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Abstract—This communication proves that the analysis of the
scattering by a mirror-symmetric multilayered periodic structure
can be replaced by the analysis of the scattering by two semi-
structures with half the size in which the symmetry plane behaves
either as a perfect magnetic conductor (PMC) or as a perfect
electric conductor (PEC). The proof is based on the reflection
properties of the electric and magnetic fields through PMCs and
PECs, and it is valid for arbitrary oblique incidence. As an appli-
cation of this concept, the spectral domain Method of Moments
(SD-MoM) is reformulated to deal with MPSs limited by PMCs
and PECs, and it is used in the design of a mirror-symmetric
multilayered linear to circular polarization (LP-to-CP) converter.
The results obtained with SD-MoM are validated by comparison
with commercial software CST. Numerical simulations show that
the CPU time required by both SD-MoM and CST in the analysis
of half the LP-to-CP converter limited by PMC and PEC is
between 30 and 42 per cent smaller than that required by the
analysis of the complete LP-to-CP converter, which shows the
numerical advantage gained in exploiting the symmetry when it
is present.

Index Terms—Multilayered media, periodic structures, polar-
ization conversion.

I. INTRODUCTION

Multilayered periodic structures (MPSs) with embedded
arrays of conducting patches or/and apertures are known for
their frequency selective and polarization selective properties.

In particular, MPSs acting as frequency selective surfaces
(FSSs) have been used as spatial filters at microwave frequen-
cies [1], [2]. Although the first prototypes of FSSs were built
with a single metallization level, it soon became apparent that
the use of multilayered structures with different metallization
levels of patches and apertures enabled a larger bandwidth
and a sharper frequency selectivity as demonstrated in [3]–[7].
Many of these MPSs with several metallization levels contain
a mirror symmetry plane since their design is based on filtering
equivalent circuits that are symmetric by nature.

Also, MPSs have become a low-profile low-cost approach
for the design of linear polarization (LP) to circular polar-
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ization (CP) converters. Since the design of CP antennas is
challenging, the combined use of an LP antenna and an LP-to-
CP converter is a good solution for a CP antenna, decoupling
the problem of the antenna design from the problem of
generating CP waves. As in the case of FSSs, LP-to-CP
converters can be made of MPSs with several metallization
levels since this introduces enough degrees of freedom to
achieve either broadband performance [8]–[11] or dual band
performance [12], [13], and to achieve a stable behavior for
large angles of incidence [8], [10], [13]. Also, as in FSSs, the
MPSs used for LP-to-CP conversion posses a mirror symmetry
plane [8]–[13].

Mirror-symmetric MPS may have either an even number [6],
[8], [11], [12] or an odd number [7], [9], [10] of metallization
levels. In the latter case, the symmetry plane coincides with
the middle metallization level. An MPS with an odd number of
metallization levels can be always converted into an MPS with
an even number of metallization levels by splitting the middle
metallization level into two closely spaced metallization levels
with the same metallization pattern separated by a bonding
layer (see Fig. 7 of [8]). In practice, this splitting of the middle
metallization level is required to maintain the symmetry in the
manufacturing process due to the need for bonding layers (or
prepreg layers) in the assembly of the MPS [8].

This communication first shows that the analysis of a mirror-
symmetric MPS with an even number of metallization levels
of the type used in high performance FSSs and LP-to-CP
converters can be split into the analysis of two MPSs with half
the thickness in which the symmetry plane behaves either as
a perfect magnetic conductor (PMC) or as a perfect electric
conductor (PEC). In analogy with microwave circuit theory,
the excitation in the presence of a PMC symmetry plane
(magnetic wall) would correspond to the even mode excitation,
while considering a PEC symmetry plane (electric wall) would
yield the odd mode excitation [14]. Since equivalent circuits
with transmission lines have been used for the modelling of
MPS under normal incidence [3], [8], [11]–[13], one could
suspect of the direct extrapolation of the even-odd mode
analysis under normal incidence conditions. However, the
novelty of the theory presented in this work is that the even-
odd mode analysis is proven to be valid not only for normal
incidence but also for any arbitrary oblique incidence.

Next, this communication adapts a highly efficient spectral-
domain Method of Moments (SD-MoM) formulation focused
on MPS analysis [7] to account for PMC or PEC boundary
conditions. To do so, the spectral-domain dyadic Green’s func-
tion has to be re-derived in the presence of a PMC and a PEC,
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Fig. 1. (a) MPS with symmetry plane. (b) The MPS of (a) in the cases where
the symmetry plane behaves either as a PMC or as a PEC.

which is a topic that was tackled in the past in the frame of
the analysis of planar transmission lines for microwave circuits
[15], but has not received any attention when addressing the
analysis of the scattering by MPSs for antenna applications
(FSSs, LP-to-CP converters, transmitarrays, etc.). Finally, by
using a code based on the analysis of two semi-MPSs with
PMC and PEC, we carry out a full-wave design of an LP-to-CP
converter with six metallization levels of the type described in
[8]. The results obtained show excellent agreement with results
provided by commercial software CST (used for validation
purposes). The CPU times required by both the SD-MoM and
CST in the analysis of the two semi-MPSs with PMC and
PEC are about one third of those required by the analysis
of the complete LP-to-CP converter, which shows the benefit
of exploiting symmetry in the numerical analysis of mirror-
symmetric MPSs.

II. THEORETICAL FORMULATION

A. Scattering by an MPS with a symmetry plane

Fig. 1(a) shows an MPS with a symmetry plane. We will
assume that the unit cell of the MPS is a rectangle of
dimensions Dx × Dy . Also, we will assume that the 2Nc

layers of the multilayered medium have a thickness hi, an
electric permittivity εi = ε0εri (which can be complex-valued
to account for dielectric losses) and a magnetic permeability
µ0, as shown in Fig. 1(a). Conductor losses will be neglected
in the metallizations. In the following, we will assume that the
electromagnetic fields existing in the MPS show a time depen-
dence of the type ejωt, which will be suppressed throughout.

Let us assume that the symmetry plane of the MPS of
Fig. 1(a) behaves as a PMC, so that the semi-MPS to be
analyzed corresponds to the PMC-case shown in Fig. 1(b).
Let us also assume that a plane wave impinges on the semi-
MPS from the upper half-space z > 0 in a direction given
by the angular spherical coordinates θinc y φinc. The electric
field of the incident wave Eup

inc(r), and the magnetic field of
the incident wave, Hup

inc(r), can be written as

Eup
inc(r) =

1

2

(
Ei

0xx̂+ Ei
0yŷ + Ei

0z ẑ
)
e−jkinc·r (1)

Hup
inc(r) =

1

2

(
Hi

0xx̂+Hi
0yŷ +Hi

0z ẑ
)
e−jkinc·r (2)

where kinc = −k0(sin θinc cosφincx̂ + sin θinc sinφincŷ +
cos θincẑ) is the wave vector of the incident wave, and k0
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Fig. 2. (a) A plane wave impinges on an MPS with symmetry plane from
the upper half-space z > 0 in the case where the symmetry plane behaves
as a PMC (magnetic wall). (b) The situation of (a) when the symmetry plane
behaves as a PEC (electric wall).

is the wavenumber in free space. Please note that (1)-(2)
and the expression for kinc are general, in the sense that no
assumption is made regarding the polarization or the incident
direction (normal or oblique) for the impinging wave. In this
case, the components of the electric field parallel to a PMC
have a mirror image of the same sign, and the component
of the electric field normal to a PMC has a mirror image of
opposite sign. Also, the components of the magnetic field have
mirror images through the PMC of opposite sign to those of the
electric field. In accordance with these two latter statements,
the presence of the incident wave from the upper half-space
z > 0 will cause an image incident wave [16] impinging on
the MPS from the lower half space z < −2d0, as shown
in Fig. 2(a), for which the electric field, EPMC

im (r), and the
magnetic field, HPMC

im (r) have the following expressions

EPMC

im (r) =
1

2

(
Ei

0xx̂+ Ei
0yŷ − Ei

0z ẑ
)
e−jkim·r (3)

HPMC

im (r) =
1

2

(
−Hi

0xx̂−Hi
0yŷ +Hi

0z ẑ
)
e−jkim·r (4)

where the wave vector of the image incident wave is given by
kim = −k0(sin θinc cosφincx̂+sin θinc sinφincŷ− cos θincẑ).

Now, let us assume the incident plane wave given by (1)-(2)
impinges from the upper half-space z > 0 on the semi-MPS
of Fig. 1(b) for the PEC-case (i.e., the symmetry plane of the
mirror-symmetric MPS of Fig. 1(a) behaves as a PEC). As in
the previous case, there is also an image incident wave [16]
impinging on the MPS from the lower half space z < −2d0,
as shown in Fig. 2(b). Since the electric and magnetic fields
reflect through a PEC with signs opposite to those of their
reflection through a PMC, the electric and magnetic field of
the image incident wave are given by

EPEC

im (r) = −EPMC

im (r); HPEC

im (r) = −HPMC

im (r) (5)

Let us now add the two excitations of the MPS in the
presence of the PMC and PEC symmetry planes of Figs. 2(a)
and 2(b). According to (1)-(5), the total impinging fields
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existing in the upper half-space (Einc(r), Hinc(r)) and the
lower half-space (Eim(r), Him(r)) of the mirror-symmetric
MPS of Fig. 1(a) will be

Einc(r) = 2Eup
inc(r), Hinc(r) = 2Hup

inc(r), z > 0 (6)
Eim(r) = 0, Him(r) = 0, z < −2d0 (7)

By assuming that the dimensions of the unit cell Dx and Dy

prevent grating lobes from being excited [2], under excitations
(6)-(7) the only wave scattered by the MPS of Fig. 1(a) in the
far-field of the upper half-space z > 0 is that reflected in the
specular direction. If we use the superposition principle, the
complex amplitudes of the components of the electric field of
this reflected wave parallel to the symmetry plane in Fig. 1(a)
(Er

0x, E
r
0y) can be obtained in terms of the complex amplitudes

of the components of the incident electric field parallel to the
symmetry plane (Ei

0x, E
i
0y) by means of the expression(

Er
0x

Er
0y

)
= RPMC ·

(
1
2E

i
0x

1
2E

i
0y

)
+RPEC ·

(
1
2E

i
0x

1
2E

i
0y

)
=

(
1

2
RPMC +

1

2
RPEC

)
·
(

Ei
0x

Ei
0y

)
= R·

(
Ei

0x

Ei
0y

)
(8)

where RPMC is the reflection matrix (RM) of the MPS with a
PMC symmetry plane, RPEC is the RM of the MPS with a PEC
symmetry plane, and R is the RM of the mirror-symmetric
MPS of Fig. 1(a). From (8), one can infer that

R =
1

2

(
RPMC +RPEC

)
(9)

Finally, let us subtract the excitation of the MPS in the
presence of a PEC symmetry plane (Fig. 2(b)) from the
excitation of the MPS in the presence of a PMC symmetry
plane (Fig. 2(a)). According to (1)-(5), the total impinging
fields existing in the upper half-space and the lower half-space
of the mirror-symmetric MPS of Fig. 1(a) will be given by

Einc(r) = 0, Hinc(r) = 0, z > 0 (10)
Eim(r)=2EPMC

im (r), Him(r)=2HPMC

im (r), z<−2d0 (11)

Eqns. (10)-(11), opposite to (6)-(7), indicate that in the case
of subtraction of the excitations, the incident plane waves from
the upper half-space z > 0 of Figs. 2(a) and 2(b) cancel each
other, but the image incident waves from the lower half-space
z < −2d0 add constructively. The resulting situation is that
of an impinging wave from the lower half-space z < −2d0
on the whole mirror-symmetric MPS of Fig. 1(a). Although
this may seem different from the situation where the wave
impinges from the upper half-space z > 0, both situations are
essentially the same owing to the existence of the symmetry
plane of the MPS at z = −d0. This means that the fields of
the wave transmitted to the upper half-space z > 0 by the
incident wave impinging from the lower half-space z < −2d0
after scattering by the MPS (once again, we assume grating
lobes are not excited) can be obtained in terms of the fields
of the waves reflected to the upper half-space z > 0 in the
two situations (PMC and PEC at the bottom of the semi-MPS)
of Fig. 1(b) by invoking again the superposition principle. In
fact, the complex amplitudes of the components of the electric
field of the transmitted wave parallel to the symmetry plane in

Fig. 1(a) (Et
0x, E

t
0y) can be obtained in terms of the complex

amplitudes of the components of the incident image electric
field parallel to the symmetry plane by means of the expression(

Et
0x

Et
0y

)
= RPMC ·

(
1
2E

i
0x

1
2E

i
0y

)
+RPEC ·

(
− 1

2E
i
0x

− 1
2E

i
0y

)
=

(
1

2
RPMC − 1

2
RPEC

)
·
(

Ei
0x

Ei
0y

)
= T·

(
Ei

0x

Ei
0y

)
(12)

where T is the transmission matrix (TM) of the whole mirror-
symmetric MPS of Fig.1(a). As a result of (12), we can write:

T =
1

2

(
RPMC −RPEC

)
(13)

Eqns. (9) and (13) both indicate that the electric field of
the waves reflected and transmitted by the whole mirror-
symmetric MPS of Fig. 1(a) can be exclusively obtained in
terms of the electric field reflected by two semi-MPSs (half
the size of the original whole MPS) of the type shown in
Fig. 1(b), the first one with a PMC at its bottom, and the
second with a PEC at its bottom. This indicates that the
solution of the scattering problem for the MPS in Fig. 1(a),
in practice numerically discretized in a given number of
unknowns, can be substituted by the solution of two simpler
scattering problems for the semi-MPS in Fig. 1(b), each of
which must be discretized in half the number of unknowns
of the original problem. This strategy is expected to provide
an important overall CPU time saving, as will be shown in
Section III.

B. Spectral-domain Green’s functions for MPSs
SD-MoM [1] is a popular numerical technique for the

analysis of the scattering by MPSs as that shown in Fig. 1(a).
Unknowns are required to expand the 2D discrete Fourier
transform (DFT) of the current density J̃q [7, Eqn. (5)], [17,
Eqns. (3) & (10)] for every qth metallized interface where a
patch lies and the 2D-DFT of the tangential electric field Ẽq

[7, Eqn. (5)] for every qth metallized interface with an aperture
(for the latter, the DFT of the magnetic current density can be
used instead as shown in [17, Eqns. (4) & (11)]). As a matter
of fact, adaption of an SD-MoM code meant for free-space
standing MPSs as the one shown in Fig. 1(a) to the case of
MPSs with a PMC or a PEC at their bottom only requires
two modifications: 1) computing the analytical solution to the
scattering by the multilayered structure with no metallizations
and 2) introducing new expressions for the 2D-DFTs of the
dyadic Green’s functions. Change n. 1 is trivial, while change
n. 2 will be developed next.

Assuming an MPS with Q metallized interfaces, according
to [7, Eqn. (1)] and [18, Eqn. (5)], there is a matrix rela-
tion between the 2D-DFTs of the current densities on the
metallized interfaces, J̃q , and the tangential electric field at
those interfaces, Ẽq (q = 1, . . . , Q), which can be written
synthetically as

J̃Q = L̃Q,Q · ẼQ + L̃Q,Q−1 · ẼQ−1 (14)

J̃q = L̃q,q+1 · Ẽq+1 + L̃q,q · Ẽq + L̃q,q−1 · Ẽq−1 (15)
(q = 2, . . . , Q− 1)

J̃1 = L̃1,2 · Ẽ2 + L̃1,1 · Ẽ1 (16)
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where the metallization number q of an MPS is ordered from
the lowermost q = 1 to the uppermost q = Q metallization
level, as shown either in Fig. 1(a) or Fig. 1(b) (Q = Qtot in
Fig. 1(a) and Q = Qhalf in Fig. 1(b)).

In the case of MPSs with alternating patches and apertures
such as those of Figs.1(a) and1(b), the required spectral dyadic
Green’s functions for the application of the SD-MoM have
to be obtained in terms of the 2 × 2 spectral matrices Li,j

(i, j = 1, . . . , Q) of (14)-(16) as reported in [7, Eqns. (3) &
(4)]. These Li,j matrices can be computed by means of the
recurrent algorithm described in [18]. The values of L1,1, L2,2

and L1,2 = L2,1 are critical to analyze both MPSs shown in
Figs.1(a) and1(b), since these values are used as starting point
in this recurrent algorithm. In particular, if the interface located
at the bottom of the MPS (q = 1) is an interface with free
space as shown in Fig. 1(a) (in this case the bottom interface
is the plane z = −2d0), then matrices Li,j (i, j = 1, 2) of
(14)-(16) are given by

L̃1,1 = −jωε0

{M̃1

Ω1
coth(Ω1h1) +

M̃0

Ω0

}
(17)

L̃1,2 = L̃2,1 = jωε0
M̃1

Ω1
csch(Ω1h1) (18)

L̃2,2 = −jωε0

{M̃2

Ω2
coth(Ω2h2) +

M̃1

Ω1
coth(Ω1h1)

}
(19)

where

M̃i =

 εri − (kyn)
2

k2
0

kxmkyn

k2
0

kxmkyn

k2
0

εri − (kxm)2

k2
0

 (i = 0, 1, 2) (20)

Ωi =
√
(kxm)2 + (kyn)2 − k20εri (i = 0, 1, 2) (21)

and where εr0 = 1. In the case of the periodic rectangular
lattice treated in this paper, the spectral variables kxm and kyn
of (20) and (21) are kxm = k0 sin θinc cosφinc + (2πm)/Dx

and kyn = k0 sin θinc sinφinc + (2πn)/Dy . However, the
results of this paper can be extended to periodic skewed
lattices, and in this latter case, the spectral variables have to
be redefined as shown in [7, Eqns. (8) & (9)].

Now, if we consider MPSs as those shown in Fig. 1(b),
where metallization level q = 1 coincides either with a PMC
or a PEC, located at the bottom of the MPS (in this case, plane
z = −d0), matrices Li,j (i, j = 1, 2) of (14)-(16), used as the
starting point for the aforementioned recurrent algorithm, have
to be redefined as [15]

L̃1,1 = L̃1,2 = L̃2,1 = 0 (22)

L̃2,2 = −jωε0

{M̃2

Ω2
coth(Ω2h2) +

M̃1

Ω1
tanh(Ω1h1)

}
(23)

(PMC at the bottom)

L̃2,2 = −jωε0

{M̃2

Ω2
coth(Ω2h2) +

M̃1

Ω1
coth(Ω1h1)

}
(24)

(PEC at the bottom)

Replacement of (17)-(19) by (22)-(24) in (14)-(16) ensures
that the SD-MoM can be applied when the MPS of Fig.1(b) is
limited at the bottom by a PMC/PEC instead of being limited
by an interface with free space (as the MPS of Fig. 1(a)).
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Fig. 3. Unit cell of the designed LP-to-CP converter.

III. NUMERICAL APPLICATION EXAMPLE

The theory presented in Section II has been exploited to
design an LP-to-CP converter of the type described in [8].
Fig. 3 shows the unit cell of the LP-to-CP converter. The
converter is an MPS with a symmetry plane containing six
metallization levels, four of them made of periodic arrays
of rectangular patches and two of them made of periodic
arrays of rectangular apertures. The six metallization levels
are separated by seven dielectric layers. Three of the dielectric
layers are bonding layers of Rogers 4450F prepreg material
(with thickness 0.1 mm and dielectric constant 3.52), and
the remaining four layers correspond to Rogers RT/Duroid
6010 (with two different thicnesses 0.635 mm and 1.27 mm,
and dielectric constant 10.2). All seven dielectric layers of
the MPS (including the bonding layers) are commercially
available substrates as shown in [8]. In accordance with [8,
Fig. 4], the MPS including the patches and apertures acts as
a broadband passband filter with very linear phase response
for the x and y components of the impinging electric field
under normal incidence. The transmission windows of these
two components do not coincide, but there is an overlapping
frequency interval in which a constant 90◦ difference can be
achieved in the transmission phase, which yields broadband
circular polarization in that overlapping range of frequency.

In order to design the LP-to-CP converter, we have analyzed
the unit cell of Fig. 3 using the procedure of Section II. The
analysis of these two unit cells limited by PMC/PEC has been
carried out by means of SD-MoM while using (22) to (24) in
(14)-(16) for the computation of the spectral dyadic Green’s
functions.

The band chosen for the operation of the designed LP-to-CP
converter is that between 11.5 and 14.5 GHz (center frequency
13 GHz) which includes both the TX and RX bands of a
real Ku-band telecommunication mission [19]. A cost function
has been defined that optimizes the values of the geometrical
dimensions ai y bi (i = 1, 2, 4) of Fig. 3 to minimize the axial
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TABLE I
SUBSTRATE LAYER PARAMETERS AND METALLIZATIONS DIMENSIONS IN

THE DESIGNED LP-TO-CP CONVERTER

Parameter h1 h2 h3 h4

Value 0.05 mm 0.635 mm 0.1 mm 1.27 mm
Parameter εr1 εr2 εr2 εr4

Value 3.52 10.2 3.52 10.2

Parameter Dx Dy a1 b1
Value 3.29 mm 3.29 mm 2.57 mm 1.50 mm

Parameter a2 b2 a4 b4
Value 0.66 mm 0.1 mm 1.73 mm 0.50 mm

ratio of the wave transmitted by the unit cell when an LP
wave impinges on the cell with electric field at 45◦ with axes
x e y under normal incidence conditions, and simultaneously
maximize the transmission of the x and y components of
the electric field of this incident wave, also under normal
incidence conditions. Both the minimization of the axial ratio
and the maximization of the transmission have been enforced
throughout the operation band between 11.5 and 14.5 GHz.
The resulting optimized dimensions of the metallizations of the
unit cell are shown in TableI. The total CPU time consumption
needed to reach the optimized dimensions with our in-house
SD-MoM software was roughly of 280 seconds (around 1500
different SD-MoM problems limited by both PMC and PEC
were analyzed), and the optimization method employed was
the locally biased variant of the global optimization algorithm
DIRECT [20] for which routines can be found in [21]. All
simulations were run on a computer with a CPU AMD Ryzen
Threadripper PRO 3995WX sWRX8 2.7 GHz and 128 GB
RAM. The operating system is Windows 10 Pro 21H2 (64-
bit).

Figs.4(a) and4(b) show the results obtained for the designed
LP-to-CP converter under normal incidence conditions for the
axial ratio of the transmitted wave, and for the transmission
of the two components of the incident electric field (Tx y
Ty are the diagonal coefficients of the transmission matrix
Tep defined en (13)). Note the axial ratio is roughly below 1
dB and the transmission above -1 dB in the whole operation
band. The MoM results are compared with CST results, and
good agreement is found. In the case of Fig. 4(a), we plot
CST results obtained for the whole multilayered structure as
well as CST results obtained with the two semi-structures
limited by PMC and PEC with excellent agreement. We have
found a 42% CPU time reduction in CST when symmetry
is exploited as explained in Section II. With our in-house SD-
MoM software, the CPU time required is around 0.70 seconds
per frequency point for the analysis of the whole MPS, and
around 0.21 seconds per frequency point for the two semi-
structures, leading to a 30% CPU time reduction. The two
orders of magnitude CPU time difference between CST and
SD-MoM justifies the use of in-house software instead of
commercial software for design purposes. Figs. 5(a) to 5(d)
show results for the axial ratio and the transmission of the
LP-to-CP converter under oblique incidence conditions. Good
agreement is again found between the SD-MoM results as
applied to the two semi-structures limited by PMC and PEC
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Fig. 4. Axial ratio (a) and transmission characteristics (b) of the LP-to-CP
converter of Fig.3 under normal incidence conditions when the substrate layers
and dimensions of Table I are used.

and the results of CST as applied to the whole MPS, which
again validates the theory of Section II for oblique incidence.
Note that the optimized properties of the LP-to-CP converter
are preserved to a large extent (axial ratio below 2.5 dB
and transmission above -1 dB) when angle of incidence θinc
increases as previously shown for miniaturized-element FSS,
which ensures a robust performance of the converter for a wide
range of angles of incidence [8].

IV. CONCLUSION

The authors have shown that the analysis of an MPS with
a symmetry plane can be split into the analysis of two semi-
structures in which the symmetry plane behaves either as a
PMC or as a PEC. Both in-house software based on the SD-
MoM and commercial software CST have been used to prove
the equivalence between the analysis of the whole MPS and
the analysis of the two semi-structures, the analysis of the
two semi-structures requiring a CPU time which is between
30% and 42% shorter than that required by the analysis of the
whole MPS. This demonstrates the CPU time saving in the
numerical analysis of mirror-symmetric MPSs when symmetry
is exploited.
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