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19.1 INTRODUCTION

In this chapter we review the use of a biologically inspired heuristic technique—
cellular automata (CA)—as a problem solver for one of the most paradigmatic 
complex systems: the laser. CAs are a class of mathematical system that can 
be used to model spatiotemporal phenomena, characterized by the discreteness 
of all of its variables: space, time, and normally state variables. An important 
property of CAs is their intrinsic parallel character. Therefore, they are specially 
well suited to be implemented very efficiently on parallel computers.

In this work we also exploit this property to carry out a parallel implemen-
tation of the CA model developed for laser dynamics. In addition, we study the 
performance and scalability of this parallel implementation and conclude that it is 
very satisfactory. In particular, we have described a CA-based algorithm which is 
an alternative to model the dynamics of lasers, normally modeled using differen-
tial equations. This approach can be very useful for modeling lasers in situations 
in which the differential equations are difficult to integrate, or even difficult to 
apply: lasers ruled by stiff differential equations, devices with complex boundary 
conditions, very small devices, and so on.
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In Section 19.2 we introduce some background information about the relevant
subjects that are treated. Then in Section 19.3 we present the problem to be
solved by the proposed algorithm: laser dynamics. We describe the proposed
algorithm in detail in Section 19.4. In Section 19.5 we review some of the laser
properties that are reproduced successfully by the CA model. Next, we describe
a parallel implementation of the CA model and analyze its performance and
scalability when executed on a small computer cluster. Finally, some conclusions
and prospects for future work are noted in Section 19.7.

19.2 BACKGROUND

The concept of stimulated emision was raised by Albert Einstein in his 1917 paper
“Zur Quantenmechanik der Strahlung” [1]. Use of this idea has permitted us to
amplify radiation by propagation across a medium in which the population of an
upper energy state is larger than the population of a low-energy state (population
inversion). The first experimental device working as a microwave amplifier was
reported in 1955 [2]. The extension of this concept to the optical domain was
achieved by Maiman in an inverted ruby rod optically pumped by a flashlamp in
1960 [3].

Maiman called this phenomenon the laser (light amplification by stimulated
emission of radiation) effect. A typical laser device needs a population inversion
mechanism to enhance the upper-state population to be larger than that remaining
in a lower-energy state. This mechanism is usually known as the pumping sys-
tem. To enhance the effective amplification, the inverted medium is usually placed
inside a Fabry–Perot resonator that provides feedback, making the amplified light
bounce between the mirrors. In this form the laser behaves as a regenerative light
oscillator, and transient, periodic, or chaotic oscillatory processes arise in it. The
amplification gain is spread homogeneously or inhomogeneously over an interval
of frequencies, frequently covering several resonator mode frequencies. In some
cases the light in many of the covered resonator modes becomes amplified, fre-
quently coupled in phase, causing a large variety of complex dynamic phenomena
to take place. In the case of large-aperture lasers, a large number of transverse
mode geometries may be developed by the system, and the dynamic behavior has
a spatiotemporal character. In many cases the spatiotemporal dynamics of these
lasers has been observed to be complex [4], but in homogeneously broadened
gain, lasers may be fairly well reproduced by simple theoretical models [4]. In
these models a single frequency field in resonant interaction with the popula-
tions of a couple of states in the medium is assumed. In this simplified model,
field and matter obey the Maxwell–Bloch equations [5]. These equations couple
the electromagnetic field with matter polarization and population inversion. The
dynamics is influenced by the relaxation constants of field, atomic polarization,
and population inversion, the lowest of the tree damping constants becoming
dominant. Frequently, the polarization damping constant is the largest and the
polarization becomes a slave of field and population inversion. By eliminating
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the polarization from the equations and under an assumption of homogeneous
field spatial distribution, a couple of rate equations may describe some simple
laser dynamics.

The Maxwell–Bloch equations are 2 + 1 partial differential equations with
damping constants sometimes several orders of magnitude different. Thus, inte-
gration of this system is sometimes a very rigid problem. For this reason, an
alternative approach to modelization would be welcome. Cellular automata mod-
els may play an important role in this context, taking into account its intrinsic
parallelization in computing. To test the feasibility of this approach, we have
started from simulation of the simplest rate equations.

In this work we first describe a CA algorithm to model a simple laser device,
and after reviewing some of the laser dynamics phenomena that are reproduced by
the CA model, we develop a parallel implementation of the model to be executed
on parallel computers. The very nature of cellular automata is strongly connected
with parallel systems: The reason is the way a CA works, by simultaneous updat-
ing of a cell’s states along the entire automaton. No sequential process should
therefore be employed for that task, but instead, a parallel computation of new
states for all the cells. Nevertheless, despite the intrinsic parallel nature of the
model, researchers have usually applied sequential processes that simulate the
parallel processes. The reason is the sequential nature of the computers generally
used for simulations. Although this is an easy approach to employing CA sys-
tems, they would be of no practical use for solving real-world problems because
of the computational load for large sizes of two- or three-dimensional CA.

The possibilities for running CA in parallel are two: The first consists of
using available parallel computers to develop parallel CA; the second requires the
design of specialized hardware aimed at CA execution. Although some attempts
have been described for this second alternative, such as the CAM (cellular
automata machine) computer [6], we focus here on available parallel, cluster, or
grid deployment of CA. In fact, general-purpose parallel computers are well suited
for scalable CA models, from the point of view of speedup, programmability,
and portability. Two types of architectures are of interest: both single-instruction
and multiple-data (SIMD) and also multiple-instruction, multiple-data (MIMD).
For the implementation of CA on these computers, two principal approaches are
available: using general-purpose parallel programming languages such as HPF,
HPC++, or Linda, or employing a standard high-level sequential language com-
bined with specific libraries allowing parallel applications to run, such as MPI
(message-passing interface), PVM (parallel virtual machine), or OpenMP (open
multiprocessing).

During the last decade, some attempts to introduce parallelism within CA
have been described. Most of them were not intended to implement directly the
inherently parallel CA internal working rules, which can easily be simulated in
sequential fashion, but to improve speedup of the entire process by using many
processors. The first attempts to parallelize CA were carried out by Resnick with
the StarLogo system [7] and by Cannataro et al. [8], although many approaches
and results were described later using parallel CAs, such as CAMEL [9], Nemo
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[10], PECANS [11], DEVS [12], and P-CAM [13]. The topic has been reviewed
by Talia [14].

19.3 LASER DYNAMICS PROBLEM

We start by modeling the simplest laser dynamics phenomena, which can be
described in the most simplified but still realistic way by two coupled nonlinear
rate equations [15]:

dn(t)

dt
= KN(t) n(t) − n(t)

τc

(19.1)

dN(t)

dt
= R − N(t)

τa

− KN(t) n(t) (19.2)

The first gives the variation in the number of laser photons n(t) with time, propor-
tional to the laser beam intensity. The term +KN(t)n(t) represents an increase
in the number of photons by stimulated emission (K is the coupling constant
between the radiation and the population inversion). The term −n(t)/τc accounts
for the decaying (or absorption) process exhibited by laser photons inside a laser
cavity with a characteristic decay time τc. The second equation represents the
temporal variation of the population inversion N(t). The term +R(t) represents
the pumping of electrons with a pumping rate R to the upper laser level. The
term −N(t)/τa introduces the decaying of electrons from the upper laser level to
lower levels with a characteristic decay time τa . The product term −KN(t)n(t)

reflects decreasing population inversion by stimulated emission. The presence
of the product term KN(t)n(t) in each equation gives them a nonlinear nature.
For small-amplitude fluctuations, its solutions can show relaxation oscillations in
their evolution toward a steady state. For strong oscillations the two variables
n(t) and N(t) are changing in a rapid and typically nonlinear way, and there
does not seem to be a simple analytical solution [15,16].

A simplified but sufficiently realistic description of the laser system repre-
sented by these equations is the four-level laser system depicted in Figure 19.1,
where we have represented some of the basic physical processes that play a role.
Electrons are excited from the ground level up to level E3 by some external
pumping process. Population inversion is produced between levels E1 and E2.
The reason is that the lifetimes of energy levels E3 and E1 are negligible com-
pared to the lifetime of level E2. As a result, electrons in levels E3 and E1
decay very fast, but level E2 is metastable. Stimulated emission occurs when an
electron in level E2 decays down to level E1, stimulated by the presence of a
stimulator photon with energy E = E2 − E1. Two processes not represented in
Figure19.1 are also very important: absorption of electrons in level E2 (which
decay to lower levels due to different processes not related to stimulated emis-
sion) and absorption of laser photons, a fraction of which disappear because they
leave the laser cavity through the semireflecting mirror or are absorbed by the
material.



ALGORITHMIC PROPOSAL 329

Figure 19.1 Some of the basic physical processes in a four-level laser system, a sim-
plified but still realistic description of many real laser systems.

19.4 ALGORITHMIC PROPOSAL

In this section we describe the algorithm that we have used to simulate laser
dynamics, proposed originally by some of the present authors [16]. The algo-
rithm is based on a two-dimensional, partially probabilistic multivariable CA
that simulates a transverse section of the active medium in a laser system. The
defining characteristics of the CA are described below.

19.4.1 Cellular Space

The cellular space is a two-dimensional square lattice that contains Nc = L × L

cells. Periodic boundary conditions are used.

19.4.2 States of the Cells

Two variables are associated with each cell of the CA: aij (t) and cij (t). The first,
aij (t), represents the state of the electron in cell {ij} (row i and column j ) at
time t : When aij (t) = 0, the electron is in the ground state, and when aij (t) = 1,
the electron is in the upper laser state. Also, cij (t) ∈ {0, 1, 2, . . . , M} represents
the number of laser photons in cell {ij} at time t . This number is bounded by an
upper value M which must be chosen large enough to avoid the saturation of the
system. The state variables represent “bunches” of real photons and electrons. Its
values are connected to the number of photons and electrons in the real system
by a normalization constant.
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Figure 19.2 Moore neighborhood.

19.4.3 Neighborhood

Each cell interacts locally with a number of surrounding cells belonging to a
Moore neighborhood : the cell itself (C), its four nearest neighbors located at the
north (N), south (S), east (E), and west (W) positions, and the four next-nearest
neighbors, located at the northeast (NE), southeast (SE), southwest (SW), and
northwest (NW) positions, as shown in Figure 19.2.

19.4.4 Transition Rules

The evolution of the system is computed using the transition rules, which specify
the state of each cell at time step t + 1, depending on its state and the state of
the cells included in its neighborhood at time step t . Rules represent the physical
processes working at the microscopic level in the laser system. The application of
the transition rules is the main operation of a CA algorithm. In our case the overall
structure of the CA laser model algorithm is shown in Algorithm 19.1, which
corresponds to the main program. After initializing the system, the transition rules

Algorithm 19.1 Pseudocode Diagram for the CA Laser Model

Initialize system
Input data
for time step = 1 to maximum time step do

for each cell in the array do
Apply stimulated emission rule (Algorithm 19.2)
Apply photon decay, electron decay, and

pumping rules (Algorithm 19.3)
Apply noise photons creation rule (Algorithm 19.4)

end for
Calculate populations after this time step
Optional additional calculations on intermediate results

end for
Final calculations
Output results
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are applied to each CA cell inside a time loop. Subroutines used for computation
of the transition rules are shown in Algorithms 19.2 to 19.5.

Our CA model uses five transition rules:

1. Stimulated emission rule (Algorithms 19.2 and 19.3). If the electronic state
of a cell has a value of aij (t) = 1 at time t and the sum of the values of the laser
photons states in the nine neighboring cells is larger than a certain threshold θ

(which in our simulations has been taken to be 1), then at time t + 1 a new
photon will be emitted in that cell: cij (t + 1) = cij (t) + 1, and the electron will
decay to the ground level: aij (t + 1) = 0. All the cells of the CA must be updated
in parallel. To this end, changes from this rule are computed using a temporal
matrix c′

ij . After the rule has been applied to all the cells of the CA, the values
of cij are updated with the contents of c′

ij .

2. Photon decay rule (Algorithm 19.4). Each photon is destroyed τc time steps
after being created. In particular, (t lcijk) represents the number of time steps that
will have to elapse until a particular photon located in cell {ij} (at row i and
column j ) is destroyed, where k distinguishes between the different photons that
can occupy the same cell. When a photon is created, t lcijk = τc. After that, 1 is
substracted from t lcijk at each time step and the photon will be destroyed when
t lcijk = 0.

3. Electron decay rule (Algorithm 19.4; this algorithm computes three rules:
photon decay, electron decay, and pumping). After an electron is excited from the
ground level to the upper laser level, it will decay to the ground level again after
τa time steps if it has not yet decayed by stimulated emission. In particular, (t laij )
represents the number of time steps that will have to elapse until a particular
electron located in cell {ij} decays to the ground level. When the electron is
excited initially, t laij = τa . After that, 1 is substracted from t laij at each time
step and the electron will decay to the ground level again when t laij = 0.

4. Pumping rule (Algorithm 19.4). If the electronic state of a cell {ij} has a
value of aij (t) = 0 at time t , then at time t + 1 that state will have a value of
aij (t + 1) = 1 with a pumping probability λ.

5. Noise photons creation (Algorithm 19.5). A small number of laser pho-
tons in randomly chosen positions is introduced at each time step to reproduce
spontaneous emission and thermal contributions, responsible for the initial laser
startup. To this end, for a small number of randomly chosen cells {ij} (< 0.01%
of total), cij (t + 1) = cij (t) + 1 is applied.

19.5 EXPERIMENTAL ANALYSIS

In this section we present a review of some of the experimental results found in
the simulations carried out using this model. As shown originally [16–19], the CA
model of laser dynamics can reproduce different aspects of the phenomenology
of laser systems. The behavior of the system depends on three parameters: the
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Algorithm 19.2 Stimulated Emission Rule

{List of variables:}
{Lx: length of the CA lattice in the x direction }
{Ly: length of the CA lattice in the y direction }
{k: index to distinguish different photons in the same cell}
{aij: state of the electron at cell (i, j)}
{cij: number of laser photons at cell (i, j)}
{c′

ij: auxiliary variable to calculate new values of cij}
{τc: (maximum) lifetime of laser photons}
{tlaij: current lifetime of excited electron at cell (i, j)}
{tlcijk: current lifetime of photon number k at cell (i, j)}
{θ: threshold for the number of photons in

neighborhood that can produce a stimulated emission}
{M: maximum number of laser photons in a cell}
for j = 0 to Ly −1 do

for i = 0 to Lx −1 do {CA lattice loop}
if aij = 1 then

if neighbors (*cij, Lx, Ly, i, j) > θ then
{neighbors function: Alg. 19.5}

{Look for first value of k for which tlcijk = 0}
k←1
while tlcijk �=0 and k [[leq]] M do

k←k+1
end while
if k< = M then

aij ←0
tlaij ←0
c′
ij ←c′

ij +1
tlcijk ← τc +1
{τc +1 is assigned because 1 is subtracted in

the decay loop}
end if

end if
end if

end for
end for
{Update value of c matrix with contents of c′ matrix}
for j = 0 to Ly −1 do

for i = 0 to Lx −1 do {CA lattice loop}
cij ←c′

ij

end for
end for
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Algorithm 19.3 Function to Calculate the Sum of Photons in State 1 in the Moore
Neighborhood, Implementing Periodic Boundary Conditions

{function: neighbors}
{input parameters: *cij, Lx, Ly, i, j}
{output: sum}
a1 ←i−1
if a1 <0 then

a1 ←Lx +a1
end if
a2 ←i+1
if a2 ≥Lx then

a2 ←a2 −Lx
end if

a3 ←j−1
if a3 <0 then

a3 ←Ly +a3
end if
a4 ←j+1
if a4 ≥Ly then

a4 ←a4 −Ly
end if
∑←ca1j +ca2j +cia3 +cia4 +ca1a3 +ca1a4 +ca2a3 +ca2a4 +cij
{returns sum}

pumping probability (λ), the lifetime of photons (τc), and the lifetime of excited
electrons (τa). In a simulation, an initial state is provided [aij (0) = 0, cij (0) =
0, ∀ij , except for a small fraction, 0.01%, of noise photons present] and then the
system is allowed to evolve for a number of time steps. In each step we measure
two macroscopic magnitudes: the total number of laser photons, n(t), and the
total number of electrons in the upper laser state (population inversion), N(t):

n(t) =
Lx∑

i=1

Ly∑

j=1

cij(t) N(t) =
Lx∑

i=1

Ly∑

j=1

aij(t) (19.3)

A characteristic feature of laser systems is that laser action happens only when
the pumping probability is over a threshold value. This property is reproduced
correctly by the CA model [16], and the dependence of this threshold value on
the other two system parameters (lifetimes τa and τc) is found to be in good
agreement with laser behavior, as shown in Figure 19.3. Depending on the val-
ues of their three characteristic parameters, lasers exhibit two main distinctive
behaviors in their time evolution: a constant or an oscillatory behavior [16,18].
As shown in Figure 19.4, the model reproduces these two types of behavior: The
time evolution obtained from the simulations is similar to that exhibited by laser
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Algorithm 19.4 Photon Decay, Electron Decay, and Pumping Rules

{List of variables:}
{Lx: length of the CA lattice in the x direction}
{Ly: length of the CA lattice in the y direction}
{k: index to distinguish different photons in the same cell}
{aij: state of the electron at cell (i, j)}
{cij: number of laser photons at cell (i, j)}
{c′

ij: auxiliary variable to calculate new values of cij}
{τa: (maximum) lifetime of excited electrons}
{τc: (maximum) lifetime of laser photons}
{tlaij: current time of life of excited electron at cell

(i, j)}
{tlcijk: current time of life of photon number k at cell

(i, j)}
{M: maximum number of laser photons in a cell}
{λ: pumping probability}
{ξ: auxiliary variable}
for j = 0 to Ly −1 do

for i = 0 to Lx −1 do {CA lattice loop}
if cij >0 then {Apply photon decay rule}

for k = 1 to M do
{Subtract 1 to every photon’s lifetime}
if tlcijk >0 then

tlcijk ←tlcijk −1
if tlcijk = 0 then {One photon decays}

cij ←cij −1
c′
ij = cij

end if
end if

end for
end if
if aij = 1 then {Apply electron decay rule}

{Subtract 1 to time of life of every excited
electron}

tlaij ←tlaij −1
if tlaij = 0 then

{One electron decays}
aij ←0

end if
else if aij = 0 then {Apply pumping rule}

{Generate random number in (0, 1) interval}
ξ ←random-number(0, 1)
if ξ < λ then {λ: pumping probability}

{One electron is pumped}
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Algorithm 19.4 (Continued)

aij ←1
tlaij ← τa

end if
end if

end for
end for

Algorithm 19.5 Noise Photons Creation Rule

{Introduce nn number of photons in random positions}
for n = 0 to nn −1 do

{Generate two random integers in (0, size−1) interval}
i←random-number(0, Lx −1)
j←random-number(0, Ly −1)
{Look for first value of k for which tlcijk = 0}
k←1
while tlcijk �=0 and k ≤ M do

k←k+1
end while
if k ≤ M then

{Create new photon}
c′
ij ←c′

ij +1
tlcijk ← τc

end if
end for

systems, described, for example, by Siegman [15]. A lattice size of 400 × 400
cells was used for this figure.

In addition, the CA model exhibits another type of complex behavior in which
irregular oscillations with fluctuations on a wide range of time scales appear (see
ref. 18), as shown in Figure 19.5. This regime could correspond to a chaotic state,
as found in the dynamics of many lasers, but this is still under investigation. Also,
the dependence on system parameters of the type of behavior exhibited in the
time evolution of the system is in good qualitative agreement with the laser
behavior [16], as shown in Figure 19.6. In this figure we show a contour plot of
a magnitude called Shannon’s entropy of the distribution of the number of laser
photons, for a fixed value of τc = 10 time steps and obtained using simulations
with a 200 × 200 lattice.

This magnitude is a good indicator of the presence of oscillations in the time
evolution of the number of laser photons (for a precise definition and discussion,
see, e.g., ref. 17). In this plot, R is the laser pumping rate and Rt is the threshold
laser pumping rate, which are linearly related to the pumping probability λ and
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Figure 19.3 Dependence of the threshold pumping probability λt from the CA laser
model on the product of the characteristic lifetimes τa and τc (measured in time steps),
plotted on a logarithmic scale. The solid line is the laser behavior predicted by the standard
laser rate equations, and the dots are the results of the simulations.

the threshold pumping probability λt that appear in the CA model, so that R/Rt =
λ/λt . Points a, b, and c show the values of the parameters that correspond to
Figures 19.4 and 19.5: a corresponds to constant behavior [Figure 19.4(a)], b to
oscillatory behavior [Figure 19.4(b)], and c to a regime with irregular oscillations
(Figure 19.5). High values of Shannon’s entropy (dark zones) correspond to
oscillatory behavior and low values (bright zones) to nonoscillatory response.
The predictions of the standard laser rate equations are indicated by the black
line: Areas of oscillatory behavior should appear above and to the right of this
curve, and constant behavior should appear in the remaining areas. There is good
qualitative agreement between the predictions and the results of the simulations
indicated by Shannon’s entropy, as the high values of this magnitude appear
above and to the right of the black line, and their contour resembles the shape
of this line.

19.6 PARALLEL IMPLEMENTATION OF THE ALGORITHM

Earlier we described a CA algorithm employed to simulate laser dynamics and
presented some of its experimental results. It was shown that a very simple
coarse-grained CA model can reproduce the laser behavior in a qualitative way.
But a finer-grained CA model is needed to simulate a specific laser device quanti-
tatively. In particular, it could reproduce more details of that specific device (such
as complicated boundary conditions) and have a granularity closer to that of the
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Figure 19.4 Simulation results for two different sets of values of the system parameters
depicting the time evolution of the two macroscopic magnitudes, number of laser photons
n(t) and population inversion N(t). They show how the model reproduces the two main
characteristic behaviors exhibited by lasers. Upper: n(t) and N(t) versus time. Lower:
evolution in a phase space with n(t) versus N(t). Left: Constant behavior; parameters:
{λ = 0.192, τc = 10, τa = 30}. After an initial transient, the system goes to a fixed point.
Right: Oscillatory behavior; parameters: {λ = 0.0125, τc = 10, τa = 180}. The system
follows a spiral toward a steady-state limit point.

real macroscopic system. Moreover, to reproduce the shape of the laser device,
a three-dimensional version of the CA model is needed. For these purposes a
very large lattice size is needed, and the resulting algorithm needs a prohibitively
large runtime for a sequential computer. Therefore, a parallel implementation
is needed. In the present section we describe a parallel implementation of the
previous CA model and study its performance and scalability running on a small
computer cluster. These results were introduced in refs. 19 and 20.

The CA model has been parallelized for running on parallel computers with
distributed memory using the message-passing paradigm. The parallel virtual
machine (PVM) implementation of this paradigm has been used because we were
interested in a later study of the model using dynamic load-balancing mechanisms
developed for it specifically. Parallelization has been done using the master–slave
programming model, as shown in Figure 19.7. Workload has been allocated with
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Figure 19.5 Regime with irregular oscillations for λ = 0.031, τc = 10, τa = 180. The
number of laser photons and population inversion are plotted versus time after a transient
of 500 time steps. Lattice size: 400 × 400 cells.
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Figure 19.6 Contour plot of Shannon’s entropy of the distribution of the number of laser
photons obtained from the simulations with a fixed value of τc = 10 time steps. This plot
shows that there is good qualitative agreement between dependence on system parameters
of the type of behavior exhibited by the system, as obtained from the simulations, and
the laser behavior, delimited by the black line.
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result file

Figure 19.7 Block diagram of the parallel implementation of the CA model of laser
dynamics, showing processes running on different processors (boxes in bold type represent
different processors), communications between them (bold lines), and data flows.

data decomposition methodology : Identical tasks are computed with different
portions of the data. A master program performs the initialization of the system,
divides the CA lattice in p partitions of equal size, and sends each to a slave
program that runs on a different processor. The particular tasks carried out by
the master and slave programs are:

• Master program

1. Reading input data (system size, number of partitions, parameter values,
number of time steps) and initialization

2. Spawning slave programs

3. Partitioning the initial data of the automaton

4. Sending common information and initial data to each slave

5. Collection of results from slaves at each time step

6. Termination of slave programs

7. Calculations performed using collected data

8. Outputting final data to external files

9. Timing functions to measure performance

• Slave program

1. Reception of common information and initial data from master

2. Time evolution computation for the assigned partition: application of CA
evolution rules
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3. Exchange of state of the boundary cells with slave programs computing
the neighboring partitions

4. Computation of intermediate results and their communication to the mas-
ter program

A one-dimensional domain decomposition has been used: The CA is divided
vertically into parallel stripes (subdomains), and each is assigned to a different
processor. Two additional columns of ghost cells have been included at the left
and right sides of each subdomain. They store the state of neighboring cells,
which belong to a different subdomain that will be needed to apply the transition
rules to the cells of the original subdomain. For the transition rules of our CA
model, the only state information needed from neighboring cells is the photon
state cij (t), so this is the only information that must be communicated from the
neighboring subdomains. Each slave program is responsible for computing the
time evolution on its assigned partition.

We have measured the performance and scalability of the parallel imple-
mentation by running simulations on the cluster Abacus from the University
of Extremadura, a Beowulf-type cluster composed of 10 nodes with an Intel
Pentium-4 processor, six with a clock frequency of 2.7 GHz and four with 1.8
GHz, communicated by a fast Ethernet switch with 100 Mbps of bandwith. To
avoid indeterminism in the results due to the heterogeneity of the cluster, for
simulations with one to six nodes, slave programs have always been run on the
“fast” (2.7-GHz) machines, and for simulations with seven to 10 nodes, additional
“slow” (1.8-GHz) machines have been used to complete the required number of
nodes. The master program has always been run on the master node of the cluster
(1.8 GHz).

To measure the performance of the parallel implementation, we have run the
same experiment for three different system sizes using a different number of
partitions (each assigned to a slave program running on a different processor).
The resulting runtime measures are plotted in Figure 19.8, showing a significant
decrease in the number of processors. The only exception is the change from six to
seven processors, where an increase is registered due to the assigning strategy that
has been used: Only fast nodes are assigned to jobs with six or fewer processors,
and for jobs with more than six processors, some slow processors have to be
used.

The performance of the parallel application can be evaluated using speedup
(Sp) [21], which indicates how much faster a parallel algorithm is than a corre-
sponding sequential algorithm. It can be defined as the ratio of the runtime of
the sequential version of the program running on one processor of the parallel
computer (T1) to the runtime of the parallel version running on m processors of
the same computer (Tm):

Sp(m) = T1

Tm

(19.4)
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Figure 19.8 Runtime of the experiments, using a logarithmic scale, for different numbers
of partitions of the whole CA, each running on a different processor. Measurements for
three different system sizes are shown.

In Figure 19.9 we have shown the speedup obtained for parallel implementa-
tion of our CA model [19] for three different system sizes, compared to linear
speedup, represented by the line y = x, which could be defined as the ideally
optimal speedup. For the smallest system size, very good performance has been
obtained. For the other two system sizes, still better performance figures are
obtained: in fact, superlinear speedup (speedup higher than linear). The rea-
sons are finite memory effects on the memory hierarchy: For very large system
sizes, the physical memory of one processor is not enough and swap memory
must be used, thus considerably increasing the runtime for the sequential version
of the program and obtaining a speedup value higher than lineal. Because of
this circumstance the calculation for very large system sizes (e.g., for a detailed
three-dimensional simulation) may not be affordable on a single PC (for the pro-
hibitively large runtime needed due to the use of swap memory) but be feasible
on a cluster, in which the system is partitioned so that each node needs less
memory and does not have to use swap memory.

Figure 19.10 is a Gantt chart representing the various types of tasks executed
for each node and the messages transferred between different nodes versus time.
The activity of the master node, which executes only the master program, is
represented above and the activity from the six slave nodes executing the slave
program is represented below it. Two different periods can be recognized: com-
putation periods, represented by dark gray horizontal rectangles, in which each
slave node calculates the CA state for the next time step on its subdomain, and
the communication periods, represented by white horizontal rectangles, in which
the photon state values of the cells located in the borders of each subdomain are
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Figure 19.9 Speedup obtained for the parallel implementation with respect to the sequen-
tial program for different numbers of processors and for three different system sizes. For
comparison, the ideally optimal linear speedup has been shown. Very good performance
is obtained for a moderate system size (630 × 630 cells) and a superlinear speedup for
larger system sizes.

Figure 19.10 Gantt chart with the tasks executed by each cluster node and the messages
passed between different nodes versus time once the calculation phase has started. It shows
that the application is running with a high computation-to-communication ratio, on the
order of 10, and therefore it is exploiting the parallel computational power of the machine.
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communicated to the slave node responsible for the neighboring subdomain, and
the total number of electrons and photons in each subdomain are sent to the master
node. These communications are carried out by exchanging messages, represented
by the thin lines joining execution points from different nodes. Computation peri-
ods are much longer than communication periods, as can be deduced by the length
of the horizontal rectangles. The average computation-to-communication ratio for
the slave nodes, obtained by calculating the ratio between the average horizontal
length of their dark gray and white rectangles, is on the order of 10. This indi-
cates that the application is taking good advantage of the parallelization on the
computer cluster [19].

Finally, it is interesting to ask if the parallel implementation of the model is
scalable for clusters of this order of magnitude. Following Dongarra et al. [22],
an application is said to be scalable if when the number of processors and the
problem size are increased by a factor of x, the running time remains the same.
To analyze this question, we have run the same experiment, increasing the system
size and the number of processors by the same factor. The results are shown in
Figure 19.11. In an ideal case, the running time should be the same for all cases.
In our case, only a small excess (from 2 to 5%) of runtime compared to the
optimal value was obtained, showing that the parallel implementation scales well
on a small computer cluster [19].

Number of Processors
1

0

50

100

R
un

tim
e 

(s
)

System size (total unmber of cells)

100000 200000 300000 400000

Runtime of the simulations
Optimal scalability

500000 600000

150

200

2 3 4 5 6

Figure 19.11 Scalability of the combination parallel application–parallel computer can
be analized by comparing the runtimes obtained for the same experiment when increasing
the system size and the number of processors by the same factor. For an optimal ideal
scalability, the same runtime (horizontal straight line) would be obtained. Here, a small
excess in runtime from the optimal value (from 2 to 5%) is obtained. It shows that the
parallel implementation scales well at this level of parallelization.
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19.7 CONCLUSIONS

In this chapter we have reviewed the use of a cellular automata-based algorithm
to simulate the time evolution of a complex system: laser dynamics. In addition,
we have described how to implement this algorithm in parallel for computer
cluster environments, and we have studied the performance and scalability of
such an implementation on a small cluster. As a result, we can conclude that the
CA algorithm described is a useful technique as an alternative to the standard
description of laser dynamics for certain situations. Furthermore, it is feasible to
run large fine-grained or three-dimensional simulations of specific real laser sys-
tems with the CA model using the parallel implementation on computer clusters,
simulations that are not possible on a single-processor sequential computer for
their large runtime and memory requirements.

Once the feasibility of running large simulations of the CA model is proved,
some of the steps that can be taken to continue this research line are: developing
a three-dimensional model with more realistic boundary conditions, verifying that
it reproduces the behavior of specific real laser devices, and studying the feasi-
bility of extending the present parallel model to parallel computing environments
beyond cluster computing, such as grid computing.
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