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Abstract
In this article we analyze certain situations with restricted cooperation. To do this we intro-
duce amodel that combines two types of games well studied in the literature: graph-restricted
games and games with incompatible players. In particular, our model extends Myerson’s
model for communication situations and Bergantiños’ model for incompatible relationships.
Our approach is based on the concept of profit measure, which allows us to deal simultane-
ously with both types of bilateral relationships. We show that in the situations considered
there are multiple possible definitions of the profit achievable for each coalition. This leads
us to introduce different allocation rules for these cooperative situations.

Keywords Cooperative games · Signed graphs · Communication structures ·
Incompatibilities · Myerson value

1 Introduction

Cooperative game theory provides mathematical models for situations in which a group of
players work together to achieve a common profit. A cooperative game (with transferable
utility) is given by a characteristic function that assigns to each subset of players (coalition)
the profit generated by these players when they cooperate. One of the main applications of
cooperative games is to provide allocation rules for distributing the joint profit generated
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by the grand coalition. The best-known allocation rule for cooperative games is the Shapley
value (Shapley, 1953).

Cooperative game theory also providesmodels for situations inwhich there are restrictions
on cooperation. These restrictions can be of different types. Myerson (1977) introduced a
model to analyze cooperative situations with restricted communication. In this model the
players are represented by the nodes of a graph and there is a link between two nodes if
and only if the players that they represent can communicate directly with each other. By
using the Shapley value, Myerson obtained an allocation rule, the Myerson value, applicable
to these situations. Once fixed a cooperative game in the set of players, the Myerson value
assigns a payoff vector to each communication situation, that is, to each graph with vertex
set equal to the set of players. Multiple extensions and variations of the Myerson value have
been introduced in the literature, providing more complex models to accurately represent
communication between players. In some of these extensions, structures more general than
simple graphs have been used, such as hypergraphs Myerson (1980), probabilistic graphs
Calvo et al. (1999), fuzzy graphs Jiménez-Losada et al. (2013) or directed graphs Li and
Shan (2020). In other cases, variations in the game have been considered, such as games
with fuzzy coalitions Xu et al. (2017) or players located on the edges of the graph Alarcón et
al. (2022). Other variations have been obtained by imposing properties different from those
satisfied by the Myerson value, such as efficiency Beál et al. (2015) or marginality Manuel
et al. (2020).

Bergantiños et al. (1993) introduced a model to analyze cooperative situations with a
different type of cooperation restrictions: bilateral incompatibilities. In this model the players
are represented also by the nodes of a graph, but in this case a link between two nodes indicates
that the players that they represent are incompatible, that is, they cannot cooperate. Although
initially it could be thought that this model is dual to that of Myerson, this is not the case.
This model for bilateral incompatibilities has been applied to various types of situations
with restricted cooperation Alonso-Meijide et al. (2009); Gallardo et al. (2020). See et al.
(2014) proposed a model for voting games with bilateral incompatibilities but their approach
is essentially different from that considered in Bergantiños et al. (1993).

In the models proposed in Bergantiños et al. (1993) and See et al. (2014) it is assumed
that if two players are not incompatible, then they can communicate directly with each other.
Therefore, it remained to study situations with both bilateral incompatibilities and commu-
nication restrictions. Skibski et al. (2022) used signed graphs (Zaslavsky, 1982) to model
situations which combine both types of constraints. They consider that, for any two players,
one (and only one) of the following scenarios will occur: (1) the players are incompatible, in
which case there will be a negative edge between the corresponding nodes, (2) the players
are not incompatible and can communicate directly with each other, which is described by a
positive edge between them, (3) the players are not incompatible and cannot communicate
directly with each other, in which case there is no link between them. Skibski et al. propose an
allocation rule for these cooperative situations. This rule is, roughly speaking, a combination
of the value of Myerson (1977) for games with communication restrictions and the solution
proposed in See et al. (2014) for games with bilateral incompatibilities. Signed graphs were
recently used by Li and Morse (2022) to analyze non-cooperative games.

Motivation

We aim to study cooperative situations with both types of constraints: communication restric-
tions and bilateral incompatibilities. The key difference with Skibski et al. (2022) will be
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Fig. 1 Scenarios (A) and (B)

that, while they use the model proposed by See et al. to deal with incompatibilities, we will
use the model introduced by Bergantiños et al., so we will find allocation rules that extend the
Myerson value Myerson (1977) and the incompatibility value Bergantiños et al. (1993). Let
us provide an example to illustrate the motivation behind our main goal. Consider a software
developer consisting of several teams. Each of these teams is represented by a node in a
graph. Given two nodes i and j in this graph,

(i) there is a positive edge between i and j if the corresponding teams can collaborate,
regardless of the actions of the other teams,

(ii) there is no edge between i and j if the corresponding teams can collaborate only with
the help or intermediation of other teams (which connect i and j),

(iii) there is a negative edge between i and j if both teams do the same work in any project
and, therefore, cannot work together.

The developer aims to obtain the most valuable software possible and distribute the profit
among the teams. For instance, wewill consider three teams 1, 2 and 3. For each S ⊆ {1, 2, 3},
the real number v(S) describes the market value of the software that the teams in S would
create if the other teams do not help them in any way. In a first scenario (A), see Fig. 1, we
consider positive connections {1, 2} and {1, 3}, and no connection between 2 and 3. If team
1 were not present, teams 2 and 3 would work separately and achieve a collective profit of
v({2}) + v({3}). But thanks to 1, the developer can sell a new software obtaining a profit
of v({1, 2, 3}). Now we consider a second scenario (B) with a negative connection between
teams 2 and 3. The model in Skibski et al. (2022) is based on the one in See et al. (2014)
(which is focused on power allocation problems) and attributes no profit to the developer in
this case. However, the developer could obtain profit, for example, by having teams 1 and 2
create a software jointly, while team 3 creates another software separately. If we assume that
the profit function v is superadditive, then, according to our model, the profit obtained by
the developer would be max{v({1, 2}) + v({3}), v({1, 3}) + v({2})}, which coincides with
the profit proposed in Bergantiños et al. (1993). Therefore, the model that we introduce is
different from the one in Skibski et al. (2022).

The main difficulty that will arise lies in the fact that whereas in the models proposed
by Myerson and Bergantiños et al. there is only one reasonable way to define the profit
achievable by each coalition, in our mixed model there exists a family (which is infinite
if the number of agents is greater than 3) of reasonable profit measures, each one of them
generating a different allocation rule. The study of the mathematical structure of this family
of profit measures will help us to show the interest of the allocation rules found.

Structure

The paper is organized as follows. Section 2 is intended tomake the paper as self-contained as
possible. Some preliminaries regarding partially ordered sets, convex sets, partitions, graphs
and cooperative games are given. In Sect. 3, we present the model proposed by Myerson
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(1977) for communication situations and the model proposed by Bergantiños et al. (1993)
for situations with incompatibilities. In order to construct a model for communication situa-
tions with incompatibilities that extend the model of Myerson and that of Bergantiños et al.,
we introduce, inspired by Jackson’s network games Jackson (2005, 2008), the concept of
profit measure, which allows us to deal with both types of relationships. In Sect. 4 we study
communication situations with incompatibilities using signed graphs introducing new con-
cepts and notations. We propose a motivating example to explain the possibility to introduce
a new model. In Sect. 5 we obtain a family of allocation rules for cooperative games with
these situations. In Sect. 6, two particular profit measures are studied. In Sect. 7 we analyze
the mathematical structure of the family of profit measures for communication situations
with incompatibilities. Finally, in Sect. 8 some conclusions are drawn.

2 Preliminaries

2.1 Posets and convex sets

A partially ordered set (poset) is a pair (X ,≤) where X is a set and ≤ is a partial order
relation on X . When there is no ambiguity we will write X instead (X ,≤). Let X be a poset.
If x, y ∈ X and x ≤ y we denote [x, y]X = {z ∈ X : x ≤ z ≤ y}. The poset X is said to
have a bottom if there exist ⊥ ∈ X such that ⊥ ≤ x for every x ∈ X . And X is said to have
a top if there exists � ∈ X such that x ≤ � for every x ∈ X . We write x ≥ y as equivalent
to y ≤ x and x < y to mean that x ≤ y and x �= y. If x > y and there is no z ∈ X such that
x > z > y we will say that x covers y (or y is covered by x), and it will be denoted x � y.
If Y ⊂ X then we can consider Y as a poset with the inherited order (the restriction of ≤ to
Y ). If A ⊆ X , then y ∈ X is an upper bound (resp. lower bound) of A if x ≤ y (x ≥ y)
for every x ∈ A. Given x, y ∈ X , if the set of upper bounds (resp. lower bounds) of {x, y}
is nonempty and has a bottom (resp. a top) then such element is called the supremum (resp.
infimum) of x, y and it is denoted by x ∨ y (resp. x ∧ y). The poset X is said to be a lattice
if for every x, y ∈ X there exist x ∨ y and x ∧ y. If X is a finite lattice then X has a top and
a bottom.

Let X be a real vector space. For each x, y ∈ X the segment between x and y is the set
xyX = {t x + (1 − t)y : t ∈ [0, 1]}. If Y ⊆ X , then Y is convex if xyX ⊆ Y for every
x, y ∈ Y . If X is a poset, we say that ≤ is compatible with the vector space structure if the
following two properties are satisfied: a) x ≤ y implies x + z ≤ y+ z, for every x, y, z ∈ X ,
and b) x ≤ y implies λx ≤ λy, for every x, y ∈ X and every λ ≥ 0. If ≤ is compatible with
the vector space structure we say that X is a partially ordered vector space. If X is a partially
ordered vector space, x, y ∈ X and x ≤ y then xyX ⊆ [x, y]X .

For further information on the aspects of posets see Stanley (1986).

2.2 Partitions and graphs

Let N be a finite set. We denote by 2N the family of all the subsets of N . The set of partitions
of N is

�N =
{
P ⊂ 2N \ {∅} :

⋃
U∈P

U = N and U ∩ W = ∅ ∀U ,W ∈ P,U �= W

}
.
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If P, P ′ ∈ �N we say that P is finer than P ′ if for every U ∈ P there exists U ′ ∈ P ′ such
thatU ⊆ U ′. This finer-than relation is a partial order and it will be denoted by ≤. The poset
(�N ,≤) is a lattice.

Consider the set LN = {i j : i, j ∈ N and i �= j}, where i j denotes the unordered pair
{i, j}. A (simple) graph on N is a pair g = (V , L) where V ⊆ N , L ⊆ LN and i, j ∈ V
for every i j ∈ L . The set V (resp. L) is called the vertex set (resp. edge set) of g. We
denote by GN the family of graphs on N endowed with the following partial order relation:
if g = (V , L), ĝ = (V̂ , L̂) ∈ GN then g ≤ ĝ if and only if V ⊆ V̂ and L ⊆ L̂ . It is easy
to check that GN is a lattice. Notice that if V = V̂ then g � ĝ if and only if, L ⊃ L̂ and g
has exactly one more edge that ĝ. Let g = (V , L) ∈ GN . If V = ∅ then also L = ∅ and the
graph is called the null graph, which is the bottom of GN and is denoted by g0. Graph g is
connected if for every i, j ∈ V with i �= j there exist {i1, . . . , im} such that i1 = i , im = j
and ik−1ik ∈ L for every k = 2, . . . ,m; g is complete if L = LV ; and g is independent
if L = ∅. If |V | = 1 then g is connected, complete and independent. The graph g0 is
considered to be neither connected nor complete nor independent. If T ⊆ N the subgraph
induced in g by T is gT = (V ∩ T , L ∩ LT ). A set T ⊆ V is said to be connected (resp.
complete) (resp. independent) in g if gT is connected (resp. complete) (resp. independent).
A maximal connected set T ⊆ V is called a connected component of g. The family of
connected components of g is denoted by N/g. It is clear that N/g ∈ �V . The complement
of g is g∗ = (V , LV \ L) ∈ GN . If i j ∈ L we will denote g−i j = (V , L \ {i j}).

More information on graphs, that have been briefly described above, in Graphs (2005).

2.3 Cooperative games

Let N be a finite set of agents (hereinafter called players) that cooperate to achieve a joint
profit. One problem that arises is how to distribute this profit among the players. Each payoff
vector x ∈ R

N represents a profit distribution proposal. If i ∈ N , then xi is the payoff assigned
to player i (according to x). In order to obtain reasonable payoff vectors, cooperative games
were introduced. A cooperative game (with transferable utility) on N is given by a mapping
v : 2N → R, called characteristic function, that satisfies v(∅) = 0. For each subset (coalition)
of players S ⊆ N , the number v(S) is the profit that the players in S could jointly achieve
when they cooperate. In a cooperative game it is assumed that eventually all players (the
grand coalition) will cooperate and, therefore, the amount to be distributed is equal to v(N ).
A game v is superadditive if v(S ∪ T ) ≥ v(S) + v(T ) for every S, T ⊆ N with S ∩ T = ∅.
If a game models a profit-sharing situation usually it is a superadditive game. In the present
paper we will consider only superadditive games. The Shapley value (Shapley, 1953) is a
mapping that assigns to each game v the payoff vector φv ∈ R

N defined by

φv
i =

∑
{S⊆N :i∈S}

γ
|N |
|S| [v(S) − v(S \ {i})] for every i ∈ N , (1)

where γ n
s = (s−1)!(n−s)!

n! . The Shapley value satisfies the following properties: S1) efficiency,
it provides a distribution of the total joint profit, that is,

∑
i∈N φv

i = v(N ); S2) linearity, if
a, b ∈ R and v,w are games on N then φav+bw = aφv + bφw; S3) null player, if i ∈ N is
a null player in a game v, that is, v(S ∪ {i}) = v(S) for every S ⊆ N \ {i}, then φv

i = 0; and
S4) symmetry, if i, j ∈ N are symmetric players in v, that is, v(S ∪ {i}) = v(S ∪ { j}) for
every S ⊆ N\{i, j}, then φv

i = φv
j . Moreover, the Shapley value is the unique allocation rule

satisfying these properties. If T ∈ 2N\{∅}, the unanimity game uT is defined by uT (S) = 1
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if T ⊆ S and uT (S) = 0 otherwise. The Shapley value of the unanimity game uT is given

by φ
uT
i = 1

|T | if i ∈ T and φ
uT
i = 0 if i ∈ N \ T .

An excellent reference on cooperative games is Curiel (1997).

3 Communication versus incompatibility

In this section, we review the models for graph-restricted games introduced by Myerson
(1977) and Bergantiños et al. (1993). In both models, for a given game, the characteris-
tic function is modified taking into account the interpretation of the bilateral relationships
described by a graph. In order to view both models within the same framework, we will
draw inspiration from the concept of network game, introduced by Jackson (2005) in 2005.
A network game is a characteristic function defined on the family of subgraphs of a complete
graph. The motivations, both economic and social, for studying these games are explained in
Jackson (2008). Now, considering a classic cooperative game and choosing either the Myer-
son or the Bergantiños model can be seen as embedding the game in different ways into the
family of network games. The different ways of embedding classic games as network games
will be referred to as profit measures. Characterizing those models within this common con-
text will allow us, in the next section, to provide models for games with both communication
restrictions and incompatibilities.

3.1 Communication

Let v be a fixed superadditive cooperative game1 on a set of players N . The amount to be
distributed is v(N ) and the Shapley value φv is a payoff vector for v.

Myerson (1977) introduced games with communication situations, in which there are
restrictions on communication between players. He represented a communication situation
through a graph g = (V , L) ∈ GN where V is the set of active players2 and where i j ∈ L if
and only if players i and j can communicate directly with each other. An allocation rule for
communication situations with underlying game v is a mapping ψ : GN → R

N that assigns
a payoff vector (ψi (g))i∈N to each communication situation g ∈ GN . Myerson proposed a
method to obtain allocation rules for communication situations. In general terms, this method
consists of, firstly, defining a new game (the graph-restricted game) that indicates the profit
that each coalition can obtain if the communication restrictions are taken into account, and,
secondly, applying a classical allocation rule to this new game. In order to obtain the graph-
restricted game, it is necessary to identify the feasible coalitions, that is, the coalitions in
which all the members can cooperate with each other, thus achieving the same profit that they
would obtain without communication restrictions. These communication feasible coalitions
will be the connected coalitions. Therefore, in order to evaluate the graph-restricted game at
a coalition S, we will find the connected coalitions of gS . In fact, since we are assuming that

1 The choice of a superadditive game is because it allows us to unify Myerson’s and Bergantiños’ models,
since the former employs maximal partitions of feasible coalitions while the latter uses arbitrary partitions of
feasible coalitions.
2 Myerson considered only graphs with vertex set equal to N , but we will follow the approach in Jiménez-
Losada et al. (2013) and consider any graph in GN .
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the underlying game v is superadditive, it suffices to evaluate v at the connected components
of gS . And all that remains is to add these values. Hence, given g ∈ GN , the graph-restricted
game vCg is defined by

vCg (S) =
∑

T∈N/gS

v(T ) (2)

for every S ⊆ N . The communication value or Myerson value is the allocation rule μC :
GN → R

N defined by

μC (g) = φvCg (3)

for every g ∈ GN . The communication value satisfies: C1) component efficiency, the
worth of each connected component of the graph is distributed among its members, that
is,

∑
i∈T μC

i (g) = v(T ) for every T ∈ N/g; C2) inactive player, if g = (V , L) and
i ∈ N \ V , then μC

i (g) = 0; and C3) fairness, removing a link of the graph changes the
payoffs of the players that form this link in the same amount, that is, if g = (V , L) and
i j ∈ L , then μC

i (g) − μC
i (g−i j ) = μC

j (g) − μC
j (g−i j ). Moreover, the Myerson value is the

unique allocation rule for communication situations satisfying these properties. In addition,
the communication value satisfies C4) stability, two players always benefit from reaching a
bilateral agreement (if the underlying game is superadditive, as we are assuming), that is,
μC
i (g) ≥ μC

i (g−i j ) for every i j ∈ L .
The definition of theMyerson value is based on a measure of the profit achievable for each

coalition. It is possible to determine such profit measure by certain reasonable conditions.

Definition 1 A profit measure for communication situations is any mapping r : GN → R

that satisfies the following conditions:

1. If g = (V , L) ∈ GN is connected, then r(g) = v(V ).
2. For every g ∈ GN , r(g) =

∑
T∈N/g

r(gT )

The following proposition states the obvious fact that there is a unique profit measure for
communication situations.

Proposition 1 There is a unique profit measure for communication situations and is given
by

rC (g) =
∑

T∈N/g

v(T ).

Moreover, if g � ĝ, then rC (g) ≥ rC (ĝ).

Notice that rC allows to define the graph-restricted game, since vCg (S) = rC (gS).

3.2 Incompatibility

Bergantiños et al. (1993) considered a different model of games with graph-restricted com-
munication. They introduced cooperative games with incompatibilities. A situation with
incompatibilities is given by a graph g = (V , L) ∈ GN where V is the set of active players
and where i j ∈ L if and only if i and j are incompatible player. The authors showed that
their model is not dual to Myerson’s. Indeed, in this model a link between i and j means that
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these two players cannot cooperate in any way, and, therefore, no coalition containing i and
j can be formed. In Myerson’s model, the fact that the link i j is not in the graph does not
necessarily imply that i and j cannot cooperate, but just that i and j cannot communicate
directly, and, consequently, the formation of a coalition containing i and j might be possible,
provided that all players in the coalition can communicate, directly or indirectly, with each
other. An allocation rule for situations with incompatibilities with underlying game v is a
mapping ψ : GN → R

N that assigns a payoff vector (ψi (g))i∈N to each situation with
incompatibilities g ∈ GN . In order to define an allocation rule for situations with incom-
patibilities, Bergantiños et al. followed an approach similar to that considered by Myerson
to obtain allocation rules for communication situations. Firstly it is necessary to identify
the compatibility feasible coalitions, that is, the coalitions which do not contain any pair of
incompatible players. Notice that these are the independent coalitions. The goal is to calcu-
late the profit that can be achieved by a coalition S, taking into account the incompatibility
relations. Therefore, we must determine the partitions of S into independent coalitions. Since
the underlying game is superadditive, it is enough to obtain the coarsest of such partitions.
If we consider the family of partitions of S into independent coalitions, we will denote by
Pg(S) the subset of partitions which are maximal in that family.3 Notice that each partition in
Pg(S) represents a possible organization of the players in S to generate a profit. Reasonably,
the players within the coalition will choose the most profitable of such organizations. This
leads to define the graph-restricted game as

v I
g(S) = max

P∈Pg(S)

∑
U∈P

v(U ) (4)

for every S ⊆ N . The incompatibility value is the allocation rule μI : GN → R
N defined

by

μI (g) = φv I
g (5)

for every g ∈ GN . The incompatibility value satisfies: I1) complement component effi-
ciency, the players of each connected component of the complement graph will distribute
among themselves the largest amount that they can generate, that is, if T ∈ N/g∗ then∑

i∈T μI
i (g) = v I

g(T ); I2) inactive player, if g = (V , L) and i ∈ N \ V then μI
i (g) = 0;

and I3) fairness, if g = (V , L) and i j ∈ L , thenμI
i (g)−μI

i (g−i j ) = μI
j (g)−μI

j (g−i j ), that
is, removing a link of the graph changes the payoffs of the players that form this link in the
same amount. Moreover, this allocation rule for situations with incompatibilities is the only
one satisfying these properties. In addition, the incompatibility value satisfies stability, two
players always benefit from becoming compatible (if the underlying game is superadditive,
as we are assuming), that is, μI

i (g) ≤ μI
i (g−i j ) for every i j ∈ L .

We introduce also the concept of profit measure for incompatibilities.

Definition 2 A profit measure for situations with incompatibilities is any mapping over the
graphs, r : GN → R, that satisfies the following conditions:

1. For every g = (V , L) ∈ GN , there exists a partition P ∈ Pg(V ) such that r(g) =∑
U∈P

v(U ).

2. If g, ĝ ∈ GN and g � ĝ, then r(g) ≤ r(ĝ).

3 Bergantiños et al considered all the partitions into independent coalitions, since they did not restrict them-
selves to superadditive games.
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Proposition 2 There is a unique profit measure for situations with incompatibilities and is
given by

r I (g) = max
P∈Pg(V )

∑
U∈P

v(U )

for every g ∈ GN \{g0} and r I (g0) = 0. Moreover, r I (g) =
∑

T∈N/g∗
r I (gT ) for every g ∈ GN .

Proof It is easy to check that r I is a profit measure for situations with incompatibilities.
Obviously, r I satisfies condition 1. In order to see that it satisfies condition 2, notice that any
independent set in g is an independent set in ĝ.

It remains to prove the uniqueness. Let r be a profit measure for situations with incom-
patibilities. Let g = (V , L) ∈ GN . By condition 1 there exists a partition P ∈ Pg(V ) such
that r(g) = ∑

U∈P v(U ). Then,

r(g) =
∑
U∈P

v(U ) ≤ max
P∈Pg(V )

∑
U∈P

v(U ) = r I (g).

Now we will prove that r(g) � r I (g). Let P ′ ∈ Pg(V ) a partition for which the maximum

in the definition of r I (g) is attained, that is, r I (g) =
∑
U∈P ′

v(U ). Let P ′ = {U1,U2, . . .Um}.

Consider g′ = (
V , L ′), where
L ′ = L ∪ {i j ∈ LV : {i, j} � Uk for all k = 1, . . . ,m}.

It is clear that P ′ is the only element in Pg′(V ), since every independent set in g′ must be
contained in some Uk . Since r is a profit measure for situations with incompatibilities, we
have that r(g′) =

∑
U∈P̂

v(U ) = r I (g). Besides, successively applying the second condition

in Definition 2 we obtain that r(g) ≥ r(g′). Therefore, we conclude that r(g) � r I (g). ��
Notice that r I allows to define the graph-restricted game, since v I

g(S) = r I (gS).

4 Communication situations with incompatibilities

4.1 Communication situations with incompatibilities as signed graphs

Let N be a finite set of players. Henceforth, we consider a fixed superadditive game v. In this
section, our goal is to present the concept of communication situation with incompatibilities
among the players, and to study how the profit achievable by each coalition in v is modified
by the situation.

The model of communication by Myerson considers bilateral relations among the players
with two options, communication or non-communication. The model of incompatibilities by
Bergantiños et al. also considers two options: communication or incompatibility. Since non-
communication and incompatibility are not the same we propose communication situations
with incompatibilities, thus considering three options for the bilateral relations among the
players: communication, incompatibility or neither (non-communication). Following Skibski
et al. (2022), we will describe a communication situation with incompatibilities by means of
a signed graph (Zaslavsky, 1982) with two possible values on the edges: positive edges and
negative ones.
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Fig. 2 Communication situation with incompatibilities: positive and negative graphs

Definition 3 A communication situation with incompatibilities is a triplet h = (
V , L+, L−)

where V ⊆ N , L+, L− ⊆ LV and L+ ∩ L− = ∅. The family of communication situations
with incompatibilities will be denoted by HN . If h = (V , L+, L−) ∈ HN we will denote
h+ = (V , L+) ∈ GN and h− = (V , L−) ∈ GN .

Given h = (V , L+, L−) ∈ HN , an edge {i, j} is contained in L+ if and only if i and
j can communicate directly with each other. And {i, j} is contained in L− if and only if i
and j are mutually incompatible. Therefore, h+ and h− describe the direct communications
and the mutual incompatibilities, respectively. As a graphical representation of h we will use
signed graph.4 The edges in L+ are named positive, and the edges in L− negative. Besides,
the graphs L+ and L− will sometimes be called the positive graph and the negative graph,
respectively. We denote by h0 the only communication situation with incompatibilities such
that its set of vertices is the empty set.

Example 1 Given N = {1, 2, 3, 4, 5, 6}, consider the communication situation with incom-
patibilities h = (V , L+, L−) with V = {1, 2, 3, 4, 5}, L+ = {12, 13, 24, 25} and L− =
{23}. In Fig. 2 we represent h, h+ and h−.

The positive graph h+ represents the feasible direct communications between players and
the negative graph h− represents the mutual incompatibilities.

Remark 1 (1) If g = (V , L) ∈ GN describes a communication situation, then g can be
identified with h = (V , L,∅) ∈ HN . In this way, the family of communication situations
is identified with HN

C = {h ∈ HN : h = (V , L+,∅)}.
(2) If g = (V , L) ∈ GN describes a situation with incompatibilities, then g can be identified

with h = (V , LV \L, L) ∈ HN . Therefore, the family of situationswith incompatibilities
is identified with HN

I = {h ∈ HN : h = (V , L+, L−), L+ ∪ L− = LV }.
Example 2 In Fig. 3 we represent, on the left, a graph g, and, on the right, the communication
situations with incompatibilities that are identified with g if we consider that g describes a
communication situation (above) or if we consider that g describes a situation with incom-
patibilities (below).

Let h ∈ HN with h = (V , L+, L−). If T ⊆ N we denote by hT the restriction of h to T ,
that is,

hT = (T ∩ V , {i j ∈ L+ : i, j ∈ T }, {i j ∈ L− : i, j ∈ T }).
Notice that (hT )+ = (h+)T and (hT )− = (h−)T . These graphs will be denoted by h+

T and
h−
T , respectively.

If i j ∈ L+ ∪ L− then we denote by h−i j the element in HN obtained when we remove the
edge i j from either L+ (if i j ∈ L+) or from L− (if i j ∈ L−).

4 Sometimes in the literature, positive and negative edges are differentiate by using symbols + and −.
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Fig. 3 Immersion of communication structures and incompatibility structures inHN

Next, we will endow HN with a partial order.5 If h, ĥ ∈ HN with h = (V , L+, L−) and
ĥ = (V , L̂+, L̂−), then ĥ ≤ h if and only if L+ ⊇ L̂+ and L− ⊆ L̂−. Notice that h � ĥ if
and only if either ĥ = (V , L+ \ {i j}, L−) or ĥ = (V , L+, L− ∪ {i j}). In both cases we will
denote h − ĥ = {i j}.

4.2 Profit measures for communication situations with incompatibilities

Next, we introduce the concept of profit measure for communication situations with incom-
patibilities as a mixture of the two measures above.

Definition 4 A mapping r : HN → R is said to be a profit measure on HN if it satisfies the
following conditions:

1. If h ∈ HN
C and h+ is connected, then r(h) = rC (h+).

2. If h ∈ HN
I , then r(h) = r I (h−).

3. r(h) =
∑

T∈N/h+
r(hT ) for every h ∈ HN .

4. If h, ĥ ∈ HN and h � ĥ, then r(h) ≥ r (̂h).

The family of all profit measures on HN will be denoted by B (HN
)
.

Notice that fromconditions 1 and3 it follows that ifh ∈ HN
C then r(h) = rC (h+). In Sect. 5

we will show that B(HN ) �= ∅ and, contrary to what happens in cases of communication
situations or incompatibilities, there is more than one profit measure.

The profit measures determine an equivalence relation on the setHN . The negative edges
connecting different positive connected components do not affect the profit.

Definition 5 Given h = (V , L+, L−) ∈ HN and i j ∈ L−, it will be said that i j is superfluous
in h if i and j are not connected in h+.

Definition 6 It will be said that h = (V , L+, L−), ĥ = (V̂ , L̂+, L̂−) ∈ HN are equivalent
if the following conditions are satisfied:

• V = V̂ ,

5 Two situations with different vertex sets will not be comparable with this partial order, since we do not
intend to compare situations in those cases.
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Fig. 4 Superfluous edges

• L+ = L̂+,
• If i j ∈ L−

�L̂− then i j is superfluous in h,
• If i j ∈ L̂−

�L− then i j is superfluous in ĥ.

The notation h ∼ ĥ will be used to denote that h and ĥ are equivalent. It is clear that ∼ is an
equivalence relation.

If h ∈ HN , we will denote by [h] the unique element in HN such that h ∼ [h] and [h]
does not have any superfluous edges. Notice that [h] is the top of {̂h ∈ HN : ĥ ∼ h}.
Example 3 Consider h = (N , L+, L−) where N = {1, 2, 3, 4, 5, 6}, L+ = {12, 14, 35, 56}
and L− = {23, 25, 36}. Notice that h has two superfluous edges, 23 and 25. In Fig. 4 we
represent h and [h].
Proposition 3 If h ∈ HN and r ∈ B (HN

)
, then r(h) = r ([h]).

Proof The proof follows easily from property 3 in Definition 4, taking into account that
N/h+ = N/[h]+ and hT = [h]T for every T ∈ N/h+. ��

5 Allocation rules onHN

Our goal is to introduce and find allocation rules for communication situations with incom-
patibilities.

Definition 7 An allocation rule (for v) on HN is a mapping � : HN → R
N .

Next, we introduce some reasonable properties for an allocation rule on HN . They are
inspired by the properties satisfied by the communication value introduced by Myerson.
Component r - efficiency. Given r ∈ B (HN

)
, an allocation rule � on HN satisfies the

property of component r -efficiency if
∑

i∈T �i (h) = r(hT ) for every h ∈ HN and for every
T ∈ N/h+.
Inactive player. An allocation rule � on HN satisfies the property of inactive player if
�i (h) = 0 for every h = (V , L+, L−) ∈ HN and for every i ∈ N \ V .
Fairness. An allocation rule � on HN satisfies the fairness property if for every h =
(V , L+, L−) ∈ HN and for every i j ∈ L+ ∪ L− the following equality holds:

�i (h) − �i (h−i j ) = � j (h) − � j (h−i j ).

Stability.Anallocation rule� onHN satisfies stability if for every h = (V , L+, L−) ∈ HN

the following inequalities hold:

• �i (h) ≥ �i (h−i j ) for every i j ∈ L+,
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• �i (h) ≤ �i (h−i j ) for every i j ∈ L−.

We showed in Sect. 3 that, in order to obtain allocation rules for communication situa-
tions and for situations with incompatibilities, Myerson and, respectively, Bergantiños et al.,
defined the graph-restricted games vCg and v I

g for each g ∈ GN . Notice that vCg (S) = rC (gS)

and v I
g(S) = r I (gS) for every S ⊆ N . We will proceed in a similar way in the case of

communication situations with incompatibilities.

Definition 8 For each r ∈ B (HN
)
and each h ∈ HN we define the game vrh as

vrh(S) = r(hS) for every S ⊆ N .

Definition 9 For each r ∈ B (HN
)
, the Myerson r−value is defined as

μr (h) = φvrh for every h ∈ HN .

Theorem 4 For each r ∈ B (HN
)
, the Myerson r−value is the unique allocation rule onHN

that satisfies component r−efficiency, inactive player and fairness.

Proof We will follow a similar reasoning to that used by Myerson (1977).
Firstly we will prove that the Myerson r -value satisfies the properties mentioned in the

theorem.

• Component r -efficiency.
Let h ∈ HN . For each T̂ ∈ N/h+ we consider the game uT̂ defined as uT̂ (S) =
r(hS∩T̂ ) = vrh(S ∩ T̂ ), for every S ⊆ N . Notice that

vrh =
∑

T̂∈N/h+
uT̂ (6)

It is clear that any player in N \ T̂ is a null player in uT̂ . Since the Shapley value satisfies
the null player property, we conclude that

φuT̂
i = 0 for every i ∈ N \ T̂ . (7)

Take T ∈ N/h+. We have that∑
i∈T

φuT
i =

∑
i∈N

φuT
i = uT (N ) = r(hT ), (8)

where we have used (7) and the efficiency of the Shapley value. By (6), the linearity of
the Shapley value, (7) and (8) we obtain

∑
i∈T

μr
i (h) =

∑
i∈T

φ
vrh
i =

∑
i∈T

φ

∑
T̂∈N/h+ uT̂

i =
∑
i∈T

∑
T̂∈N/h+

φuT̂
i =

∑
i∈T

φuT
i = r(hT ).

• Inactive player.
Let h = (V , L+, L−) ∈ HN and i ∈ N\V . Notice that hS = hS∪{i} for every S ⊆ N .
This implies that i is a null player in vrh . By the property of null player of the Shapley

value, φ
vrh
i = 0.
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• Fairness.
Let h = (V , L+, L−) ∈ HN and i j ∈ L+ ∪ L−. Notice that, for every S ⊆ N with
{i, j} � S, we have that hS = (

h−i j
)
S and, therefore, v

r
h(S)−vrh−i j

(S) = 0. This implies
that i and j are symmetric in vrh − vrh−i j

. By the property of symmetry of the Shapley

value, φ
vrh−vrh−i j
i = φ

vrh−vrh−i j
j , which leads to μr

i (h) − μr
i (h−i j ) = μr

j (h) − μr
j (h−i j ).

Finally wewill check the uniqueness. Let�1 and�2 be allocation rules onHN that satisfy
component r -efficiency, inactive player and fairness. We will prove that �1(h) = �2(h) for
every h = (V , L+, L−) ∈ HN . This will be proved by induction on the cardinality of L+.

• Base case.
If

∣∣L+∣∣ = 0, then N/h+ = {{i} : i ∈ V }. Since �1 and �2 satisfy component r -
efficiency, �1

i (h) = �2
i (h) = r(h{i}), for every i ∈ V . Besides, by the property of

inactive player, �1
i (h) = �2

i (h) for every i ∈ N\V . We conclude that �1(h) = �2(h).
• Induction step.

Suppose that �1(h) = �2(h) for every h ∈ HN with
∣∣L+∣∣ = k. Let h ∈ HN be such that∣∣L+∣∣ = k + 1. Take i j ∈ L+. By the fairness property,

�1
i (h) − �1

i (h−i j ) = �1
j (h) − �1

j (h−i j ),

�2
i (h) − �2

i (h−i j ) = �2
j (h) − �2

j (h−i j ).

By induction hypothesis,�1(h−i j ) = �2(h−i j ). From this and the equalities above it follows
that �1

i (h) − �2
i (h) = �1

j (h) − �2
j (h). Successively applying this reasoning we can obtain

that if T ∈ N/h+, then �1
i (h) − �2

i (h) = �1
j (h) − �2

j (h) for every i, j ∈ T . Let us denote

dT (h) = �1
i (h) − �2

i (h), for any i ∈ T . By the property of component r -efficiency, if
T ∈ N/h+, then ∑

i∈T
�1

i (h) = r(hT ) =
∑
i∈T

�2
i (h).

It follows that

0 =
∑
i∈T

(
�1

i (h) − �2
i (h)

) = |T | dT (h) = 0,

whence dT (h) = 0. We conclude that �1(h) = �2(h). ��
Proposition 5 The Myerson r-value satisfies stability.

Proof Let h = (V , L+, L−) ∈ HN and i j ∈ L+∪L−. We know thatw = vrh−vrh−i j
satisfies

that w(S) = 0 for every S ⊆ N with {i, j} � S. Suppose now that {i, j} ⊆ S ⊆ N . Notice

that if i j ∈ L+, then r (hS) ≥ r
(
(hS)−i j

)
, and, consequently, w(S) ≥ 0. And if i j ∈ L−,

then r (hS) ≤ r
(
(hS)−i j

)
, which leads to w(S) ≤ 0. Taking into account that

φw
i =

∑
{S⊆N ,i∈S}

γ
|N |
|S| (w(S) − w(S \ i)) =

∑
{S⊆N ,i∈S}

γ
|N |
|S| w(S),

we conclude that if i j ∈ L+ then φw
i ≥ 0 (and, therefore, μr

i (h) ≥ μr
i (h−i j )) and if i j ∈ L−

then φw
i ≤ 0 (and, therefore, μr

i (h) ≤ μr
i (h−i j )). ��
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6 Two examples of benefit measures onHN

In this section we will present two profit measures on HN .

6.1 The profit measure r⊥

Definition 10 Let h = (V , L+, L−) ∈ HN and U ⊆ N . We will say that U is bottom-
feasible (we will write ⊥− feasible) for h if U is connected in h+ and U does not contain
any incompatible pairs, that is, i j /∈ L− for every {i, j} ⊆ U . We denote by P⊥

h the family
of maximal partitions of V made up of ⊥−feasible sets for h. We define r⊥ : HN → R as

r⊥(h) = max
P∈P⊥

h

∑
U∈P

v(U ), for every h ∈ HN .

Starting from v and using h+ as a communication structure, we derive the graph-restricted
game vCh+ . Subsequently, using h− as an incompatibility structure, we can construct the
graph-restricted game (vCh+)Ih− . The following proposition shows that this game obtained by

combining both concepts of graph-restricted game, is equal to vr
⊥

h .

Proposition 6 If h = (V , L+, L−) ∈ HN , then r⊥(h) = (
vCh+

)I
h− (V ) and vr

⊥
h = (

vCh+
)I
h− .

Proof Firstly we will prove that r⊥(h) ≤ (
vCh+

)I
h− (V ). Let P̄ ∈ P⊥

h be such that r⊥(h) =∑
U∈P̄

v(U ). Notice thatU is connected in h+ for everyU ∈ P̄ , and, therefore, v(U ) = vCh+(U ).

We have that r⊥(h) =
∑
U∈P̄

vCh+(U ). Observe that the coalitions in P̄ are feasible in h−. Let

P ′ ∈ Ph− be such that P ′ ≥ P̄ . We have that

r⊥(h) =
∑
U∈P̄

vCh+(U ) ≤
∑
U∈P ′

vCh+(U ) ≤ max
P∈Ph−

∑
U∈P

vCh+(U ) =
(
vCh+

)I

h− (V ).

Next we will show that r⊥(h) ≥ (
vCh+

)I
h− (V ). Recall that if w is a game on N then

(w)Ih− (V ) = max
P∈Ph−

∑
U∈P w(U ). Let P̂ ∈ Ph− be a partition in which this maximum

is attained for w = vCh+ , that is(
vCh+

)I

h− (V ) =
∑
U∈P̂

vCh+(U ).

Notice that each U ∈ P̂ is feasible for h− but it is not necessarily ⊥−feasible for h because
it is not necessarily connected in h+. For each U ∈ P̂ we will consider the partition U/h+.
Notice that

⋃
U∈P̂ U/h+ is a partition of V into⊥−feasible sets for h, but it is not necessarily

maximal. Let P̃ ∈ P⊥
h be such that P̃ ≥ ⋃

U∈P̂ U/h+. We have that

r⊥(h) ≥
∑
Ũ∈P̃

v(Ũ ) ≥
∑
U∈P̂

∑
W∈U/h+

v(W ) =
∑
U∈P̂

vCh+(U ) =
(
vCh+

)I

h− (V ).

Finally, if S ⊆ N , then

vr
⊥

h (S) = r⊥(hS) =
(
vCh+

)I

h− (S).
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Fig. 5 Communication situation
with incompatibilities for
Example 4

��
Proposition 7 The mapping r⊥ : HN → R is a profit measure on HN .

Proof Let us prove that r⊥ satisfies the properties stated in Definition 4:

1. If h = (V , L+, L−) ∈ HN
C and h+ is connected, then Ph−(V ) = {V } and, consequently,

r⊥(h) = v(V ) = rC (h+).

2. If h = (V , L+, L−) ∈ HN
I , then L+ = LV \L−. Therefore, if U ⊆ V is feasible for

h− then it is connected for h+ and, consequently, it is ⊥−feasible. We conclude that
Ph− = P⊥

h , which leads to r⊥(h) = r I (h−).

3. Let h = (V , L+, L−) ∈ HN . Notice that each ⊥−feasible set for h is contained in one
connected component of h+. It is clear that

r⊥(h) = max
P∈P⊥

h

∑
U∈P

v(U ) =
∑

T∈N/h+
max

P∈P⊥
hT

∑
U∈P

v(U ) =
∑

T∈N/h+
r⊥(hT ).

4. Let h = (V , L+, L−), ĥ = (V̂ , L̂+, L̂−) ∈ HN be such that h � ĥ. Then, L+ ⊇ L̂+ and
L− ⊆ L̂−. Therefore, every ⊥−feasible set for ĥ is ⊥−feasible for h. It follows that

r⊥(̂h) = max
P∈Pĥ⊥

∑
U∈P

v(U ) ≤ max
P∈P⊥

h

∑
U∈P

v(U ) = r⊥(h).

��
Example 4 Let N = {1, 2, 3, 4}. Consider the communication situationwith incompatibilities
represented in Fig. 5 and the game v ∈ GN defined as v(S) = |S|2 if 3 ∈ S and v(S) = |S|
otherwise. Let us calculate r⊥(h).
Notice that

P⊥
h = {{{1, 3}, {2, 4}}, {{1, 2, 4}, {3}}}.

Hence,

r⊥(h) = max{v({1, 3}) + v({2, 4}), v({1, 2, 4}) + v({3})} = max{6, 4} = 6.

Definition 11 We say that a profit measure r ∈ B (HN
)
satisfies the positive connection

property if for every h = (V , L+, L−) ∈ HN there exists a partition P ∈ �V made up of
sets which are connected in h+ and independent in h− such that

r(h) =
∑
U∈P

v(U ).

Theorem 8 The unique profitmeasure onHN that satisfies the property of positive connection
is r⊥. Furthermore, if r ∈ B (HN

)
, then r⊥ ≤ r .
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Proof Firstly we will prove that r⊥ ≤ r for every r ∈ B (HN
)
. Let r ∈ B (HN

)
and

h = (V , L+, L−) ∈ H(N ). Let P̂ ∈ P⊥
h be such that r⊥(h) =

∑
U∈P̂

v(U ). Consider

ĥ = (V , L+ \ {i j : {i, j} � U for every U ∈ P̂}, L−)

By properties 4, 3 and 1 in Definition 4, we obtain

r(h) ≥ r (̂h) =
∑
U∈P̂

r(hU ) =
∑
U∈P̂

rC (h+
U ) =

∑
U∈P̂

v(U ) = r⊥(h).

From the definition of r⊥, it is clear that it satisfies the property of positive connection.
Let us see the uniqueness. Let r ∈ B (HN

)
be such that r satisfies the property of positive

connection. Let h = (V , L+, L−) ∈ HN . There exists a partition P̂ ∈ �V made up of sets
which are connected in h+ and independent in h− such that r(h) =

∑
U∈P̂

v(U ). Let P ′ ∈ P⊥
h

be such that P̂ ≤ P ′. Then,

r (h) =
∑
U∈P̂

v(U ) ≤
∑
U∈P ′

v(U ) ≤ max
P∈P⊥

h

∑
U∈P

v(U ) = r⊥(h).

Therefore, r(h) ≤ r⊥(h). Since we know that r(h) ≥ r⊥(h), we conclude the uniqueness. ��

6.2 The profit measure r�

Definition 12 Let h ∈ HN and U ⊆ N . We will say that U is top-feasible (we will write
�− feasible) for h if U is contained in a connected component of h+ and U is independent
in h−. We denote by P�

h the family of maximal partitions of V (h) made up of �−feasible
sets for h. We define r� : HN → R as

r�(h) = max
P∈P�

h

∑
U∈P

v(U ), for every h ∈ HN .

The following proposition shows that if we subsequently apply the concepts of graph-
restricted game used in the model of Bergantiños et al. and then in Myerson’s model, the
resulting game, denoted as (v I

h−)Ch+ , is equal to vr
�

h .

Proposition 9 If h = (V , L+, L−) ∈ HN , then r�(h) = (
v I
h−

)C
h+ (V ) and vr

�
h = (

v I
h−

)C
h+ .

Proof Firstly we will prove that r�(h) ≤ (
v I
h−

)C
h+ (V ). Let P̂ ∈ P�

h be such that r�(h) =∑
U∈P̂

v(U ). Notice that U is independent in h− for every U ∈ P̂ , and, therefore, v(U ) =

v I
h−(U ). We have that r�(h) =

∑
U∈P̂

v I
h−(U ). Observe that the coalitions in P̂ are connected

in h+. Therefore, P̂ ≤ N/h+. We have that

r�(h) =
∑
U∈P̂

v I
h−(U ) ≤

∑
U∈N/h+

v I
h−(U ) =

(
v I
h−

)C
h+ (V ).

123



774 Annals of Operations Research (2024) 340:757–784

Next we will show that r�(h) ≥ (
v I
h−

)C
h+ (V ). We have that(

v I
h−

)C
h+ (V ) =

∑
U∈N/h+

v I
h−(U ).

For each U ∈ N/h+ let PU ∈ Ph−
U
(U ) be such that v I

h−(U ) =
∑

W∈PU

v(W ). Notice that

⋃
U∈N/h+ PU is a partition of V into�−feasible sets for h, but it is not necessarily maximal.

Let P ′ ∈ P�
h be such that P ′ ≥ ⋃

U∈N/h+ PU . We have that

r�(h) ≥
∑
U ′∈P ′

v(U ′) ≥
∑

U∈N/h+

∑
W∈PU

v(W ) =
∑

U∈N/h+
v I
h−(U ) =

(
v I
h−

)C
h+ (V ).

Finally, if S ⊆ N , then

vr
�

h (S) = r�(hS) =
(
v I
h−

)C
h+ (S).

��
Proposition 10 The mapping r� : HN → R is a profit measure on HN .

Proof Let us prove that r� satisfies the properties stated in Definition 4.

1. If h = (V , L+, L−) ∈ HN
C and h+ is connected, then

r�(h) = v(V ) = rC (h+).

2. If h = (V , L+, L−) ∈ HN
I , then L+ = LV \L−. Therefore, if U ⊆ V is feasible for

h− then it is connected for h+ and, consequently, it is �−feasible. We conclude that
Ph− = P�

h , which leads to r�(h) = r I (h−).
3. Let h = (V , L+, L−) ∈ HN . We have that

r�(h) =
(
v Ih−

)C
h+ (V )

=
∑

T∈N/h+
max

P∈P
h−
T

∑
U∈P

v(U ) =
∑

T∈N/h+
max

P∈P�
hT

∑
U∈P

v(U ) =
∑

T∈N/h+
r�(hT ).

4. Let h = (V , L+, L−), ĥ = (V̂ , L̂+, L̂−) ∈ HN be such that h � ĥ. Then, L+ ⊇ L̂+ and
L− ⊆ L̂−. Therefore, every �−feasible set for ĥ is �−feasible for h. It follows that

r�(̂h) = max
P∈Pĥ�

∑
U∈P

v(U ) ≤ max
P∈P�

h

∑
U∈P

v(U ) = r�(h).

��
Example 5 Let us calculate r�(h) using the signed graph h (Fig. 5) and the game v in Example
4. We have that

P�
h = {{{1, 3}, {2, 4}}, {{1, 2, 4}, {3}}, {{1, 3, 4}, {2}}, {{1, 2}, {3, 4}}}.

Therefore,

r�(h) = max{v({1, 3}) + v({2, 4}), v({1, 2, 4}) + v({3}),
v({1, 3, 4}) + v({2}), v({1, 2}) + v({3, 4})}

= max{6, 4, 10, 4} = 10.
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Remark 2 Observe that if we use r⊥ to measure the profit attainable by each coalition, we are
assuming that if a player i in a coalition does not actively cooperate with some other players
in the coalition, then i will not facilitate the communication between those players either. On
the contrary, when we use r� we assume that even if i does not cooperate with some players
in the coalition, it can facilitate the communication between them.

Definition 13 Let h = (V , L+, L−) ∈ HN . The complete hull of h is the communication
situation with incompatibilities h̃ = (Ṽ , L̃+, L̃−) ∈ HN defined as

Ṽ = V ,

L̃+ = ⋃
T∈N/h+

{i j : i, j ∈ T , i j /∈ L−},
L̃− = L−.

We will say that a profit measure r ∈ B (HN
)
satisfies the completeness property if r(h) =

r
(̃
h
)
for every h ∈ HN .

Theorem 11 The unique profit measure on HN that satisfies the completeness property is
r�. Furthermore, if r ∈ B (HN

)
, then r ≤ r�.

Proof Let h ∈ HN . Notice that h− = h̃− and N/h+ = N/h̃+. By definition of r�, this
implies that r�(h) = r� (̃

h
)
. Therefore, r� satisfies the completeness property.

Let us prove that r ≤ r� for every r ∈ B (HN
)
. Let r ∈ B (HN

)
and h ∈ HN . By

properties 4, 3 and 2 in Definition 4,

r(h) ≤ r
(̃
h
) =

∑
T∈N/h̃+

r
(̃
hT

) =
∑

T∈N/h̃+
r I

(̃
h−
T

) =
∑

T∈N/h̃+
r� (̃

hT
) = r� (̃

h
) = r� (h) .

Furthermore, if r satisfies completeness then r(h) = r
(̃
h
)
, and the equalities above would

lead to r(h) = r�(h). Consequently, r� is the unique profit measure onHN that satisfies the
completeness property. ��

7 The structure ofB (HN)

In this section we will study structural properties of B (HN
)
. We denote by F (HN

)
the

family of functions r : HN → R. Notice that F (HN
)
is a vector space with the usual

operations of addition and scalar multiplication. If we also consider the usual relation ≤,
then F (HN

)
is an ordered vector space. In fact, it is a lattice, in which the infimum and

the supremum of r , r̂ ∈ F (HN
)
are given, respectively, by (r ∧ r̂) (h) = min{r(h), r̂(h)},

(r ∨ r̂) (h) = max{r(h), r̂(h)} for every h ∈ HN . Evidently, B (HN
) ⊆ F (HN

)
. We will

study the structure of B (HN
)
within the ordered vector space F (HN

)
.

Remark 3 In the previous section we have seen that:

• B (HN
) �= ∅.

• If r ∈ B (HN
)
, then r⊥ ≤ r ≤ r�, that is, B (HN

) ⊆ [r⊥, r�]F(HN ).

The following example shows that the inclusion above is strict, that is, B (HN
)

�

[r⊥, r�]F(HN ).
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Fig. 6 Structure in Example 6

Example 6 Consider r ∈ F (HN
)
defined as

r(h) =
{
r⊥(h), if V = N ,

r�(h), if V �= N ,

for each h = (V , L+, L−). It is clear that r ∈ [r⊥, r�]F(HN ). Now suppose that N =
{1, 2, 3, 4, 5} and v = u{1,3,4}. Let us see that r /∈ B (HN

)
, since it does not satisfy property

3 in Definition 4. Take the situation h ∈ HN represented in Fig. 6.
We have that N/h+ = {T1 = {1, 2, 3, 4}, T2 = {5}}. Since V (h) = N , it follows that
r(h) = r⊥(h) = 0. Finally, notice that r(hT1) = r�(hT1) = 1 and r(hT2) = r�(hT2) = 0.
Therefore, r(h) �= r(hT1) + r(hT2).

Theorem 12 The familyB (HN
)
is convex inF (HN

)
. In particular, r⊥r�F(HN

)
⊆ B (HN

)
.

Proof Let r1, r2 ∈ B (HN
)
and α ∈ [0, 1]. We aim to prove that r = (1 − α) r1 + αr2 ∈

B (HN
)
.

1. If h = (V , L+, L−) ∈ HN
C and h+ is connected, then

r(h) = (1 − α) r1(h) + αr2(h) = (1 − α) rC (h+) + αrC (h+) = rC (h+).

2. If h = (V , L+, L−) ∈ HN
I , then

r(h) = (1 − α) r1(h) + αr2(h) = (1 − α) r I (h−) + αr I (h−) = r I (h−).

3. If h ∈ HN , then

r(h) = (1 − α) r1(h) + αr2(h) = (1 − α)
∑

T∈N/h+
r1(hT ) + α

∑
T∈N/h+

r2(hT ) =
∑

T∈N/h+
r(hT ).

4. Let h, ĥ ∈ HN be such that h � ĥ. Then,

r(h) = (1 − α) r1(h) + αr2(h) ≥ (1 − α) r1(̂h) + αr2 (̂h) = r (̂h).

We conclude that r ∈ B(HN ). ��
Remark 4 In the previous section we showed that, unlike r⊥, the profit measure r� allows
a player to facilitate communication between other players with whom it is not actively
cooperating. Observe that the profit measure

rα = (1 − α)r⊥ + αr� ∈ r⊥r�F(HN
)

can be used when we aim to follow an intermediate approach.

The following example shows that the inclusion stated in the previous theorem is strict,

that is, r⊥r�F(HN
)

� B (HN
)
.
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Example 7 Consider the mapping r : HN → R defined as

r(h) =
{
r�(h), if V = N and h+ is connected
r⊥(h), otherwise,

for every h = (V , L+, L−) ∈ HN . Firstly we will prove that r ∈ B (HN
)
. Let us check that

r satisfies the properties in Definition 4.

1. If h ∈ HN
C and h+ is connected, then r(h) = r⊥(h) = r�(h) = rC (h+).

2. If h ∈ HN
I , then r(h) = r⊥(h) = r�(h) = r I (h−).

3. Let h ∈ HN . If h+ is connected then there is nothing to prove. If h+ is not connected,
then r(h) = r⊥(h) and r(hT ) = r⊥(hT ) for every T ∈ N/h+. It suffices to use that r⊥
satisfies property 3.

4. Let h, ĥ ∈ HN be such that h � ĥ. In particular, V (h) = V (̂h). We consider the following
cases:

• If V (h) �= N , then r(h) = r⊥(h) ≥ r⊥(̂h) = r⊥(̂h).
• If V (h) = N and ĥ+ is connected. Then, h+ is also connected and r(h) = r�(h) ≥

r�(̂h) = r (̂h).
• If V (h) = N and h+ is not connected. Then, ĥ+ is also not connected and r(h) =

r⊥(h) ≥ r⊥(̂h) = r (̂h).
• If V (h) = N , h+ is connected and ĥ+ is not connected, then r(h) = r�(h) ≥

r⊥(h) ≥ r⊥(̂h) = r (̂h).

Let us prove that, in general, r /∈ r⊥r�F(HN
)
. Take N = {1, 2, 3, 4, 5} and v = u{1,3,4}.

Let h, ĥ ∈ HN be the situations represented in Figs. 2 and 5, respectively. Suppose that

r ∈ r⊥r�F(HN
)
. Then, there would exist α ∈ [0, 1] such that r = (1− α)r⊥ + αr�. Notice

that r(h) = r�(h) = 1 and r⊥(h) = 0. Therefore, it should be α = 1. But observe that
r (̂h) = r⊥(̂h) = 0 and r�(̂h) = 1. Consequently, it should be α = 0. We conclude that

r /∈ r⊥r�F(HN
)
.

The poset
(B (HN

)
,≤)

is not a latticewith the operations∧ and∨ inherited fromF (HN
)
,

since B (HN
)
is not closed under these operations, as we will show in the following example.

Example 8 Let E = {1, 2, 3, 4}, F = {5, 6, 7, 8} and N = E ∪ F . Consider the game
vE = u{134} on E . Let r⊥

E , r�
E ∈ B (HE

)
be the bottom and the top measures, respectively,

for the game vE . Now consider the game vF = u{6} + u{5,7,8} on F . Let r⊥
F , r�

F ∈ B (HF
)

be the bottom and the top measures, respectively, for the game vF . Consider the game v on
N defined as

v(S) = vE (S ∩ E) + vF (S ∩ F),

for every S ⊆ N . Let r⊥, r� ∈ B (HN
)
be the bottom and the top measures, respectively,

for the game v. Let r , r̂ ∈ B (HN
)
be measures for the game v defined as

r(h) =
{
r⊥
E (hE ) + r�

F (hF ), if h ∈ H ,

r�(h), if h ∈ HN \ H ,
and r̂(h) =

{
r�
E (hE ) + r⊥

F (hF ), if h ∈ H ,

r�(h) if h ∈ HN \ H ,

where H = {h = (
V , L+, L−) ∈ HN : i j /∈ L+ for every (i, j) ∈ E × F}. Notice that if

h ∈ H then N/h+ = N/hB
E ∪ N/hB

F .
Let us check that r , r ′ ∈ B (HN

)
.
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1. Let h = (
V , L+, L−) ∈ HN be such that h+ is connected and L− = ∅. It is clear that

h /∈ H , whence r(h) = r�(h) = rC (h+).
2. Let h = (V , L+, L−) ∈ HN

I . If h /∈ H , then r(h) = r�(h) = r I (h−). If h ∈ H , then
hB
E = (

hR
E

)∗
and hB

F = (
hR
F

)∗
. From this fact and property 2 in Definition 4, it follows

that

r(h) = r⊥
E (hE ) + r�

F (hF ) = r I (hR
E ) + r I (hR

F ) = r I (h−).

3. Let h ∈ HN . We consider two cases:

• If h /∈ H , then r(h) = r�(h). Furthermore,∑
T∈N/h+

r(hT ) =
∑

{T∈N/h+ : T⊂E}
r(hT ) +

∑
{T∈N/h+ : T⊂F}

r(hT )

+
∑

{T∈N/h+ : T∩F �=∅,T∩E �=∅}
r(hT )

=
∑

{T∈N/h+ : T�E}
(r⊥

E (hT ) + r�
F (∅))

+
∑

{T∈N/h+ : T�F}
(r⊥

E (∅) + r�
F (hT ))

+
∑

{T∈N/h+ : T∩F �=∅,T∩E �=∅}
r�(hT )

=
∑

T∈N/h+
r�(hT ) = r�(h) = r(h).

where we have used the fact that for all communication situations with incompatibil-
ities with cardinality of vertices less or equal than 3 both r� and r⊥ coincide.

• If h ∈ H , then r(h) = r⊥
E (hE ) + r�

F (hF ). Moreover, since N/h+ = N/hB
E ∪ N/hB

F
we have that∑
T∈N/h+

r(hT ) =
∑

T∈E/hBE

r(hT ) +
∑

T∈F/hBF

r(hT ) =
∑

T∈E/hBE

r⊥
E (hT ) +

∑
T∈F/hBF

r�
F (hT )

= r⊥
E (hE ) + r�

F (hF ) = r(h).

4. Let h = (V , L+, L−), ĥ = (V , L̂+, L̂−) ∈ HN , be such that h � ĥ. Let us consider the
following cases:

• If h, ĥ /∈ H , then r(h) = r�(h) ≥ r�(̂h) = r (̂h).
• If h, ĥ ∈ H , then

r(h) = r⊥
E (hE ) + r�

F (hF ) ≥ r⊥
E (̂hE ) + r�

F (̂hF ) = r (̂h).

• If h /∈ H , ĥ ∈ H , then

r (̂h) = r⊥
E (̂hE ) + r�

F (̂hF ) ≤ r�
E (̂hE ) + r�

F (̂hF ) = r�(̂h) ≤ r�(h) = r(h).

In a similarway it can be proved that r̂ ∈ B (HN
)
.Nevertheless r ∧̂r is not a profitmeasure6

on HN . It suffices to take the communication situation with incompatibilities h ∈ H such

6 Simply by exchanging � and ⊥ in the definitions of r , r̂ it can be proved that B
(
HN

)
is also not closed

under the operation ∨.
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Fig. 7 Zones E and F in h

that hE = (E, {12, 13, 24}, {23}) , and hF = (F, {56, 57, 68}, {67}). The situation h is
represented in Fig. 7.
Let us show that property 3 in Definition 4 is not satisfied. On the one hand,

(r ∧ r̂) (h) = r(h) ∧ r̂(h) =
(
r⊥
E (hE ) + r�

F (hF )
)

∧
(
r�
E (hE ) + r⊥

F (hF )
)

= 2 ∧ 2 = 2.

And, on the other hand,∑
T∈N/h+

(r ∧ r̂) (hT ) = (r ∧ r̂) (hE ) + (r ∧ r̂) (hF ) = (0 ∧ 1) + (2 ∧ 1) = 1.

However
(B (HN

)
,≤)

is indeed a lattice. Next we will define two new operations � and
� in B (HN

)
and we will prove that these operations return the supremum and the infimum,

respectively, of any two measures in B (HN
)
.

Definition 14 If r , r̂ ∈ B (HN
)
, the profit measures r � r̂ and r � r̂ are defined as

(r � r̂) (h) =
∑

T∈N/h+
(r ∨ r̂) (hT ) ,

(r � r̂) (h) =
∑

T∈N/h+
(r ∧ r̂) (hT ) ,

for every h ∈ HN .

Theorem 13 The poset
(B (HN

)
,≤)

is a lattice in which the supremum and the infimum of
any profit measures r , r̂ ∈ B (HN

)
are equal to r � r̂ and r � r̂ , respectively.

Proof Let r , r̂ ∈ B (HN
)
. Firstly we will prove that r � r̂ ≤ r ∧ r̂ . If h ∈ HN , then

(r � r̂)(h) =
∑

T∈N/h+
(r ∧ r̂)(hT ) ≤

∑
T∈N/h+

r(hT ) = r(h).

In a similar way it can be proved that r � r̂ ≤ r̂ . We conclude that r � r̂ ≤ r ∧ r̂ .
Let us see that B (HN

)
is closed under the operation �. Let r , r̂ ∈ B (HN

)
.

1. If h = (V , L+, L−) ∈ HN
C and h+ is connected, then N/h+ = {V } and (r � r̂)(h) =

(r ∧ r̂)(h) = rC (h+).
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2. If h ∈ HN
I , then, by Proposition 2,

(r � r̂)(h) =
∑

T∈N/h+
(r ∧ r̂)(hT ) =

∑
T∈N/(h−)∗

r I (h−
T ) = r I (h−).

3. If h ∈ HN , then, for each T ∈ N/h+, the graph h+
T is connected, and, consequently,

(r � r̂)(hT ) = (r ∧ r̂)(hT ). So,

(r � r̂)(h) =
∑

T∈N/h+
(r ∧ r̂)(hT ) =

∑
T∈N/h+

(r � r̂)(hT ).

4. Let h = (V , L+, L−), ĥ = (V , L̂+, L̂−) ∈ HN be such that h � ĥ. Notice that hT ≥ ĥT
for every T ∈ N/h+.

• If N/h+ = N/ĥ+, then

(r � r̂)(h) =
∑

T∈N/h+
(r ∧ r̂)(hT ) ≥

∑
T∈N/ĥ+

(r ∧ r̂)(̂hT ) = (r � r̂)(̂h),

where we have used that (r ∧ r̂)(hT ) ≥ (r ∧ r̂)(̂hT ), since r and r̂ satisfy property 4.
• If N/h+ �= N/ĥ+ then there exist T̂ ∈ N/h+ and T1, T2 ∈ N/ĥ+ such that N/ĥ+ =

((N/h+)\{T̂ })∪{T1, T2}. Therefore, N/(̂hT̂ )+ = {T1, T2}. In this case we have that
(r � r̂)(h) =

∑
T∈N/h+

(r ∧ r̂)(hT ) ≥
∑

T∈N/h+
(r ∧ r̂)(̂hT )

= (r ∧ r̂)(̂hT̂ ) +
∑

{T∈N/h+:T �=T̂ }
(r ∧ r̂)(̂hT )

≥ (r � r̂)(̂hT̂ ) +
∑

{T∈N/ĥ+:T �=T1,T2}
(r ∧ r̂)(̂hT )

= (r ∧ r̂)(̂hT1) + (r ∧ r̂)(̂hT2) +
∑

{T∈N/ĥ+:T �=T1,T2}
(r ∧ r̂)(̂hT )

=
∑

T∈N/ĥ+
(r ∧ r̂)(̂hT ) = (r � r̂)(̂h),

where we have used that (r ∧ r̂)(hT ) ≥ (r ∧ r̂)(̂hT ) and r � r̂ ≤ r ∧ r̂ .

From r � r̂ ≤ r ∧ r̂ and r � r̂ ∈ B (HN
)
it follows that r � r̂ is a lower bound of {r , r̂}

in B (HN
)
. Let us check that it is the maximum lower bound. Let r ′ ∈ B (HN

)
be such that

r ′ ≤ r and r ′ ≤ r̂ . Then, for each h ∈ HN

r ′(h) =
∑

T∈N/h+
r ′(hT ) ≤

∑
T∈N/h+

(r ∧ r̂) (hT ) = (r � r̂) (h) .

In a similar way it can be proved that the supremum of r and r̂ exists and is equal to r � r̂ . ��

8 Conclusions

In this paper we have dealt with a family of cooperative situations with restricted cooperation:
communication situations with incompatibilities. Our goal was to find a model for such
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Fig. 8 Allocation rules depending on α

situations that extends Myerson’s model for communication situations and Bergantiños’
model for incompatibility relationships. The key concept we have used for this purpose is
that of profit measure, which has allowed us to obtain, in fact, multiple models that meet our
requirements for extension. Each one of the profit measures enables us to define a unique
restricted game, which leads to a unique allocation rule. Although we have analyzed different
profit measures for a fixed game, it is possible to apply any of these measures to any game.
Next, by way of conclusion, we will show the versatility of the model introduced.

In the following example we will use the measures r�, r⊥ and rα in the segment
between them (see Remark 4) to obtain different payoff vectors for a cooperative game and
a communication situation with incompatibilities. Consider N = {1, 2, 3, 4, 5}, the game
v = u{1,3,4} + u{2,4,5} and the communication situation with incompatibilities h represented
in Fig. 2. It is clear that r⊥(h) = r�(h) = 1. Therefore, for each value μrα

the quantity
to be distributed is equal to 1. It is easy to check that if S ⊆ N and S �= {1, 2, 3, 4}, then
r⊥(hS) = r�(hS). Finally, if S = {1, 2, 3, 4} then r⊥(hS) = 0 and r�(hS) = 1, which leads
to vr

α

h ({1, 2, 3, 4}) = α. The game vr
α

h is equal to

vr
α

h = u{2,4,5} + αu{1,2,3,4} − αuN .

If we apply the Shapley value to vr
α

h we obtain

μrα

(h) =
(

α

20
,
1

3
+ α

20
,

α

20
,
1

3
+ α

20
,
1

3
− α

5

)
.

The payoffs to each player in {1, 2, 3, 4, 5}, according to the allocation rule μrα
(h), are

represented in Fig. 8.
We can see that, as we increase the degree α of allowable communication between players
who are not actively cooperating, the payoff to player 5 decreases and the payoffs to the other
players increase. This is due to the fact that it decreases the need to incorporate player 5 to
obtain profit.
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Not only the measures rα are of interest. With N = {1, 2, 3, 4, 5}, the game v = u{1,3,4}
and the communication situation with incompatibilities h represented in Fig. 2, we can con-
sider the profit measure r defined in Example 7, which, as we proved, is not in the segment
between r⊥ and r�. This profit measure would be reasonable if we assume that the commu-
nications between players who are not actively cooperating are accepted only if there is an
agreement between all players in N to do so. In this case vrh = uN , since players 1, 3 and
4 cannot actively if player 2 does not facilitate the communication between them or player
5 does not authorize such communication. Therefore, even though players 2 and 5 are null
players in v, all players receive the same payoff when we apply the allocation rule μr , that
is,

μr (h) =
(
1

5
,
1

5
,
1

5
,
1

5
,
1

5

)
.

In this example it can be seen that although in principle we only deal with graph-
communication restrictions and bilateral incompatibilities, eventually our approach allows
us to model other more complex types of cooperation constraints.

An extension connecting the two previous examples is possible. Let

H(N ) = {h = (N , L+, L−) ∈ HN : h+ is connected}.
Let α0 ∈ [0, 1] and f : H(N ) → R be such that: 1) f is non-decreasing on (H(N ),≤),
where ≤ is the order inherited from (HN ,≤), 2) f (h) ∈ [α0, 1] for every h ∈ H(N ). For
any game v consider r ∈ F (HN

)
defined as

r f
α0

(h) =
{
f (h)r�(h) + (1 − f (h))r⊥(h), if h ∈ H(N ),

rα0(h), if h ∈ HN \ H(N ).

Let us see that r f
α0 ∈ B (HN

)
. It is not difficult to prove that r f

α0 satisfies properties 1, 2
and 3 in Definition 4 (the reasoning is similar to that followed in Example 7). Let us check
property 4. Let h, ĥ ∈ HN be such that h � ĥ. If h /∈ H(N ), then it is clear that the condition
is satisfied, since rα0 ∈ B (HN

)
. Observe that if a, b ∈ R and a ≥ b, then the function

g(x) = ax + (1 − x)b is non-decreasing. Since r⊥ and r� satisfy property 4,

r f
α0

(h) = f (h)r�(h) + (1 − f (h))r⊥(h) ≥ f (h)r�(̂h) + (1 − f (h))r⊥(̂h)

≥
{
f (̂h)r�(̂h) + (1 − f (̂h))r⊥(̂h), if ĥ ∈ H(N )

α0r�(̂h) + (1 − α0)r⊥(̂h), if ĥ ∈ HN \ H(N )

}
= r f

α0
(̂h),

where we have used the previous observation regarding the function g with a = r�(̂h) and
b = r⊥(̂h), taking into account either f (h) ≥ f (̂h), since f is non-decreasing on H(N ),
or f (h) ≥ α0 if h /∈ H(N ). Applying the profit measure r f

α0 entails applying rα0 unless all
players in N can communicate with each other, in which case the players agree to increase the
degree of allowable communication between players who do not actively cooperate. Notice
that if f (h) = α0 for every h ∈ H(N ), then r f

α0 = rα0 . Besides, if f (h) = 1 for every
h ∈ H(N ) and α0 = 0, then we obtain the profit measure in Example 7. But other profit
measures can be obtained. For instance, let us take α0 = 0 and

f (h) = 1 − |L−|(|N |
2

) ,
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for every h = (N , L+, L−) ∈ H(N ), which is the proportion of pairs of players without
bilateral incompatibility. If |N | = 5 we have that

r f
0 (h) =

⎧⎨
⎩

(
1 − |L−|

10

)
r�(h) + |L−|

10
r⊥(h), if h ∈ H(N ),

r⊥(h), if h ∈ HN \ H(N ).

Take the game v = 4u{1,3,4} +u{5}. If h = (N , L+, L−) is the communication situation with
incompatibilities represented in Fig. 2, then r⊥(hS) = 1 for every S ⊆ N such that 5 ∈ S,

and r⊥(hS) = 0 otherwise. Furthermore, r�(h) = 5. Hence, r f
0 (h) = 23

5
, r f

0 (hS) = 1 for

every S � N such that 5 ∈ S, and r f
0 (hS) = 0 otherwise. The restricted game is given by

v
r f
0
h = u{5} + 18

5
uN . Consequently, the payoff vector according to μr f

0 is equal to

μr f
0 (h) =

(
18

25
,
18

25
,
18

25
,
18

25
,
43

25

)
.

However, if we add the negative edge 45, that is, if we consider ĥ = (N , L+, L− ∪ {45}),
then r f

0 (̂h) = 21

5
, while the profit measure does not change in the rest of coalitions. We have

that v
r f
0

ĥ
= u{5} + 16

5
uN , which leads to

μr f
0 (̂h) =

(
16

25
,
16

25
,
16

25
,
16

25
,
41

25

)
.
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