution times and the improvement due to load balanc-

ing are presented in Table 1. In the first row the execution time

obtained without load balancing, using normal PVM, is shown.

This is the same when running load on any number of nodes

from 1 to 5. The reason is that the performance of the CA laser

model application is limited by the performance of the slowest

running task, because the system operates in a lock-step mode,

as discussed in section 1. In the following rows, it is shown the

execution time when load balancing is employed (using Dyna-

mite instead of normal PVM) and the artificial load is also run

on a number of nodes ranging from 1 to 5. In addition, the rela-

tive improvement between the execution time with and without

(first row) load balancing is shown in the last column. The exe-

cution time obtained when running the application without any

artificial load, which is the same with and without load balanc-

ing, has been shown as a reference in the last row.

An execution profile (number of executed time steps from

the application versus time) is presented in Fig. 3. That gives

an idea of the progression in the execution of the application.

For this configuration (parallel application running on 6 slave

nodes plus the master, on a cluster with 10 nodes) a very good

improvement in the performance is obtained when running ex-

ternal load on up to 3 nodes. When there are idle nodes, the

application takes a good advantage from the dynamic load bal-

ancing, reducing the execution time by a factor of 3. When run-

ning external load on more than 3 nodes, a lower improvement

is obtained but the execution time is still smaller than when no
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Figure 2: Gantt chart depicting a detail of the tasks executed by each cluster node and the messages transferred between different

nodes versus time, once the calculation has started. The exchange of neighboring states between nodes processing adjacent

partitions at the beginning of each iteration acts as a synchronization point.

dynamic load balancing is used. The execution progress ini-

tially follows the same straight line as for no dynamic load bal-

ancing (i.e. for standard PVM), until the load balancing system

identifies the situation and performs the migration of some of

the tasks of the system to balance the load. After that, for ex-

ternal load on a small number of nodes, the execution progress

improves significantly, following a new straight line close to

that one of the standard PVM. For external load on a higher

number of nodes, in some cases the benefit obtained after mi-

grations to try to balance the load on the system is very low and

in other cases, after an advantageous migration of tasks, the dy-

namic load balancing system incorrectly migrates tasks again

to let the system load unbalanced and obtain a sub-optimal ex-

ecution progress. Another interesting result is that the dynamic

load balancing system introduces practically no overhead on the

execution time of the application, as its execution progress is

virtually identical for PVM and Dynamite when there is no ex-

ternal load applied: the same line in Fig. 3 (labeled as ”Without

external load”) applies to both cases.

In order to study the effect of the system size on the perfor-

mance of the application, simulations have been run for three

different system sizes and the execution progress has been com-

pared. The results are shown in Fig. 4. Relatively small CA

sizes have been used in order to avoid the use of swap memory

on the cluster nodes, that can happen for larger system sizes (as

shown in Guisado et al. (2006)) and complicate the performance

analysis. The figure shows that the use of a load balancing strat-

egy results in a good performance improvement for all system

sizes within the studied ranges.

For the purpose of studying the regularity of the scheduling

operation of the dynamic load balancing system, the application

has been run under the same conditions for a number of times.

In Fig. 5 the execution progress of four different runs of the

same experiment with Dynamite are presented, showing some

cases in which the load balancing system lets the load unbal-

anced and the execution time is not optimal. This also happened

in the experiments reported in previous figures for a 10% - 20%

of the executions, but these cases were not taken into account

for the results presented. As migrations are not performed by

the load balancing system in a very regular and deterministic

way, it can be concluded that the scheduler component of the

Dynamite load balancing system could be improved.
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Figure 3: Execution progress of the CA laser model application for different levels of artificial external load on the system. The

system size was 840× 840 cells. The number of cluster nodes used on the execution is 6.
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Figure 4: Execution progress of the CA laser model application for different system sizes. The number of cluster nodes used on

the execution is 6 and artificial external load has been run on 3 nodes.

4 Conclusions

We have studied the performance of a parallel discrete model

of laser dynamics, based on a cellular automaton, running on

a heterogeneous non-dedicated cluster using dynamic load bal-

ancing. Artificial external load has been included to simulate

the effect of other tasks which can be running simultaneously

on the cluster. We have used a cluster computing environment

for being better suited in general than a grid computing platform

to run a parallel CA due to its lower latency on the communi-

cations. The potential problem of this kind of application on

this environment is that all the computing nodes must have fin-

ished an iteration before the next one can be initiated. In order

to obtain a good performance on a non-dedicated cluster where
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Figure 5: Execution progress of 4 different runs of the application with Dynamite carried out under the same conditions. System

size: 840× 840 cells.

jobs from different users can be started on any computing node

at any time, a dynamic load balancing strategy has been used,

with two main differences with respect to most previous parallel

CA implementations. First, we required that load could be mi-

grated to new nodes initially not belonging to the pool. Second,

the load balancing functionality has been uncoupled from the

CA algorithm by running it on top of a dynamic load balancing

software tool. Thus changes can be introduced to the CA algo-

rithm or the dynamic load balancing strategy without disturbing

each other. For this purpose, we have used Dynamite, an auto-

mated load balancing system that can migrate individual tasks

which are part of a parallel program running with a message

passing library—PVM in the current version. Very satisfactory

results have been obtained: the load balancing strategy is able

to improve the performance of the parallel application in levels

from 60% to 80% when there are some idle nodes on the clus-

ter to which some load can be migrated. In all the studied cases,

the execution time is always shorter than without the use of load

balancing. However, the results indicate that the Dynamite sys-

tem does not always choose the best configuration possible to

balance the load, so further improvements can be introduced in

the scheduler component of Dynamite. From the results, it can

be concluded that it is feasible to execute this kind of algorithm

on a heterogeneous non-dedicated cluster if using an adequate

dynamic load balancing strategy. This ensures that a future 3D

version of the laser CA model, which will necessarily have to

be executed on a high performance parallel system, can have an

appropriate efficiency on this environment.

ACKNOWLEDGMENT

This work has been supported by the NOHNES Project

(TIN2007-68083-C02, Spanish Ministry of Science and Inno-

vation), by the GRIDEX Project (PRI06A223, Consejerı́a de

Infraestructuras y Desarrollo Tecnológico de la Comunidad

Autónoma de Extremadura, Spain), by the Cátedra CETA-
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