
 

 

                                              

 

        Depósito de investigación de la Universidad de Sevilla  

 

                                  https://idus.us.es/ 

 

 

 “This is an Accepted Manuscript of an article published by Elsevier in SCIENCE 
OF THE TOTAL ENVIRONMENT on 1 March 2022, available at: 
https://doi.org/10.1016/j.scitotenv.2021.151338” 

 

https://idus.us.es/
https://doi.org/10.1016/j.scitotenv.2021.151338


 

1 
 

Maintaining forest cover to enhance temperature buffering under future climate 1 

change 2 

Abstract 3 

Forest canopies buffer macroclimatic temperature fluctuations. However, we do not know if and how the 4 

capacity of canopies to buffer understorey temperature will change with accelerating climate change. Here 5 

we map the difference (offset) between temperatures inside and outside forests in the recent past and 6 

project these into the future in boreal, temperate and tropical forests. Using linear mixed-effect models, we 7 

combined a global database of 714 paired time series of temperatures (mean, minimum and maximum) 8 

measured inside forests vs. in nearby open habitats with maps of macroclimate, topography and forest cover 9 

to hindcast past (1970-2000) and to project future (2060-2080) temperature differences between free-air 10 

temperatures and sub-canopy microclimates. For all tested future climate scenarios, we project that the 11 

difference between maximum temperatures inside and outside forests across the globe will increase (i.e. 12 

result in stronger cooling in forests), on average during 2060-2080, by 0.27 ± 0.16 °C (RCP2.6) and 0.60 ± 0.14 13 

°C (RCP8.5) due to macroclimate changes. This suggests that extremely hot temperatures under forest 14 

canopies will, on average, warm less than outside forests as macroclimate warms. This knowledge is of 15 

utmost importance as it suggests that forest microclimates will warm at a slower rate than non-forested 16 

areas, assuming that forest cover is maintained. Species adapted to colder growing conditions may thus find 17 

shelter and survive longer than anticipated at a given forest site. This highlights the potential role of forests 18 

as a whole as microrefugia for biodiversity under future climate change. 19 

Keywords: forest microclimate, temperature offsets, canopy, climate change, future 20 

climate projections, paired sensor data 21 
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Introduction 23 

Warming temperatures and changing precipitation regimes are influencing ecosystems across the globe 24 

(IPCC, 2018). To date, ecological research assessing the impact of anthropogenic climate change has 25 

predominantly relied on macroclimatic data. These data are typically based on a global network of weather 26 

stations established at approximately 1.5 to 2.0 m above the soil surface in open habitats (e.g. above short 27 

grass) (World Meteorological Organization, 2018). Forest organisms living below and within tree canopies, 28 

however, experience microclimatic conditions distinct from those in open habitats (Chen et al., 1999; De 29 

Frenne et al., 2021; Geiger et al., 2009). Below tree canopies, lower radiation, wind and evapotranspiration 30 

rates often translate into lower temporal variation in air temperature and humidity compared to open 31 

environments (Davis et al., 2019; Geiger et al., 2009; Von Arx et al., 2013). In particular, temperature 32 

extremes are often strongly attenuated in forest interiors, with lower maxima and higher minima compared 33 

to open environments (De Frenne et al., 2019; Li et al., 2015). Studies have already shown that such 34 

microclimatic buffering can mediate the response of forest communities to climate change (De Frenne et al., 35 

2013; Dietz et al., 2020; Lenoir et al., 2017; Stevens et al., 2015; Zellweger et al., 2020). Despite the increasing 36 

evidence that ecosystem dynamics and processes are more likely to be related to forest microclimates than 37 

to macroclimate (Chen et al., 2018; De Frenne et al., 2021; De Smedt et al., 2021; Frey et al., 2016a), 38 

microclimates are still seldom incorporated in ecological research (e.g. in species distribution models) 39 

(Lembrechts et al., 2019) and ignored by dynamic global vegetation models (DGVMs; e.g. Thrippleton, 40 

Bugmann, Kramer-Priewasser, & Snell, 2016) that simulate the effects of future climate change on natural 41 

vegetation and its carbon and water cycles. In particular, we do not know how forest microclimates will 42 

change in the future as macroclimate changes (Lembrechts and Nijs, 2020). 43 

Advances in studies on the effects of climate change on different organisms living below or in forest canopies 44 

have often been limited by the availability of suitable microclimatic data (De Frenne et al., 2021). One robust 45 

way to study forest microclimates is to use microclimate measurements from paired (inside vs. outside 46 

forests) sensor networks to calculate temperature offsets, i.e. the absolute and instantaneous difference 47 

between temperature inside (i.e., microclimate) and free-air temperatures outside forests (i.e., 48 



 

3 
 

macroclimate) (sensu De Frenne et al., 2021). Negative offset values thus reflect cooler and positive offsets 49 

warmer forest temperatures compared to outside forests. These empirical offset values for temperature can 50 

be related to readily available environmental data using statistical modelling approaches, and these models 51 

can then be used to interpolate and extrapolate microclimate across entire mapped landscapes (Frey et al., 52 

2016b; Greiser et al., 2018). Differences between macro‐ and microclimate (i.e., temperature offsets) result 53 

from processes operating at many scales that influence incoming solar radiation, air mixing, soil properties 54 

or evapotranspiration (reviewed in De Frenne et al., 2021). Macroclimatic conditions (e.g., mean temperature 55 

and rainfall), topographic variation in the landscape (e.g., elevation and aspect) and variation in canopy cover 56 

and vegetation height have been reported to be the main drivers of the understorey temperatures in forests 57 

(De Frenne et al., 2021, 2019; Greiser et al., 2018; Macek et al., 2019; Zellweger et al., 2019). With the advent 58 

of global forest microclimate data (De Frenne et al., 2019; Zellweger et al., 2020), this type of modelling now 59 

enables the prediction of forest microclimates across forest types under future climate change. 60 

Here we map forest microclimate temperature offsets based on (i) paired sensor measurements below the 61 

canopy vs. the open-air temperature at a given site and (ii) landscape- and canopy-scale predictors 62 

throughout the year for the Earth’s dominant forested ecosystems across five continents and at a spatial 63 

resolution of ~1 km.   More specifically, our objectives were to (1) make predictions for mean, minimum and 64 

maximum temperatures using past macroclimatic data (1970-2000), and, (2) make projections for 65 

temperature offsets for the future (2060-2080) macroclimatic conditions. We hypothesised that the 66 

buffering capacity of forest canopies results in slower future warming of forest below-canopy temperatures 67 

compared to the warming observed in standard meteorological weather stations (macroclimate). 68 

  69 
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Material & Methods 70 

Paired plot data 71 

We used a unique data set with 714 temperature offset data points involving paired plots from 74 studies 72 

spread across 5 continents (Supplementary Material Fig. S1; Data available in De Frenne et al., 2019). Focus 73 

was on air temperature below tree canopies (~72% of observations) and the temperature of the topsoil 74 

(~28%), given their importance for responses of forest organisms and ecosystem functioning to macroclimate 75 

warming. A key asset of this database is the paired nature of the data, which always combines below-canopy 76 

temperature data at a given forest site with open-air temperature data from a neighbouring reference non-77 

forest site. Temperature measurement were performed by various logger types such as HOBO loggers (~15% 78 

of observations), iButton loggers (~10%), full weather stations (~5%) and various other logger types (e.g. 79 

cylindrical thermistor, Hanna thermohygrometer, thermocouples, etc.; ~70%). Reference sites were a nearby 80 

open site equipped with the same type of (shielded) temperature loggers (~82% of observations), a nearby 81 

weather station (~14%) (provided the distance did not conflict with the temperature offset of the canopy, 82 

e.g., due to significant topographic differences) or a logger placed above the upper canopy surface (~4%). We 83 

specifically refrained from using additional data on forest microclimate conditions that were not strictly 84 

paired with free-air conditions from a neighbouring site using the exact same design (same sensor, same 85 

logger, same shielding material, same height). 86 

The data points were collated from the scientific literature in a systematic and reproducible manner (see De 87 

Frenne et al., 2019 for full details). Temperature offsets were calculated as the temperature inside the forest 88 

minus the temperature outside the forest, or extracted directly from the original study; negative values 89 

reflect cooler temperatures below tree canopies while positive values reflect warmer understorey 90 

temperatures. This was done for three temperature response variables, i.e. mean, maximum, and minimum 91 

temperature (further referred to as Tmean, Tmin and Tmax, respectively) that were computed during a specific 92 

time period that could differ between sites but that was exactly the same between paired sensors installed 93 

outside and inside the forest at a given site. Multiple forest sites (at least several kilometres apart), seasons 94 

(meteorological seasons, later aggregated to growing versus non-growing season) and temperature metrics 95 



 

5 
 

(maximum, mean, minimum, air or soil temperatures) originating from the same study were entered into 96 

different rows of the database but tagged under the same study ID. Temperature values of long time series 97 

were always aggregated per season and/or year, which means that several temperature values for Tmean, Tmin 98 

or Tmax could be generated for the same study site. Temperature measurements were classified as having 99 

taken place during the growing season, the non-growing season or throughout the whole year. This 100 

classification was performed on the basis of reported meteorological seasons and/or climate information in 101 

the original study. The dry and winter season were classified as the non-growing season in tropical and 102 

temperate biomes, respectively. Estimates of uncertainty (standard error, standard deviation, coefficient of 103 

variation or confidence intervals) of the temperature measurements were only reported for a small minority 104 

(13.6%) of offset values in the database and were thus not included in our analyses. See De Frenne et al. 105 

(2019) for more details on the literature search, inclusion criteria and the empirical data used in this study. 106 

Predictor variables 107 

To predict the offsets for the three temperature variables (Tmean, Tmax, Tmin) across all forests at a global extent, 108 

we gathered global maps of predictor variables related to macroclimate, topography and forest cover. These 109 

three sets of predictor variables were selected based on their importance for forest microclimate, and on the 110 

spatial resolution and extent of the available data. All the predictor maps we used are raster maps with a 111 

spatial resolution of 30 arcsec (~1 km) and are available at the global extent (i.e., from 80°N to 56°S in latitude 112 

and from 180°E to 180°W in longitude). Values for all predictor variables were extracted using the 113 

geographical coordinates for each plot pair. 114 

Macroclimate. Global raster maps of mean, minimum and maximum free-air temperature (°C; Tmacro), 115 

on a monthly basis, as well as monthly precipitation (mm) raster maps, averaged for the climatology 116 

1970-2000, were collected from WorldClim version 2.1 (Fick and Hijmans, 2017). In addition, we 117 

gathered future projections (2060-2080) for the exact same set of temperature and precipitation 118 

variables described in the previous sentence but based on the contrasting “very stringent” 119 

representative concentration pathway (RCP) 2.6 and “worst case” RCP 8.5 from three different 120 

general circulation models (GCMs) with minimal interdependency, based on Sanderson et al. (2015), 121 
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i.e. HadGEM2-ES, MPI-ESM-LR and MIROC5 (downscaled CMIP5 data from WorldClim; 30 arcsec 122 

resolution). 123 

Topographic variables and distance to the coast. We gathered six variables related to topography 124 

using raster layers derived from the Global Multi-resolution Terrain Elevation Data 2010 125 

(GMTED2010) dataset at 30 arcsec resolution (Amatulli et al., 2018). Maps on northness and 126 

eastness, elevation (m a.s.l.), elevational variation (EleVar) and topographic position index (TPI) were 127 

collected. Northness and eastness are the sine of the slope, multiplied by the cosine and sine of the 128 

aspect, respectively. They provide continuous measures describing the orientation in combination 129 

with the slope (i.e., a circular variable is transformed into a continuous one, ranging from -1 to 1). In 130 

the Northern Hemisphere, a northness value close to 1 corresponds to a northern exposition on a 131 

vertical slope (i.e., a slope exposed to very low amount of solar radiation), while a value close to -1 132 

corresponds to a very steep southern slope, exposed to a high amount of solar radiation. Aspect 133 

values for the Southern Hemisphere were inverted so that a value of 1 in the Southern Hemisphere 134 

also means very low amount of solar radiation. Variables EleVar (1) and TPI (2) capture topographic 135 

heterogeneity within a 1 km² grid cell around each pair of measurements (inside and outside forest): 136 

(1) the standard deviation of elevational values aggregated per 1 km² grid cell (further referred to as 137 

elevational variation) and (2) the median of the topographic position index (TPI) values across each 138 

1 km² grid cell. The TPI is the difference between the elevation of a focal cell and the mean elevation 139 

of its eight surrounding cells. Positive and negative values correspond to ridges and valleys, 140 

respectively, while zero values correspond to flat areas (Amatulli et al., 2018). We also produced a 141 

map with the distance from each land pixel to the nearest coastline (Dist2Coast) using the coastline 142 

map data from Natural Earth (free vector data from naturalearthdata.com). 143 

Forest cover and forest height. We used the tree canopy cover (defined as canopy closure for all 144 

vegetation taller than 5 m in height) map for the year 2000 by Hansen et al. (2013). This high-145 

resolution global map layer was re-projected and aggregated from 30 m to 30 arcsec using the 146 

average of the aggregated raster cells. This canopy cover map is the only available map spanning a 147 

global extent at this high resolution. By using this data product, we make the strong assumption that 148 
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canopy cover at the time of temperature measurements is similar to the cover in the year 2000. We 149 

consider this assumption as reasonable as the median year of the temperature measurements for all 150 

data points is approximately 1996 (range between 1943 and 2014). Finally, we used estimates of 151 

canopy height at 1 km resolution derived from the ICESat satellite mission based on 2005 (Simard et 152 

al., 2011). 153 

Data analysis 154 

All statistical analyses were performed in the open-source statistical software environment of R, version 4.0.2 155 

(R Core Team, 2021). The temperature offsets for Tmean, Tmax and Tmin were modelled (274, 184 and 202 plot 156 

pairs respectively), after removing missing values for sensor height, i.e. not mentioned in the original study, 157 

and data points with canopy cover zero (based on the tree canopy cover map introduced above; Hansen et 158 

al., 2013) using linear mixed-effect models with random intercept (LMMs) (lme4 package; Bates et al., 2015). 159 

In our main models, we combined the seasonal (growing vs. non-growing and annual) time series and 160 

performed additional analyses for the different three different time periods (see further and Supplementary 161 

Material Appendix S2). We included ‘study ID’ as a random intercept term to account for non-independence 162 

between samples within studies. For each of the three studied response variables, we started our modelling 163 

protocol from the full model: 164 

Toffset ~ Tmacro + Precipitation + Elevation + Eastness + Northness + EleVar + TPI + Dist2Coast + Canopy cover + 165 

Forest height + Sensor height + random effect ‘study ID’ 166 

For Tmacro, we used the monthly average for either Tmean, Tmax and Tmin temperature during the period 1970-167 

2000 depending on the studied response variable of T offset (Tmean, Tmax or Tmin). Sensor height was also 168 

included in the models (continuous variable, in metres above or below the soil surface), as this significantly 169 

impacts the magnitude of the temperature offset (De Frenne et al., 2019; Supplementary Fig. S2; Table S1). 170 

Sensor height is positive for aboveground and negative for belowground sensors. Data points with sensor 171 

height > 2 m were excluded as our aim was to model forest microclimate near the ground. To avoid 172 

collinearity in predictor variables and improve model performance, we excluded variables that showed a 173 

correlation r ≥ |0.7| (Pearson's product-moment correlation; Supplementary Fig. S3) and variance inflation 174 
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factor ≥ 4 (Zuur et al., 2010). Forest height was therefore removed from all models due to high correlation 175 

with canopy cover; for Tmean offset, EleVar was also dropped from the model due to high correlation with TPI. 176 

All predictors were standardized by subtracting the mean and dividing by the standard deviation prior to 177 

modelling. For each response variable, the single best model was selected based on the Akaike Information 178 

Criterion (AIC) using the automated dredge-function of the package MuMIn (Barton, 2009). Goodness of fit 179 

was calculated following Nakagawa and Schielzeth (2013). 180 

To test for non-linear relationships, we also used generalized additive mixed-effect models (GAMMs) (cf. the 181 

gamm4 package) (Wood and Scheipl, 2014) on the same dataset. We applied smoothers to the same set of 182 

fixed-effect terms, included the same random intercept term ‘study ID’ and followed the same model 183 

selection procedure as for the LMMs. For each of the three studied response variables (Tmean, Tmax, Tmin) and 184 

for each of the two modelling approaches, we performed a leave-one-out cross validation (LOOcv) and 185 

compared root mean square errors (RMSE) among models (LMMs vs. GAMMs). We found no difference (t 186 

test, p-value > 0.05) in RMSE between LMMs and GAMMs, justifying our choice of LMMs (see also 187 

Supplementary Fig. S4). Furthermore, we checked spatial autocorrelation in the model residuals for the 188 

LMMs using Moran ś I-test from the ape package (Paradis and Schliep, 2019). No spatial autocorrelation was 189 

detected (p-value > 0.05) in the model residuals. Additionally, we tested the effect of season of sampling 190 

(annual, growing and non-growing season; see above) on each response variable. We included season as a 191 

categorical variable to the full models described above and followed the same model selection procedure. 192 

However, due to the low number of observations for each category (but growing season being the dominant 193 

category), results including season were only included in the Supplementary Material Appendix S2. 194 

Using the single best LMMs for each of our three response variables, we made predictions for Tmean, Tmax, and 195 

Tmin offsets for forest across the globe using the collected map data for all predictor variables retained in the 196 

models, setting sensor height to 1.0 m and not considering variation included in the random intercept. 197 

Temperature offsets were predicted for all raster pixels (30 arcsec resolution) with canopy cover >50% as this 198 

largely concurs with the global distribution of forest areas in the terrestrial ecoregions map by Olson et al. 199 

(2001). To assess model performance, we performed spatially blocked k-fold cross-validation (k = 10; folds 200 

assigned randomly, with spatial blocks of size 50 km²; Valavi et al., 2019). Furthermore, we made predictions 201 
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of future forest temperature offsets based on the future projections of temperature and precipitation (the 202 

latter only included in the best model for Tmean and Tmin) from WorldClim (see above). We made future 203 

predictions for the period of 2060-2080 using the RCP 2.6 and RCP 8.5 projections based on the three selected 204 

GCMs to account for uncertainty related to the GCMs; final model predictions for each RCP scenario were 205 

averaged over all GCMs. For the future predictions, we assumed no change in topography and conservatively 206 

assumed no change in canopy cover as our main goal was to determine direct climate change effects on 207 

temperature offsets below forest canopies if we maintain the forest cover. Of course, we could use different 208 

scenarios of future forest cover but we decided to not do that to better assess the unique effect of future 209 

climate change without changing other parameters, such as forest cover, in the model. Besides, future 210 

scenario on forest cover are not yet available at a global extent and at the spatial resolution we used here. 211 

Uncertainty in predictions was mapped by applying a bootstrap approach. We resampled the original data 212 

used to fit the models with replacement with total size of the bootstrap samples equal to the size of the 213 

original sample. For each of the temperature responses, we fitted single best models using 30 bootstrap 214 

samples. Using these 30 models, we generated per-pixel standard deviation mapped at the global extent 215 

(Supplementary Fig. S5). To map uncertainty for the future predictions, the same procedure was followed for 216 

each of the three GCMs, i.e. 30 bootstraps per GCM. Furthermore, we provide maps indicating where the 217 

models are extrapolating beyond the values of data used to fit the models. Predictive performance and 218 

uncertainty mapping were performed considering fixed effects of the models, excluding uncertainty of the 219 

random (study) effects. Predictions were made using the raster package (Hijmans and van Etten, 2012). 220 

Graphical plots were created using ggplot2 (Wickham, 2016) and Tmap packages (Tennekes, 2018). 221 

Results 222 

Our models predicted an average global offset of -2.92 ± 1.57 °C (mean ± SD) for Tmax, -0.88 ± 1.82 °C for Tmean, 223 

and 0.96 ± 1.27 °C for Tmin (Fig. 1 and 2). These averages were calculated from all pixels having at least 50% 224 

canopy cover during the year 2000 (Hansen et al., 2013) and derived from the predictions in Fig. 1. Our 225 

predictions show a slightly positive Tmean offset (i.e. warmer temperatures within the forest) in boreal forests, 226 

becoming overall negative towards the tropics (i.e. cooler temperatures within tropical forests compared to 227 
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free-air temperatures) (left panels Fig. 2). Tmax offsets are negative across the three biomes (i.e. cooler 228 

maximum temperatures within forests) with the lowest values in the tropics (up to 5 degrees cooler within 229 

forests), whereas Tmin offsets are positive in boreal and temperate forests and negative in the tropics (Fig. 2). 230 

When including season in the modelling procedure, we found that for Tmean offsets were lower during the 231 

growing season than for the non-growing season across the three biomes. For Tmax and Tmin, season was not 232 

included in the best model (more detailed results included in Supplementary Material Appendix S2). 233 

Offsets for Tmax, Tmean and Tmin were negatively affected by free-air, macroclimate temperatures 234 

(Supplementary Fig. S2 and Table S1). For Tmean and Tmin, we found lower offset values with higher amounts 235 

of precipitation (Supplementary Fig. S2 and Table S1), for Tmean this indicates stronger buffering (more 236 

negative offsets), whereas for Tmin this means weaker buffering (offsets closer to zero). We found Tmin offsets 237 

to be more positive, i.e. more strongly buffered, in areas with higher canopy cover, on pole-facing slopes and 238 

closer to the coast. The marginal R² values (for fixed effects) were 0.29 (0.03 SD), 0.21 (0.03 SD) and 0.25 239 

(0.03 SD), while conditional R² values (for fixed and random effects) reached 0.58 (0.04 SD), 0.60 (0.06 SD) 240 

and 0.52 (0.04 SD) for Tmax, Tmean and Tmin, respectively. Root mean square errors obtained from the spatial 241 

cross-validation were 3.67 °C (1.55 SD), 1.78 °C (0.71 SD) and 1.52 °C (0.45 SD) for Tmax, Tmean and Tmin, 242 

respectively. Standard deviations obtained from the bootstrapping procedure show fair consistency between 243 

the predictions of the 30 bootstrapped models (Supplementary Table S2; Fig. S5 and S6). Upper confidence 244 

levels (95%) of standard deviations for all three responses remained lower that 1 °C (Supplementary Table 245 

S2 and Fig. S6). Higher values were mainly observed in the tropical and boreal region. We also found higher 246 

extrapolation for the predictors included in the models in tropical forests and especially in the boreal region 247 

(Supplementary Fig. S7). 248 

Our future projections showed an overall decrease in offset values for all three temperature responses (Fig. 249 

2). For Tmean, future minus past offsets were -0.22 ± 0.16 °C (mean + SD) for RCP2.6 and -0.5 ± 0.22 °C for 250 

RCP8.5 (Fig. 2). For Tmax, future minus past offsets were -0.27 ± 0.16 °C for RCP2.6 and -0.60 ± 0.14 °C for 251 

RCP8.5 (i.e. cooler maximum temperatures within forests compared to outside temperatures in the future). 252 

For Tmin, future minus past offsets were -0.12 ± 0.18 °C for RCP2.6 and -0.27 ± 0.24 °C for RCP8.5. These 253 

averages were derived from panels D, E and F in Fig. 1. For both Tmax and Tmean, this means stronger offsets or 254 
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buffering (more negative offsets), whereas for Tmin weaker buffering (offsets closer to zero). Decreases in Tmin 255 

offsets are most pronounced in the boreal and temperate region (left panels Fig. 2).  256 
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 257 

Fig. 1. First row: Global maps of past (1970-2000 climate) forest temperature offsets of (A) maximum, (B) mean and (C) minimum temperatures below tree canopies. Second row: 258 

Maps showing the difference between (D) maximum, (E) mean and (F) minimum temperature offset predictions based on future climatic conditions under RCP8.5 scenarios and past 259 

(1970-2000) offsets (future minus past, negative values thus depict lower offsets in the future than in the recent past which mean higher buffering for Tmax and Tmean but lower for 260 

Tmin). Predictions were made based on linear mixed-effects models and only for pixels where the canopy cover in the year 2000 is > 50% (Hansen et al., 2013). 261 
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  262 

Fig. 2. Left panels: Violin and box plots showing the distribution of predicted below-canopy forest temperature offsets 263 

of (A) Tmax, (C) Tmean, and (E) Tmin across boreal, temperate and tropical forests classified following Olson et al. (2001). 264 

Right panels: density plots for the predicted offsets of (B) Tmax, (D) Tmean, and (F) Tmin. Dashed vertical lines represent 265 

global mean offset values for the three temperature responses for past, and the future RCP2.6 and RCP8.5 scenarios. 266 

Note that bimodality is observed in the density plots, resulting from the difference between offsets in temperate and 267 

boreal versus tropical forests (see Fig. 1). For all plots, different colours and line types represent predictions for past 268 

climatic conditions (macroclimate temperature and precipitation, grey), for RCP2.6 (orange) and RCP8.5 scenarios 269 

(blue). Data points to draw these plots are subsamples (105 pixels) derived from the global predictions in Fig. 1. 270 

 271 

  272 
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Discussion 273 

Our predictions of temperature offsets for the 1970-2000 climatology and for forests having at least 50% tree 274 

cover during the year 2000 (Hansen et al., 2013) show that mean temperatures are on average cooler below 275 

canopies (at 1 m height) than in open habitats across all forested grid cells (De Frenne et al., 2019; Li et al., 276 

2015). Our results also support the fact that temperature extremes are mainly buffered in forests; Tmax is on 277 

average lower inside forests, whereas Tmin is warmer. Nevertheless, strong biome-specific variation was 278 

observed: while in boreal forests, Tmean offsets were slightly positive, they became overall negative towards 279 

the tropics. Tmax offsets were negative across the three biomes with the most negative values in the (warmer) 280 

tropics, whereas Tmin offsets were positive in the cooler boreal and temperate forests, and negative in the 281 

warm tropics. Furthermore, the difference between growing and non-growing season on Tmean offsets 282 

illustrates the importance of considering the temporal and seasonal variation in temperature offsets in future 283 

research (Li et al., 2015; Zellweger et al., 2019). 284 

Temperature offsets for all three responses were negatively related to macroclimate temperatures. This 285 

relationship is expected as temperature offsets are directly linked to macroclimate temperatures; if free-air 286 

temperatures rise, offsets will become more negative because the parameter estimate for Tmacro represents 287 

the proportional buffering of canopies of free-air temperatures. Offsets for Tmean and Tmin were negatively 288 

affected by precipitation. That is, the buffering for Tmax by canopies was stronger in regions with higher 289 

amounts of precipitation, whereas buffering is lower for Tmin, supporting the notion that evapotranspiration 290 

drives the offset in these conditions (Davis et al., 2019). The limited role of drivers other than macroclimate 291 

could be because the 30 arcsec (~1 km) spatial resolution is still too coarse to detect effects of e.g. topography 292 

or canopy cover, drivers acting on a very local scale (Ashcroft and Gollan, 2012; Greiser et al., 2018; Macek 293 

et al., 2019).  294 

Our aim was not to produce maps for use, but to give an overview of how temperature offsets between 295 

forest and open habitats vary across forest biomes and how these relationships can evolve under climate 296 

change. Despite the limitations of the data and the assumptions made, we found that our models explained 297 

a moderately large amount of variation in the offsets, and considered model accuracy to be fair. Uncertainty 298 
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in predictions increased towards tropical and boreal forests which is likely caused by extrapolation outside 299 

the environmental range included in our data. These biomes were underrepresented in the data, hence, 300 

future research should focus on setting out networks of paired temperature sensors in these regions 301 

(Lembrechts et al., 2021b). 302 

Our projections for both the “very stringent” RCP2.6 as well as the “worst-case” RCP8.5 scenario indicate 303 

that buffering by forest canopies for Tmean and Tmax temperature may increase, but minimum temperature 304 

offsets will decrease, especially in temperate and boreal regions as ambient temperatures become less cold. 305 

This suggests that under climate change, free-air temperatures are likely to have a larger-magnitude increase 306 

than the corresponding forest microclimate temperatures, which would reinforce the idea of divergent 307 

warming (decoupling) between macroclimate and microclimate (De Frenne et al., 2019; Lenoir et al., 2017). 308 

Offsets may even become lower (resulting in increasing or decreasing buffering for Tmean or Tmin, respectively) 309 

despite projected decreases in precipitation in some regions (Supplementary Fig. S8). It is possible that finer-310 

grained microclimatic heterogeneity could buffer the impact of a changing macroclimate even further 311 

(Maclean et al., 2017). This inference relies, however, on the strong assumption that forest cover and 312 

composition will remain stable in the future. Such stability is however unlikely, as climate change itself as 313 

well as forest management and disturbances can either increase or decrease forest canopy cover in the 314 

future. For example, climate change is however likely to cause increased tree mortality owing to, for instance, 315 

repeated and more severe disturbances such as droughts, fires, pathogens and insect outbreaks (Curtis et 316 

al., 2018; Senf et al., 2021; Senf and Seidl, 2020). The resulting reduction in tree canopy cover can lead to a 317 

sudden loss (i.e. a tipping point) of canopy buffering and increased microclimate warming (Alkama and 318 

Cescatti, 2016; Findell et al., 2017; Lembrechts and Nijs, 2020; Richard et al., 2021; Zellweger et al., 2020). 319 

On the other hand, strong efforts are being made worldwide to increase forest cover and implement climate-320 

smart forestry practices (Bastin et al., 2019; Di Sacco et al., 2021). How these forest cover changes will affect 321 

future forest temperature buffering should be a topic for future forest microclimate research. 322 

We projected temperature buffering capacities of forests across the globe under future climate change 323 

scenarios. Assuming no change in forest composition, we predicted that forest buffering of Tmean and Tmax will 324 

increase in the future (2060-2080), whereas buffering of Tmin will be reduced due to changes in macroclimate 325 
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conditions. Our results indicate that the refugial capacity of cool and dense forest might last longer than 326 

anticipated in a warming climate. This knowledge has important implications for forest biodiversity 327 

conservation. Forest managers and policymakers could, for example, aim to optimise forest functioning and 328 

biodiversity goals by identifying areas in which reducing or retaining canopy cover may have larger impacts 329 

on the prevailing microclimate than anticipated under future climate change (Wolf et al., 2021). The paired 330 

nature of the data allowed us to model absolute temperature offsets across a global extent with fair accuracy. 331 

Gridded microclimate products such as ours, especially when paired with new, well-designed networks of 332 

microclimate measurements (Lembrechts et al., 2020) serve ecological and environmental modelers with a 333 

more scale-relevant set of products for making predictions and drawing inference. At the regional and even 334 

continental scale, novel high-resolution data on forest structure and composition based on remote sensing 335 

imagery (e.g. GEDI LiDAR data) are becoming available (De Frenne et al., 2021; Lembrechts et al., 2019; 336 

Randin et al., 2020; Zellweger et al., 2018). Including these microclimate measurements and novel spatial 337 

map data (e.g. Haesen et al., 2021; Lembrechts et al., 2020) in future models and mapping efforts will increase 338 

accuracy of future predictions (Lembrechts et al., 2021a). Our study illustrates that forest microclimates 339 

themselves are subject to climate change, which will have important consequences for forest-dwelling 340 

species and must hence not be neglected. 341 

Data availability:  342 

The dataset analysed in the current study is available in the Figshare repository, with the identifier 343 
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