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1 Introduction

An area of computer science called Membrane Computing (MC) was introduced
by Gheorghe Păun in [1]. It is a form of computing that takes inspiration from
how living cells work. Its system, called the P system, mimics the structure of a
cell and how it communicates with its neighbor cells. This is different from the
traditional way of computing since cells can communicate in a distributed and
parallel manner [2].

A class of P systems known as Spiking Neural P Systems (in short, SN P
systems), use a single symbol representing a spike, commonly represented as the
symbol a. Each cell is limited to having a single membrane. This type of cell can be
called a neuron [3]. A neuron can be activated and send electrical impulses (called
spikes) throughout its axons. Neighboring neurons connected by a synapse to the
spiking neuron can receive and accumulate the spikes. Receiving and emitting
spikes takes a single time step. This is important since the time interval is an
essential variable for the computation of SN P systems. There are different ways
we can interpret its spiking train results. One way is to use generative mode,
which represents the result of a computation as a set of time intervals between
two consecutive spikes in the output. Another way is through accepting mode. In
this mode, a number is used as an input on the system. This is represented by the
time interval of two input spikes. If the system halts, then the input number is
accepted.
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SN P systems are shown to be Turing Complete both in generating and ac-
cepting modes [4]. From this, multiple attempts to find universality by restricting
the system have been made. This includes limiting the maximum number of rules,
bounded and unbounded regular expressions, spikes consumed, delay, or synapse
out-degree of the graph [5]. This method of restricting SN P systems and still
having the same computational power is important in the discussion of normal
forms. A popular example of this is the Chomsky normal form where using only
two different forms of rules in context-free grammars is enough to generate all
context-free sets.

A Homogeneous Spiking Neural P System (HSN P System) is another way of
representing SN P systems in a different form but having the same computation.
In an HSN P system, each neuron contains the same set of rules [6]. It is also
shown in the paper that the universality of HSN P system is retained for such
forms. Having the same set of rules allows the important features of the system
to be on the structure itself (e.g., the connection of neurons) rather than on an
individual rule set.

In order to transform a non-homogenized SN P system to its homogenized
counterpart, an algorithm needs to be followed. In the paper [7] they proposed
two algorithms on how to homogenize a given SN P system. Both algorithms
follow almost the same procedure except for the scaling part. One algorithm uses
the Type-2 Subsystem Scaling method while the other uses the Released Spike
Scaling method. Algorithm proof is shown in the paper on the correctness of the
algorithms. But, the time complexity and empirical running time of the algorithms
are yet to be analyzed. In this research, we will attempt to find both the theoretical
complexity and the empirical running time of both algorithms. We would also
create code implementations of the homogenization procedures using the Python
programming language. It is integrated with WebSnapse v2 from [8], to easily
visualize both algorithms.

In this paper, the sections are organized as follows: Section 2 discusses the
preliminaries for our work. Section 3 discusses works related to the present pa-
per, especially the homogenization algorithms. Our experiments, results, and their
discussion are provided in Section 4, which also includes theoretical analyses of
the algorithms. Lastly, Section 5 provides conclusions and recommendations for
further works.

2 Theoretical Framework

2.1 Formal Language Definitions

This paper assumes that the reader is familiar with automata theory and basic
languages. Here, we define some formal language notations that would be helpful
for later concepts.
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Let V be an alphabet. We denote the empty string as λ. The set of all finite
strings of symbols from V is denoted as V ∗ and the set of all nonempty finite
strings is denoted as V +.

2.2 Spiking Neural P Systems

In membrane computing, Spiking Neural P Systems (SN P system) takes inspira-
tions from the behaviour and structures of a neural cell or neuron. An SN P system
consists of a group of nodes called neurons that are connected by directed edges
called synapses. A neuron can spike the same way a cell can send electrical pulses
to its neighbor cells [3]. Each neuron contains a spike count and a set of rules that
determines its behavior. A rule consists of a regular expression, the number of
spikes consumed and released when activating the rule, and the delay before the
spikes are released. In short, rules dictate the action a neuron is going to do given
a specific number of spikes. More formally, the following definition is given in the
paper [9] :

Definition 1. A computing extended SN P system, of degree m ≥ 1, is a construct
of the form

Π = (O, σ1, . . . , σm, syn, in, out) where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, . . . , σm are neurons, of the form σi = (ni, Ri), 1 ≤ i ≤ m, where:

a) ni ≥ 0 is the initial number of spikes contained in σi;
b) Ri is a finite set of rules of the following two forms:

i. E/ac → ap; d, where E is a regular expression over a and c ≥ p ≥
1, d ≥ 0;

ii. as → λ, for s ≥ 1, with the restriction that for each rule E/ac → ap; d
of type (i) from Ri, we have as ̸∈ L(E);

3. syn ⊆ {1, 2, . . . ,m}×{1, 2, . . . ,m} with i ̸= j for all (i, j) ∈ syn, 1 ≤ i, j ≤ m
(synapses between neurons);

4. in, out ∈ {1, 2, . . . ,m} indicate the input and the output neurons, respectively.

Rules that are in the form of 2(b)i are called firing rules (or spiking rules). On
the other hand, rules of the form 2(b)ii are called forgetting rules.

Restricting the SN P system so that each firing rule produces only one spike is
a class of SN P systems called standard SN P system.

A rule in the form ac/ac → ap; d can be written in the simplified form ac →
ap; d.

For the firing rule E/ac → ap; d to work, the number of spikes k in the neuron
must be in the regular expression, i.e., ak ∈ L(E). The number of spikes consumed
c in the rule must also be at most k, i.e., k ≥ c. If these conditions are met, the
rule would be applied. Upon firing, the number of spikes of the neuron would be
k − c. After d time steps, the neuron would send p spikes to its synapses. While
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a rule is waiting to be fired because of the delay, the neuron would close and it
cannot receive new incoming spikes during this period. If a spike is sent to this
neuron, it is said that the spike is lost. After d steps, the neuron would become
open again and sends p spikes to its synapses.

For the forgetting rule as → λ to work, the number of spikes k in the neuron
must be exactly s, i.e., k = s. Upon firing, all k spikes of the neuron would be
removed.

It is possible that at least two rules can be applied given the number of spikes k
of the neuron. This could happen if ak ∈ L(E1) and ak ∈ L(E2), where E1 and E2

are regular expressions of different rules. In this scenario, the computation would
non-deterministically choose a rule to be applied from one of them.

Definition 2. In each time step, the system can be represented by a configuration
⟨r1/t1, . . . , rm/tm⟩ where neuron σi contains ri ≥ 0 spikes and will be opened
after ti ≥ 0 steps, for i = 1, 2, . . . ,m. The initial configuration would be C0 =
⟨n1/0, . . . , nm/0⟩ where ni is the initial number of spikes of neuron σi.

Definition 3. A neuron and its rules can be classified into these three types ac-
cording to [10]:

1. A bounded neuron has rules of the form ai/aj → ap; d, where 1 ≤ j ≤ i, p ≥ 0,
and d ≥ 0. These rules are called bounded rules.

2. An unbounded neuron has rules of the form ai(ak)∗/aj → ap; d, where i ≥
0, k ≥ 0, i+ k ≥ 1, j ≥ 1, p ≥ 0, and d ≥ 0. These rules are called unbounded
rules. Note that bounded rules also classify as unbounded rules.

3. A general neuron can contain both bounded and unbounded rules.

Definition 4. With these, we can define three types of SN P systems:

1. A bounded SN P system has bounded neurons.
2. An unbounded SN P system has neurons that are either bounded or unbounded.
3. A general SN P system has general neurons (i.e., each neuron has rules that

are either bounded or unbounded).

An SN P system can be represented using a directed graph. Below is an example
SN P system with parts shown:

3 Related works

3.1 Normal Forms of SN P Systems

It is shown in [4] that SN P systems are Turing complete. Multiple normal forms of
SN P system have been developed over the years to extensively test its universality
given some restrictions. In [5], it is shown that having a delay of 0 in each firing rule
of an SN P system, having a maximal outdegree of two for each of the synapses, or
having firing rules on the simplest form ai, i ≥ 1, or a+ also preserves universality.
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Fig. 1. A graphical representation of an SN P system and its parts

Definition 5. The following notation is used to present restrictions on an SN P
system [11]:

SNP (rulek, exp
ub
b , consp, forgq, dleyr, outds)

where:

� k denotes the maximum number of rules each individual neuron can have,
� b denotes the number of distinct bounded regular expressions used in all the

rules in the entire system,
� ub denotes the number of distinct unbounded regular expressions used in all the

rules in the entire system,
� p denotes the maximum number of spikes consumed by each spiking rule in a

single firing,
� q denotes the maximum number of spikes consumed by each forgetting rule in

a single firing,
� r denotes the maximum delay duration, and,
� s denotes the maximum synapse out-degree of the graph.

Below are some examples of normal forms of SN P systems from [11]:

� N2SNP (rule2, exp
1
0, cons3, forg0, dley0, outd3)

� NaccSNP (rule1, exp
1
0, cons3, forg0, dley0, outd3)
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N2SNP here denotes an SN P system in generating mode (i.e., the result of
the computation is the set of all time intervals between two consecutive spikes in
the output) while NaccSNP denotes an SN P system in accepting mode (i.e., the
result of the computation is the set of all input time intervals where the system
halts).

In the above normal form for generative mode, having at most two rules per
neuron and one type of unbounded regular expression is sufficient for universality.
For the accepting mode, the maximum number of rules a neuron can have is
reduced to one.

3.2 Homogeneous SN P Systems

In addition to the parameters presented in SNP (rulek, exp
ub
b , consp, forgq, dleyr, outds),

another restriction would be the limitation of having the same set of rules in each
neuron. We call systems with such limitations as Homogeneous Spiking Neural P
Systems (HSN P Systems) [6].

It is proven in [6] that HSN P systems are also Turing complete (i.e.,N2HSNP =
NRE) both in weighted and usual synapses such that only one neuron behaves
non-deterministically.

Homogenized neurons can work with many different types of SN P systems and
still achieve universality. Some examples include:

� HSN P systems that work in sequential mode as both generating and accepting
devices [12].

� Homogeneous SN P systems with anti-spikes (HASN P systems) [13].
� HSN P systems with inhibitory synapses [14].
� Homogeneous SN P systems with structural plasticity (HSNPSP system)

[15].

Since the rules in an HSN P system are the same for each neuron, its graphical
representation could use a single neuron that contains the homogenized rule set
and omit the visual rule set in each neuron. An example of an HSN P system is
shown in Figure 2.

Homogenizing an SN P system allows us to focus on the level of the connection
of neurons instead of dealing with individual neurons themselves [15].

Spiking Neural P Systems with astrocytes (SNPA systems) uses astrocytes that
can inhibit or excite spikes along synapses [16]. The paper [17] uses Homogeneous
SNPA (HSNPA) systems to create the Boolean logic gates NOT, OR, AND, NOR,
XOR, and NAND. This means that the each neuron contains the same rule set.
The rule set that is used contains a single spiking rule a∗/a → a. Below is an
example HSNPA system for the NOR gate:

To simulate a logic gate, an interpretation on what represents 0 and 1 needs
to be defined. In this case, an input of a single spike represents the digit 0 and an
input of two spikes represents the digit 1. For the output, if the number of total
spikes after the system halts is one, then the result would be the digit 0. But if the
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Fig. 2. A graphical representation of an HSN P system

Fig. 3. HSNPA system simulating the NOR boolean logic gate

number of total spikes after the system halts is two, then the result would be the
digit 1. For Figure 3, the system outputs two spikes only if both the input neurons
receive one spike (i.e., the result would be 1 only if both inputs are 0).

The paper [17] uses the benefits of homogeneous SN P systems to create logic
gates. The presented SN P systems are already homogenized and no conversion
from a non-homogenized to a homogenized SN P system was shown. In contrast,
the present paper implements and analyses the two algorithms presented in [7]
that converts a non-homogenized SN P system to a HSN P system.
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3.3 Homogenization Algorithms

The paper [7] focused on the creation of two homogenization procedures for SN P
systems. We will call the first algorithm asAlgorithm 1 : H (Type 2 Subsystem
Scaling) and the other as Algorithm 2 : H ′ (Released Spike Scaling). Each
has its own advantages and limitations. Using any of the two algorithms, a non-
homogeneous SN P system Π can be transformed to a corresponding homogeneous
SN P system Π ′ where they compute the same set/languages.

Before discussing the algorithms, some definitions from [7] are first provided.
For the homogenization procedure, scaling and translation operations are going
to be used for neurons and their rule set. These operations change the number of
spikes and/or rules of a neuron. Below are the following operations:

Definition 6. Neuron translation takes a neuron σ = (n,R) and a natural number
δ as input. It produces σ′ = (n+δ,R′) where R′ = {aδE/ac → β | E/ac → β ∈ R}.

Definition 7. Neuron subsystem scaling takes a subsystem sub and a natural num-
ber δ as input. A subsystem sub of a neuron σ is the set of all neurons connected
to it. It produces a new subsystem sub′ where:

� sub′ contains neuron σ′ = (δn,R′) where R′ = {δE/aδc → β | E/ac → β ∈ R},
� sub is scaled using either one of Type 1 or Type 2 subsystem scaling.

– (Type 1 subsystem scaling) In sub, if neuron x is connected to neuron σ,
then in sub′ there will be δ copies of neuron x. Each copy of neuron x will
have the same incoming synapses. They would also have the same outgo-
ing synapses to neuron σ. Only the original copy will retain the outgoing
synapses to other neurons.

– (Type 2 subsystem scaling) In sub, if neuron x is connected to neuron σ,
then in sub′ there will be δ copies of multiplier neurons. Neuron x is con-
nected to all the multiplier neurons while all the multiplier neurons are
connected to neuron σ′. A multiplier neuron would have the rule set of the
form aj → aj where j ̸= 0 is the number of spikes a rule in neuron x can
produce.

Algorithm 1 will use Type 2 subsystem scaling. For this to work, the input SN
P system must be 1-step delay-tolerant.

Definition 8. An SN P system is said to be 1-step delay-tolerant if for all (σi, σj)
pairs of neurons of system Π where (i, j) ∈ syn you can add a delaying neuron σk

between σi and σj without changing the set that Π computes. The delaying neuron
σk will have rules of the form ap → ap where p represents the number of spikes a
rule in σi can release.

Below are the homogenization algorithms presented in the paper [7]:
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Algorithm 1 (Type 2 Subsystem Scaling) H

Input: SN P system Π with set of unique neuron rule sets {R1, ..., Rp}.
Output: Homogenized SN P system Π ′ = H(Π)
R← (pR1 + 0) ∪ (pR2 + 1) ∪ · · · ∪ (pRp + (p− 1))
Perform type-2 subsystem scaling to all neurons using the factor p
Neurons with rule set Ri ∈ {R1, ..., Rp} will be translated by i− 1
Let R0 be the union of the rule sets of all multiplier neurons added during type-2 scaling
t← max{j | aj → aj ∈ R0}+ 1
R← R0 ∪ (R+ t)
Neuron translate all non-multiplier neurons by t
Use R as the common rule set

Algorithm 1: Type-2 Subsystem Scaling

Below is an example of how Algorithm 1 can be used to homogenize the given SN
P system in Figure 4:

Fig. 4. sample input SN P system Π

The unique neuron rule sets of the input SN P system are R1 = {a3/a2 → a; 0}
and R2 = {a/a → a; 0, a2/a → a; 0}. Since we have two unique rule sets, p = 2.
We need to find R where R ← (2R1 + 0) ∪ (2R2 + 1). Scaling R1 by 2 and
translating it by 0, we get 2R1 + 0 = {a6/a4 → a; 0} while scaling R2 by 2
and translating it by 1, we get 2R2 + 1 = {a3/a2 → a; 0, a5/a2 → a; 0}. Thus
R = {a6/a4 → a; 0} ∪ {a3/a2 → a; 0, a5/a2 → a; 0} = {a6/a4 → a; 0, a5/a2 →
a; 0, a3/a2 → a; 0}.

Neuron σ1 will also contain a modified version of the rule set R2 and its initial
spike count would be scaled by 2 and translated by 1, i.e., σ1 would contain
2(2) + 1 = 5 initial spike count. Similarly, neuron σ2 will also contain a modified
version of the rule set R1 and its initial spike count would be scaled by 2 and
translated by 0, i.e., σ2 would contain 2(3) + 0 = 6 initial spike count.

Since both neurons are scaled by 2, the spikes received from their incoming
edges should also be scaled by 2. Note that in this case, only the edge σ1 →
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σ2 would be scaled. Two multiplier neurons would be added between these two
neurons. Since σ1 could only produce spike with one count, the rule set inside
the multiplier neurons would be of the form {a/a → a; 0}, and their initial spike
counts set to zero.

Then, we need to find t ← max{j | aj → aj ∈ R0} + 1 where R0 is the union
of rule sets of all multiplier neurons. In this case, R0 = {a/a→ a; 0}. Thus, j = 1
and t← 1 + 1 = 2.

We could now find the common rule set

R = R0 ∪ (R+ t)

= {a/a→ a; 0} ∪ ({a6/a4 → a; 0, a5/a2 → a; 0, a3/a2 → a; 0}+ 2)

= {a/a→ a; 0} ∪ {a8/a4 → a; 0, a7/a2 → a; 0, a5/a2 → a; 0}
= {a/a→ a; 0, a8/a4 → a; 0, a7/a2 → a; 0, a5/a2 → a; 0}

All multiplier neurons must be translated by t = 2. So, neuron σ1 will contain
the rule set R2+2 = {a7/a2 → a; 0, a5/a2 → a; 0} and its initial spike count would
be translated by 2, i.e., σ1 would contain 5 + 2 = 7 initial spike count. Similarly,
neuron σ2 will contain the rule set R1 + 2 = {a8/a4 → a; 0} and its initial spike
count would be translated by 2, i.e., σ2 would contain 6+2 = 8 initial spike count.

Finally, we change the rule set of all neurons to R = {a/a → a; 0, a8/a4 →
a; 0, a7/a2 → a; 0, a5/a2 → a; 0}.

Thus, the new homogenized SN P system using Algorithm 1 is shown in Figure
5.

Note that this example assumes that the SN P system is 1-step delay-tolerant.
When simulated, the input SN P system (Figure 4) outputs the spike train cor-
responding to the sequence 1, 0, 1 while the resulting HSN P system (Figure 5)
outputs the spike train for the sequence 1, 0, 0, 1. Thus, this type of homogeniza-
tion algorithm works if the interpretation of answers is not based on the interval
between two spikes.

Algorithm 2: Released Spike Scaling

Alternatively, we can use Algorithm 2 to homogenize the given input SN P system
in Figure 4.

In this case, the algorithm uses the same steps except that we need to scale
the output spikes of each neuron instead of creating multiplier neurons. Thus,
2R1 + 0 = {a6/a4 → 2a; 0} and 2R2 + 1 = {a3/a2 → 2a; 0, a5/a2 → 2a; 0} and
R = {a6/a4 → 2a; 0, a3/a2 → 2a; 0, a5/a2 → 2a; 0}

Neuron σ1’s initial spike count would be scaled by 2 and translated by 1, i.e., σ1

would contain 2(2) + 1 = 5 initial spike count. Similarly, neuron σ2’s initial spike
count would be scaled by 2 and translated by 0, i.e., σ2 would contain 2(3)+0 = 6
initial spike count.
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Fig. 5. HSN P system Π ′ using Algorithm 1

Algorithm 2 (Released Spike Scaling) H ′

Input: SN P system Π.
Output: Homogenized SN P system Π ′ = H ′(Π).
Get the set of unique rule sets {R1, ..., Rp} .
R← (pR1 + 0) ∪ (pR2 + 1) ∪ · · · ∪ (pRp + (p− 1)) .
Perform scaling to all neurons using the factor p.
Instead of multiplier neurons, scale the number of released spikes by a factor of p.
Neurons with rule set Ri ∈ {R1, ..., Rp} will be translated by i− 1
Use R as the common rule set

Thus, the new homogenized SN P system using Algorithm 2 is shown in Figure
6. Note that this new HSN P system scales the spike train (the output): the spike
train corresponds to sequence 2, 0, 2 instead of 1, 0, 1.

4 Experiments, Results and Discussion

4.1 Python Code Implementation

The homogenization algorithms are implemented using Python v3.11. A virtual
environment is used and the libraries required to run the project can be viewed
in requirements.txt file. For easy access to the code, a backend API server is
deployed using Flask v2.2.3 and can be accessed in https://homogenize.fly.dev/.
Users can make an HTTP POST request to this website to use the homogenization

https://homogenize.fly.dev/
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Fig. 6. HSN P system Π ′′ using Algorithm 2

algorithms. The input SN P system in xmp file format must be sent within the
body of the request. Full details on the API request and response structure can be
seen on the API website. The links to the source code, documentation, application,
examples or test cases, and other information can be accessed (along with other
versions of WebSnapse) at the WebSnapse page [18].

4.2 Homogenisation WebSnapse

Homogenisation WebSnapse (HWebSnapse) is a modification of the Web-
Snapse v2 that contains the homogenize feature. This modification of the Web-
Snapse v2 was made so that users can now use the homogenization algorithms.

As shown in Figure 7, a ”Homogenize” button is presented that users can click.
Upon clicking the button, the user must choose between the two homogenization
algorithms as shown in Figure 8. Then, the website would send an HTTP POST
request to the backend API server containing the SN P system in xmp format.
After processing the request, the backend server would send an HTTP response
back to the website containing the homogenized form of the SN P system. The
website would now update the shown SN P system to its homogenized form. To
access the application, the reader can visit the WebSnapse page [18].

4.3 Implementation Testing using WebSnapse v2.

In order to test the functionality of the implemented Python code, trial runs using
HWebSnapse were made for multiple examples of SN P systems. Five of these
examples were gathered from WebSnapse v2. Additional two test cases were made
from the subset sum examples in the paper [19]. The test cases are available at
the WebSnapse page [18].
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Fig. 7. HWebSnapse showing the Homogenize button

The original heterogeneous SN P system was simulated and their results were
recorded. The given SN P system is homogenized using both Algorithm 1 and Al-
gorithm 2. The HSN P systems were simulated and their results were also recorded.
The results from the simulations of HSN P Systems were compared to the original
heterogeneous SN P system’s results. Table 1 shows the summary of the compar-
ison of the results.

The first column shows the different samples of SN P systems used in the test.
The first five samples (ex1-ex5) were examples gathered from WebSnapse v2 while
the last two were the subset sum examples. The second column shows whether the
result from the sample’s equivalent HSN P system derived using Algorithm 1 was
the same as the original SN P system. Similarly, the third column shows whether
the result from the sample’s equivalent HSN P system derived using Algorithm 2
was the same as the original SN P system.

For Released Spike Scaling, all HSN P systems produce the expected output.

Output Interpretation

For Type-2 Subsystem Scaling, three samples (those with ✗ marks) cannot use
this algorithm since all of them are not 1-step delay-tolerant. Adding multiplier



14 T.K. Llanto et al

Fig. 8. HWebSnapse showing the choice between the two Homogenization Algorithms

SN P System Type-2 Subsystem
Scaling

Released Spike
Scaling

ex1: 3k+3 ✗ ✓

ex2: Bitadder ✓ ✓

ex3: Increasing Comparator ✓ ✓

ex4: Even Number Generator ✗ ✓

ex5: Number Generator (at least 1) ✗ ✓

Subset Sum (Fig 3) ([1,2,4],3) ✓ ✓

Subset Sum (Fig 5) ([1,2,3],5) ✓ ✓

Table 1. Testing of Homogenization Algorithms using HWebSnapse

neurons changes their expected output. For the other samples, the HSN P system
produces the expected output.

From the examples, it is observed that only SN P systems whose result inter-
pretation is based on the interval between spikes are the ones that may not be
classified as 1-step delay-tolerant. Furthermore, if the delay occurs before the first
spike, then the system is still classified as 1-step delay-tolerant. But, if the delay
occurs between the spikes, then the expected output changes, and the SN P system
is not classified as 1-step delay-tolerant.

After homogenizing an SN P system that is not 1-step delay-tolerant using
Algorithm 1, the time offset between the resulting spikes changes. This behavior
changes according to the type of SN P system. For example, a resulting HSN P
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system with no loop increases the steps required for the spikes to reach the envi-
ronment by a linear amount equal to the number of edges it needs to pass through.
On the other hand, SN P systems with loops could scale the time offset between
the output spikes. An example is the ex4: Even Number Generator where its
equivalent HSN P system using Algorithm 1 changes its behavior to a multiple of
4 number generator.

For Algorithm 2, the time offset between the output spikes does not change.
But, the spikes themselves are scaled by the factor of p.

4.4 Time and Space Complexity Analysis

For the following Big-O complexity notations, we denote n as the number of neu-
rons and k as the maximum number of rules a neuron has.

Algorithm 1: Type-2 Subsystem Scaling

The time complexity of the homogenization algorithm that uses type-2 subsystem
scaling is O(n3k). Consider a complete graph where each neuron is connected to
all other neurons. If there are n neurons, there could be a maximum of n unique
rule sets. Since the scaling factor p is the same as the number of unique rule sets,
i.e. p = n, each neuron would be scaled by n. Hence, each edge would contain
n new multiplier neurons. Note that in a complete directed graph with n nodes,
there would be n(n− 1) directed edges. Thus, there would be n2(n− 1) = n3−n2

new multiplier neurons in the resulting graph. A multiplier neuron can have a
maximum of k rules of the form aj/aj → a; 0. So, the theoretical time it takes to
create the multiplier neurons would be O(k(n3 − n2)) or simply O(n3k). For the
other steps, it takes less than this time complexity to complete.

For its space complexity, it takes up O(n4k) space. Consider the complete
graph scenario defined before. There would be n3 − n2 multiplier neurons and n
original neurons. So, the total number of neurons in the resulting HSN P system
would be n3−n2+n. For the common rule set, assume that each neuron contains
k rules, with each rule unique from all the other rules. The common rule set would
combine all of these rules resulting in nk combined rules for the original neurons.
Then, we need to find the maximum number of combined rules the multiplier
neurons can have. Since the rule set of a multiplier neuron depends on the rule set
of the neuron on its incoming edge, the set of multiplier neurons whose incoming
edge came from the same neuron would contain the same rule set. Therefore,
there would be a total of nk combined rules for the multiplier neurons. For both
the original and multiplier neurons, there would be a total of nk + nk = 2nk
combined rules. Since there could be n3 − n2 + n neurons and 2nk rules in the
homogenized common rule set, the total space consumed for the HSN P system
would be O(2nk(n3 − n2 + n)) or simply O(n4k).

Note that this space complexity assumes that the memory stores the common
rule set in each neuron, meaning it has a copy for each neuron. But since the



16 T.K. Llanto et al

homogenized rule sets are the same, the implementation could be modified so that
it stores only a single copy and each neuron would only reference the same copy.
In this kind of implementation, space complexity reduces to O(n3 + nk).

Algorithm 2: Released Spike Scaling

The time complexity of the homogenization algorithm that uses released spike
scaling is O(nk). In this kind of scaling, no new multiplier neuron is introduced.
So, the algorithm only iterates over n neurons and for each neuron it iterates over
k spikes. Thus, its time complexity would be O(nk).

For its space complexity, it takes up O(n2k) space. Suppose that each rule is
unique from all the other rules. The common rule set would be the combination of
the scaled and translated unique rules. So, there would be a total of nk combined
and homogenized rules. Note that each of the n neurons would now contain the
rule set with nk rules. Thus, the total space required would be the product of the
number of neurons and the number of rules in the common rule set, i.e. n(nk) =
n2k.

Note that this space complexity assumes that the memory stores the common
rule set in each neuron, meaning it has a copy for each neuron. If the implementa-
tion assumes that only one copy of the common rule set would be saved, the space
complexity reduces to O(nk + n) = O(nk).

Comparison of the Two Algorithms

Figure 9 visualizes the theoretical time complexity of both algorithms when the
number of neurons increases while k remains constant. Notice how much slower
Algorithm 1 takes to run than Algorithm 2 as the number of neurons increases.
The time difference of the two algorithms is in the factor of n3k/nk = n2.

4.5 Empirical Running Time Analysis

In order to test the accuracy of the theoretical time complexity of the two algo-
rithms, an analysis of the empirical running time was made. Each example from
Figure 9 was used as an input for both Algorithm 1 and Algorithm 2 in the Python
code implementation and their durations were recorded. Within the Python code,
the function timeit from the timeit library was used to accurately measure the
duration of the algorithms. Figure 10 shows the summary of the results. It accu-
rately resembles on that of the theoretical graph from Figure 9.

4.6 Simulation Speed Comparison (Homogenized vs Heterogeneous)

To get the speed comparison of the simulation of the heterogeneous SN P system vs
its equivalent homogeneous SN P systems in HWebSnapse, five samples (ex1-ex5)
from Table 1 were used. Within the HWebSnapse JavaScript code, the simulation
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Fig. 9. Comparison of Theoretical Time Complexity of Algorithms 1 and 2

Fig. 10. Comparison of Empirical Running Time of Algorithms 1 and 2
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delay speed was removed and the function performance.now() was used to cal-
culate the simulation time. For each of the original heterogeneous SN P systems,
their simulation time was recorded. Then each would be homogenized using both
Algorithm 1 and Algorithm 2. The simulation speeds of these homogenized SN
P systems were also recorded. Each simulation of an SN P system was repeated
five times and their average was taken. For all the examples, it is evident that the
simulation made by Algorithm 2 is much faster than the simulation made by Al-
gorithm 1. Although simulations of HSN P systems produced by both Algorithm
1 and Algorithm 2 were slower than their original heterogeneous counterpart. On
average from the five samples, HSN P systems produced by Algorithm 1 were
148% slower than their original heterogeneous counterpart. While HSN P systems
produced by Algorithm 2 were only 3% slower.

Fig. 11. Simulation Speed of Heterogeneous vs Homogenized SN P Systems

4.7 Type-2 Subsystem Scaling vs Released Spike Scaling

Both algorithms have their own advantages and limitations. Below is a detailed
list of their comparison. A summary is shown in Table 2.

1. In terms of the number of neurons, HSN P systems derived using Algorithm
2 have fewer neurons. This is because, in Algorithm 1, multiplier neurons are
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added when the scaling operation is used while there are no new neurons added
when scaling neurons in Algorithm 2.

2. In terms of algorithmic speed, Algorithm 2 is faster than Algorithm 1 by a
factor of n2 where n is the number of neurons.

3. In terms of memory, Algorithm 2 takes less space than Algorithm 1 by a factor
of n2 where n is the number of neurons.

4. In terms of the simulation speed, simulations of HSN P systems produced by
Algorithm 2 are much faster than those produced by Algorithm 1.

5. In terms of the limitation of the type of SN P system input allowed, Algorithm
2 can take any SN P system while Algorithm 1 requires the input to be 1-step
delay-tolerant.

6. In terms of flexibility of graph structure, Algorithm 1 can have multiple neuron
structures based on the technique of scaling operation used. On the other hand,
Algorithm 2 would output the same graph structure.

7. In terms of the input train of spikes, Algorithm 2 requires the spikes to also be
scaled by p. For example, the train spikes 0101 where p = 3 should be scaled to
0303. On the other hand, Algorithm 1 does not need the input train of spikes
to be scaled.

8. In terms of the output train of spikes, Algorithm 2 scales the expected output
by p. For example, the output train spikes 0101 where p = 3 would be scaled to
0303. On the other hand, Algorithm 1 does not scale the output train spikes.

Advantage Type-2 Subsystem
Scaling

Released Spike
Scaling

Smaller number of neurons ✓

Faster algorithm ✓

Less memory ✓

Faster simulation speed ✓

Not limited to 1-Step Delay-Tolerant ✓

Flexibility ✓

Does not need to scale input ✓

Does not scale output ✓

Table 2. Advatanages of Algorithm 1 vs Algorithm 2

4.8 Support for JSON format

Other papers have attempted to improve the overall functionality of WebSnapse
v2. One of these is WebSnapse v3 which improves WebSnapse v2’s performance
and stability issues [20]. WebSnapse Reloaded is another improvement of Web-
Snapse v2 which enhances its storage, scalability, and maintainability [21].

Both these SN P simulators use the JSON format instead of the XML format
that is used in WebSnapse v2. To support these simulators, the backend API of
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the homogenization algorithm also allows JSON input and output SN P systems,
in addition to XML format.

5 Final Remarks

In the paper [7], two homogenization algorithms were proposed. This study aimed
to analyze their time and space complexity, and simulation speeds. An actual
code implementation of the algorithms was also made using Python v3.11 and it
is integrated as a backend Flask server in HWebSnapse, a spin-off version of the
WebSnapse v2 with the homogenization feature. The source codes and test cases
are publicly available at [18] and anyone can use them to homogenize a given SN
P system following the present paper and based on [7].

As for the topic of homogenization of an SN P system, its uses and advantages
are discussed in [6]. If a system is homogenized, this means that each neuron
contains the same set of rules. This simplifies the system where its behavior is
only determined by the overall structure, i.e., how the neurons are connected,
instead of also focusing on rules on each individual neuron. Additionally, the same
rule set could also be stored in memory once instead of making a copy for each
neuron.

As suggested in the paper [7], future research can focus on possible optimiza-
tions of the homogenization algorithms. This could be made easier with the actual
Python code implementation. For example, the time complexity of Algorithm 1
that is used on a fully connected graph can be reduced from O(n3k) to O(n2k)
by considering a different graph design. Consider neuron σa with outgoing edges
connected to all other neurons σb1, σb2, .... Instead of having a set of multiplier
neurons for each outgoing edge of σa, we would only have a single set of multiplier
neurons and connect them to each of the other neurons. This is possible since the
set of multiplier neurons from σa to σbi are the same. Note that it can be further
reduced to O(n2 + k) if the homogenized rule set is only stored once. As for the
space complexity of Algorithm 1, using the same set of multiplier neurons reduces
the space complexity from O(n3 + nk) to O(n2 + nk).

An improvement for the HWebSnapse is instead of a backend server, the ho-
mogenization algorithm could be integrated directly into the frontend code, e.g.
JavaScript in WebSnapse. This could reduce delay time since computations could
be made locally.

It is discussed that Algorithm 1 requires its input to be 1-step delay-tolerant.
But, in the paper [7], it is argued that the set of 1-step delay-tolerant SN P systems
is also universal. If an algorithm can be made that transforms a non-delay-tolerant
SN P system into a delay-tolerant one, the resulting SN P system can be used as
an input to Algorithm 1. This would remove the limitation on the input of the
algorithm.

Support of the algorithms for newer (and contemporaneous to the present pa-
per) versions such as WebSnapse v3 [20] and WebSnapse Reloaded [21] should be
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explored in future studies. These newer versions use JSON format for the repre-
sentation of their SN P system, instead of the XML format used in WebSnapse
v2. The tool in the present paper already supports JSON format, so support for
newer versions of WebSnapse, as well as well-known software for P systems such
as P-Lingua and MeCoSim [22] has started.

Finally, an analysis of how much memory is reduced when saving HSN P sys-
tems is recommended for future research.
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6 Appendix

6.1 Appendix A: Test Results of Homogenization Algorithms using
WebSnapse v2.

This appendix contains a comparison of the result of the output of seven SN P sys-
tems on the result of their homogenized counterparts. The links to the application,
the source files, documentation can be found at the WebSnapse page at [18]. The
data is in a Spreadsheet file and can be accessed at https://github.com/pyTimK/
Homogeneous-Algorithm-for-SN-P-System/tree/main/analysis/testing. Anal-
ysis of the output spikes are also included within the spreadsheet.

https://aclab.dcs.upd.edu.ph/productions/software/websnapse
https://aclab.dcs.upd.edu.ph/productions/software/websnapse
https://github.com/pyTimK/Homogeneous-Algorithm-for-SN-P-System/tree/main/analysis/testing
https://github.com/pyTimK/Homogeneous-Algorithm-for-SN-P-System/tree/main/analysis/testing
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6.2 Appendix B: Comparison of Theoretical Time Complexity of
Algorithms 1 and 2

This appendix contains the data on the comparison of the theoretical time com-
plexity of Algorithms 1 and 2. The data is in a Spreadsheet file and can be accessed
at https://github.com/pyTimK/Homogeneous-Algorithm-for-SN-P-System/tree/
main/analysis/time_complexity_and_empirical_running_time. A summary
of the spreadsheet can be seen on Figure 9.

6.3 Appendix C: Comparison of Empirical Running Time of
Algorithms 1 and 2

This appendix contains the data on the comparison of the empirical running time of
Algorithms 1 and 2. The data is in a Spreadsheet file and can be accessed at https:
//github.com/pyTimK/Homogeneous-Algorithm-for-SN-P-System/tree/main/

analysis/time_complexity_and_empirical_running_time. A summary of the
spreadsheet can be seen on Figure 10.

6.4 Appendix D: Comparison of Simulation Speed of Heterogeneous
and Homogenized SN P Systems

This appendix contains data on the comparison of the simulation speed of a hetero-
genized SN P system and its homogeneous forms. The data is in a Spreadsheet file
and can be accessed at https://github.com/pyTimK/Homogeneous-Algorithm-for-SN-P-System/
tree/main/analysis/simulation_speed. A summary of the spreadsheet can be
seen on Figure 11.

6.5 Appendix E: Running The Implemented Python Script

The implementation of the homogenization algorithms is in GitHub and is accessi-
ble at the following link: https://github.com/pyTimK/Homogeneous-Algorithm-for-SN-P-System.
The program can be run as follows:

1. Clone repo using git clone https://github.com/pyTimK/Homogeneous-

Algorithm-for-SN-P-System.git homogeneous_algorithm

2. Go to the cloned directory
3. Open the command prompt and run python -m venv venv

4. Open the virtual environment via venv\Scripts\activate.bat

5. Install packages using pip install -r requirements.txt

6. Run python main.py

7. To use a custom SN P system xmp input, put the file inside /input directory
and change input_name global variable in the main.py to the name of the
input file.

https://github.com/pyTimK/Homogeneous-Algorithm-for-SN-P-System/tree/main/analysis/time_complexity_and_empirical_running_time
https://github.com/pyTimK/Homogeneous-Algorithm-for-SN-P-System/tree/main/analysis/time_complexity_and_empirical_running_time
https://github.com/pyTimK/Homogeneous-Algorithm-for-SN-P-System/tree/main/analysis/time_complexity_and_empirical_running_time
https://github.com/pyTimK/Homogeneous-Algorithm-for-SN-P-System/tree/main/analysis/time_complexity_and_empirical_running_time
https://github.com/pyTimK/Homogeneous-Algorithm-for-SN-P-System/tree/main/analysis/time_complexity_and_empirical_running_time
https://github.com/pyTimK/Homogeneous-Algorithm-for-SN-P-System/tree/main/analysis/simulation_speed
https://github.com/pyTimK/Homogeneous-Algorithm-for-SN-P-System/tree/main/analysis/simulation_speed
https://github.com/pyTimK/Homogeneous-Algorithm-for-SN-P-System
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6.6 Appendix F: Using the Homogenize feature in HWebSnapse

This appendix discusses the step-by-step procedure on how to use the homogenize
feature in HWebSnapse.

1. Go to https://websnapse-homogenize.netlify.app

2. Create an SN P system from scratch or load an XML file
3. Press the Homogenize Button
4. Select between Type 2 Subsystem Scaling or Released Spike Scaling

6.7 Appendix G: Test Empirical Running Time of Homogenization
Algorithms in Python Implementation

This appendix discusses the step-by-step procedure on how to compute the empir-
ical running time of Algorithm 1 and Algorithm 2 in a given SN P system. This
uses the timeit library.

1. Open main.py in the Python project directory
2. Set the global variable get_actual_running_time to true

3. Set the global variable test_runs to the desired number of test runs. The
default is 500

4. Select from any SN P system from the \input folder or create one on your
own

5. Set the global variable input_name to the input name of the SN P system file
6. Run the script using python main.py

7. The console would print the average running time for both algorithms

Sample output:
ex1.xmp (ScalingType.TYPE_2_SUBSYSTEM_SCALING): 0.022716799983754754 ms

ex1.xmp (ScalingType.RELEASED_SPIKE_SCALING): 0.005746799986809492 ms

6.8 Appendix H: Getting the Simulation Time of an SN P system in
HWebSnapse

This appendix discusses the step-by-step procedure on how to get the simulation time
of an SN P system. A feature in HWebSnapse is included that removes the simulation
delay time and prints the execution time on the terminal.

1. Go to https://websnapse-homogenize.netlify.app/

2. Create a new SN P system or load an XML file
3. Open the sidebar and tick the checkmark option Test simulation running time

4. Close the sidebar and press play
5. The console would print the simulation time in milliseconds.

Sample output:
The function took 593.5 milliseconds to run with pause times 0. Note that the

pause times when the pause button is pressed is not included in the execution time.

https://websnapse-homogenize.netlify.app
https://websnapse-homogenize.netlify.app/
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