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ABSTRACT 

Fatigue failure of cables and strands is a common and complex problem. Failure is 

typically caused by different combinations of time-variable bending and axial 

forces. In addition to these loads, contact stresses between wires may play an 

important role in the fatigue failure of cables. The present work aims to provide 

deep insight into the fatigue failure of a 7-wire stainless steel strand subjected to a 

combination of variable axial and bending loads. To avoid side effects in the 

analysis, fatigue failure of the strand close to the clamps is prevented. Several tests 

were performed with a new device specifically designed to avoid failure near the 

clamps. Thus, failure is always produced at the middle length of the specimen. Test 

simulations were performed by employing the finite element method. The 

numerical results were validated via comparisons with experimental data. Finally, 

life prediction curves were obtained. 

KEYWORDS: Strand, Life prediction, Numerical model 

NOMENCLATURE: CL = Load factor; dmin = Minimum bending displacement; dmax = 

Maximum bending displacement; E = Young modulus ; Ks = Spring stiffness; Lb = 

Beam element length; Le =Effective length; Ls = Solid element length; P = Axial load; 

Pa = Axial load amplitude; Pm = Mean axial load; Pmax = Maximum axial load; Pmin = 

Minimum axial load, Pmt = Theoretical mean axial load; Ps = Spring load; Psw= 

Simplified model spring load; Q(t) = Bending load; s = Longitudinal path 

coordinate; σa = Stress amplitude; σa,eq = Equivalent amplitude stress; σm = Mean 

stress; σuts= Ultimate strength; σmax= Maximum elastic-plastic stress; σmin = Minimum 

elastic plastic stress; σmaxe = Maximum elastic axial load; σmine = Minimum elastic axial 

load; Δd = Bending displacement range; Δσe = Elastic stress range; µ = Friction 

coefficient; 

 



 

1. INTRODUCTION 

The failure of structural and electrical power line cables usually occurs due to 

fatigue phenomena [1]. Cables are subjected to a combination of axial and bending 

loads. Bending loads are mainly produced by wind or are induced by mechanical 

systems [2-4]. The relative movements between wires and strands produce different 

fretting phenomena such as fretting fatigue [5–8] and fretting wear [9], which can 

reduce the fatigue strength of cables. Many theoretical and experimental studies 

have focused on the fatigue life in steel cables, and particular attention has been 

paid to fretting phenomena. Hobbs et al. [10] developed a semi-analytical 

procedure to determine stresses in cable wires under axial loads taking into account 

tangential and normal contact stresses. Subsequently, a fatigue procedure was 

proposed that included contact stresses from sliding with friction [11], extending 

later the procedure to bending loads [12]. 

Zhou et al. [1] performed several tests with electrical power line cables which 

proved that fretting was a determining factor in the fatigue design of cables. They 

noticed a relevant effect on fatigue life produced by the type of clamps used to hold 

the cables. 

Recently, Araujo et al. [5], [13] developed a bending fatigue test for aluminium 

cables to determine the relation between mean stress and fatigue strength. They 

obtained several S-N curves for different mean stress, but did not discuss the 

influence of the contact stresses on fatigue strength in detail. 

In investigation on the mechanical behaviour of cables, numerous analytical and 

numerical techniques were employed [14-16]. Analytical techniques are based on 

elasticity theory, and thus assume some behaviour simplifications. These models 

are useful for estimating the global behaviour of the cable. However, these models 

do not take into account non-linear effects or mechanical contacts. Accordingly, it is 

difficult to accurately analyse the fatigue behaviour of cables from an analytical 

perspective because many simplifications must be assumed. 

Currently, thanks to the increase in computing power, it is less time consuming to 

attempt to numerically reproduce the real behaviour of cables including all 

parameters that influence the mechanical behaviour of these elements. However, 

this is a challenging task because of the complex geometries of cables and the 

difficulties associated with obtaining a high quality mesh, which is necessary to 

accurately reproduce the stress/strain fields that are produced in the cable. 
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Although several studies have been carried out using finite element formulation 

[17–21], only a few have developed accurate finite element models (FEM) including 

friction, plasticity and a good mesh refinement around contact zones [22-23]. 

Nevertheless, although these models reproduce the global response and contacts 

stresses between cables with high accuracy and low computational cost, the use of 

these models is limited since it requires a complex mathematical implementation. 

Almost all the aforementioned studies investigated the fatigue and fretting 

behaviour of cables and strands which consist of several wire layer or strands, 

therefore two types of contact must be considered (Figure. 1): a) continuous helical 

contact that is produced between the wires of the first layer of a strand (see Figure 

1c); and b) trellis contact that arises between the strands of a cable (see Figure 1d) 

and between the external wire layers of each strand if there is more than one. 

Therefore, in addition to the complexity associated with the geometry, two different 

types of contact could appear. Figure 1a shows an image took with a scanning 

electron microscope (SEM) of one of the contact pairs shown in Figure 1c, in which a 

continuous helical contact is observed. Figure. 1b shows an example of a trellis 

contact mark, with an elliptical shape of one of the trellis contact marked in Figure 

1d. 

 

 

Figure 1. a) SEM image of a continuous helical contact, b) SEM image of a discontinuous 

trellis contact, c) Strand 1x7 contact pairs type, d) cable 7x7 contact pairs type 



 

Focusing on fretting, the mechanical behaviour of each contact type is different. 

Continuous helical contact is produced along the total length of the strand. Trellis 

contact forms a discontinuous pattern of elliptic contact zones along the cable. For 

both contact types, the contact area and stresses depend on the normal pressure 

between the wires and the lay angle. 

The objective of the present work is to analyse the fatigue behaviour of a 7-wire 

stainless steel strand (Figure 1c) subjected to axial and bending loads, focusing on 

the interactions between wires. The efforts are focused on the development of a 

faithful numerical model of the strand to obtain the stress/strain fields. Numerical 

results combined with experimental fatigue test are used to attempt to predict the 

fatigue life of strands while accounting for both global and contact stresses. Due to 

the strand type considered in the present work, the only contact analysed between 

wires is the continuous one produced along the helix contact lines between the 

inner wire and the outer wires. 

A similar study was performed by Winkler et al. in which a 7-wire steel strand was 

tested under axial and bending loads [8]. In that work, the axial load increased with 

the applied bending force, that is, the longitudinal displacement at both ends of the 

strand was restricted. However, failure of the cable was observed inside the clamp 

system that was used to hold the strand by means of external pressure. The failure 

was mainly caused by the fretting fatigue phenomena, which shows that the type of 

assembly and the boundary conditions of the clamps play a dominant role in cables 

fatigue life. 

 

2. EXPERIMENTAL METHODOLOGY. 

Fatigue tests are performed with a device designed specifically for testing cables 

and strands [24]. Figure 2 shows a scheme of the test device used. A variable 

bending moment is applied at the middle length of the strand by means of the force 

Q(t) through a bearing sheave of radius 25 mm, while an almost constant axial load 

P is applied at one end of the specimen. Large displacements are produced by the 

bending load, making difficult achieve a constant axial load. Cylinder 1 in Figure 2 

is force controlled by imposing a constant axial load P. Nevertheless, due to the 

synchronization of both hydraulic cylinders and the inherent stiffness of the 

assembly the system control cannot maintain a completely constant axial load. 

Therefore, a small axial load amplitude Pa appears and must be taken into account 
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in conjunction with a mean axial load Pm. The degrees of freedom allowed in the 

test device are as follows: all rotations on both sides of the specimen and the 

longitudinal displacement at the right side of the strand, which is necessary to 

apply the axial load by means of hydraulic cylinder 1. The effective length Le is 

measured between both support points (see Figure 2). These support points are 

included to avoid the introduction of transverse inertial forces that appears with the 

movement of the load cell, which is directly attached to the strand. Additionally, 

the diameters of the sheaves used as support points are two times the diameter of 

the punch sheave to avoid failure at these points. 

 

 

Figure 2. Scheme of the testing machine. 

The bending moment and axial load produce global and contact stresses that lead 

to failure of the strand in the middle of the effective length. The test stops with the 

failure of one of the seven wires. The strand used is a 7-wire stainless steel strand 

(AISI 316). The chemical composition of the stainless steel according to UNE-EN 

10264-4:2012 is shown in Table 1. 
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Table 1. AISI 316 chemical composition. 

Element C 
Si 

(max.) 

Mn 

(max.) 

P 

(max.) 

S 

(max.) 
Cr Mo Ni N 

Weight 

(%) 
≤0.07 1.00 2.00 0.045 0.015 

17-

19 

2-

2.5 

10-

13 
≤0.11 

 

The external diameter of the strand is approximately of 4.8 mm. Figure 3 shows a 

scheme of the strand cross-section, its relative position to the punch and the index 

number assigned to each wire. The diameter of Wire 1 in Figure 3 is 1.7 mm and the 

diameter of the remaining wires are 1.62 mm. The lay angle α forms 14º degrees 

with the axis of the strand. The value of the maximum tensile stress (σuts) is 

approximately 1600 MPa. In all tests, the effective length of the specimen Le is 980 

mm. 

 

Figure 3. Strand cross-secction geometry. 

To investigate the influence of mean axial stress on fatigue life, the test mean axial 

load, Pm, is varied from 2 kN up to 6 kN. The cyclic load Q, which produces the 

bending moment, is applied by a predefined displacement range Δd. The 

maximum displacement dmax ranges from 20 to 50 millimetres depending on the 

test, being the minimum displacement dmin zero. The load Q is known during the 

test thanks to the cylinder 2 load cell (see Figure 2). Test results are shown in Table 2.  
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After the tests, fracture surfaces are visually inspected, and it is noted that the 

fracture surfaces in all cases are nearly transversal to the longitudinal axis. In 

addition, the wire fractures are always located at the middle length of the specimen. 

Fretting wear and a significant amount of fretting debris is observed along the 

helical contact lines between wires as shown in Figure 1a. To obtain more 

information, fracture surfaces are studied using a scanning electron microscope 

(SEM) for thorough analysis specifically regarding crack initiation points and its 

corresponding propagation. In most cases, the outer wire in the lowest position 

(wire 5 in Figure 3) is the first to break (75% cases); in other cases, Wire 5 and Wire 1 

break at the same time. Figure 4 shows SEM images in which crack initiation points 

and crack growth directions can be observed. 

 

Figure 4. SEM images. a) Test 1 strand, b) Test 1 Wire 5 detail, c) Test 1 Wire 1 crack 

initiation detail, d) Test 34 Wire 5 detail. (see Table 1). 



 

Figure 4a to Figure 4c correspond to test number 1 (see Table 2 for test data). Up to 

three well-differentiated initial cracks are observed in Wire 5 (see Figure 4b), which 

initiate at the free surface, where no contact exists. In this particular case, Wire 1 

breaks at the same time, and one crack is observed (see Figure 4c for detailed view). 

This crack initiation point has, on both sides, two darker areas marked with white 

circles (Figure 4a). These zones correspond to those under two contact pairs during 

the test, the angle between them support this idea (≈ 60º). The chemical 

compositions of these two dark zones and the contact mark between wires (Figure 

1a) is analysed with the energy dispersive spectroscopy (EDS) technique. It is noted 

that the percentage in weight of oxygen is much higher (28%) at dark zones than 

that far from them (1%). This observation suggests that, when the crack is open, 

fretting debris produced at the contact pair, penetrate inside the crack producing 

these darker or rusted zones. 

Figure 4d shows the same pattern as Figure 4b, two cracks initiate at Wire 5, where 

there is no contact with other wires. 

It can be roughly concluded that wires break due to global stresses produced by the 

combination of bending moments and axial forces. In light of these preliminary 

results, it seems to be that fretting fatigue is not a determining factor in a 7-wire 

strand. 

 

3. NUMERICAL MODEL. 

Considering the strand size, stress and strain measurements are difficult because 

there are not gauges small enough to be placed on the wires. In addition, the only 

way to know contact stresses are analytical or numerical procedures. Costello´s 

theory was initially applied to obtain the stresses produced by the bending moment 

[14]. However, the results obtained for the bending stresses were overestimated 

due to the small sheave diameter. Therefore, to determine the strand behaviour as 

comprehensively as possible, a complete finite element model is developed with 

the objective of obtaining the extreme values of the load cycle, σmin and σmax. 

This section analyses real test boundary conditions in order to apply them to the 

numerical model. In addition, the element types, geometry and mesh are discussed. 

Finally, the considered material properties are explained. 
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3.1 MESH & BOUNDARY CONDITIONS. 

First, experimental boundary conditions are studied to reproduce, as well as 

possible, the strand behaviour in the FEM model. Figure 5 schematises the real 

behaviour observed during tests and the strategy that is followed to model it. The 

information obtained from the tests are the maximum and minimum values of the 

axial load Pmax and Pmin, respectively, and the bending load Q that is imposed by the 

maximum displacement dmax. The parameter Q is considered to be the maximum 

value because the minimum is zero. 

 

Figure. 5. Load analysis. 

Therefore, the load cycle of the strand is defined by two load states. Load state 1 is 

the case in which the strand is subjected to the minimum displacement (dmin = 0). 

Therefore, the value of the axial load is Pmin. Load state 2 is defined by the 

maximum bending displacement dmax, and thus, the axial load is Pmax. 

These boundary conditions are reproduced in the finite element model as shown in 

Figure 6. Only the effective length of the strand is modelled. Each end of the strand 
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has its displacement restricted in the x and y directions. A spring with a constant 

stiffness behaviour is placed at each side. The axial load of the spring Ps is Pmin for 

load state 1 and Pmax for load state 2. The remaining nodes of both springs are fully 

displacement-restricted. With these considerations, load state 1 is fully defined. The 

bending displacement of load state 2 (dmax) is applied by means of a rigid body with 

a 25 mm radius that is placed at the middle length of the specimen, resembling the 

sheave in actual tests. 

 

Figure 6. FEM model specifications. 

The geometry of the strand in the FEM model is constructed with two different 

element types (see Figure 6) in ANSYS APDL 15 with implicit formulation. As 

shown in Figure 6, the effective length is divided into three parts. The central part, 

which is the most interesting part from the perspective of fatigue, is meshed with 

the SOLID185 element type with a first-order formulation, wherein the mesh is 

coarse far from the contact zones and is very fine near the contact zones (see Figure 

7). The length of the solid mesh Ls is 20 mm and is discretized longitudinally with 

124 elements. The mesh size in the vicinity of contact zones is approximately 4 μm. 

Therefore, the section of the smallest brick elements is 4 μm x 4μm. The influence of 

the number of longitudinal solid elements was studied comparing the results with 

124 and 62 elements for the same Ls, concluding that the maximum stress variation 

was lower than 3%. 

Figure 7 shows a section of the middle part of the FEM model with an example of 

the first principal stress obtained and the mesh refinement in the vicinity of the 

contact zone for Test 31 of Table 2. Wire 2 is not shown to show the mesh 

refinement and the stress values along one contact pair.  

Ps

Δds

K = 0s

BEAM188 BEAM188SOLID185

COMBIN14

L  = 480 mm L  = 480 mmL  = 20 mmsb b

Mn1 Mn3 Mn4 Mn2

Ps

Δds

K = 0s

COMBIN14

L  = 980 mme



 

metálicos 

On each side of the solid part, the remaining strand length is modelled with 

BEAM188. Each element is defined by two nodes and a 1-dimensional element. The 

length of each beam part Lb is 480 mm, being the length of each beam element 0.33 

mm.  

The degrees of freedom of SOLID185 are displacements, whereas BEAM188 

elements also include rotations. The coupling of solid and beam elements (Mn3 & 

Mn4 in Figure 6) is performed with master nodes and the CERIG APDL command. 

Each solid wire is coupled with its matching beam wire. Thus, 7 independent 

couplings are defined at each side of the solid block which join beam and solid 

degrees of freedoms. The springs are modelled by means of the COMBIN14 

element, which is defined by the axial load Ps and zero stiffness Ks = 0. Springs are 

coupled with beam elements by means of master nodes 1 and 2 (Mn1 & Mn2 in 

Figure 6). 

Contact elements between solid elements are defined with CONTA173 and 

TARGE170. Contacts between beams are defined with CONTA176 and also 

TARGE170, with parallel beam contact type, which is applicable for continuous 

contact type. The contact algorithm used is the augmented Lagrangian method and 

non-linear geometrical option is active. The total number of nodes is around 843000, 

which implies more than 2.5 million degrees of freedom. 

 

Figure 7. FEM model load state 2. First principal stress. σI (MPa). Test 31. 

 



 

Contact elements between solid elements are defined with CONTA173 and 

TARGE170. Contacts between beams are defined with CONTA176 and also 

TARGE170, with parallel beam contact type. The contact algorithm used is the 

augmented Lagrangian method. The non-linear geometry option is active due to 

the large displacements produced by the bending load. 

 

3.2. MATERIAL PROPERTIES. 

 

Figure 8. Material tensile test and FEM material model considered. 

To obtain the mechanical properties of the material, some static traction tests were 

performed with the inner wire of the strand. Figure. 8 shows the actual stress-strain 

curve obtained for the inner wire. The choice of the inner wire for this purpose is 

based on the wire geometry, as only the inner wire is straight. In Figure 8, the points 

indicate the discretization implemented for the material behaviour for solid 

elements in the numerical model. Beam elements do not support material non-

linearity; therefore, an elastic behaviour is assumed. In any case, this is correct 

because this part of the strand is only subjected to an axial load and the stresses are 

below 430 MPa. The Young’s modulus considered for the elastic behaviour is 161 

GPa, a value that agrees well with stresses under 1000 MPa. The Poisson coefficient 

is considered as υ = 0.3. 

The friction coefficient μ is the second material parameter required for the model. 

The friction coefficient between two steel surfaces subjected to variable loading 
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after more than 1000 cycles is considered to be between 0.6 and 0.9 [25-26]. A value 

of 0.8 is used in the model. In view of the type of failure observed, which mainly 

occurs far from contact zones, this parameter is not vital because it has major effect 

on the stresses close to contact zones and minor far from them. 

 

4. RESULTS 

Before applying the finite element model, a pair of validations were carried out. The 

first validation is performed for load state 1 and shown in Figure 9a, which shows 

the axial stress produced at Wire 1 because of an axial load P, considering a linear 

elastic behaviour and frictionless contact. Thus, the results can be compared with 

the analytical expression obtained from [27] and simplified for a 7-wire strand 

(Equation (1)). 

 
𝜎 = (𝐴1 +

cos3(𝛼)

1 + 𝜐 sin2(𝛼)
𝐴27)

−1

𝑃 (1) 

Where A1 is the area of Wire 1, A27 the sum of the outer layer wire areas. 

In addition, a second validation is performed for load state 2. During tests, Pm and 

dmax are imposed, and thus, Pmax and Qmax are obtained via load cells. Imposing Ps = 

Pmax and dmax to the numerical model, the maximum force that produces bending, Q, 

can be obtained. Figure 9 shows the agreement between test and numerical results 

for a specific value of dmax and different Pmax loads. Note that for low axial load 

values, the scattering and error are higher than those associated with high loads, 

which attributes to the inherent control system of the actuators that it could not 

move exactly in phase both cylinders for low axial loads. However, the scattering 

and error decrease as the axial load increases. Therefore, the finite element model is 

considered to be acceptable because the error and scattering are associated with real 

test values. 

In view of the experimental results, it is expected that maximum stresses will be 

found at points of maximum bending moment. It is clear that failure is governed by 

axial stress σ, which also coincides with principal maximum stresses far from 

contact surfaces. Henceforth, references to stress values refer to the axial direction. 



 

 

Figure 9. a) Comparison between numerical and analytical results, b) FEM and tests load 

correlation. 

Therefore, axial stress σ of load state 2 is studied for cases along different paths at 

the middle length of the strand, as shown in Figure 10. Along paths 1 and 2, σ is 

obtained for the strand FEM model. Path 2 forms 10 degrees to the horizontal to 

study the stresses produced far enough from the contact pair to avoid its influence. 

Path 1 crosses the contact zone, and it is observed that contact produces a 

compression field that prompts a decrease in the axial stress value. However, 

maximum axial stresses with a non-negligible gradient are noticed in Wire 5, which 

agrees with the type of failure observed. Maximum stresses and gradients of path 2 

(Wire 1) are quite similar to those observed in Wire 5. This analysis is a way to 

explain why in some cases Wires 1 and 5 break at the same time: both are subjected 

to similar axial stresses and gradients. In cases in which Wire 1 fails, the initiation is 

observed between contact zones, which are far from the compression field 

produced by contact stresses (see Figure 4a). 
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Figure 10. Axial stress along different paths for load state 2. a) Comparison of FEM strand 

paths 1 and 2, b) Comparison of FEM wire path 3 and FEM strand path 2. 

In view of these results, it is possible to analyse the strand as independent wires 

because the failure is produced far from the interaction between bodies and 

coincides with the maximum axial stress. Therefore, a simplified FEM model is 

analysed. This simplified model considers only Wire 1 using the same effective 

length, material behaviour and boundary conditions used for the strand FEM 

model. However, two small modifications must be made to compare the results. 

The punch radius in this case is augmented by the diameter of an outer wire. As 

such, the new punch radius is 26.2 mm, which reproduces the same curvature as in 

the strand FEM model, which is facilitated by applying the same value of dmax. The 

second modification is the spring load. According to the geometry approximately a 
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15% of the total axial load is assumed by the inner wire for the parameters used 

such that the value of the springs in the simplified model is Psw = 0.15 Pmax. The 

results are shown in Figure 10b (Path 3). The axial stress values and gradients 

observed along path 3 are similar to those in path 2, which were also similar to 

those in path 1 for Wire 5. Therefore, the axial stress of load state 2 (σmax) for this 

specific strand configuration and boundary conditions could be obtained with the 

simplified FEM model, analysing only Wire 1. Thus, the axial stress of load state 2 is 

obtained from the simplified FEM model, in which dmax and Psw = 0.15 Pmax are 

imposed; the results are shown in Table 2. 

The stress of load sate 1, σmin, is obtained in the same way. That is, by means of the 

simplified FEM model, but in this case imposing only the axial load to the spring as 

Psw = 0.15 Pmin. Henceforth, references to FEM results are referred to as the 

simplified model. 

To consider the elastic-plastic behaviour of the material, at least one pair of cycles 

must be taken into account to estimate an accurate value of σmin. A significant strain 

hardening effect occurs for values higher than 1000 MPa. For lower values, the 

behaviour could be considered linear elastic with negligible error, as shown in 

Figure 8. The unloading process was simulated in the FEM model, for which strong 

convergence problems arose. Therefore, in order to calculate an accurate value of 

σmin at the outer surface of Wire 1 while considering plasticity, the following 

procedure is performed with the simplified FEM model.  

At first, the stress of load state 2 is calculated with the elastic-plastic simplified 

model. Then, to estimate the stress at load state 1, the unloading process is 

considered to be purely elastic. Therefore, a linear elastic simplified FEM model is 

performed with Wire 1, with the aim of estimating the maximum axial stress at 

load state 2 σmaxe (see Table 2). Figure 11 schematises the procedure to obtain the 

value of σmin. The minimum elastic axial stress σmine is obtained by analytically 

applying Equation (2). 

 𝜎𝑚𝑖𝑛
𝑒 =

0.15𝑃𝑚𝑖𝑛

𝐴1
  (2) 
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Figure 11. Procedure developed for obtaining σmin in function of σmax and Δσe 

Therefore, with these values, an elastic stress range Δσe is obtained according to 

Equation (2). Assuming that the unloading process is performed with an elastic 

behaviour, the same range is applicable to the elastic-plastic unloading process, as 

shown in Figure 11. Therefore, the value of σmin that accounts for the strain 

hardening effect could be estimated by applying Equation (3). 

 ∆𝜎𝑒 = 𝜎𝑚𝑎𝑥
𝑒 −𝜎𝑚𝑖𝑛

𝑒   (3) 

 𝜎𝑚𝑖𝑛 = 𝜎𝑚𝑎𝑥 − ∆𝜎𝑒 (4) 

Table 2 shows the loading parameters and FEM results obtained in all tests. The 

value Pmt is the theoretical mean axial load value, which in conjunction with dmax, 

defines each test. As shown, for the same combinations of Pmt and dmax, slightly 

different Pmax, Pmin and Q values are obtained. Instead of reproducing FEM 

simulations for each test, average values of Pmax and Pmin are used. Therefore, 19 load 

combinations were accounted for in the FEM simulation process. 

 

 

 

 

 



 

Table 2. Test and FEM results. 

Test Pmt (N) dmax (mm) Pmax (N) Pmin (N) Q (N) Cycles σmax (MPa) σe
max (MPa) 

1 2000 30 2191 1822 289.0 128350 

669 715 2 2000 30 2225 1782 259.9 175100 

3 2000 30 2254 1745 306.1 188727 

4 2000 40 2301 1700 391.0 84850 852 928 

5 2000 50 2459 1548 481.1 119300 

1037 1164 6 2000 50 2478 1560 523.1 80200 

7 2000 50 2449 1549 526.4 67750 

8 3000 20 3122 2921 391.0 763100 
608 645 

9 3000 20 3104 2898 231.3 >106 

10 3000 30 3180 2823 401.0 72700 

813 881 11 3000 30 3176 2806 435.8 71450 

12 3000 30 3247 2777 422.5 79050 

13 3000 40 3305 2712 585.6 47350 

1011 1123 14 3000 40 3306 2682 590.8 63400 

15 3000 40 3309 2706 573.7 61859 

16 3000 50 3454 2540 717.7 33855 

1191 1383 17 3000 50 3454 2533 729.6 21515 

18 3000 50 3453 2593 715.8 28378 

19 4000 20 4106 3881 385.8 133763 
719 767 

20 4000 20 4128 3881 375.3 193000 

21 4000 30 4214 3805 584.1 81050 
942 1027 

22 4000 30 4199 3819 571.3 59017 

23 4000 40 4328 3690 752.0 33055 

1137 1302 24 4000 40 4328 3685 746.7 33321 

25 4000 40 4356 3642 742.5 27385 

26 4000 50 4480 3524 921.0 18525 

1311 1584 27 4000 50 4476 3556 921.8 15182 

28 4000 50 4476 3504 904.1 18431 

29 5000 20 5153 4911 487.3 535400 
806 806 

30 5000 20 5135 4881 451.6 147050 

31 5000 30 5217 4792 722.0 87050 
1044 1165 

32 5000 30 5230 4804 715.3 40400 

33 5000 40 5348 4651 934.2 32534 

1251 12477 34 5000 40 5649 4695 935.6 20450 

35 5000 40 5385 4660 926.0 19210 

36 5000 50 5515 4486 1165.0 16445 
1405 1757 

37 5000 50 5518 4518 1094.0 11764 

38 6000 20 6156 5885 538.8 225800 907 946 

39 6000 30 6235 5774 801.1 53950 
1137 1295 

40 6000 30 6253 5770 791.1 41948 

41 6000 40 6392 5631 1058.0 19880 1336 1611 

42 6000 50 6572 5475 1307.0 9980 1484 1915 
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5. LIFE PREDICTION. 

 

Figure 12. Material S-N curve data and fit. R=0.1. 

Once the stresses of the experimental tests are known, the next step is establishing 

the relation between the damage parameter and the life obtained. An S-N curve of 

the material in axial loading is obtained after testing 50 inner wires of the strand 

with R = 0.1 (Figure 12). A fatigue limit near 212 MPa is obtained supported by three 

run-out tests. 

The stress ratio R for the tests performed with the strand under axial and bending 

loads is different for each test. From Table 1 and applying Equations (4) and (5), 

mean stress (σm) and stress amplitude (σa) can be obtained.  

 𝜎𝑎 =
𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛

2
 (5) 

 𝜎𝑚 =
𝜎𝑚𝑎𝑥 + 𝜎𝑚𝑖𝑛

2
 (6) 

Therefore, to compare strand test results with the S-N curve of the material and 

include the effect of mean stress, the Walker equation is applied [28]. This 

expression is shown by Equation (7), where the parameter γ must be estimated by 

means of the procedure shown in the aforementioned reference [28]. The value 

obtained is 0.6 adjusted according to the obtained numerical results, which is 
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similar to the value given by reference [28] for this material as a function of σuts. 

 
𝜎𝑤 = 𝜎𝑚𝑎𝑥 (

1 − 𝑅

2
) 𝛾          (7) 

The value σw is considered to be the stress amplitude with the load ratio R = -1 

(zero mean stress), for which the same life level as the actual combination of σa and 

σm is obtained. Therefore, applying Equation (6) to both strand and wire S-N curve 

data, it is possible to compare them with the same load ratio. The stress amplitude 

of the wire S-N curve σa can be obtained directly from Figure 12, and mean stress 

value σm can be easily obtained if the load ratio (R = 0.1) is known. 

In addition to the effect of mean stress, there is a remarkable difference between the 

S-N curve of the material and the fatigue strand test. The wire fatigue tests were 

performed with axial loading, and therefore, there was not a stress gradient. 

However, the bending moment applied to the strand produces severe gradients, as 

was shown earlier (Figure 10). The existence of a stress gradient is the reason for the 

higher fatigue strength in bending fatigue than in axial fatigue, given the same 

maximum stress. It is widely recognized in the fatigue field and used in real 

practice that the fatigue strength in axial loading is between 0.7 and 0.9 times the 

one in bending [29–30]. Any fatigue model has to take this effect into account. That 

is why, in order to compare the fatigue curve of the strand with the curve of the 

wire, the former will be divided by a factor of 0.8. This value is in the middle of the 

range given before. 

Figure 13 shows the adjusted line for the material S-N curve and the adjusted line of 

the strand test after applying Equation (7). In addition to these lines, the stress 

values for each strand test are shown, grouped as a function of dmax. As shown, in 

general, the higher the displacement, the lower the life. 
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Figure 13. Material and strand adjustment with the Walker relation. 

Figure 13 shows the adjusted line for the material S-N curve and the adjusted line of 

the strand test. In addition to these lines, the stress values for each strand test that 

are obtained after the application of the Walker equation are shown, grouped as a 

function of dmax. As shown, in general, the higher the displacement, the lower the 

life. 

Very good agreement is observed between the wire S-N curve and the strand S-N 

curve. This means that the fatigue life in any strand test could be estimated based 

on the stresses calculated with FEM and the fatigue curve of the material. Both are 

modified by means of the Walker equation, which also depends on the value of γ, 

which is adjusted with the tests presented herein. The same procedure was carried 

out with other models that take into account a non-zero mean stress, such as 

Goodman [31], Gerber [32] or Smith-Watson-Topper [33], as shown by Equations (7) 

to (9), where Δε is obtained as Δσe/E. 

 𝜎𝐺𝑜𝑜𝑑𝑚𝑎𝑛 =
𝜎𝑎

1 −
𝜎𝑚

𝜎𝑢𝑡𝑠

 
(8) 

 𝜎𝐺𝑒𝑟𝑏𝑒𝑟 =
𝜎𝑎

1 − (
𝜎𝑚

𝜎𝑢𝑡𝑠
)
2        

(9) 
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 𝜎𝑆𝑊𝑇 = √𝜎𝑚𝑎𝑥𝐸∆𝜀 (10) 

Finally, the results are shown in Figure 14. Note that good agreement is observed 

independently of the stress modifications used, although the Walker modification 

agrees better with the material curve followed by the SWT parameter. The 

advantage of the SWT parameter is that no additional parameters are required for 

model correction compared with the Walker model. 

 

 

Figure 14. Comparison of S-N curves. 

 

6. CONCLUSIONS. 

The fatigue failure of a 7-wire stainless steel strand is studied. Several tests are 

performed by applying different combinations of axial and bending loads. Fracture 

surfaces are analysed using a scanning electron microscope, and the results suggest 
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that the failure of the strand is due to global stresses rather than fretting. To 

determine the stress and strain fields of the specimen, a complete finite element 

model is built to reproduce the experimental tests as faithfully as possible including 

friction and nonlinear material behaviour. The results of the FEM model are 

consistent with the type of failure observed and are used to estimate the strand S-N 

curve.  

The material S-N curve is compared with the strand one applying different 

methods to obtain an equivalent stress. Very good fitting is observed between 

material and strand S-N curves, independently of the methodology used to 

consider mean stress.  

We conclude that if the failure of a 7-wire strand is avoided close to the clamps, 

then failure seems to be produced by global stresses. It is also observed that the 

boundary conditions of the strands are vital for the fatigue life, specifically those 

related to the clamp system. 
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