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acompañado en este camino durante los últimos años. Lo que siempre parećıa tan
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Abstract

Designing model-based control systems involves addressing uncertainty and mod-
eling errors to ensure robust control. While this is a fundamental control problem,
in recent years, the rapid growth of the field of machine learning has led to a sig-
nificant rise in the development of probabilistic and robust techniques based on
data sampling.

The objective of this thesis is twofold. On the one hand, improve the estima-
tion of safe regions by means of sample-based techniques. Safe regions bound the
probability of meeting the constraints and keep it above a certain threshold. On
the other hand, in this thesis we propose techniques that modify the real-time op-
timization problem in order to calculate the optimal operation of the plant despite
the precision of the available model.



Resumen

El diseño de sistemas de control basados en modelo requiere la consideración de
la incertidumbre y de los errores de modelado para dotar de robustez al contro-
lador. Si bien éste es un problema fundamental del control, en los últimos años, el
crecimiento exponencial del campo del aprendizaje automático ha provocado un
incremento notable en el desarrollo de técnicas probabiĺısticas y robustas basadas
en el muestreo de datos del sistema.

El objetivo de esta tesis es doble. Por un lado, mejorar la estimación de re-
giones seguras mediante técnicas basadas en la extracción de muestras. Estas
regiones seguras permiten acotar la probabilidad de cumplimiento de las restric-
ciones con el fin de mantenerla siempre por encima de cierto umbral. Por otro lado,
en la tesis se proponen técnicas basadas en modificadores que ajustan el problema
de optimización en tiempo real para calcular el punto de funcionamiento óptimo
de la planta, aun cuando el modelo disponible sea impreciso.
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Notation, conventions and definitions

Vectors and matrices

v ∈ Rn — Column vector v of dimension n.
vT — Transpose of vector v.
0n — Column vector of zeros of dimension n.
1n — Column vector of ones of dimension n.

A ∈ Rm×n — Matrix A of dimension m× n.
AT — Transpose of matrix A.
In — Identity matrix of dimension n.

∥v∥p — ℓp-norm of v (p ∈ R),

i.e. ∥v∥p
.
= p
√
|v1|p + |v2|p + . . . + |vn|p.

∥v∥p∗ — Dual norm of ℓp-norm (p ∈ R),

i.e. ∥v∥p∗
.
= sup

∥z∥p≤1
vT z, ∀v ∈ Rs.

P ≻ 0 — P is a positive definite matrix,
i.e. xTPx > 0 for all x ∈ Rn \ {0}.

P ⪰ 0 — P is a positive definite matrix,
i.e. xTPx ≥ 0 for all x ∈ Rn.

∥v∥P — Weighted euclidean norm of vector v,

i.e. ∥v∥P
.
=

√
vTPv.[

A B
]

— Horizontal composition of matrices A and B.1[
A
B

]
— Vertical composition of matrices A and B.1

tr(A) — Trace of matrix A, i.e. sum of the elements of the main
diagonal of A.

det(A) — Determinant of matrix A.

Sets

N≥0 — Set of natural numbers including 0.
N>0 — Set of natural numbers excluding 0.
Rn — Set of real vectors of dimension n.

Rm×n — Set of real matrices of dimension m× n.
[N ] — Set of integers ranging from 1 to N .

1When using 0,1 or I in a matrix composition, the dimension of these matrices may be
omitted and set accordingly to make the composition possible.
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x ∈ A — Point x is contained in set A.
A⊕ B — Minkowski sum of A and B,

i.e. A⊕ B .
= {a + b | a ∈ A, b ∈ B}.

A⊖ B — Pontryagin difference of A and B,
i.e. A⊖B

.
= {c | c + b ∈ A,∀b ∈ B}.

A× B — Cartesian product of A and B,
i.e. A×B

.
= {(a, b) | a ∈ A, b ∈ B}.

γA — Scalar multiplication of γ and A, i.e.
γA .

= {γa | a ∈ A}.
A ⊂ B — A is a subset of B.
A ⊆ B — Set A is equal or a subset of B.
A ∪ B — Union between sets A and B.
A ∩ B — Intersection between sets A and B.
xi:N — i-th smallest element of set x, which contains N scalars.
x1:N — Smallest element of set x, which contains N scalars.
xN :N — Largest element of set x, which contains N scalars.
Bs
p — ℓp-norm ball of radius one in Rs,

i.e. Bs
p
.
= {z ∈ Rs : ∥z∥p ≤ 1}.

{w(i)}Ni=1 — Set of N samples of w, i.e. {w(1), w(2), . . . , w(N)}.

Probabilities

PrW — Probability distribution of vector w ∈ W.
PrW{w ≤ 0} — Probability of w ≤ 0 given the probability distribution PrW .

EW{w} — Expected value of the random variable w subject to
probability distribution PrW .

EW{w|x} — Expected value of the random variable w conditioned to x.

Other

⌊x⌋ — Greatest integer no larger than x.
⌈x⌉ — Smallest integer no smaller than x.

B(k;N, ε) — Binomial cumulative distribution,

i.e. B(k;N, ε)
.
=
∑k

i=0

(
N
i

)
εi(1 − ε)N−i.

Ig(x) — Indicator function of constraint g(x) ≤ 0,
i.e. Ig(x) = 1 if g(x) ≤ 0, and Ig(x) = 0 otherwise.

— Quod erat demonstrandum, symbolizes the end of a proof.
Chebp(A) — Chebyshev center of a given set A with respect to the norm ∥ · ∥p,

vi



i.e. the center of the largest ℓp-norm ball inscribed in A.

Abbreviations

i.e. — Id est, meaning ‘that is’.
e.g. — Example given.
s.t. — Subject to.

i.i.d. — Independent and identically distributed.
iff — If and only if.

CCS — Chance Constrained Set.
DRTO — Dynamic Real-Time Optimization.

DT — Digital Twin.
FPS — Feasible Parameter Set.
KKT — Karush Kuhn Tucker.
MA — Modifier-Adaptation.

MPC — Model Predictive Controller.
NCO — Necessary Conditions of Optimality

OLMA — One-Layer Modifier-Adaptation.
P-MA — Periodic Modifier-Adaptation.
PBPS — Pack-Based Probabilistic Scaling.

PS — Probabilistic Scaling.
ROL — Robust One-Layer.

ROLMA — Robust One-Layer Modifier-Adaptation.
RTO — Real-Time Optimization.
SAS — Simple Approximating Set.

SSTO — Steady-State Target Optimization.
STTO — Steady-Trajectory Target Optimization.

TI — Tight Immersion.
VC dimension — Vapnik-Chervonenkis dimension.
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Chapter 1

Introduction

1.1 Motivation and objectives

The main motivation of this dissertation is to improve the automatic control of
systems in which the available model differs from the real behaviour of the system.
To this end, this thesis deals with two main problems: the identification of safe
regions through a novel methodology referred to as probabilistic scaling, and the
proper real-time optimal operation of systems under plant-model mismatch using
modifier-adaptation techniques.

Automatic control design requires models which contain not only the physical
behaviour of the system, but also the design specifications (constraints) that are
meaningful for the user. All this information is then used in the so-called control
problem, which ultimate goal is to find a control law, i.e. a sequence of inputs
such that, when applied to the system, its constraints are always met and a cost
function is minimized. In practical applications, control problems face several
challenges, which often results into the impossibility of achieving true optimal
control. These challenges include model complexity, uncertainty and plant-model
mismatch.

Models are mathematical entities that are used to represent the behaviour and
constraints of a system. The identification of models can be classified into three
categories. Depending of the source of the information used to build it, we can
distinguish into data-based, physics-based and hybrid models.

Data-based models rely only on empirical observations of the system and sta-
tistical relationships derived from them. Given past measurements from the sys-
tem, data-based models are built using techniques such as machine learning and
statistical analysis [1, 2, 3]. Due to the empirical nature of the information used
to build the model, these models suffer from measurement errors and their accu-
racy dwindles if the number of samples is too small or when the system exits the
sampled zone. One example of a data-based model would be that of stock market
models, in which forecasts of a company value are made based on past values (see
e.g. [4, 5]).

1



2 Chapter 1. Introduction

On the other side, physics-based models do not use information from samples,
but from the fundamental physics principles that govern the behaviour of the
system. These models are based on the assumption that the real system follows a
theoretical behaviour. However, this often implies that the system meets a series
of assumptions, which it often does not. Examples of this type of models can be
seen e.g. in fluid mechanics [6].

Lastly, hybrid models are a mixture of the previous ones. They use sample
information to tune the parameters of physics-based models and therefore they
are able to improve their accuracy in the sampled regions. These models can be
very intricate and require both deep knowledge of the system and representative
samples of the operating region. Despite all of this, they still can not always
capture the real behaviour of the system, mostly because of unmodelled variability.
Some examples of hybrid models, also known as greybox models can be found in
[7, 8].

This thesis tackles some of the issues that arise when dealing with real world
systems. The results that stem from this work can be applied to any of the
aforementioned models and improve both the robustness and the performance of
the automatic control. In order to do it, this dissertation mainly deepens into two
methodologies: probabilistic scaling and modifier-adaptation.

In probabilistic scaling, the aim is to calculate probabilistic safe regions of user-
defined complexity such that the points inside them satisfy random constraints
with some given probability. This is accomplished by scaling some user-defined
geometry until it meets the given probabilistic guarantees. Probabilistic scaling is
a novel framework presented in this thesis. Along this work, we will study some
of its applications and compare it with state-of-the-art alternatives.

Besides, modifier-adaptation techniques [9, 10] focus more explicitly in the
optimal operation of systems for which an accurate model is not available or when
the complexity of the accurate model makes it ill-suited for control purposes. At
its core, modifier-adaptation techniques use gradient information to update the
control model with zeroth and first term modifiers so that, upon convergence,
the system reaches a steady behaviour which optimizes the given cost function.
In this work we propose new control schemes that use modifier-adaptation and
discuss their benefits over the state-of-the-art alternatives.

As we will see throughout the document, both probabilistic scaling and modifier-
adaptation tackle the uncertainty problem, but they do it at two different levels.
In the first part of this thesis, we focus on the calculation of safe regions, which are
relevant for many applications dealing with uncertain data. Then, in the second
part of this work, the focus will be put on automatic control, where modifier-
adaptation techniques will help the controlled systems reach their steady optimal
behaviours.
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1.2 Preliminaries: Dealing with uncertainty in auto-
matic control

In the field of control systems engineering, the presence of uncertainty in real-
world systems has always constituted a fundamental challenge that can hurdle
the performance of practical applications. As we strive to design and implement
control strategies for complex systems, it is necessary to acknowledge and effec-
tively manage the uncertainty. Neglecting the uncertainty may have catastrophic
consequences, ranging from poor performance to stability issues and even major
failures that cause the collapse of the system. For example, in the case of au-
tonomous vehicles, uncertainty in the signal detection system may result in an
incorrect speed signal detection. This may turn the vehicle slower or faster than
intended, increasing the risk of accident. In medical applications, a neglectful
management of the uncertainty may result in an overconfident misleading diag-
nosis.

Uncertainty in control systems manifests in many forms, including deterio-
ration of the systems, external disturbances, sensor noise, parameter variation
and communication delays. The dynamic nature of many systems is usually cou-
pled with an unpredictable environment, which further amplifies their uncertain
behaviour.

As deterministic models proved to be inadequate to capture the unpredictable
nature of real-world systems, robust control arised to shift the paradigm (see
[11, 12, 13]). The emergence of robust control dates back to the early 1970s, when
due to failure of optimal control theory to tolerate regular differences between the
design models and the real system’s behaviour, the focus of research shifted from
optimality to robustness [14]. Ever since, robustness of the control schemes has
became a mainstay of control schemes.

Unlike traditional control methodologies that rely on deterministic system
models, the robust frameworks acknowledge the limitations of the models and
embrace the spectrum of potential uncertainties. At its core, robust control stud-
ies the uncertainty and bounds it to a set of possible values. Then, it adopts a
worst-case scenario approach and guarantees that the designed controllers main-
tain stability and acceptable performance under the most challenging and un-
favourable conditions. As a consequence, the success of robust control is linked
to the accuracy of the characterization of the uncertainty and the assumption
that it remains bounded in a closed and compact region. Moreover, designing the
controllers for the worst-case scenario has some drawbacks, namely the control
can be very conservative and therefore reduce the performance in cases with little
to none uncertainty, and unbounded uncertainties would render the robust design
impossible.

Stochastic control [15, 16, 17, 18, 19] represents another shift in the paradigm
of control systems engineering. It considers the probabilistic nature of the un-
certainty and the fact that worst-case scenario is generally very uncommon, and
designs the control scheme in order to keep the probability of failure under a
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certain threshold. The statistical framework used by stochastic control enables
the design of controllers that are founded on the likelihood of different scenarios
and not solely on worst-case assumptions. In real-world systems where the uncer-
tainties exhibit an inherent randomness, stochastic control emerges as a valuable
paradigm that complements and extends the capabilities of robust control, en-
hancing the performance of control strategies.

In the following section, we introduce the notion of chance constraints first
proposed in [20], which plays a major role not only in stochastic control, but also
in a variety of fields such as transportation or manufacturing engineering [21, 22].

1.2.1 Preliminaries: Chance constraints and safe regions

Consider the uncertainty w ∈ Rnw , which represents one of the admissible un-
certainty realizations of a random vector subject to the probability distribution
PrW and (possibly unbounded) support W. Consider also the decision variable
θ ∈ Θ ⊆ Rnθ , where Θ represents the admissible region, and let the design spec-
ifications of a problem be described as a set of nℓ uncertain inequalities of the
form:  g1(θ, w)

...
gnℓ

(θ, w)

 ≤ 0 ⇐⇒ g(θ, w) ≤ 0, (1.1)

where gℓ : Rnθ × Rnw → R, for ℓ = 1, . . . , nℓ and g : Rnθ × Rnw → R.
In contrast to robust frameworks, probabilistic settings allow the violation of

the constraints if the probability of violation is kept below a certain (usually small)
threshold. This choice helps to keep the problem feasible and not overly conser-
vative. The relaxed design specifications receive the name of chance constraints
or probabilistic constraints and can be expressed as

PrW{g(θ, w) ≤ 0} ≥ 1 − ε,

where ε ∈ (0, 1) is the probabilistic design choice. The previous definition let us
introduce the notion of chance-constrained set of probability ε.

Chance-constrained set of probability ε (ε-CCS)

Given ε ∈ (0, 1), the chance-constrained set of probability ε (also known as
ε-CCS) is defined as the set of all possible values of the design parameter
θ for which the chance constraint is satisfied, i.e.

Xε
.
= {θ ∈ Θ : PrW{g(θ, w) > 0} ≤ ε}. (1.2)

Note that the ε-CCS constitutes a probabilistic safe region, and it can be seen
as an extension of the robust safe region. By choosing ε = 0, we have that X0 is
the set of all possible values of the design paremeter θ ∈ Θ that meet the design
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specifications (1.1) for any value of the uncertainty w ∈ W, i.e. the robust safe
region.

Chance constraints can be split into two categories, namely joint and individ-
ual chance constraints:

Joint vs. individual chance constraints

The chance constraint θ ∈ Xε, with Xε defined in (1.2), describes a joint
chance constraint. That is, it requires that the probability of satisfying all
the inequality constraints gℓ(θ, w) ≤ 0 (with ℓ = 1, . . . , nℓ) is guaranteed
to be no smaller than the probabilistic level 1 − ε. We remark that the
joint chance constraint is notably harder to impose than individual chance
constraints, which take the form

θ ∈ X(ℓ)
εℓ

.
= {θ ∈ Θ : PrW {gℓ(θ, w) > 0} ≤ εℓ},

with εℓ ∈ (0, 1) being the probabilistic level of the individual chance con-
straint ℓ. A discussion on the differences and implications of joint and
individual chance constraints may be found in several papers, see for in-
stance [23, 24] and references therein. Note that a well-known conservative
approximation to the joint chance-constrained set is to use the intersection
of multiple individual chance constraints.

Relaxing the constraints and taking probabilities into account make stochastic
schemes less conservative than their robust counterpart. Moreover, they make
possible to deal with infinite support uncertainties. In return, their design process
is much more intricate for two main reasons: First, it is highly difficult to check
whether solutions of chance-constrained problems are feasible, and second, chance
constraints usually involve non convexity.

Optimization problems that involve chance constraints are known as chance-
constrained optimization (CCO). Given the decision variable θ ∈ Θ and the cost
function J : Rnθ → R, the CCO can be expressed with the general formulation:

min
θ∈Xε

J(θ). (1.3)

According to the accuracy and the source of the approximations, the authors
of [23] classify the computation of the ε-CCS and the solution of the subsequent
CCO in three different classes:

Exact techniques

In a handful of cases and given that the uncertainty distribution is known, the
ε-CCS is convex and hence the CCO problem may be solved in a manageable
time. This is the case, for instance, of individual chance constraints with w being
gaussian [25]. Other important examples of convexity of the set Xε involve log-
concave distribution [26, 27]. General sufficient conditions on the convexity of
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chance constraints may be found in [28, 29, 30, 31]. Although all these cases
may work well for very specific cases, they require previous knowledge on the
distribution of the uncertainty (which in real applications is unknown), and hardly
extend to the joint chance constraints considered in this work.

All these previously cited references deal with continuous distributions. A
different line of research concentrates instead on discrete distributions, which arise
frequently in applications, either directly, or as empirical approximations of the
underlying distribution (see, for example, [26, 32]). For this particular case, exact
results based on the concept of p-efficiency points [33] or dual methods [34] have
been proposed.

As pointed out in [23], the computation of the ε-CCS is usually extremely
difficult, since the evaluation of the probability PrW{g(θ, w) ≤ 0} amounts to
the solution of a multivariate integral, which is an NP-hard problem [35]. These
limitations on the exact computation of the ε-CCS motivate the search of good
approximations.

Deterministic approximations

A second class of approaches consist in finding deterministic conditions that allow
to construct a convex inner approximation of the probabilistic set Xε. The classical
solution consists in the applications of Chebyshev-like inequalities, see e.g. [36, 37].
More recent techniques, which are proved particularly promising, involve robust
optimization [38], as the convex Bernstein-based approximations introduced in [39,
40]. A particular interesting convex relaxation involves the so-called Conditional
Value at Risk (CVaR), see [41] and references therein. Finally, we point out some
recent techniques based on Genz’ code for gaussian probabilities of rectangles [42],
or on polynomial moments relaxations [43, 44].

Specific solutions have been proposed for the case of discrete distributions, see
the recent survey [45]. In particular, we point out the recent works proposing a
boolean reformulation of the feasible set of individual and joint chance constraints
(see [46, 47]).

Nonetheless, it should be remarked that these techniques usually suffer from
conservatism and computational complexity issues, especially in the case of joint
chance constraints.

Sample-based techniques

The third approach to approximate the CCO is based on random sampling of the
uncertain parameters. This approach has gained popularity in recent years due
to its versatility, see e.g. [48, 49, 50, 51] and references therein. Sampling-based
techniques are characterized by the use of a finite number N of i.i.d. samples of
the uncertainty wN =

{
w(1), w(2), . . . , w(N)

}
, each of them drawn according to

the probability distribution PrW . With each sample w(i), i ∈ [N ], we can associate
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the following sample safe set

Φg
0(w(i)) = {θ ∈ Θ : g(θ, w(i)) ≤ 0}, (1.4)

sometimes referred to as scenario, since it represents an observed instance of the
uncertain constraint.

The scenario approach [52] considers the CCO problem (1.3) and approximates
its solution through the following scenario problem

θ∗sc = arg min
θ

J(θ)

s.t. θ ∈ Φg
0(w(i)), ∀i ∈ [N ].

(1.5)

We note that, if the function J(θ) is convex and constraint g is linear, then
problem (3.7) becomes a linearly constrained convex program, for which very
efficient solution approaches exist. Under some technical assumptions (feasibility
of the problem and non-degeneracy), a fundamental result [52, 53, 54, 55] provides
a probabilistic certification of the constraint satisfaction for the solution to the
scenario problem. In particular, it is shown that

PrWN {w ∈ wN : Pr {g(θ∗sc, w) > 0} > ε} ≤ B(nθ − 1;N, ε), (1.6)

where B(nθ−1;N, ε)
.
=
∑nθ−1

i=0

(
N
i

)
εi(1−ε)N−i and Pr {g(θ∗sc, w) > 0} constitutes

the probability of violation of the chance constraint. Given a random multisample
wN ∈ WN , equation (1.6) offers an upper bound to the probability that at least
one of them does not meet the chance constraint.

A few observations are at hand regarding the scenario approach and its rela-
tionship with the approximation of the ε-CCS. First, if we define the multisample
safe set as

Φg
0(wN )

.
=

N⋂
i=1

Φg
0(w(i)), (1.7)

we see that the scenario approach consists in approximating the constraint θ ∈ Xε

in (1.3) with its sampled version θ ∈ Φg
0(wN ). On the other hand, it should be

remarked that the scenario approach cannot be used to derive any guarantee on
the existing relationship between Φg

0(wN ) and Xε.
Indeed, the nice probabilistic property in (1.6) holds only for the optimal value

of the scenario problem θ∗sc. This is a fundamental point, since the scenario results
build on the so-called support constraints, which are defined only for the optimum
θ∗sc.

To conclude, sample-based approximations of the ε-CCS may not be limited by
the random distribution of the uncertainty and have therefore been a popular op-
tion to solve chance-constrained optimization problems. However, the fixed shape
of the approximations combined with the increasing number of samples required
for higher dimensional problems makes them unsuitable for many applications.
One of the objectives of this dissertation is to propose a sample-based approach
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to the problem of approximating probabilistic safe regions, which also mitigates
the limitations of the state-of-the-art alternatives.

In the next section, we introduce the second part of this thesis. It encompasses
the economic control problem and the hierarchical approach to control systems
to their real-time optimal operation. In order to converge to the real optimal
operation, we will make use of the so-called modifier-adaptation schemes, which
aim to remove the impact of the plant-model mismatch on the steady operation.

1.2.2 Preliminaries: Real-time optimization and
modifier-adaptation

In the field of automatic control, the pursuit of optimal operation of a dynamic
system is a longstanding challenge, which has received much attention because
of its economic impact. In this section, we go through the optimal economic
control problem and motivate the use of the two-layer strategy to approximate
it in practical applications. Furthermore, modifier-adaptation strategies to deal
with the uncertainty on a real-time optimization (RTO) level will be introduced
and open lines will be discussed.

Consider the following discrete system:

xk+1 = fp,k(xk, uk),

where xk ∈ Rnx and uk ∈ Rnu are respectively the states and inputs of the system
at time k, and fp,k : Rnx×nu → Rnx represents the dynamics of the real system at
time k. Each step in k represents tT seconds.

At any time k, the states and inputs of system can be subject to (possibly
nonlinear) constraints of the form:

gk(xk, uk) ≤ 0.

Let the function ϕk : Rnx×nu represent the economic cost of operating the sys-
tem at time k and consider the initial state x0 ∈ Rnx . Then, the optimal economic
control problem calculates the infinite sequence of inputs that, when applied to the
system, minimizes the economic cost over time and can be formulated as follows:

min
u∞

∞∑
k=0

ϕk(xk, uk)

s.t. xk+1 = fp,k(xk, uk), for all k = 0, 1, . . . ,∞
gk(xk, uk) ≤ 0, for all k = 0, 1, . . . ,∞.

(1.8)

The previous formulation is rarely implemented in real applications due to the
lack of knowledge of the real system’s dynamics (i.e. fp,k) and the complexity of
dealing with an infinite number of constraints and decision variables. Therefore,
simplifications needs to be made.
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Figure 1.1: Control diagram.

One of the most studied approaches to the optimal economic control problem
is the hierarchical scheme [56]. The hierarchical control scheme (Figure 1.1) repre-
sents a structured approach to managing complex systems. In this scheme, control
responsibilities are distributed across multiple entities represented by the differ-
ent layers. These layers make use of different time scales and models, leading to
some interesting properties. Traditionally, upper layers use more complex models
with larger time scales, which makes it possible to solve global intricate poblems.
Whereas lower layers use simple models (many times linear models) and require
short time scales. This combination is required to react to local disturbances upon
operating the plant.

At the topmost level of the hierarchical structure lies the economic planner,
which calculates the economic parameters and optimal production according to
the state of the market. Then, this information is passed to the real-time optimiza-
tion, which uses it to calculate the optimal steady operation of the plant. Once
this steady operation is calculated, the advanced control is in charge of taking the
plant from its current state to the steady reference. Finally, at the lowest level,
low level control mechanisms govern individual actuators, implementing precise
manipulation to execute the control sequence given by the advanced control.
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Two-layer control scheme

The combination of the real-time optimization and the advanced control
constitutes what we call the two-layer control scheme.

Modifier-adaptation

Being at the upper part of the hierarchical scheme, real-time optimization plays
a significant role in the economic cost associated to the operation of the plant.
Therefore, the impact of plant-model mismatch in this layer should not be under-
stated.

In 1979, Roberts presented the integrated system optimization and parameter
estimation algorithm (ISOPE) [57], which aimed at optimizing the steady-state
under plant-model mismatch. This approach first modified the model parame-
ters and then it solved another optimization problem in which the cost function
was modified with gradient-based modifiers. This modification aimed to align the
first-order necessary conditions for optimality of the model-based problem with
those of the optimal problem. Building upon this foundation, in 2009 Marchetti
et al. formally articulated and refined this methodology, coining their method as
modifier-adaptation [9]. In this work, the authors discarded the modification of
the model parameters and introduced first order modifiers not only to the cost
function but also to the constraints, thereby matching the necessary optimality
conditions. Like the work from Roberts, the modifier-adaptation methodology
also required knowledge about the real plant gradients. To this end, many refor-
mulations of modifier-adaptation have been proposed.

Dual modifier-adaptation [58] added an extra (dual) constraint that guaran-
tees the excitation of the system is enough to calculate empirically the directional
gradients required to set the modifiers. The iterative gradient-modification opti-
mization (IGMO) [59] takes a similar approach to the dual modifier-adaptation,
but takes into account the noise of the gradient estimation and proposes the use
of quadratic approximations to make the estimation smoother. Other example
of modifier-adaptation reformulation is the nested modifier-adaptation (NMA)
presented in [60]. Unlike the previous approaches, NMA does not rely on the
estimation of gradients of the real plant, and presents a nested architecture with
a gradient-free optimization algorithm to update the modifiers. This algorithm
iterates with the modifiers until a point that meets the necessary conditions for
optimality is reached.

In future chapters of this dissertation, we will focus on the real-time optimiza-
tion and the advanced control layers and study new modifier-adaptation reformu-
lations that allow us to achieve optimal steady performance.

In the following section, we provide a summary of the contents of this thesis.
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1.3 Thesis overview

As mentioned at the begining of this chapter, the contributions of this thesis can
be classified into two main categories, which corresponds to the two-part division
made for the remainder of this dissertation: safe region estimation and real-time
optimization under plant-model mismatch.

Part I of this work focuses on the estimation of safe regions, i.e. sets in which
the probability of meeting random constraints is above a given value. This part
includes the following chapters:

� Chapter 2 addresses the probabilistic error quantification of a general class
of prediction methods. Given any predictor and several (representative)
samples, this chapter shows how to obtain a probabilistic upper bound on
the absolute value of the prediction error. The required number of samples
is independent of the complexity of the prediction model. The performance
of the proposed approach is tested in an interval prediction problem.

� Chapter 3 presents the regular formulation of probabilistic scaling, which
is used to approximate safe regions. Probabilistic scaling takes a simple
set and scales it around a point so that the scaled set meets some desired
probabilistic guarantees. In this chapter, two families of simple sets are
presented. Then, the proposed approach is tested against a probabilistic set
membership estimation problem.

� Chapter 4 introduces a measure of tightening of the approximations of
the safe region and extends the regular formulation of probabilistic scaling
with a pack-based approach that tightens the approximation. This chapter
also presents a branch-and-bound heuristic to calculate the approximating
set. The performance of this new formulation is tested against an academic
example that illustrates the limitations of the regular formulation in some
applications.

Part II contains all the contributions related to modifier-adaptation schemes
in the real-time optimization layer. This encompasses the following chapters:
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� In Chapter 5, a periodic modifier-adaptation formulation of the dynamic
real-time optimization is proposed. This formulation updates the problem
with affine modifiers so that, upon convergence, its optimal solution matches
the optimal steady periodic trajectory. The full control scheme is detailed
and tested against a periodic version of the quadruple tank benchmark.

� Chapter 6 presents a robust one-layer control scheme which can converge
to the optimal steady-state of the system using affine modifiers. The re-
sulting integrated scheme, called ROLMA, is robust and able to reduce the
economic control problem using to a single quadratic programming. Un-
der some assumptions, both the robustness and convergence to the optimal
steady operation of the system are proven and the performance of ROLMA
in the quadruple tank benchmark is shown.

� Chapter 7 proposes the use of digital twins in modifier-adaptation formula-
tions. The digital-twin framework can identify in real-time the gradients of
a system, solving along the way the main challenges of modifier-adaptation
schemes.

� Finally, Chapter 8 recapitulates the contributions of this thesis and review
future research lines that could expand upon the foundations of this work.

1.4 Main results

This section showcases the main contributions of this thesis in the fields of safe re-
gion estimation and modifier-adaptation. These contributions will be distributed
throughout the thesis following the structure outlined in the previous section.

� Two novel data-based algorithms tailored to bounding the prediction error.
These algorithms are predictor agnostic, which means that they can be used
upon any given predictor to derive bounds on their prediction errors.
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� An extension to one of the algorithms proposed above that minimizes the
risk of choosing a bad predictor.

� A measure of tightening of the approximations of the chance-constrained
set.

� A simple data-based approximation of the chance-constrained set that is able
to scale simple sets until they meet the desired probabilistic guarantees.

� An extension to the aforementioned approximation, which divides the sam-
ples in packs in order to improve some weakness of the previous approach.

� A branch-and-bound algorithm that efficiently computes the proposed pack-
based approximation of the chance-constrained set.

� A periodic modifier-adaptation formulation that can achieve steady optimal
periodic performance as opposed to the optimal steady-state performance
achieved by the state-of-the-art modifier-adaptation schemes.

� A robust one-layer control scheme that can converge to the optimal steady-
state using affine modifiers. The control problem associated with this con-
troller can boil down to a single quadratic programming.

� A discussion on the benefits that the digital twin framework can bring to
modifier-adaptation schemes.

1.5 Publications

Most of the results presented throughout this thesis have been published in several
international journals and congresses, some of which are currently under review.

The probabilistic scaling approach to the estimation of chance constrained
sets, along with its application to quantify prediction errors presented in part I of
this thesis are covered in the following papers:

� T. Alamo, V. Mirasierra, F. Dabbene, and M. Lorenzen, “Safe approxi-
mations of chance constrained sets by probabilistic scaling,” in 2019 18th
European Control Conference (ECC), pp. 1380–1385, IEEE, 2019.

� M. Mammarella, V. Mirasierra, M. Lorenzen, T. Alamo, and F. Dabbene,
“Chance-constrained sets approximation: A probabilistic scaling approach,”
Automatica, vol. 137, p. 110108, 2022.

� V. Mirasierra, M. Mammarella, F. Dabbene, and T. Alamo, “Prediction
error quantification through probabilistic scaling,” IEEE Control Systems
Letters, vol. 6, pp. 1118–1123, 2021.
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The tight immersion as well as the heuristic associated with it, both presented
in chapter 4, have not been yet submitted to neither a journal nor a congress and
they therefore constitute a completely novel result of this thesis.

The one-layer and periodic modifier-adaptation schemes proposed in part II
of this dissertation are covered in the following publications:

� J. D. Vergara-Dietrich, V. Mirasierra, A. Ferramosca, J. E. Normey-Rico,
and D. Limon, “A modifier-adaptation approach to the one-layer economic
MPC,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 6957–6962, 2020.

� V. Mirasierra, J. D. Vergara-Dietrich, and D. Limon, “Real-time optimiza-
tion of periodic systems: A modifier-adaptation approach,” IFACPapersOn-
Line, vol. 53, no. 2, pp. 1690–1695, 2020.

� V. Mirasierra and D. Limon, “Modifier-adaptation for real-time optimal
periodic operation,” arXiv preprint arXiv:2309.09680, 2023.

The robust one-layer modifier-adaptation proposed in chapter 6 and the pro-
posal of digital twins to calculate the plant information required to apply modifier-
adaptation schemes presented in chapter 7 have not been yet submitted to neither
a journal nor a congress.
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Chapter 2

Prediction Error Quantification

2.1 Introduction and Problem Formulation

Quantifying the error related to the process of approximating a set of given data
with a prescribed prediction method represents a fundamental requirement, which
has given rise to an entire research area known as uncertainty quantification, see
e.g. [61, 62] and references therein.

Motivated by this necessity, methods for directly constructing predictive mod-
els with prescribed robustness guarantees have recently gained popularity. For
instance, [63] presents several methods based on interval analysis to construct
intervals which are guaranteed to contain the true value, under the assumption
of deterministically bounded noise. Similarly, data-based approaches exploiting
the availability of random samples, providing probabilistic guarantees, are being
developed. These methods extend classical quantile regression [64]. In particular,
we point out the probabilistic interval predictions proposed in [65, 66].

All these methods require to design (or re-design) the estimator using a spe-
cific ad-hoc model. However, this approach may not result practical when data-
analysts have already constructed a model exploiting a “preferred” technique (e.g.
one based on deep learning or support vector machines) and they want to assess,
before deployment, the actual uncertainty of their model.

For this reason, research on post-processing methods for quantifying the un-
certainty of a given predictor has grown in popularity. In these methods, no new
methodology is proposed to construct a regression model, since the model (or a
family of candidate ones) is considered given. This philosophy is exactly the one
pursued in uncertainty quantification methods, see e.g. the recent approaches
based on polynomial chaos [61], or the conformal predictors [67]. These methods
typically use additional validation (or calibration) data to determine precise levels
of confidence in new predictions [68].

In this chapter, we move a step further in this direction and present sample-
based techniques for assessing the corresponding error in a computationally effi-
cient way. Indeed, this approach extends recent results on probabilistic scaling,

17
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e.g. [69, 70], and only requires a number of randomized samples independent of
the complexity of the prediction model (i.e. the dimension of the regressor).

In particular, we consider that given a predictor variable x ∈ Rnx , an estima-
tion ŷ for the response variable y ∈ R is provided by operator T : Rnx → R. That
is,

ŷ = T (x).

We assume that the operator T is a given predictive model that has been de-
signed by means of any modelling methodology (first principles, linear regression,
SVM regression, neural network, etc.).

We want to provide a probabilistic bound on the prediction error. More for-
mally, we consider the random vector w = (x, y) ∈ Rnx ×R ⊆ W, with stationary
probability distribution PrW , and we aim at constructing a function ρ : Rnx → R
such that, with probability no smaller than (1 − δ),

PrW{|y − T (x)| ≤ ρ(x)} ≥ 1 − ε.

The method relies on the possibility of accessing random observations couples
w = (x, y). These observations must be new data not used to construct T (·). We
show that the sample complexity of the proposed techniques (i.e. the number of
observations required) does not depend on the chosen regression model but only
on the desired probabilistic levels.

The remainder of the chapter is structured as follows. In Section 2.2 we pro-
pose a first simple result, which allows to obtain an initial probabilistic bound
on the prediction error via probabilistic maximization, given a predictive model.
The obtained bound, which can be computed by means of a simple algorithm, is
independent of the given regressor. Section 2.3, focuses on including those situ-
ations in which the expected size of the error does depend on the regressor, and
proposes a probabilistic bound conditioned to the regressor. In Section 2.4, we
show how kernel methods can be applied to obtain a predictor and an estima-
tor of the prediction error variance. In Section 2.5, the approach of bounding the
prediction error conditioned to the regressor is extended to the case where a “fam-
ily” of candidates estimators is considered and both of the proposed approaches
are illustrated by means of a running numerical example. Finally, Section 6.7
recapitulates the contributions of the chapter and draws some conclusions.

This chapter is based on the published paper [71].

2.2 Uncertainty quantification using probabilistic max-
imization

In this section we present an initial probabilistic bound for the prediction error
e = |y − T (x)| based on probabilistic maximization.

Suppose that we draw N independent and identically distributed (i.i.d.) sam-
ples {(x(i), y(i))}Ni=1 according to distribution PrW , and we denote by
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e(i)
.
= |y(i) − T (x(i))|, i ∈ [N ]

the absolute value of the corresponding prediction errors. A well established result
[72] shows that the largest value in the sequence {e(i)}Ni=1, i.e. eN :N , provides a
probabilistic upper bound on the random variable e = |y−T (x)|. Formally, given
ε ∈ (0, 1) and δ ∈ (0, 1), [72, Theorem 1] states that if

N ≥ 1

ε
log(

1

δ
) (2.1)

then, with probability no smaller than 1 − δ,

PrW {e > eN :N} ≤ ε.

It is immediate to observe that this result provides a first simple probabilistic
scheme for uncertainty quantification: If N i.i.d. samples {(x(i), y(i))}Ni=1 are
drawn according to PrW , with N satisfying (2.1), then with probability at least
1 − δ,

PrW {|y − T (x)| ≤ eN :N} ≥ 1 − ε.

We notice that the required sample complexity (i.e. the number of samples
N) depends only on ε and δ. Moreover, no specific assumptions are required on
T (x) or PrW .

However, we also note that this scheme may provide extremely conservative
results, especially if the support of the random variable e = |y−T (x)| is not finite
and N is large. In fact, suppose that y − T (x) is a zero mean gaussian random
variable. Then, the probabilistic upper bound obtained from eN :N will be too
conservative if one of the samples e(i) = |y(i) − T (x(i))| departs considerably from
zero, which occurs with a probability that increases with N . We conclude that
only relying on the largest observed value of |y − T (x)| hinders the computation
of sharp probabilistic bounds, especially for small values of ε and δ, leading to a
large number of samples N .

In order to circumvent this issue, we resort to the following result [69, Property
3], which states how to obtain a probabilistic upper bound of a random scalar
variable by means of the notion of generalized max (see Definition 1).

Property 2.1. Given probability levels ε ∈ (0, 1) and δ ∈ (0, 1) and the discarding
integer r ≥ 0, let N > r be such that

B(r;N, ε) =
r∑

i=0

(
N

i

)
εi(1 − ε)N−i ≤ δ. (2.2)

Suppose that e ∈ W ⊆ R is a random scalar variable with probability distribu-
tion PrW . Draw N i.i.d. samples {e(i)}Ni=1 from distribution PrW . Then, with a
probability no smaller than 1 − δ,

PrW{e > eN−r:N} ≤ ε. (2.3)
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Remark 2.1 (On Property 1). This result is proved in [69] using techniques
from the field of order statistics [73]. As discussed in [69], this result may be
alternatively derived by applying the scenario approach with discarded constraints
[53, 54]. Adaptations of this result have been used in the context of chance con-
strained optimization [74, 75], and stochastic model predictive control [70, 76, 77].

2.2.1 Choice of the parameters

Several questions arise when trying to apply Property 2.1 to the probabilistic error
quantification problem:

Choice of N : To choose N such that the constraint B(r;N, ε) ≤ δ holds, we
present the following lemma:

Lemma 2.1. Given ε ∈ (0, 1) and δ ∈ (0, 1), then in order to satisfy

B(r;N, ε) ≤ δ (2.4)

it suffices to take N such that

N ≥ 1

ε

(
r + ln

1

δ
+

√
2r ln

1

δ

)
. (2.5)

Proof. This lemma is proved in [78, Corollary 1].

Thus, given r, δ, and ε, the sample size N can be obtained as the smallest
integer N satisfying (2.5). Another possibility is to compute, by means of a
numerical procedure, the smallest integer N satisfying B(r;N, ε) ≤ δ.

Choice of δ: Since 1 − δ determines the probability of the satisfaction of the
probabilistic constraint (2.3), it is important to choose δ sufficiently close to zero.
In view of (2.5), we have that N grows logarithmically with 1

δ . This implies that
significantly small values of δ (e.g. δ = 10−6) can be used without an excessive
impact in the number of samples N .

Choice of r: If r is chosen to be too small, then the obtained probabilistic bounds
might turn to be too conservative because the obtained upper bound would be
determined by a reduced number of possible extreme values.

We notice from (2.5) that large values of r entails large number of required
samples N . We also derive from (2.5) that r

N < ε. One reasonable choice for r
with an appropriate trade off between sample complexity N and sharpness of the
results is r =

⌊
εN
2

⌋
.

Choice of ε: Parameter ε determines the size of the confidence interval in the
uncertainty quantification process. In uncertainty quantification, values of ε much
smaller than 0.05 are not frequent.

We now show how to obtain N in such a way that (2.2) is satisfied for the
particular choice r =

⌊
εN
2

⌋
.
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Lemma 2.2. Let r = ⌊ζεN⌋, where ζ ∈ (0, 1), and define

κ
.
=

(√
ζ +

√
2 − ζ√

2(1 − ζ)

)2

.

Then, inequality (2.4) is satisfied for

N ≥ κ

ε
ln

1

δ
. (2.6)

In particular, the choice ζ = 0.5 leads to r =
⌊
εNγ

2

⌋
and Nγ ≥ 7.47

ε ln 1
δ .

Proof. Since r = ⌊ζεN⌋ ≤ ζεN , we obtain the sufficient condition

N ≥ 1

ε

(
ζεN + ln

1

δ
+

√
2ζεN ln

1

δ

)
= ζN +

1

ε
ln

1

δ
+

√
2ζN

1

ε
ln

1

δ
. (2.7)

Letting a
.
=

√
N and b

.
=
√

1
ε ln 1

δ , the previous expression can be rewritten as

(1 − ζ)a2 − (
√

2ζb)a− b2 ≥ 0. The largest root of this second order equation is(√
ζ +

√
2 − ζ√

2(1 − ζ)

)
b.

Thus, (2.7) is satisfied if

√
N ≥

(√
ζ +

√
2 − ζ√

2(1 − ζ)

)√
1

ε
ln

1

δ
.

Substituting ζ = 0.5 and given that N > 0, we have

N ≥ 7.47

ε
ln

1

δ
.

This proves the claim.

2.2.2 Probabilistic fixed-size bound on error

Property 2.1, along with the previous discussion on the choice of r, leads to
Algorithm 1, which provides a simple procedure to compute a probabilistic bound
on the prediction error y − T (x).

Algorithm 1 Probabilistic fixed-size bound on error

1: Given a predictor T : Rnx → R, and probability levels ε ∈ (0, 1) and δ ∈ (0, 1),
choose

N ≥ 7.47

ε
ln

1

δ
and r =

⌊
εN

2

⌋
. (2.8)

2: Draw N i.i.d. samples {(x(i), y(i))}Ni=1 according to PrW .
3: Compute e(i) = |y(i) − T (x(i))|, i ∈ [N ].
4: Return ρ = eN−r:N as the probabilistic upper bound for |y − T (x)|.
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The probabilistic guarantees of the upper bound generated with Algorithm 1
are provided in the next corollary.

Corollary 2.1. The output ρ of Algorithm 1 satisfies, with probability no smaller
than 1 − δ, PrW{|y − T (x)| > ρ} ≤ ε.

Proof. From Lemma 2.1, we have that the values for N and r obtained in step 1 of
Algorithm 1 guarantee that B(r;N, ε) ≤ δ. Thus, we conclude from Property 2.1
that ρ =

(
|y(i) − T (x(i))|

)
N−r:N

satisfies, with probability no smaller than 1 − δ,
PrW{|y − T (x)| > ρ} ≤ ε.

2.2.3 Numerical example: Algorithm 1

Consider the function

y = f(x, n1, n2) = (10 + n1)x + 10 sin(4x) + 5 + n2. (2.9)

We assume that x is a random scalar with uniform distribution in [−2.5, 2.5]
and n1, n2 are random scalars drawn from zero-mean gaussian distributions with
variances 7 and 3, respectively. Suppose that the optimal predictor T (x) = 10x+
10 sin(4x) + 5 for the random scalar y = f(x, n1, n2) is available1. We fix the
probabilistic levels to ε = 0.05 and δ = 10−6, which leads to N = 2, 065 and
r = 51 (see step 1 of Algorithm 1). We draw N i.i.d. samples {(x(i), y(i))}Ni=1 and
obtain ρ = 10.77. Thus, according to Corollary 2.1, with probability no smaller
than 1 − δ, PrW{|y − T (x)| > ρ} ≤ ε.

We notice that for this example it is not difficult to obtain the sharpest proba-
bilistic bounds for |y−T (x)| corresponding to a given x. It suffices to notice that
given x, y− T (x) is a zero-mean gaussian random variable with variance 7x2 + 3.
Thus, using standard confidence interval analysis for a scalar gaussian variable,
we obtain that

PrW{|y − T (x)| > 1.96
√

7x2 + 3} ≤ 0.05.

Figure 2.1 shows, for a new validation set of N i.i.d. samples, the (fixed size)
probabilistic bounds for y provided by Algorithm 1 (i.e. PrW{y ∈ [T (x)−ρ, T (x)+
ρ]} ≥ 1−ε), along with the exact probabilistic bounds. We notice that Algorithm
1 fails to capture the varying size of the exact probabilistic bounds. We address
this issue in the next sections.

2.3 Conditioned uncertainty quantification

Despite the simplicity of Algorithm 1, the obtained upper bound does not depend
on the regressor x. Clearly, this is not an issue if the error e = |y − T (x)| is
independent of x. However, in many situations, the expected size of the error

1The problem of determining predictor T (·) is addressed in Section 2.4.
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Figure 2.1: Numerical example: comparison between the probabilistic bounds
obtained with Algorithm 1 with the exact ones. We notice that the size of the
interval bounds provided by Algorithm 1 are independent of x.

does depend on the regressor. For example, the prediction errors are often corre-
lated with the size of the predicted variable, which in turn is correlated with the
regressor. From here, we infer that information on the expected error can often
be obtained from the regressor.

Under some strong assumptions, the probability distribution of y− T (x) con-
ditioned to x, can be computed in an explicit way. This is the case, for example,
when T (x) is obtained by means of gaussian process regression [79] or when ex-
ponential models are employed [80]. However, we notice that, although these
approaches can indeed provide estimations of the conditioned expectation

σ2(x) = EW{(y − T (x))2|x},

the accuracy of the estimations will depend on the satisfaction of the underly-
ing assumptions (i.e. gaussian process and exponential model, respectively) and
the adequate selection of the kernels (along with their hyper-parameters) used to
obtain T (x). There are other possibilities to obtain conditioned error quantifi-
cation, like sensitivity analysis, techniques based on Fisher information matrix,
bootstrapping, etc. [61, 62].

We also mention here Parzen method [81], which serves to estimate the prob-
ability density function of a random variable. More general multivariate kernel-
based generalizations are also available (see e.g. [82]). In these methods, an
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estimation σ̂(x) of σ(x) is obtained from

σ̂2(x) =

∑NS
i=1(y

(i) − T (x(i)))2Γ(x, x(i))∑NS
i=1 Γ(x, x(i))

, (2.10)

where Γ : Rnx ×Rnx → R is an appropriately chosen function and {(x(i), y(i))}NS
i=1

are i.i.d. samples drawn from PrW . Under non very restrictive constraints [81, 82],
the provided estimation σ̂(x) converges to the actual value σ(x) as NS tends to
infinity.

For a fixed value of x, d = (y−T (x))2 is a random non-negative variable with
expectation σ2(x). Thus, using the Markov inequality [83, 84] we obtain

PrW{d ≥ ξσ2(x)} ≤ 1

ξ
, ∀ξ > 0.

Thus, choosing ξ = 1
ε , we obtain PrW

{
d ≥ σ2(x)

ε

}
≤ ε. Equivalently,

PrW

{
|y − T (x)| ≥ σ(x)√

ε

}
≤ ε.

The obtained probabilistic upper bound suffers from the following two limita-
tions:

� Generally σ(x) is unknown and only a rough estimation is available (as the
ones commented before).

� Markov inequality yields overly conservative results in many situations [84].
A meaningful exception to this is when the errors y − T (x) are of gaussian
nature, where using the chi-squared distribution [83], sharp probabilistic
bounds can be obtained.

In order to avoid these limitations, we can again resort to probabilistic maxi-
mization. Suppose that an estimation σ̂(x) of σ(x) is available. Suppose also that
σ̂(x) > 0, for all x ∈ Rnx . We could define the scaling factor γ as

γ =
|y − T (x)|

σ̂(x)
.

With this definition, any probabilistic upper bound γ̄ on γ would provide a prob-
abilistic upper bound on |y − T (x)|. That is,

PrW{γ > γ̄} ≤ ε ⇒ PrW{|y − T (x)| > γ̄σ̂(x)} ≤ ε.

2.3.1 Conditioned probabilistic bound error algorithm

In view of the previous result, we are now ready to introduce a slight modification
of Algorithm 1 and obtain a novel algorithm capable of calculating a probabilistic
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upper bound conditioned by the value of x. This idea is implemented in Algorithm
2.

Algorithm 2 Conditioned probabilistic bound on error

1: Given a predictor T : Rnx → R, an estimator σ̂ : Rnx → (0,∞), of√
EW{(y − T (x))2|x}, probability levels ε ∈ (0, 1) and δ ∈ (0, 1), choose N

and r according to (3.14).
2: Draw N i.i.d. samples {(x(i), y(i))}Ni=1 according to PrW .

3: Compute γi = |y(i)−T (x(i))|
σ̂(x(i))

, i ∈ [N ].

4: Return γ̄ = γN−r:N , as probabilistic upper bound for |y−T (x)|
σ̂(x) .

The following Corollary states the probabilistic guarantees of the output γ̄ of
Algorithm 2.

Corollary 2.2. The output γ̄ of Algorithm 2 satisfies, with probability no smaller
than 1 − δ, that

PrW{|y − T (x)| > γ̄σ̂(x)} ≤ ε.

Proof. The proof follows the same lines as the proof of Corollary 2.1. That is,
we infer from Property 2.1 and Lemma 2.1 that the proposed choice of N and r
guarantees that, with probability no smaller than 1 − δ,

PrW

{
γ =

|y − T (x)|
σ̂(x)

> γ̄

}
≤ ε.

Thus, we conclude PrW{|y − T (x)| > γ̄σ̂(x)} ≤ ε. □

Remark 2.2 (Normalization of σ̂(x)). We notice that the upper bound obtained
by means of Algorithm 2 provides identical results when the estimator σ̂(x) is
replaced by a scaled version σ̂ξ(x) = ξσ̂(x), where ξ > 0. Thus, multiplicative
errors in the estimation of σ(x) are corrected in an implicit way by the algorithm.

Remark 2.3 (Difference with convex scenario approaches). Scenario approaches
(see e.g. [65, 66]) obtain both the estimator and probabilistic guarantees in a
single optimization problem that requires a number of samples that increases both
with the dimension of the regressor used in the predictive model and the number
of samples that are allowed to violate the interval predictions. Our approach can
be applied to any given predictor T (·) and has a sample complexity that does
not depend on the dimension of the regressor. This allows us to not only work
with high dimensional problems, but also consider kernel approaches in a possible
infinite dimensional lifted space for any problem (see Section 2.4). The ability to
use any predictor T (x) and embed probabilistic guarantees to it offers a valuable
extra layer of functionality to problems that already have a working estimator.
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2.4 Kernel central prediction and uncertainty quan-
tification

Suppose that NS i.i.d. samples {(x(i), y(i))}NS
i=1 are available. We now address the

design of the predictor T (x) by means of kernel methods while guaranteeing that
the procedure also provides us with an estimation of σ(x). Given x, let us define
the cost function

J(θ;x) = θTΣθθ +

NS∑
i=1

(y(i) − θTφ(x(i)))2Γ(x, x(i)), (2.11)

where θ is a design parameter, φ : Rnx → Rnθ is the regressor function and θTΣθθ
is a regularization term. A possible choice is Σθ = τ I, where τ > 0. Finally,
Γ : Rnx × Rnx → R is an appropriately chosen weighting function. We assume
that Γ(x, z) is a decreasing function of ∥x − z∥, where ∥ · ∥ is a given norm. For
example, Γ(x, z) = exp(−λ∥x− z∥), where λ > 0.

As it is usual in machine learning, for given x, a central estimation for y is
provided by T (x) = θTc (x)φ(x), where θc(x) is given by θc(x) = arg min

θ
J(θ;x).

We notice that the proposed estimator is a weighted least square estimator with
a ridge regression regularization term [85, 86].

To obtain predictor T (x) and local estimations ŷ(i)(x) = θTc (x)φ(x(i)), i ∈ [NS ]
required to compute the Parzen estimator for σ(x), two possibilities are explored:

Based on φ(·): Since J(θ;x) is a strictly convex quadratic function of θ, the
optimal value θc(x) can be obtained determining the value of θ for which the gra-
dient of J(θ;x) with respect to θ vanishes.
Based on a kernel formulation: Defining the kernel function K(·, ·) as
K(xa, xb) = φT (xa)Σ−1

θ φT (xb), the estimation T (x), along with the local esti-
mations ŷ(x(i)), i ∈ [NS ], can be obtained in an explicit way by means of the
well-known kernel trick (see e.g. [87, 88] and references therein). In this case, the
kernel formulation allows to approach the regression problem in a possibly infinite
dimensional lifted space [86]. This kernel formulation of the predictor T (x) and
the estimator of σ(x) is detailed in the appendix 2.7.1.

Once the local estimations {ŷ(x(i))}NS
i=1 have been computed, the estimation for

σ(x) follows from the following local Parzen estimator (see also equation (2.10)):

σ̂2(x) =

∑NS
i=1(y

(i) − ŷ(x(i)))2Γ(x, x(i))∑NS
i=1 Γ(x, x(i))

. (2.12)

See the Appendix 2.7.1 for a detailed description on how to obtain predictors
T (x) and σ̂(x) for both considered possibilities (i.e. based on a regressor φ(·) or
based on a kernel formulation).

As commented before, the Parzen estimator converges, under non very restric-
tive assumptions, to the actual value σ(x) as NS tends to infinity ([81, 82]). A too
reduced number of samples NS , or a non appropriate choice for weighting factors
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Γ(·, ·), may translate into a degraded estimation of σ(x), which will not affect the
probabilistic properties of the obtained bounds (since they are always guaranteed
by Theorem 2.1), but will lead to more conservative bounds. We also notice that
an additional set of N i.i.d. samples is required to compute the scaling factor γ̄
in Algorithm 2.

2.5 Uncertainty quantification for finite families of es-
timators

The probabilistic bounds proposed for error e = |y − T (x)| depend not only on
the intrinsic random relationship between x and y (joint probability distribution),
but also on the choice of the estimators T and σ̂. Since there exists a myriad of
possibilities for choosing the estimators, we now analyze the problem of choosing
among a finite family F of nF possible pairs, i.e. {(Tj , σ̂j)}nF

j=1, the one that min-
imizes the size of the obtained probabilistic bounds. The following result states
the relationship between the cardinality of F (nF ), and the probabilistic specifi-
cations (ε, δ), with the number of samples required to obtain the corresponding
bounds.

Theorem 2.1. Consider the finite family of nF candidate estimators

F = {(Tj(·), σ̂j(·))}nF
j=1,

where Tj : Rnx → R and σ̂j : Rnx → (0,∞) for every j ∈ [nF ]. Given ε ∈ (0, 1),
δ ∈ (0, 1) and r ≥ 0, let N > r be such that B(r;N, ε) ≤ δ

nF
. Draw N i.i.d.

samples {(x(i), y(i))}Ni=1 from distribution PrW and denote

γ̄j
.
=

(
|y(i) − Tj(x

(i))|
σ̂j(x(i))

)
N−r:N

, j ∈ [nF ]. (2.13)

Then, with a probability no smaller than 1 − δ,

PrW{|y − Tj(x)| > γ̄j σ̂j(x)} ≤ ε, j ∈ [nF ].

Proof. Denote δF the probability that at least one of the randomly obtained
scalars {γ̄j}nF

j=1, obtained from the random multi-sample {(x(i), y(i))}Ni=1, does not
satisfy the constraint

Ej(γ̄j)
.
= PrW

{
|y − Tj(x)|

σ̂j(x)
> γ̄j

}
≤ ε. (2.14)

Thus,

δF = PrWN {ε < max
j∈[nF ]

Ej(γ̄j)}

≤
nF∑
j=1

PrWN {ε < Ej(γ̄j)} ≤
nF∑
j=1

δ

nF
= δ.
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We notice that the last inequality is due to the assumption B(r;N, ε) ≤ δ
nF

,
(2.13) and Property 2.1. Thus, with probability no smaller than 1 − δF ≥ 1 − δ,
inequality (2.14) is satisfied for every j ∈ [nF ].

Remark 2.4 (Sample complexity for finite families). In view of Lemma 2.1, it
suffices to draw N =

⌈
7.47
ε log nF

δ

⌉
i.i.d. samples from PrW to obtain a probabilistic

uncertainty quantification for the complete finite family F . In order to select the
best pair (Tj , σ̂j) in F , one could choose e.g. the index j ∈ [nF ] providing the

sharpest probabilistic uncertainty bounds, i.e. the one minimizing
∑N

i=1 γ̄j σ̂j(x
(i)).

Since nF enters in a logarithmic way in the sample complexity bound, large values
for nF are affordable. In this case, the search for the most appropriate pair (Tj , σ̂j)
does not need to be exhaustive, and sub-optimal search in the finite family F could
be envisaged (since the probabilistic bounds provided are valid for every member
of the family F).

2.5.1 Numerical example: Kernel finite families

We revisit now the numerical example proposed in Section 2.2.3. We use the
predictor T and the estimator of σ detailed in the appendix 2.7.1 with the radial

basis function kernel k(xa, xb) = 50 exp(− |xa−xb|2
0.2 ), and for the estimator σ̂(x) the

Parzen estimator in (2.12), where NS = 2, 065 and the pairs {(x(i), y(i))}NS
i=1 are

i.i.d. samples from PrW . We consider a family of weighting functions Γ(x, z) =
exp(−λ|x − z|), where λ ∈ [10]. Thus, the finite family F consists of each of the
nF = 10 possible pairs (Tj , σ̂j) that can be obtained with the nF values considered
for the hyper-parameter λ using the methodology proposed in Section 2.4. Setting
ε = 0.05, δ = 10−6 and nF = 10, we obtain from Theorem 2.1 and Lemma 2.1 that
the choice N = 2, 407 and r = 60 is sufficient to obtain a probabilistic uncertainty
quantification valid for all the members of the family. The value of λ minimizing
the size of the obtained probabilistic bounds is attained at λ = 1. The resulting
scaling parameter is γ̄ = 2.15. See Figure 2.2 for a comparison of the results
obtained for the same validation set that was used to generate Figure 3. The
ratio of violation in the validation set for the proposed finite family approach was
0.0332, whereas it was 0.0511 for the exact probabilistic bounds.

2.6 Conclusions

In this chapter, a series of sample-based approaches to obtain probabilistic bounds
of the absolute value of the prediction error of a given estimator have been pre-
sented. The proposed techniques share a probabilistic maximization scheme which
only requires prediction models and random samples. Moreover, the sample com-
plexity depends only on the desired probabilistic guarantees and not on the uncer-
tainty distribution nor the prediction models. This allows to embed probabilistic
guarantees to any predictor, even when they have a very large or even infinite



2.7. Appendix 29

x

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

y

-40

-30

-20

-10

0

10

20

30

40

50

60
Samples

Exact bounds

Finite family bounds

Algorithm 1 bounds

Figure 2.2: Probabilistic upper bounds obtained by means of a finite family of
kernel estimators, Algorithm 1 bounds, and exact bounds.

number of decision variables. To choose the best probabilistic bounds from a
family of different predictors, sample complexity has been adjusted.

Finally, the performance of the proposed approaches has been illustrated by
means of a numerical example. This highlights how, although conservative, con-
ditioned uncertainty quantification can get very close to the exact probabilistic
bounds.

2.7 Appendix

2.7.1 Computation of estimators T (x) and σ̂(x)

Given a specific test point x and a given regressor function φ(·), the local ridge
regression is calculated as T (x) = θTc φ(x), where θc is the minimizer of (2.11), i.e.

θc(x) = arg min
θ

θTΣθθ +

NS∑
i=1

(y(i) − θTφ(x(i)))2Γ(x, x(i)).

We first notice that in some local regression approaches, Γ(x, x(i)) is set to zero
if x(i) does not belong to a neighbourhood of x. Similarly, function Γ(x, ·) could
be tuned in such a way that only NK ≤ NS samples x(i) satisfy Γ(x, x(i)) > 0
(e.g. those closest to x). This sort of strategies are specially relevant in kernel
methodologies because their implementation requires the solution of a system of
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equations of NK variables. Hence, the complexity of kernel approaches can be
kept to affordable levels by adjusting the design parameter NK .

Since Γ(x, x(i)) = 0 implies that the pair (x(i), y(i)) has no effect on the value
of θc(x), we will consider only the pairs (x(i), y(i)) for which Γ(x, x(i)) > 0. We
denote such pairs as {x̃(j), ỹ(j)}NK

j=1, where 1 ≤ NK ≤ NS . Thus,

θc(x) = arg min
θ

θTΣθθ +

NK∑
j=1

(ỹ(j) − θTφj)
2Γj ,

where

φj
.
= φ(x̃(j)), j = 1, . . . , NK ,

Γj
.
= Γ(x, x̃(j)), j = 1, . . . , NK .

We first address the case in which regressor function φ(·) is available. Later,
we address the situation in which the estimators are obtained in terms of a kernel
formulation, i.e. when the estimators are not directly expressed in terms of a
regressor function, but of a kernel function.

From (ỹ(j) − φT
j θ)2 = θTφjφ

T
j θ − 2ỹ(j)(θTφj) + (ỹ(j))2, we obtain that the

minimizer of

J(θ;x) = θT

Σθ +

NK∑
j=1

Γjφjφ
T
j

 θ − 2θT

NK∑
j=1

Γj ỹ
(j)φj

 (2.15)

is

θc(x) =

Σθ +

NK∑
j=1

Γjφjφ
T
j

−1NK∑
j=1

Γj ỹ
(j)φj

 = (Σθ + RDRT )−1RDỹD,

(2.16)
where R ∈ Rnθ×NK , D ∈ RNK×NK and ỹD ∈ RNK are given by

R =
[
φ1 φ2 . . . φNK

]
,

ỹD =
[
ỹ(1) ỹ(2) . . . ỹ(NK)

]T
,

D = diag(Γ1,Γ2, . . . ,ΓNK
) > 0.

Thus, the estimator of y given x is

T (x) = ŷ(x) = φ(x)T θc(x) = φ(x)T (Σθ + RDRT )−1RDỹD.

We also define the local errors

ẽ(j)(x) = ỹ(j) − φT
j θc(x), j = 1, . . . , NK . (2.17)

The resulting estimator σ̂(x) according to equation (2.12) is
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σ̂2(x) =

∑NK
j=1(ỹ

(j) − ŷ(xj))
2Γj∑NK

j=1 Γj

=
1

tr D

NK∑
j=1

(ỹ(j) − φ(x̃(j))T θc(x))2Γj . (2.18)

Defining ∥e∥D =
√
eTDe, we obtain

σ̂(x) =
1√

tr D

∥∥∥∥∥∥∥∥∥


ỹ(1) − φT

1 θc(x)

ỹ(2) − φT
2 θc(x)

...

ỹ(NK) − φT
NK

θc(x)


∥∥∥∥∥∥∥∥∥
D

=
1√

tr D

∥∥(I−RT (Σθ + RDRT )−1RD
)
ỹD
∥∥
D
.

(2.19)

Since the weighting factors Γ(x, ·) depend on x, θc(x) also depends on x. Thus,
the proposed procedure needs to be repeated each time the estimators T (x̄) and
σ̂(x̄) are required for a particular test point x̄.

Now we recall the following matrix equality [89, Subsection 1.3], [87, Corollary
4.3.1]:

(H −RF−1RT )−1RF−1 = H−1R(F −RTH−1R)−1,

which is valid whenever H and F are non singular matrices. In view of this
equality, we obtain from (2.16) the following expression for θc(x)

θc(x) = (Σθ + RDRT )−1RDỹD

= −((−Σθ) −RDRT )−1RDỹD

= −(−Σθ)
−1R(D−1 −RT (−Σθ)

−1R)−1ỹD

= Σ−1
θ R(D−1 + RTΣ−1

θ R)−1ỹD.

(2.20)

Thus, given x and φx = φ(x), we obtain the following estimation ŷ(x) = T (x),
where

T (x) = φT
x θc(x) = φT

x Σ−1
θ R(D−1 + RTΣ−1

θ R)−1ỹD

=


φT
x Σ−1

θ φ1

φT
x Σ−1

θ φ2
...

φT
x Σ−1

θ φNK


T

(D−1 + K)−1ỹD,
(2.21)

where

K =


k(x̃(1), x̃(1)) k(x̃(1), x̃(2)) . . . k(x̃(1), x̃(NK))

k(x̃(2), x̃(1)) k(x̃(2), x̃(2)) . . . k(x̃(2), x̃(NK))
...

...
. . .

...

k(x̃(NK), x̃(1)) k(x̃(NK), x̃(2)) . . . k(x̃(NK), x̃(NK))

 . (2.22)
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The kernel function must satisfy the Meyer’s condition, i.e. matrix K should be
semidefinite positive for any collection of NK points [90]. Popular kernel functions
satisfying this condition are:

� Linear: k(xa, xb) = xTa xb.

� Polynomial: k(xa, xb) = (c + xTa xb)
d.

� Radial: k(xa, xb) = exp
(
−∥xa−xb∥2

d2

)
.

� Sigmoidal: k(xa, xb) = tanh(cax
T
a xb + cb).

Using the kernel estimation in the local errors (2.17) we get

ẽ(j)(x) =ỹ(j) − φT
j θc(x) = ỹ(j) − φT

j Σ−1
θ R(D−1 + RTΣ−1

θ R)−1yD

=ỹ(j) −


φT
j Σ−1

θ φ1

φT
j Σ−1

θ φ2

...

φT
j Σ−1

θ φNK


T

(D−1 + K)−1yD

=ỹ(j) −


k(x̃(j), x̃(1))

k(x̃(j), x̃(2))
...

k(x̃(j), x̃(NK))


T

(D−1 + K)−1yD.

(2.23)

Thus, we obtain 
ẽ(1)(x)

ẽ(2)(x)
...

ẽ(NK)(x)

 =
(
I−K(D + K)−1

)
yD.

We conclude from equation (2.18) that

σ̂(x) =
1√

tr D
∥
(
I−K(D + K)−1

)
yD∥D.



Chapter 3

Regular Probabilistic Scaling

3.1 Introduction

The complexity of real-world applications and the random nature of data makes
dealing with uncertainty essential. In many cases, uncertainty arises in the mod-
eling phase, in others it is intrinsic to both the system and the operative envi-
ronment, as for instance wind speed and turbulence in aircraft or wind turbine
control [26].

Deriving results in the presence of uncertainty is of major relevance in differ-
ent areas, including, but not limited to, optimization [91] and robustness analysis
[38]. However, in contrast to robust approaches, where the goal is to determine
a feasible solution which is optimal in some sense for all possible uncertainty in-
stances, the goal in the stochastic framework is to find a solution that is feasible
for a fraction of all possible uncertainty realizations, [50, 51]. In many situations
involving random constraints, it is acceptable, up to a certain safe level, to en-
force probabilistic constraints and therefore avoid the inherent conservativeness of
robust constraints. The applications of the stochastic framework can be found in
a myriad of fields, from finance to engineering, where the probabilistic approach
has been used in unmanned autonomous vehicle navigation [92, 93] or in optimal
power flow [94, 95] among others.

In the optimization framework, constraints involving stochastic parameters
that are required to be satisfied with a pre-specified probability threshold are
called chance constraints. In general, dealing with chance constraints implies
facing two serious challenges: the solution of difficult parameterized probabil-
ity integrals and the nonconvexity of the ensuing constraints [23]. Consequently,
while being attractive from a modeling viewpoint, problems involving chance con-
straints are often computationally intractable, generally shown to be NP-hard,
which seriously limits their applicability. However, being able to efficiently solve
or approximate chance-constrained problems remains an important challenge, es-
pecially in systems and control.

The scientific community has devoted significant research to devising compu-

33
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tationally efficient approaches to deal with chance constraints. We review such
techniques in Section 3.3, where we highlight three mainstream approaches: exact
techniques, robust approximations and sample-based approximations.

In this chapter, we present what we consider an important step forward in the
sample-based approach. More precisely, our developments stem from the obser-
vation that, while in the general situation one is interested in finding an optimal
solution to a chance-constrained problem, many practical applications just need
inner approximations of chance-constrained sets. This can be the case, for in-
stance, of stochastic model predictive control (SMPC), where this approximation
is necessary for post-processing in real time (see e.g. [96, 97]).

Motivated by these considerations, we propose a simple and efficient strat-
egy called regular probabilistic scaling. This approach calculates with an user-
defined confidence a probabilistically guaranteed inner approximation of a chance-
constrained set.

In particular, we describe a two-step procedure that involves: First, a prelimi-
nary approximation of the chance-constrained is set by means of a so-called Simple
Approximating Set (SAS). Then, a sample-based scaling procedure that allows to
properly scale the SAS so to guarantee the desired probabilistic properties.

The selection of a low-complexity SAS allows the designer to easily tune the
complexity of the approximating set, significantly reducing the sample complexity
but not the probabilistic guarantees. We propose several candidate SAS shapes,
grouped in two classes: Sampled-polytopes and norm-based SAS.

The regular probabilistic scaling approach presented in this chapter distin-
guishes itself from the previous literature on chance constraints in the following
main points.

1. It is specifically tailored towards the specific problem of approximating the
chance-constrained set, as opposed to solving a specific instance of a chance-
constrained problem.

2. It is very general: it applies to a very general class of uncertainty configu-
rations. A large part of the methods available in the literature are limited
to cases where the constraints depend in a “nice” way on the uncertainty.
This is the case for instance of the solution proposed in [98, 39]. The reader
is referred to Section 3.3 for an overview.

3. It is highly tunable: by selecting the complexity of the approximating set,
the designer has a very efficient way to control the trade-off between com-
putational complexity and potential goodness of the approximation.

The probabilistic scaling approach presented in this chapter is based on re-
cent results on order statistics [69]. In this chapter we first perform a thorough
mathematical analysis of probabilistic scaling. Then, we provide probabilistic
guarantees for a more general class of norm-based SAS. After that, we consider
joint chance constraints instead of independent chance constraints. This choice
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is motivated by the fact that joint chance constraints, which have to be satis-
fied simultaneously, are a generalization of independent one and adhere better to
some applications. Finally, we present here a possible application of probabilistic
scaling related to probabilistic set membership identification.

This chapter is structured as follows. Section 3.2 provides a general pream-
ble of the problem formulation and of chance-constrained optimization, including
two motivating examples. An extensive overview on methods for approximating
chance-constrained sets is reported in Section 3.3 whereas the probabilistic scal-
ing approach has been detailed in Section 3.4. Section 3.5 is dedicated to the
definition of selected candidate SAS, i.e. sampled-polytope and norm-based SAS.
Last, in Section 3.6, we validate the proposed approach with a numerical example
applying our method to a probabilistic set membership estimation problem. Main
conclusions and future research directions are addressed in Section 3.7.

This chapter is based on the published paper [99] and its extended version
[75].

3.2 Problem formulation

Consider a robustness problem, in which the controller parameters and auxiliary
variables are parametrized by means of a decision variable vector θ ∈ Θ ⊆ Rnθ ,
which is usually referred to as design parameter.

Furthermore, the uncertainty vector w ∈ Rnw represents one of the admissible
uncertainty realizations of a random vector with given probability distribution
PrW and (possibly unbounded) support W.

This chapter deals with the particular case where the design specifications can
be decoded as a set of nℓ uncertain linear inequalities

g(θ, w) ≤ 0 ⇐⇒ A(w)θ ≤ B(w), (3.1)

where

A(w) =

a
⊤
1 (w)

...
a⊤nℓ

(w)

 ∈ Rnℓ×nθ , B(w) =

 b1(w)
...

bnℓ
(w)

 ∈ Rnℓ ,

are measurable functions of the uncertainty vector w ∈ Rnw .
In Section 3.7 we discuss possible extensions of this approach to more general

settings, in which the constraints may be nonlinear and even nonconvex. Note that
the proposed setup captures the special case of chance constraints with random
right-hand side. These correspond to the choice A(w) = A and B(w) = w. Sim-
ilarly, the case of chance constraints with random technology matrix is captured
by our general case.

We also note that hard linear constraints on θ may be directly incorporated
by introducing deterministic inequalities of the form a⊤ℓ θ ≤ bℓ, where aℓ and bℓ
do not depend on the uncertainty w.
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The inequality in (3.1) is to be interpreted component-wise, i.e. a⊤ℓ (w)θ ≤
bℓ(w), ∀ℓ ∈ [nℓ]. Due to the random nature of the uncertainty vector w, each
realization of w corresponds to a different set of linear inequalities. Consequently,
each value of w gives raise to the sample safe set

Φg
0(w)

.
= {θ ∈ Θ : g(θ, w) ≤ 0} = {θ ∈ Θ : A(w)θ ≤ B(w)}. (3.2)

In every application, one usually accepts a risk of violating the constraints.
This often translates into a two-step strategy: First, a set W̃ is obtained such
that w ∈ W̃ is satisfied with a pre-specified high probability; then, a robust
design problem in which inequality (3.1) is forced to be satisfied for every w ∈ W̃
is solved. This is for instance the approach taken in [98, 100].

This two-step strategy suffers from two main drawbacks which may cause the
result to be conservative:

1. There is not guarantee that the ensuing robust problem is easily solvable.
Indeed, it is in general very hard, and to obtain computable solutions the
authors of [98] need to make additional assumptions on the dependence of
A and B on the uncertainty w.

2. The approach in [98] does not provide a safe region (i.e. a probabilistic
approximation of the chance-constrained set), but just a point satisfying
the probabilistic constraint.

In this chapter, we observe that a less conservative solution can be found
by choosing the set W to encompass all possible values and characterizing the
region of the design space in which the fraction of elements of W that violate the
constraints is below a specified level. This concept is rigorously formalized by
means of the notion of probability of violation (see [51]).

Definition 3.1 (Probability of violation). Consider a probability measure PrW
over W and let θ ∈ Θ be given. The probability of violation of θ relative to
inequality (3.1) is defined as

Viol(θ)
.
= PrW{A(w)θ ̸≤ B(w)}.

Given a constraint on the probability of violation, i.e. Viol(θ) ≤ ε, we denote
as (joint) chance-constrained set of probability ε (shortly, ε-CCS) the region of the
design space for which this probabilistic constraint is satisfied. This is formally
stated in the next definition.

Definition 3.2 (ε-CCS). Given ε ∈ (0, 1), we define the chance-constrained set
of probability ε as follows

Xε
.
= {θ ∈ Θ : Viol(θ) ≤ ε}. (3.3)
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Note that the ε-CCS represents the region of the design space Θ for which the
probabilistic constraint Viol(θ) ≤ ε is satisfied and it is equivalently defined as

Xε
.
= {θ ∈ Θ : PrW {A(w)θ ≤ B(w)} ≥ 1 − ε} . (3.4)

The chance-constrained set of probability 0 corresponds to the region of the
design space for which the hard constraint A(w)θ ≤ B(w) is satisfied for any value
of the uncertainty w ∈ W. Therefore, X0 ⊆ Φg

0(w), ∀w ∈ W.

As commented in section 1.2.1, a closed-form evaluation of Xε is possible for
only a handful of particular cases. Moreover, the ε-CCS is usually nonconvex,
except for very special cases. For example, [101, Lemma 4.60] shows that the
solution set of separable chance constraints can be written as the union of cones,
which is nonconvex in general.

Example 3.1 (Example of nonconvex ε-CCS). To illustrate these inherent diffi-
culties, we consider the following three-dimensional example (nθ = 3) with w =
{w1, w2}, where the first uncertainty w1 ∈ R3 is a three-dimensional normal-
distributed random vector with zero mean and covariance matrix

Σ =

 4.5 2.26 1.4
2.26 3.58 1.94
1.4 1.94 2.19

 ,

and the second uncertainty w2 ∈ R3 is a three-dimensional random vector whose
elements are uniformly distributed in the interval [0, 1]. The set of viable design
parameters is given by nℓ = 4 uncertain linear inequalities of the form

A(w) =
[
w1 w2 (2w1 − w2) w2

1

]T
,

B(w) =
[
1 1 1 1

]T
A(w)θ ≤ B(w),

where the square power w2
1 is to be interpreted element-wise.

In this case, to obtain a graphical representation of the set Xε, we resorted to
gridding the design set, and, for each point θ in the grid, to approximate the prob-
ability through a Monte Carlo method. This procedure is clearly unaffordable for
higher dimensions, as the number of samples required would grow exponentially.
In Figure 3.1 we report the plot of the obtained ε-CCS set for different values of
ε. We observe that the set is indeed nonconvex.

3.2.1 Chance-constrained optimization

Finding an optimal θ ∈ Xε for a given cost function J : Rnθ → R, leads to the
chance-constrained optimization (CCO) problem

min
θ∈Xε

J(θ), (3.5)
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Figure 3.1: The ε-CCS set for ε = 0.15 (smaller set), ε = 0.30 (intermediate
set), and ε = 0.45 (larger set). We observe that all sets are nonconvex, but the
nonconvexity is more evident for larger values of ε, corresponding to larger levels
of accepted violation, while the set Xε appears “almost convex” for small values
of ε. This kind of behaviour is in accordance with a recent result that proves
convexity of the ε-CCS for small enough values of ε, and it is usually referred to
as eventual convexity [28, 102].

where the cost-function J(θ) is usually assumed to be a convex (often even
quadratic or linear) function.

We remark that the CCO problem (3.5) is in general NP-hard, for the same
reasons reported before. We also note that several stochastic optimization prob-
lems arising in different application contexts can be formulated as a CCO. Typical
examples are for instance the reservoir system design problem proposed in [103],
where the problem is to minimize the total building and penalty costs while sat-
isfying demands for all sites and all periods with a given probability, or the cash
matching problem [104], where one aims at maximizing the portfolio value at
the end of the planning horizon while covering all scheduled payments with a
prescribed probability.

Chance-constrained optimization problems also frequently arise in short-term
planning problems in power systems. These optimal power flow problems are
routinely solved as part of the real-time operation of the power grid. The aim
is determining minimum-cost production levels of controllable generators subject
to reliably delivering electricity to customers across a large geographical area, see
e.g. [94] and references therein.

Recently, approaches based on approximations of chance-constrained sets have
emerged in the context of stochastic MPC, see [96, 17, 97]. These approaches ex-
ploit the sample-based results we summarize in Section 1.2.1 to construct offline a
probabilistically guaranteed approximation of the set of all couples of control in-
put/initial states that guarantee fulfillment of the desired input/state constraints.

The possibility of constructing a safe approximation of the chance-constrained
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set offline constitutes a winning feature with respect to other sample-based ap-
proaches, since it moves all the cumbersome computation to the control design
phase.

When a safe approximation is available, the online implementation can deal
with the chance constraint as a deterministic set inclusion constraint. In this way,
the original stochastic optimization program is reduced to an efficiently solvable
convex program when the cost function J is convex. This represents an undis-
cussed advantage, which has been demonstrated for instance in [97]. We stress
that the key element of this procedure is exactly the construction of an adequate
approximation of the ε-CCS.

In the next subsection, we report an additional motivating example, which
further highlights the importance of the problem at hand.

3.2.2 Motivating example: probabilistic set membership estima-
tion

Consider the problem of finding all the values of θ ∈ Θ ⊆ Rnθ such that

g(θ, w) ≤ 0 ⇒ |y − θTφ(x)| ≤ ρ, ∀w ∈ W ⊆ Rnx × R,
where w = (x, y), φ : Rnx → Rnθ is a (possibly non-linear) regressor function, and
ρ > 0 is a given hyperparameter accounting for modelling errors.

The deterministic set membership estimation problem, see [105, 106, 107],
consists of computing the set of parameters θ that satisfy the constraint |y −
θTφ(x)| ≤ ρ for all possible values of w ∈ W. In the literature, this set is usually
referred to as the feasible parameter set (FPS) X0, i.e.

X0
.
= {θ ∈ Θ : |y − θTφ(x)| ≤ ρ, ∀w ∈ W}.

We notice that X0 could be empty if ρ is chosen too small. For any realization
of the uncertainty w ∈ W, we can define the sample safe set

Φg
0(w) = {θ ∈ Θ : |y − θTφ(x)| ≤ ρ},

and we can rewrite the feasible parameter as

X0 = {θ ∈ Θ : θ ∈ Φg
0(w), ∀w ∈ W}.

The deterministic set membership problem suffers from the following limita-
tions in real applications:

� Due to the possible non-linearity of φ(·), checking if a given θ ∈ Θ ⊆ Rnθ

satisfies the constraint θ ∈ Φg
0(w) for every w ∈ W is often a difficult

problem.

� In many situations, the information about the uncertainty w comes through
a number of samples, and therefore only outer bounds of the FPS can be
computed. As a result, the robust constraint can not be checked.
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� Because of outliers and possible non-finite support of W, some problem
instances may not have any point in Θ that guarantees the fulfillment of
every possible constraint, and thus, the feasible parameter set is empty
(even for large values of ρ).

To deal with these issues, one can resort to a probabilistic relaxation of the
FPS. Given a probability distribution defined on W, the probabilistic set mem-
bership estimation problem is that of characterizing the set of parameters θ that
satisfy the chance constraint

PrW{|y − θTφ(x)| ≤ ρ} ≥ 1 − ε

for a given probability level ε ∈ (0, 1). Hence, we can define the ε-CCS Xε as the
set of parameters that satisfy the previous probabilistic constraint, that is,

Xε = {θ ∈ Θ : PrW{θ ∈ Φg
0(w)} ≥ 1 − ε}.

It is immediate to notice that this problem fits in the formulation proposed in
this section: It suffices to define

A(w) =

[
φT (x)
−φT (x)

]
, B(w) =

[
ρ + y
ρ− y

]
.

3.2.3 Chance-constrained set approximations

Motivated by the discussion above, we formulate the main problem studied in this
chapter.

Problem 3.1 (ε-CCS approximation). Given the set of linear inequalities (3.1),
and a violation parameter ε, find an inner approximation of the ε chance-constrained
set Xε. The approximation should be simple enough, accurate enough and easily
computable.

A sample-based approximation of the ε-CCS is provided in this chapter. In
particular, regarding simplicity, we present a solution of tunable complexity in
which the approximating set could be represented by few linear inequalities. As
for the accuracy and ease of computation, we propose a highly tunable and com-
putationally efficient procedure for its construction (see Algorithm 3).

Before presenting our approach, in the next section we provide a literature
overview of different sample-based methods presented in the literature to construct
approximations of the ε-CCS set and solve the CCO.

3.3 Overview on sample-based approaches to approx-
imate the ε-CCS

In section 1.2.1, we went through the different approaches to approximate the
ε-CCS and ultimately solve the chance-constrained optimization problem. Now,
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we recapitulate the sample-based approaches that approximate the ε-CCS and go
through one practical application in the field of automatic control.

Sampling-based techniques are characterized by the use of a finite number N of
i.i.d. samples of the uncertainty wN =

{
w(1), w(2), . . . , w(N)

}
, each of them drawn

according to the probability distribution PrW . With each sample w(i), i ∈ [N ], we
can associate the following sample safe set

Φg
0(w(i)) = {θ ∈ Θ : A(w(i))θ ≤ B(w(i))}, (3.6)

sometimes referred to as scenario, since it represents an observed instance of the
uncertain constraint.

The scenario approach presented in [52] considers the CCO problem (3.5) and
approximates its solution through the following optimization problem

θ∗sc = arg min
θ

J(θ)

s.t. θ ∈ Φg
0(w(i)), ∀i ∈ [N ].

(3.7)

We note that, given a convex cost function J(θ), problem (3.7) becomes a lin-
early constrained convex program, for which very efficient solution approaches
exist. Under some technical assumptions (feasibility of the problem and non-
degeneracy), a fundamental result [52, 53, 54, 55] provides a probabilistic certifi-
cation of the constraint satisfaction for the solution to the scenario problem. In
particular, it is shown that

PrWN {Viol(θ∗sc) > ε} ≤ B(nθ − 1;N, ε), (3.8)

where the probability in (3.8) is measured with respect to the samples wN =
{w(i)}Ni=1.

A few observations are at hand regarding the scenario approach and its rela-
tionship with Problem 3.1. First, if we define the multisample safe set as

Φg
0(wN )

.
=

N⋂
i=1

Φg
0(w(i)), (3.9)

we see that the scenario approach consists in approximating the constraint θ ∈ Xε

in (3.5) with its sampled version θ ∈ Φg
0(wN ). On the other hand, it should be

remarked that the scenario approach cannot be used to derive any guarantee on
the existing relationship between Φg

0(wN ) and Xε.
Indeed, the nice probabilistic property in (3.8) holds only for the optimum of

the scenario program θ∗sc. This is a fundamental point, since the scenario results
build on the so-called support constraints, which are defined for the optimum
point θ∗sc only.

On the contrary, the probabilistic scaling approach that will be presented in the
remainder of this chapter focuses on establishing a direct relation (in probabilistic
terms) between the set Φg

0(wN ) and the ε-CCS Xε. This is indeed possible, but
one needs to resort to results based on Statistical Learning Theory [108] and in
[49, Theorem 8], summarized in the following lemma.
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Lemma 3.1 (Statistical Learning Theory bound). Given probabilistic levels δ ∈
(0, 1) and ε ∈ (0, 0.14), if the number of samples N is chosen so that N ≥ NLT ,
with

NLT
.
=

4.1

ε

(
ln

21.64

δ
+ 4.39nθ log2

(8enℓ

ε

))
, (3.10)

then PrWN {Φg
0(wN ) ⊆ Xε} ≥ 1 − δ.

The lemma, whose proof is reported in Appendix 3.8.1, is a direct consequence
of the statistical learning theory results on the so-called (α, k)-Boolean functions,
given in [49, Corollary 4], where more general results are reported for cases in
which ε is not constrained in (0, 0.14).

Remark 3.1 (Sample-based stochastic MPC). The statistical learning theory ap-
proach discussed in this section has been applied in [96] to derive offline a proba-
bilistic inner approximation of the chance-constrained set defining the couples of
input/state guaranteeing the desired input/state chance. In particular, the bound
(3.10) is a direct extension to the case of joint chance constraints of the result
proved in [96] for individual chance constraints.

Note that since we are considering multiple constraints at the same time (like
in (2)), the number of constraints nℓ enters into the sample size bound. To explain
how the SMPC design in [96] extends to the joint chance constraints framework,
we briefly recall it.

First, we extract offline (i.e. when designing the SMPC control) N i.i.d. sam-

ples of the uncertainty, σ
(i)
k of σk, and we consider the sampled set

XSMPC(σ
(i)
k ) =


[
xk
vk

]
:

[
fx
ℓ (σ

(i)
k )

fv
ℓ (σ

(i)
k )

]T [
xk
vk

]
≤ 1, ℓ ∈ [nℓ]

 ,

and XSMPC
N

.
=

N⋂
i=1

XSMPC(σ
(i)
k ). Then, applying Lemma 3.1 with nθ = nx+nuT

(where T is the prediction horizon), we conclude that if we extract N ≥ NSMPC
LT

samples, it is guaranteed that, with probability at least 1 − δ, the sample approx-
imation XSMPC

N is a subset of the original chance constraint XSMPC
ε . Exploiting

these results, the SMPC problem can be approximated conservatively by the linearly
constrained quadratic program

min
vk

JT (xk,vk)

s.t. (xk,vk) ∈ XSMPC
N .

Hence, when the cost function JT is quadratic, this approximation reduces
the original stochastic optimization program to an efficiently solvable quadratic
program. This represents an undiscussed advantage, which has been demonstrated
for instance in [97]. On the other hand, it turns out that the ensuing number
of linear constraints, equals to nℓN

SMPC
LT may still be too large. For example,

even for a moderately sized MPC problem with nx = 5 states, nu = 2 inputs,
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prediction horizon of T = 10, simple interval constraints on states and inputs (i.e.
nℓ = 2nx + 2nu = 14), and for a reasonable choice of probabilistic parameters, i.e.
ε = 0.05 and δ = 10−6, we get NSMPC

LT = 114, 530, which in turn corresponds to
more than 1.6 million linear inequalities. For this reason, in [96] a post-processing
step was proposed to remove redundant constraints. While it is indeed true that all
the cumbersome computations may be performed offline, it is still the case that,
in applications with stringent requirements on the solution time, the final number
of inequalities may easily become unbearable.

Remark 3.1 motivates the approach presented in the next section. We show
how the probabilistic scaling approach directly leads to approximations of user-
chosen complexity, which can be directly used in applications. Furthermore, the
required number of samples is independent of the dimension of the problem. This
feature is specially relevant in high-dimensional problems.

3.4 The probabilistic scaling approach

We propose a novel sample-based approach, alternative to the state-of-the-art
randomized procedures. This scheme allows to maintain the probabilistic guar-
antees of these techniques, while at the same time providing a way of tuning the
complexity of the approximation.

The probabilistic scaling approach consists of a two-step procedure: First, an
initial simple approximating set (SAS) c ⊕ Ω0 which captures the shape of the
probabilistic set Xε. Then, the scaling step calculates the value of γ that embeds
the desired probabilistic guarantees to the scalable SAS

Ω(γ)
.
= c⊕ γΩ0. (3.11)

Simple approximating sets are characterized by a scaling center c and a shape
Ω0, which constitute the design parameters of the proposed approach. By appro-
priately selecting the shape Ω0, the complexity of the approximating set can be
tuned. The nonnegative scalar γ controls the size of the scalable SAS Ω(γ): the
larger γ is, the larger Ω(γ) will be.

Note that this initial SAS c⊕Ω0 does not offer any guarantee of probabilistic
nature. It should be able to capture somehow the shape of the ε-CCS. Some
possible options for this initial set are provided in Section 3.5.

The scaling center c and the shape Ω0 constitute the starting point of the
probabilistic scaling procedure, which allows to derive an approximation of the
ε-CCS which meets pre-specified probabilistic guarantees, as detailed in the next
subsection.

3.4.1 Probabilistic Scaling

In this section, we address the problem of how to scale the set Ω(γ) around
the scaling center c to guarantee, with pre-specified confidence level δ ∈ (0, 1),
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the inclusion of the scaled set into Xε. Within this sample-based procedure we
assume that Nγ i.i.d. random samples {w(1), . . . , w(Nγ)} with distribution PrW
are available. We will use these samples to obtain a scalar γ̄ > 0 such that

PrWNγ {Ω(γ̄) ⊆ Xε} ≥ 1 − δ.

To this end, we first define the scaling factor associated to a given realization of
the uncertainty.

Definition 3.3 (Scaling factor). Given a scalable SAS Ω(γ) defined by a scaling
center c ∈ Θ and a shape Ω0, and a realization w ∈ W, we define the scaling
factor of Ω(γ) relative to the random constraint g(θ, w) ≤ 0 as

γ(w)
.
=

 0 if c ̸∈ Φg
0(w)

max
Ω(γ)⊆Φg

0(w)
γ otherwise, (3.12)

with Φg
0(w) = {θ ∈ Θ : g(θ, w) ≤ 0} and Ω(γ) defined as in (3.11).

That is, γ(w) represents the maximal scaling that can be applied to Ω(γ) =
c⊕ γΩ0 around the scaling center c so that Ω(γ) ⊆ Φg

0(w).

The following theorem, whose proof is reported in Appendix 3.8.2, states how
to obtain, by means of sampling, a scaling factor γ̄ that guarantees, with high
probability, that Ω(γ̄) ⊆ Xε.

Theorem 3.1 (Probabilistic scaling). Given a candidate scalable SAS Ω(γ) de-
fined by the scaling center c ∈ Θ and the shape Ω0, suppose that the accuracy
parameter ε ∈ (0, 1), the confidence level δ ∈ (0, 1), the integer discarding param-
eter r ≥ 0 and the integer sample size Nγ ≥ r are chosen such that

B(r;Nγ , ε) ≤ δ. (3.13)

Draw Nγ i.i.d. samples {w(1), w(2), . . . , w(Nγ)} from distribution PrW , compute
their corresponding scaling factors

γi
.
= γ(w(i)), i ∈ [Nγ ]

according to Definition 3.3, and define

γ̄ =
(
{γi}

Nγ

i=1

)
1+r:Nγ

,

i.e. γ̄ is the (1 + r)-th smallest value of {γi}
Nγ

i=1 (see Notation section). Under
these assumptions:

(i) If γ̄ > 0, then with probability no smaller than 1 − δ,

Ω(γ̄) = c⊕ γ̄Ω ⊆ Xε.
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(ii) If c ̸∈ Xε then γ̄ = 0 with probability no smaller than 1 − δ.

In the following remark, we recall a result from the Lemmas 2.1 and 2.2 of
chapter 2.

Remark 3.2. In order to satisfy

B(r;Nγ , ε) ≤ δ

it suffices to take r =
⌊
εNγ

2

⌋
and Nγ such that

Nγ ≥ 7.47

ε
ln

1

δ
.

The above result leads to the following algorithm, which shows how to calculate
the scaling factor γ̄ so that, with probability no smaller than 1 − δ, the scaled
SAS is contained in the ε-CCS, i.e. Ω(γ̄) ⊆ Xε.

Algorithm 3 Probabilistic SAS Scaling

1: Given a candidate scalable SAS Ω(γ), and probability levels ε and δ, choose

Nγ ≥ 7.47

ε
ln

1

δ
and r =

⌊
εNγ

2

⌋
. (3.14)

2: Draw Nγ samples of the uncertainty w(1), . . . , w(Nγ).
3: for i = 1 to Nγ do
4: Compute, according to Definition 3.3, the Nγ scaling factors

γi
.
=γ(w(i)), i ∈ [Nγ ]. (3.15)

5: end for
6: Return the (1 + r)-th smallest value of {γi}

Nγ

i=1, i.e. γ̄ =
(
{γi}

Nγ

i=1

)
1+r:Nγ

.

In step 4 of Algorithm 3, one has to solve an optimization problem for each
uncertainty sample w(i), which amounts to finding the largest value of γ such
that Ω(γ) is contained in the set Φg

0(w(i)) defined in (3.6). If the SAS is chosen
appropriately, we can show that this problem is convex and computationally very
efficient: this is discussed in Section 3.5. Then, in step 6, one can use a partial sort
algorithm (see discussion below about sorting algorithms) to find the (1 + r)-th
smallest element of the sequence {γ1, γ2, . . . , γNγ}.
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Full vs. partial sort algorithms

In the context of sorting algorithms, full sort refers to an algorithm that
sorts a list of values and retrieves the full list sorted [109, 110], whereas
partial sort algorithms retrieve only a sorted subset of the list consisting of
the m smallest (or largest) elements [111, 112].
Partial sort algorithms benefit from a reduced average complexity, specially
when m is small compared to the size of the full list. Given a list of n values,
partial sort algorithms can average a time complexity of O(n+m logm) to
retrieve the m smallest elements. Full sort algorithms would average a time
complexity of O(n log n) for retrieving the full sorted list. This implies that
the gap in complexity becomes larger with an increasing difference between
n and m.

The properties of the output of Algorithm 3 can be derived by a direct ap-
plication of Theorem 3.1 and Remark 3.2. In particular, if the output γ̄ is larger
than zero, then Ω(γ) ⊆ Xε with probability no smaller than 1 − δ.

In the next section, we provide a handful of possible candidate SAS shapes.
We remind that SAS should capture the shape of the ε-CCS while keeping its com-
plexity low, so that the resulting approximation does not cause a major bottleneck
in its applications, such as chance-constrained optimization.

3.5 Candidate SAS

3.5.1 Sampled-polytope

A straightforward way to design a candidate SAS is to resort to a sample-based
procedure, i.e. draw a fixed number NS of design uncertainty samples1 w̃NS

=

{w̃(i)}NS
i=1, and use the sampled-polytope

c⊕ Ω0 = Φg
0(w̃NS

) =

NS⋂
j=1

Φg
0(w̃(j)). (3.16)

as the SAS.
Note that the sampled polytope Φg

0(w̃NS
) by construction is defined by the

intersection of nℓNS half-spaces. Hence, we observe that this approach provides
very precise control on the final complexity of the approximation, through the
choice of the number of samples NS .

Unlike the statistical learning theory bound NLT defined in Lemma 3.1, the
choice of NS is fundamentally determined by the complexity of the polytope and
therefore, the resulting initial geometry does not offer any probabilistic guaran-
tees. These guarantees are instead provided by the probabilistic scaling procedure

1These samples are denoted with a tilde ( ˜ ) to distinguish them from the samples used in
the probabilistic scaling procedure.
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discussed in Section 4.4. It should be also remarked that multiple heuristics may
be used to build the polytope SAS. For instance, one could discard some extreme
samples in order to make the SAS more robust.

In addition to the shape Ω0, the proposed probabilistic scaling also requires a
scaling center c around which to apply the scaling procedure. One sensible option
would be the Chebyshev center, which for a given norm ∥ · ∥p, is defined as the
center of the largest ball inscribed in Φg

0(w̃NS
), i.e. c = Chebp(Φ

g
0(w̃NS

)). Once
the scaling center c has been fixed, the scaling procedure detailed in algorithm 3
can be applied to the sampled-polytope SAS defined as

Ω(γ)
.
= c⊕ γ

(
Φg
0(w̃NS

) ⊖ c
)
. (3.17)

We note that computing the Chebyshev center of a given polytope amounts to
solving a convex optimization problem, for which efficient algorithms exist, see
e.g. [113]. Another option would be to use the analytic center of Φg

0(w̃NS
) as the

scaling center, which can also be easily computed (see [113] for further details).

Similar to the shape Ω0, the choice of c does not embed any probabilistic
guarantees and only affects the goodness of the shape. In most applications, it is
impossible to know a priori which option of the scaling center results in a better
SAS.

Example 3.2. [Sample-based approximations] To illustrate how the proposed scal-
ing procedure works in practice in the case of sampled-polytope SAS, we revisit
Example 3.1. To this end, a pre-fixed number NS of uncertainty samples were
drawn, and the set of inequalities

A(w̃(j))θ ≤ B(w̃(j)), j ∈ [NS ],

with A(w) and B(w) defined in (3.1) were set, leading to the set Φg
0(w̃NS

). Then,
its Chebyshev center with respect to norm ∥ · ∥2 was computed, and Algorithm 3
was applied to the sampled-polytope SAS Ω(γ) defined in (3.17), with ε = 0.05,
δ = 10−6, leading to Nγ = 2, 065.

We note that, in this case, the solution of the optimization problem in (3.12)
may be obtained by bisection on γ. Indeed, for given γ, checking if Ω(γ) ⊆ Φg

0(w(i))
amounts to solving some simple linear programs.

Two different situations were considered: a case where the number of inequal-
ities is rather small NS = 100, and a case where the complexity of the SAS is
higher, NS = 1, 000. The outcome procedure is illustrated in Figure 3.2. We can
observe that, for the smaller NS (Figure 3.2a) the initial approximation is rather
large (although it is contained in Xε, there is no guarantee that this will happen).
In this case, the probabilistic scaling returns γ̄ = 0.8954 which is less than one.
This means that, in order to obtain a set fulfilling the desired probabilistic guar-
antees, we need to shrink it around the scaling center. In the second case, for a
larger number of sampled inequalities (Figure 3.2b) the initial set (the red one) is
much smaller, and the scaling procedure enlarges the SAS by returning a value of
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(a) Ω(γ) with NS = 100. → γ̄ = 0.8954 (b) Ω(γ) with NS = 1, 000. → γ̄ = 1.2389

(c) Ω(γ) Based on Lemma 3.1 (NLT =
52, 044)

Figure 3.2: (a-b) Probabilistic scaling approximations of the ε-CCS. Scaling pro-
cedure applied to a sampled-polytope with NS = 100 (a) and NS = 1, 000 (b).
The initial sets are depicted in red, the scaled ones in green. (c) Approximation
obtained by direct application of Lemma 3.1. Note that, in this latter case, to
plot the set without out-of-memory errors a pruning procedure [114] of the 52, 044
linear inequalities was necessary.
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γ̄ greater than one, i.e. γ̄ = 1.2389. Note that using a larger number of samples
in the computation of the initial set does not imply that the resulting SAS will
capture better the shape of the ε-CCS.

Finally, we compare this approach to the scenario-like ones discussed in Sub-
section 1.2.1. To this end, we also draw the approximation obtained by directly
applying the Statistical Learning Theory bound (3.10). Note that in this case,
since nθ = 3 and nℓ = 4, we need to take NLT = 13, 011 samples, corresponding
to 52, 044 linear inequalities. The resulting set is represented in Figure 3.2c. Com-
pared to the proposed probabilistic scaling approximation, we point out that the one
made by the statistical learning theory approach is much more complex, since the
number of involved inequalities is much larger and it is also much smaller, hence
providing a much more conservative approximation of the ε-CCS. Hence, the ensu-
ing chance-constrained optimization problem will be computationally harder, and
will lead to a solution with a larger cost or even to an infeasible problem, in cases
where the approximating set is too small.

3.5.2 Candidate SAS: Norm-based SAS

Another option for the shape of the approximation are the so-called norm-based
SAS. This family of sets have a low complexity and can also be build from samples.
They are defined as

Ω(γ)
.
= c⊕ γHBs

p, (3.18)

where Bs
p is an ℓp-ball in Rs, H ∈ Rnθ×s, with s ≥ nθ, is a design matrix (not

necessarily square), and γ is the scaling factor. Note that when the matrix H
is square (i.e. s = nθ) and positive definite these sets belong to the class of
ℓp-norm based sets originally introduced in [115]. In particular, in case of ℓ2
norm, the sets are ellipsoids. This particular choice is the one studied in [70].
Here, the authors extend this approach to a much more general family of sets,
which encompasses for instance zonotopes, obtained by letting p = ∞ and s ≥
nθ. Zonotopes have been widely studied in geometry, and have found several
applications in systems and control, in particular for problems of state estimation
and robust Model Predictive Control (see e.g. [116]), because of their flexibility
and very efficient implementations.

Scaling factor computation for norm-based SAS

From (3.3), we know that the scaling factor of a given sample w, i.e. γ(w), is
defined as 0 if c ̸∈ Φg

0(w) and as the largest value γ for which Ω(γ) ⊆ Φg
0(w)

otherwise. The following theorem, whose proof is reported in Appendix 3.8.3,
provides a direct and simple way to compute in closed form the scaling factor for
a given candidate norm-based SAS.
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Theorem 3.2 (Scaling factor for norm-based SAS). Given a norm-based SAS
Ω(γ) = c ⊕ γHBs

p and a realization w ∈ W, define τℓ(w)
.
= bℓ(w) − aTℓ (w)c and

ρℓ(w)
.
= ∥HTaℓ(w)∥p∗, with ∥ · ∥p∗ being the dual norm of ∥ · ∥p.

The scaling factor γ(w) can be computed as

γ(w) = min
ℓ∈[nℓ]

γℓ(w),

with γℓ(w), ℓ ∈ [nℓ], given by

γℓ(w) =


0 if τℓ(w) < 0,

∞ if τℓ(w) ≥ 0 and ρℓ(w) = 0
τℓ(w)
ρℓ(w) if τℓ(w) ≥ 0 and ρℓ(w) > 0

Note that γ(w) is equal to zero if and only if c is not included in the interior
of Φg

0(w).

Construction of a candidate norm-based set

Similarly to the construction of the polytope SAS discussed in 3.5.1, to build the
norm-based SAS we also start by drawing a fixed number NS of design uncertainty
samples {w̃(i)}NS

i=1, and use them to construct an initial sampled approximation
(sampled-polytope SAS) Φg

0(w̃NS
) by means of (3.16). Again, there are multiple

possibilities for the center c. Here, we take the Chebyshev center of Φg
0(w̃NS

), or
its analytical center as the center c for our approach.

Analogously to what was proposed in [70], given Φg
0(w̃NS

), s ≥ nθ and p ∈
{1, 2,∞}, the objective is to compute the largest set c⊕HBs

p included in Φg
0(w̃NS

).
To this end, we assume that we have a function Volp(H) that provides a measure
of the size of HBs

p. That is, larger values of Volp(H) are obtained for increasing
sizes of HBs

p.

Remark 3.3 (On the volume function).
The function Volp(H) may be seen as a generalization of the classical concept of
Lebesgue volume of the set Φg

0(w̃NS
). Indeed, when H is a square positive definite

matrix, some possibilities are Volp(H) = log det(H), which is directly proportional
to the classical volume definition, or Volp(H) = tr(H), which for p = 2 becomes
the well known sum of ellipsoid semiaxes (see [117] and [113]). These measures
can be easily generalized to non square matrices. It suffices to compute the singular
value decomposition. If H = UΣV T , we could use the measures Volp(H) = tr(Σ)
or Volp(H) = log det(Σ).
For non square matrices H, specific results for particular values of p are known.
For example, we remind that if p = ∞ and H ∈ Rnθ×s, s ≥ nθ, then c⊕HBs

∞ is a
zonotope. Then, if we denote as generator each of the columns of H, the volume
of a zonotope can be computed by means of a sum of terms (one for each different
way of selecting nθ generators out of the s generators of H); see [118], [119].
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Another possible measure of the size of a zonotope c ⊕ HBs
∞ is the Frobenious

norm of H [118].

Given an initial design set Φg
0(w̃NS

), the candidate scalable SAS is the norm-
based SAS with the largest volume contained in Φg

0(w̃NS
). Formally, this rewrites

as the following optimization problem

(c,H) = arg max
c,H

Volp(H)

s.t. c⊕HBs
p ⊆ Φg

0(w̃NS
).

(3.19)

As it has been shown (see Appendix 3.8.3), problem (3.19) is equivalent to

(c,H) = arg min
c,H

− Volp(H)

s.t. aTℓ (w̃(j))c + ∥HTaℓ(w̃
(j))∥p∗ − bℓ(w̃

(j)) ≤ 0

ℓ ∈ [nℓ]

j ∈ [NS ],

(3.20)

where the maximization of Volp(H) has been replaced with the minimization of
-Volp(H).

We notice that the constraints are convex on the decision variables, and the ob-
jective function to minimize is convex under particular assumptions. For example
when H is assumed to be square and positive definite and Volp(H) = log det(H).
For non square matrices, the constraints remain convex, but the convexity of the
functional to be minimized is often lost. In this case, local optimization algorithms
may be employed to obtain a possibly sub-optimal solution.

Example 3.3 (Norm-based SAS). We revisit again Example 3.1 to show the
use of norm-based SAS. We note that, in this case, the designer can control the
approximation outcome by acting upon the number of design samples NS used for
constructing the initial approximation Ω0. In Figure 3.3 we report two different
norm-based SAS, respectively with p = 1 and p = ∞, and for each of them we
consider two different values of NS, respectively NS = 100 and NS = 1, 000.
Similar to the results of Example 3.2, we see that for larger NS, the ensuing
initial set becomes smaller. Consequently, we have a shrinkage process for small
NS and an inflating one for large NS. However, we observe that in this case, the
final number of inequalities is independent of NS (8 inequalities for ℓ1 and 6 for
ℓ∞).

Relaxed computation

It is worth remarking that the minimization problem of the previous subsection
might be infeasible. In order to guarantee the feasibility of the problem, a soft-
constrained optimization problem is proposed. With a relaxed formulation, c
is not longer guaranteed to satisfy all the sampled constraints. Note that c ∈
Φg
0(w̃NS

) is not a necessary condition in the probabilistic scaling procedure.
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(a) γ̄ = 0.9701 (b) γ̄ = 1.5995

(c) γ̄ = 0.9696 (d) γ̄ = 1.5736

Figure 3.3: Scaling procedure applied to (a) ℓ1-SAS with NS = 100, (b) ℓ1-SAS
with NS = 1, 000, (c) ℓ∞-SAS with NS = 100, and (d) ℓ∞-SAS with NS = 1, 000.
The initial set is depicted in red, the final one in green. The sampled polytope
constructed from NS samples (see equation (3.16)) is represented in black.
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Given ξ > 0, the relaxed version of optimization problem (3.20) is

arg min
c,H,η1,...,ηNS

− Volp(H) + ξ

NS∑
j=1

max{ηj , 0}

s.t. aTℓ (w̃(j))c + ∥HTaℓ(w̃
(j))∥p∗ − bℓ(w̃

(j)) ≤ ηj

ℓ ∈ [nℓ]

j ∈ [NS ].

(3.21)

The parameter ξ serves to provide an appropriate trade-off between satisfac-
tion of the sampled constraints and the size of the obtained region. A possibility
to choose ξ would be to choose it in such a way that the fraction of violations
nviol/NS (where nviol is the number of elements ηj larger than zero) is smaller
than ε/2.

3.5.3 Further alternatives

The sampled-polytope and the norm-based SAS presented in sections 3.5.1 and
3.5.2 are just two possible options for the SAS. Later, in the following chapter
(Section 4.7.1), a new ellipsoidal SAS will also be explored. These three families of
geometries explored in this thesis can lead to good approximations of the ε-CCS
because of their simplicity and, since they are based of samples of the system, they
should somehow capture the shape of the ε-CCS. However, infinite possibilities
exist for the SAS. Because the SAS does not embed probabilistic guarantees, every
convex shape is valid as an initial set as long as the scaling center c is contained
in the ε-CCS.

In some cases, previous knowledge about the system can be used to construct
the SAS and intricate (convex) geometries may be taken into account in favour
of obtaining a better fit to the ε-CCS.

3.6 Numerical example: Probabilistic set membership
estimation

We now present a numerical example in which the results of the chapter are applied
to the probabilistic set membership estimation problem, introduced in subsection
3.2.2. We consider the universal approximation functions given by gaussian radial
basis function networks (RBFN) [120].

Given M nodes {x1, x2, . . . , xM} and the variance parameter v, the correspond-
ing gaussian radial basis function network is defined as

RBFN(x, θ) = θTφ(x),

where θ =
[
θ1 . . . θM

]T
represents the weights and
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φ(x) =
[
exp

(
−∥x−x1∥2

v

)
exp

(
−∥x−x2∥2

v

)
. . . exp

(
−∥x−xM∥2

v

)]T
is the regressor function. Given probabilities ε ∈ (0, 1) and δ ∈ (0, 1), the objective
is to approximate the set Xε so that, with probability no smaller than 1 − δ,
the approximating set Ω(γ̄) is contained in the ε-CCS Xε, which is the set of
parameters θ ∈ Θ that satisfies

PrW{|y − θTφ(x)| ≤ ρ} ≥ 1 − ε, (3.22)

where ρ = 5, x is a random scalar with uniform distribution in [−5, 5], and

y = sin(3x) + σ,

with σ being a random scalar with a normal distribution with mean 5 and variance
1.

We use the procedure detailed in Sections 3.4 and 3.5 to obtain a SAS of Xε.
We have taken a grid of M = 20 points in the interval [−5, 5] to serve as nodes
for the RBFN, and a variance parameter of v = 0.15. We have taken NS = 350
random samples w = (x, y) to compute the initial geometry, which has been
chosen to be an ℓ∞ norm-based SAS of dimension 20 with a relaxation parameter
of ξ = 1 (see equation (3.21)). The chosen initial geometry is c⊕HB20

∞, where H
is constrained to be a diagonal matrix.

When the initial geometry is obtained, we scale it around its center by means
of probabilistic scaling with Algorithm 3. The number of samples required for the
scaling phase to achieve ε = 0.05 and δ = 10−6 is Nγ = 2, 065 and the resulting
scaling factor is γ̄ = 0.3803. The scaled geometry c⊕ γ̄HB20

∞ is, with a probability
no smaller than 1 − δ, an inner approximation of Xε. Since it is a transformation
of an ℓ∞ norm ball with a diagonal matrix H, we can write it as

Ω(γ̄) = {θ : θ− ≤ θ ≤ θ+},

where the extreme values θ−, θ+ ∈ R20 are represented in Figure 3.4, along with
the central value c ∈ R20.

Once the approximation Ω(γ̄) has been computed, we use its center c to make
the point estimation y ≈ cTφ(x). We can also obtain probabilistic upper and
lower bounds of y by means of equation (3.22). That is, every point θ ∈ Ω(γ̄)
satisfies, with confidence 1 − δ:

PrW{y ≤ θTφ(x) + ρ} ≥ 1 − ε,

PrW{y ≥ θTφ(x) − ρ} ≥ 1 − ε.
(3.23)

We notice that the tightest probabilistic bounds are obtained with θ+ for the lower
bound and θ− for the upper one. That is, we finally obtain that, with confidence
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Figure 3.4: Representation of the extreme values θ+ and θ− along with the central
value c of Ω(γ̄).

1 − δ:
PrW{y ≤ θ−

T
φ(x) + ρ} ≥ 1 − ε,

PrW{y ≥ θ+
T
φ(x) − ρ} ≥ 1 − ε.

(3.24)

Figure 3.5 shows the results of both the point estimation and the probabilistic
interval estimation.

3.7 Concluding remarks

In this chapter, a general approach to construct probabilistically guaranteed inner
approximations of the chance-constrained set Xε has been proposed. The approach
is very general and flexible. In this section, we report a few final remarks on some
important aspects of the presented methodology.

3.7.1 On scalability of the proposed approach

The proposed framework provides different schemes with different computational
requirements. In particular, regarding the norm-based sets discussed in Section
3.5.2, Theorem 3.2 provides a closed-form expression for the scaling computations.
Hence, the approach scales extremely well when the initial candidate set c⊕HBs

p

is given.
When the initial set is a polytope (see section 3.5.1), the scaling computation

is indeed more involved, since usually there is not a close-form expression. In
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Figure 3.5: Real values of y (green dots), central estimation (blue line) and interval
prediction bounds (red line).

this case, the solution of the optimization problem in (3.15) may be obtained
by bisection on γ. Note that in this case, given γ, checking if Ω(γ) ⊆ Φg

0(w(i))
amounts to solving a linear program.

Otherwise, when the set c⊕HBs
p is not available, its computation will clearly

constitute the most demanding step of our scheme. In this case, as detailed in
Section 6, c and H can be obtained by means of a convex optimization problem
when H is a square matrix. Depending on the choice on H, the number of
decision variables increases linearly with the dimension of c (e.g. H is a diagonal
matrix), or quadratically (if H is a full matrix). The richer is the family of initial
candidate sets (e.g. when the initial set is a zonotope), the more demanding will
be its computation.

The proposed approach does not always lead to better approximations than
other state-of-the-art approaches. There will be situations where the solutions
discussed in Section 3.3 may be preferable. On the other hand, a nice and distinc-
tive feature of the proposed approach is that it can be complementary to these
approaches: for instance, given any convex approximation of the ε-CCS, one could
use this set as initial SAS to which apply the probabilistic scaling procedure. If
the resulting scaling factor γ̄ is greater than 1, then the initial approximation can
be enlarged while keeping the desired probabilistic guarantees.

Moreover, it should be remarked that the tunability of the proposed approach,
while allowing high flexibility, entails by definition the problem of parameter se-
lection. In our case, the main degree of freedom is the choice of the initial scalable
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set. In this case, the trade-off is evident: the more complex the set is, the tighter
the obtained approximation may be, at the expense of a possibly larger com-
putational effort. Besides this clear implication, a more detailed analysis, both
theoretical and experimental, is needed to understand the effect of specific choices
of the initial set (as those introduced in Section 3.5). This is an important point
that however goes beyond the scope of this thesis, and is the subject of ongoing
research.

3.7.2 Extensions to nonlinear setups

We remark that the proposed scaling approach is not limited to sets defined
by linear inequalities, and it may be extended to more general sets using very
similar arguments. Indeed, we may consider a generic binary performance function
Ig : Θ ×W → {0, 1} defined as2

Ig(θ, w) =

{
0 if θ meets design specifications for w
1 otherwise.

(3.25)

In this case, the violation probability may be written as Viol(θ)
.
= PrW{Ig(θ, w) =

1}, and we can still define the set Xε as in (3.3). Then, given an initial SAS
candidate, Algorithm 3 still provides a valid approximation. However, it should
be remarked that, even if we choose a very simple approximating set as those
previously introduced, the nonconvexity of Ig will most probably render step 4 of
the algorithm 3 intractable for many problems.

To further elaborate on this point, let us focus on the case when the design
specification may be expressed as a (nonlinear) inequality of the form

g(θ, w) ≤ 0.

Then, the computation of each scaling factor γi of step 4 of Algorithm 3 con-
sists, provided that c ∈ Φg

0(w(i)), in solving the following nonconvex optimization
problem

γi
.
= arg max γ

s.t. c⊕ γΩ0 ⊆ Φg
0(w(i)) =

{
θ ∈ Θ | g(θ, w(i)) ≤ 0

}
.

We note that this is generally a hard problem. However, there are cases when
this problem is still solvable. In particular, we remark that whenever g(θ, w)
is a convex function of θ for fixed w and the set Ω0 is also convex, the above
optimization problem may be formulated as a convex program.

2This nonlinear formulation encompasses the discussed setup, obtained by simply setting

Ig(θ, w) =

{
0 if A(w)θ ≤ B(w)
1 otherwise.
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3.7.3 Future directions

In the previous subsection, we discussed how the proposed method might be
extended to nonlinear setups. One may wonder whether the approach could also
be extended to the important class of problems involving integer values, such as
the mixed-integer programming studied in [32]. This is a problem currently under
investigation, however the extension in this case is far from being trivial. While
the presented approach is generalizable in theory, there is still no computationally
efficient implementation for it.

3.8 Appendix

3.8.1 Proof of Lemma 3.1

To prove the lemma, we first recall the following definition from [49].

Definition 3.4 ((α, k)-Boolean function). The function h : Θ × W → R is an
(α, k)-Boolean function if for fixed w it can be written as an expression consisting
of Boolean operators involving k polynomials p1(θ), p2(θ), . . . , pk(θ), in the com-
ponents θi, i ∈ [nθ] and the degree with respect to θi of all these polynomials is no
larger than α.

Let now define the binary functions

hℓ(θ, w)
.
=

{
0 if aℓ(w)θ ≤ bℓ(w)
1 otherwise

}
, ℓ ∈ [nℓ].

Introducing the function h(θ, w)
.
= max

ℓ=1,...,nℓ

hℓ(θ, w), we see that the violation

probability can be alternatively written as Viol(θ)
.
= PrW{h(θ, w) = 1}. We

notice that h(θ, w) is an (1, nℓ)-Boolean function, since it can be expressed as a
function of nℓ boolean functions, each of them involving a polynomial of degree 1.
The proof now follows from Theorem 8 in [49] that states that if h : Θ ×W → R
is an (α, k)-Boolean function and ε ∈ (0, 0.14) then, with probability greater than
1 − δ, we have PrW{h(θ, w) = 1} ≤ ε if N is chosen such that

N ≥ 4.1

ε

(
ln

21.64

δ
+ 4.39nθ log2

(8eαk

ε

))
.

3.8.2 Proof of Theorem 3.1

To prove the theorem, we first prove the following property.

Property 3.1. Given ε ∈ (0, 1), δ ∈ (0, 1), and r ≥ 1, let N ≥ r be such that
B(r;N, ε) ≤ δ. Draw N i.i.d. samples {w(1), w(2), . . . , w(N)} from a distribution
PrW . For i ∈ [N ], let γi

.
= γ(w(i)), with γ(·) as in Definition 3.3, and suppose
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that γ̄ =
(
{γi}Ni=1

)
1+r:N

> 0. Then, with probability no smaller than 1 − δ, it

holds that PrW{c⊕ γ̄Ω0 ̸⊆ Φg
0(w)} ≤ ε.

Proof: It has been proven in [54, 55] that if one discards no more than s constraints
on a convex problem with N random constraints, then the probability of violating
the constraints with the solution obtained from the random convex problem is no
larger than ε ∈ (0, 1), with probability no smaller than 1 − δ, where

δ =

(
s + d− 1

s

) s+d−1∑
i=0

(
N

i

)
εi(1 − ε)N−i,

and d is the number of decision variables. We apply this result to the following
optimization problem

max
γ

γ

s.t. c⊕ γΩ0 ⊆ Φg
0(w(i)), i ∈ [N ].

(3.26)

From Definition 3.3, we could rewrite this optimization problem as

max
γ

γ

s.t. γ ≤ γ(w(i)), i ∈ [N ].
(3.27)

We first notice that the problem under consideration is convex and has a unique
scalar decision variable γ. That is, d = 1. Also, the non-degeneracy and unique-
ness assumption required in the application of the results of [54] and [55] are
satisfied. We notice that γ̄ =

(
{γi}Ni=1

)
1+r:N

, is the optimal solution to the opti-
mization problem when s = r constraints are discarded. Thus, we have that with
probability no smaller than 1 − δ, where

δ =

(
r

r

) r∑
i=0

(
N

i

)
εi(1 − ε)N−i = B(r;N, ε),

the choice γ̄ =
(
{γi}Ni=1

)
1+r:N

satisfies PrW{γ̄ > γ(w)} ≤ ε.
We conclude from this, and Definition 3.3, that with probability no smaller

than 1 − δ, PrW{c⊕ γ̄Ω0 ̸⊆ Φg
0(w)} ≤ ε.

Proof of Theorem 1
We consider first the case γ̄ > 0. From Property 3.1, we have that γ̄ > 0

satisfies, with probability no smaller than 1 − δ, that

PrW{Ω(γ̄) ̸⊆ Φg
0(w)} ≤ ε.

Equivalently,

PrW{Ω(γ̄) ⊆ Φg
0(w)} ≥ 1 − ε,
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which can be rewritten as

PrW{A(w)θ ≤ B(w), ∀θ ∈ Ω(γ̄)} ≥ 1 − ε,

and it implies that the probability of violation in c⊕ γ̄Ω0 is no larger than ε, with
probability no smaller than 1 − δ. This proves the first claim.
Suppose now that c ̸∈ Xε. This is equivalent to Viol(c) = ε̄c > ε. Suppose
that the sample constraints c ∈ Φg

0(w(i)), i ∈ [Nγ ] are violated nviol times. This
would imply, because of the definition of scaling factor, that there are at least
nviol scaling factors γ(w(i)) equal to zero. From this and Viol(c) = ε̄c > ε, we
obtain

PrWNγ {γ̄ > 0} = PrWNγ {
(
{γi}

Nγ

i=1

)
1+r:N

> 0}

≤ PrWNγ {nviol < r}
= B(r;Nγ , ε̄c) ≤ B(r;Nγ , ε) ≤ δ.

From here we conclude that c ̸∈ Xε implies

PrWNγ {γ̄ = 0} = 1 − PrWNγ {γ̄ > 0} ≥ 1 − δ.

3.8.3 Proof of Theorem 3.2

Note that, by definition, the condition c⊕ γHBs
p ⊆ Φg

0(w) is equivalent to

max
z∈Bs

p

aTℓ (w)(c + γHz) − bℓ(w) ≤ 0, ℓ ∈ [nℓ].

Equivalently, from the dual norm definition, we have

aTℓ (w)c + γ∥HTaℓ(w)∥p∗ − bℓ(w) ≤ 0, ℓ ∈ [nℓ].

Denote by γℓ the scaling factor γℓ corresponding to the ℓ-th constraint

aTℓ (w)c + γℓ∥HTaℓ(w)∥p∗ − bℓ(w) ≤ 0.

With the notation introduced in the theorem, this constraint rewrites as

γℓρℓ(w) ≤ τℓ(w).

The result follows noting that the corresponding scaling factor γℓ(w) can be
computed as

γℓ(w) = max
γℓρℓ(w)≥τℓ(w)

γℓ,

and that the value for γ(w) is obtained from the most restrictive one.



Chapter 4

Tight Immersed Probabilistic
Scaling

4.1 Introduction

In the previous chapter, a sample-based methodology to inner approximate the
chance constrained set of probability ε (ε-CCS) named probabilistic scaling was
presented. This approach computes first a simple approximating set, which is
then scaled to meet the required probabilistic guarantees. These operations are
all performed offline and the trade-off between the number of samples required
and the tightening of the approximation can be adjusted by the user.

In this chapter, we present the pack-based probabilistic scaling approach and
define a novel measure of the tightening of the approximating set. Then, we
show how to design the approximating set to meet the required probabilistic
guarantees plus a given tightening constraint. This allows the user to control both
the complexity and the fitting of the resulting approximating set, in exchange of
the number of samples required and the complexity of the approximation problem
(which is computed offline). The tightening constraints makes it possible to get
larger approximations of the ε-CCS compared to regular probabilistic scaling,
while still guaranteeing the inclusion in the original set.

The remainder of the chapter is structured as follows: In Section 4.2 we intro-
duce the problem of approximating the chance constrained set and the numerical
example used to compare the different approaches, in Section 4.3 we go through
statistical learning theory solutions to the problem and in Section 4.4 we introduce
the regular probabilistic scaling approach. In Sections 4.5 and 4.6 we present the
tight immersed pack-based probabilistic scaling. In Section 4.8 we compare the
performance of the different approaches and finally in Section 6.7 we discuss the
main conclusions.

The pack-based probabilistic scaling is inspired by the published paper [74].

61
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4.2 Problem setup

Let the parameters and variables that define the control problem be parameterized
by means of the design parameter θ ∈ Θ ⊆ Rnθ . Consider the uncertainty vector
w ∈ W ⊆ Rnw , which represents one admissible realization of the uncertainty
with probability distribution PrW . Consider general constraints of the form

g(θ, w) ≤ 0, (4.1)

with g : Rnθ × Rnw → R.

The probabilistic nature of the constraints may make them conservative and
difficult to impose in a robust fashion, e.g. when the support W is unbounded
[78]. To circumvent this issue, it is possible to allow some violations and relax
(4.1) with the following chance constraint formulation:

PrW{g(θ, w) ≤ 0} ≥ 1 − ε, (4.2)

where probability level ε ∈ (0, 1) represents the desired bound on the probability
of violation of constraint (4.1).

In this chapter, the ε-CCS (defined in section 1.2.1) will be approximated
using a sample-based approach. First, we define the multisample z ∈ WN as a
pack of N ≥ 1 realizations of the uncertainty so that z = {w(1), . . . , w(N)}, where
WN = W × · · · ×W (N times). Its associated probability distribution is denoted
as PrWN . It can be observed that W1 = W.

Note that given ε, Xε is always a fixed set, whereas sample-based approxima-
tions have a random nature, which depend on the random multisample z ∈ WN .

In the next subsection, we present an illustrative example to test the perfor-
mance of the proposed approximations.

4.2.1 Illustrative example

To illustrate the pack-based probabilistic scaling, we now present the numerical
example first proposed in [96]. For a given dimension nθ, let each individual
chance constraint be defined as a half-space tangent to the unit ball at a random
point drawn from a uniform distribution, with the origin being always a safe
point. Figure 4.1 illustrates an instance of this system for dimension nθ = 2.
Note that the unit ball is the safe region with probability 100% whereas the ε-
CCS gets (slightly) larger as ε increases. Besides, we can observe that because of
symmetry, the ε-CCS of this system is always a scaled version of the unit ball. As
shown in Figure 4.2, the radius of the ε-CCS depends greatly on the dimension
on the problem. The exact computation of the ε-CCS radius has been obtained
by Monte-Carlo simulation, exploiting the symmetry of the problem.

The problem of approximating the ε-CCS is tackled:

� Without any prior knowledge on the structure of the uncertainty.
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θ1

θ2

X0.2

Figure 4.1: Representation of X0.2 (red circle), unit ball (dashed black circle) and
random constraint samples (cyan lines).

� With a constraint generator which can generate the random samples.

This chapter provides sample-based approximations to the ε-CCS of tunable
complexity which do not require any previous knowledge of the problem, e.g.
symmetry. The performance of the proposed approximations is tested against the
illustrative example.

4.3 Statistical learning theory

In this section, we show how to use the results from statistic learning theory
[108, 49] to obtain an inner approximation of the ε-CCS.

First, we introduce the definition of indicator function.

Definition 4.1 (Indicator function). The indicator function of constraint (4.1)
Ig : Θ ×W → {0, 1} is defined as

Ig(θ, w)
.
=

{
0 if g(θ, w) ≤ 0

1 otherwise.

In statistical learning theory, given a multisample z ∈ WN , approximations of
the ε-CCS are often calculated by means of a constraint on the empirical mean,
i.e.
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Figure 4.2: Radius of the set Xε as a function of ε for different dimensions.

1

N

N∑
i=1

Ig(θ, w(i)).

Given a discarding parameter r, then ρ = r
N bounds the empirical mean so

that the set

ΩLT (ρ, z) = {θ ∈ Θ :
1

N

N∑
i=1

Ig(θ, w(i)) ≤ ρ}

constitutes an approximation of Xε. Assuming that the indicator function Ig has
finite Vapnik-Chervonenkis (VC) dimension [108] and that ρ < ε, the probability
that ΩLT (ρ, z) constitutes an inner approximation of Xε, i.e.

PrWN {ΩLT (ρ, z) ⊆ Xε},

converges to 1 as the number of samples N converges to infinity. In [49], sample
complexity bounds for N are explicitly calculated, which guarantee that ΩLT (ρ, z)
is included in Xε with a given confidence δ ∈ (0, 1), i.e. PrWN {ΩLT (ρ, z) ⊆ Xε} ≥
1 − δ. The resulting sample complexity grows linearly with the VC dimension of
Ig multiplied by a factor larger than 1

ε . However, the resulting approximation is
generally non-convex and is often non-connected. This may hinder its practical
application and makes it generally unsuitable for real-time problems.

Provided that the indicator function Ig is convex, the particular case ρ = 0
always leads to a convex approximation ΩLT (0, z). However, not allowing any
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violation in a sample-based approach makes the result very sensitive to extreme
events and therefore usually leads to conservative results or even empty sets [78].

To approximate the ε-CCS and deal with some of the issues present in classical
statistical learning theory, we recall the regular probabilistic scaling approach
presented in the previous chapter.

4.4 Regular probabilistic scaling

The probabilistic scaling approach consider a simple approximating set (SAS) c⊕
Ω0 and scale it around a given scaling center c to achieve the desired probabilistic
guarantees. The resulting set Ω(γ̄) = c⊕ γ̄Ω0 constitutes an inner approximation
of the ε-CCS. Since the final approximating set Ω(γ̄) is a linear transformation of
the SAS (scaling), its complexity can be tuned by choosing an appropiate SAS.
The ability to tune the set complexity beforehand makes probabilistic scaling
techniques ideal for a variety of applications in which complexity may be a limiting
factor [96, 97].

Given a shape Ω0 and a scaling center c, the goal of probabilistic scaling is to
find the largest scaling factor γ̄ such that

PrW{c⊕ γ̄Ω0 ⊆ Xε} ≥ 1 − δ. (4.3)

and therefore, the chance constraint (4.2) is also met with the same probability
1 − δ.

Now, we introduce the pack formulation of some of the concepts introduced
in previous chapters. This generalization will be used to define both the regular
and the pack-based probabilistic scaling.

Definition 4.2 (Pack indicator function). Given integers s and L such that 0 ≤
s < L and given a multisample z ∈ WL, the pack indicator function Igs : Θ×WL →
{0, 1} is defined as

Igs (θ, z)
.
=

{
0 if

∑L
ℓ=1 I

g(θ, w(ℓ)) ≤ s

1 otherwise.
(4.4)

Igs (θ, z) indicates whether the point θ violates more than s of the constraints as-
sociated to the uncertainty realizations of the multisample z.

Definition 4.3 (Pack safe region). The pack safe region Φg
s(z) is defined as the

set of points which violates no more than s of the constraints associated to the
uncertainty realizations of multisample z and can be expressed as:

Φg
s(z)

.
= {θ ∈ Θ : Igs (θ, z) = 0}.
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Definition 4.4 (Pack scaling factor). Given a scalable SAS Ω(γ) defined by a
scaling center c ∈ Θ and a shape Ω0, and a multisample z ∈ WL, we define
the pack scaling factor of Ω(γ) relative to the random constraints g(θ, w(i)) ≤
0,∀w(i) ∈ z as

γs(c,Ω0, z)
.
=

 0 if c ̸∈ Φg
s(z)

max
c⊕γΩ0⊆Φg

s(z)
γ otherwise. (4.5)

Now we introduce a property that will be used throughout the chapter:

Property 4.1. Given the accuracy parameter p ∈ (0, 1) and the confidence level
δ ∈ (0, 1), consider the discarding integer parameter r ≥ 0 and suppose that M is
chosen such that

B(r;M,p) ≤ δ. (4.6)

For each pack of constraints i = 1, . . . ,M , draw the i.i.d. sets zi ∈ WL and define

γi
.
= γs(c,Ω0, zi)

and suppose that γ ≥ 0 and γ ≤ γ1+r:M > 0. Then, with probability no smaller
than 1 − δ,

PrWL{c⊕ γΩ0 ̸⊆ Φg
s(z)} ≤ p.

Proof. The property can be proved particularizing the results of convex scenario
[54], [55] to the case of a scalar decision variable.

Consider the following optimization problem

max
γ

γ (4.7)

s.t. c⊕ γΩ0 ⊆ Φg
s(zi), i = 1, . . . ,M.

If this problem has a valid solution, we can rewrite it using the definition of
γs(·) as

max
γ

γ (4.8)

s.t. γ ≤ γs(c,Ω0, zi), i = 1, . . . ,M.

It has been proved in [54] and [55] that if one discards no more than r con-
straints on a convex problem with M random constraints, then the probability
of violating the constraints with the solution obtained from the random convex
problem is no larger than p ∈ (0, 1), with probability no smaller than 1− δ, where

δ =

(
d + r − 1

d− 1

)
B(d + r − 1;M,p),
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and d is the number of decision variables.
We first notice that (4.8) is convex and has a unique scalar decision variable

γ, i.e. d = 1. Also, the non-degeneracy and uniqueness assumption required in
the application of the results of [54] and [55] are satisfied. Hence, if we allow r
violations in the above minimization problem, we have that with probability no
smaller than 1 − δ, where

δ = B(r;M,p), (4.9)

the optimal solution of problem (4.8) with no more than r constraint removal γ̄
satisfies

PrWL{γ̄ > γs(c,Ω0, z)} ≤ p.

We conclude from this and the definition of γs(·) that with probability no
smaller than 1 − δ,

PrWL{c⊕ γ̄Ω0 ̸⊆ Φg
s(z)} ≤ p.

Note that problem (4.8) with constraint removal can be solved directly by
ordering the values γi = γs(c,Ω0, zi). It is clear that if r ≥ 0 violations are
allowed, then the optimal value for γ is γ̄ = γ1+r:N . Smaller values of γ would
meet the inclusion constraint but will not be optimal, while larger values of γ
would no longer meet the inclusion constraint.

Remark 4.1. Property 4.1 can be particularized for the regular probabilistic scal-
ing, i.e. M = N and L = 1.

Suppose that N is chosen such that

B(r;N, p) ≤ δ.

Let z ∈ WN . For i = 1, . . . , N , define

γi
.
= γr(c,Ω0, zi)

and suppose that γ ≥ 0 and γ ≤ γ1:M > 0. Then, with probability no smaller than
1 − δ,

PrW{c⊕ γΩ0 ̸⊆ Φg
0(w)} ≤ p.

Remark 4.2. Property 4.1 can also be particularized for the case r = 0.
Suppose that M is chosen such that

(1 − p)M ≤ δ.

For each pack of constraints i = 1, . . . ,M , draw the i.i.d. sets zi ∈ PrWL and
define
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γi
.
= γs(c,Ω0, zi)

and suppose that γ ≥ 0 and γ ≤ γ1:M > 0. Then, with probability no smaller than
1 − δ,

PrWL{c⊕ γΩ0 ̸⊆ Φg
s(z)} ≤ p.

In the previous chapter, it was shown how to sample the uncertainty and
obtain a scaling factor such that, with pre-specified probabilistic levels, the scaled
set c⊕ γ̄Ω0 constitutes an inner approximation of the ε-CCS (regular probabilistic
scaling). For the sake of completeness, we now recall the aforementioned property
along with its correspondent proof using the pack formulation (with s = 0).

Property 4.2. Given accuracy parameter ε ∈ (0, 1), confidence level δ ∈ (0, 1),
a discarding integer parameter r ≥ 0, and an integer Nγ such that

B(r;Nγ , ε) ≤ δ. (4.10)

Let z ∈ WNγ . For each constraint i = 1, . . . , Nγ, define

γi = γ0(c,Ω0, w
(i)).

Suppose that γ̄ = γ1+r:Nγ > 0. Then, with probability no smaller than 1 − δ,

c⊕ γ̄Ω0 ⊆ Xε.

Proof. According to Remark 4.1, if we choose the parameters (Nγ , r) according
to (4.10), we have that γ̄ = γ1+r:Nγ > 0 satisfies, with probability no smaller than
1 − δ, that

PrW{c⊕ γ̄Ω0 ̸⊆ Φg
0(w)} ≤ ε.

Equivalently,
PrW{c⊕ γ̄Ω0 ⊆ Φg

0(w)} > 1 − ε.

This can be rewritten as

PrW{Ig0 (θ, w) = 0, ∀θ ∈ c⊕ γ̄Ω0} > 1 − ε.

According to the definition of ε-CCS (see (1.2), it can be stated as

c⊕ γ̄Ω0 ⊆ Xε.

We refer to the action of calculating the scaling factor γ̄ according to Property
4.2 and using it to create the approximating set c ⊕ γ̄Ω0 as regular probabilistic
scaling (or simply PS). The choice of the discarding parameter r is up to the
user. Recalling the discussion made in section 2.2, large values of r make the
resulting set more insensitive to extreme values, at the expense of a larger sample
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Table 4.1: Minimum sample size Nγ required to approximate the 0.05-CCS with
confidence δ = 10−5 for different values of the discarding parameter r.

r 0 5 10 15

Nγ 225 442 613 769

complexity Nγ . Remember that in probabilistic scaling techniques, convexity
of the approximating set is independent of the discarding parameter r and only
depends on the choice of the SAS. Table 4.1 shows the minimum number of samples
required for different values of the discarding parameter r so that, upon regular
probabilistic scaling, the resulting set approximates X0.05 with a confidence of
δ = 10−5.

Calculating approximations of the ε-CCS using regular probabilistic scaling
is generally easy to compute, does not require any assumption on the underlying
probabilities (such as finite VC dimension), provides probabilistic guarantees to
the scaled region, and its effectiveness has been proven.

Despite all its advantages, regular probabilistic scaling may still lead to very
conservative solutions for some problems. In the illustrative example proposed in
section 4.2.1, let Ω0 be the unit ball and the scaling center c be the origin. Then,
the scaling factor obtained by regular probabilistic scaling is independent of ε and
the dimension of the problem, and it is always equal to 1, regardless of the discard
parameter r used. The reason behind this is that the scaling factors associated to
every realization of the constrained set are one, i.e. γi = 1, for all i ∈ [Nγ ]. Since
the constraints are taken into account independently, the act of discarding some
of them does not change the result in this problem.

According to the discussion from Section 4.2.1, approximating Xε with the
unit ball can be very conservative, especially for high dimensions and large values
of ε (Figure 4.2).

In the next section, we outline the pack-based probabilistic scaling. For the
same initial SAS, this variant of the regular probabilistic scaling may lead to less
conservative results at the expense of (possibly) more demanding computation
times.

4.5 Pack-based probabilistic scaling

The main idea behind pack-based probabilistic scaling (PBPS) is to divide the
samples in a number of packs and allow some constraint violations inside each of
them. As opposed to regular probabilistic scaling, where the scaling factor asso-
ciated to each constraint is computed independently, in the pack-based approach
the constraints inside each pack are taken into account together. Ultimately, this
can lead to tighter approximations of the ε-CCS and reduced sample complexity.

Let the Nγ sampled constraints be divided into M packs of L constraints
each, i.e. z = {z1, . . . , zM} = {w(1), . . . , w(Nγ)}, with z ∈ WNγ and zi ∈ WL for
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i ∈ [M ]. The following property, shows how to determine the scaling factor using
a pack-based approach so that the scaled SAS is fully contained in the ε-CCS
with a given confidence δ.

Property 4.3. Consider the shape Ω0, the scaling center c, accuracy parameter
ε ∈ (0, 1), confidence level δ̄ ∈ (0, 1) and non negative integers M,L and s, with
L > s such that

B(s;L, ε)M ≤ δ. (4.11)

Denote zi ∈ WL each pack of constraints, where i ∈ [M ] and define

γi = γs(c,Ω0, zi).

Suppose that γ ≥ 0 and γ ≤ γ1:M > 0, then with probability no smaller than 1− δ,

c⊕ γΩ0 ⊆ Xε.

Proof. Let p = 1−B(s;L, ε). From Remark 4.2 we know that if M is chosen such
that

B(s;L, ε)M ≤ δ

and γ ≥ 0 and γ ≤ γ1:M > 0, then with probability no smaller than 1 − δ the
following holds

PrWL{c⊕ γΩ0 ̸⊆ Φg
s(z)} ≤ p.

Equivalently,

PrWL{Igs (θ, z) = 1, ∀θ ∈ c⊕ γΩ0} ≤ p.

We know from Property 4.6 in Appendix that

PrWL {Igs (θ, z) = 1} ≤ p ⇐⇒ PrW {Ig(θ, w) = 1} ≤ ε. (4.12)

Therefore, we conclude that

PrW {Ig(θ, w) = 1} ≤ ε, ∀θ ∈ c⊕ γΩ0.

Equivalently,

c⊕ γΩ0 ⊆ Xε.

We refer to the action of calculating the scaling factor γ̄ = γ1:M according to
Property 4.3 and using it to create the approximating set c⊕ γ̄Ω0 as pack-based
probabilistic scaling (PBPS).

Unlike regular probabilistic scaling, the sample complexity in PBPS is given
by two parameters, namely the number of packs M and the size of each pack L.
The sample complexity is calculated as Nγ = ML.
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Figure 4.3: Illustration of the concept of tight immersion.

Consequently, condition (4.11) has three tunable parameters: M,L and s.
Parameter s is the discarding parameter of each pack. Similar to the discarding
parameter of regular probabilistic scaling (r), large values of s makes the approxi-
mating set more insensitive to extreme values. As for M and L, one could choose
them according to any criterion, e.g. minimize the sample complexity Nγ . In the
next section, we propose a tightening constraint to ensure that the approximation
obtained through PBPS is close to the ε-CCS.

4.6 Tight immersion

In this section, a measure of tightening of an approximation called tight immersion
is presented. This measure is then used along pack-based probabilistic scaling to
obtain a tight inner approximation of the ε-CCS.

First, the notion of tight immersion is introduced.

Definition 4.5 (τ -tight immersed). The set S is τ -tight immersed in the ε-CCS
Xε if

S ⊆ Xε, (4.13a)

S ̸⊆ Xτε (4.13b)

where τ ∈ [0, 1) is a measure of tightening.

Tight immersion guarantees not only that the approximation set is inside the
ε-CCS (4.13a), but also that it will be not inside a conservative set characterized
by τ (4.13b). Therefore, it imposes a more restrictive condition than the regular
inner approximation.

Remark 4.3. If the ε-CCS is strictly increasing with respect to ε, i.e.
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Figure 4.4: Tight immersion alone does not guarantee a better approximation.
The red set S1 is inside Xε but it is not τ -immersed in it. The green set S2 is
both inside Xε and τ -immersed in it.

∀τ1, τ2 ∈ [0, 1)
τ1 < τ2

=⇒ Xτ1ε ⊂ Xτ2ε,

then the larger τ is, the larger Xτε will be.

Remark 4.4. For the same geometry, the set with the largest value of τ fits the
ε-CCS better (see Figure 4.3). However, tight immersion should never be used to
compare the goodness of two different geometries. As shown in Figure 4.4, tight
immersion by itself does not imply good approximation.

Property 4.4. If the approximating set Ω(γ̄) is τ -tight immersed in the set Xε,
then it is also τ̄ -tight immersed in it, with τ̄ ∈ [0, τ).

Proof. From Definition 4.5 we know that condition (4.13a) continues to be met
for τ̄ , since it does not depend on τ .

We know from Ω(γ̄) being τ -tight immersed in the set Xε that

Ω(γ̄) ̸⊆ Xτε.

For τ̄ ∈ [0, τ), we know Xτ̄ ε ⊆ Xτε. Consequently

Ω(γ̄) ̸⊆ Xτ̄ ε.

Therefore, condition (4.13b) also holds.

Notice that equation (4.13a) holds with confidence 1−δ for regular pack-based
probabilistic scaling, i.e. if we sample according to the pack parameters from
Property 4.3 and carry out pack-based probabilistic scaling. Now, we present a
new property that shows how to determine the pack parameters so that, upon
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pack-based probabilistic scaling, condition (4.13b) is met with confidence 1 − δ̄,
with δ̄ ∈ (0, 1).

The following property shows how to select the values of M,L and s and
calculate γ̄ so that the tightening constraint (4.13b) is met.

Property 4.5. Consider the scalable SAS Ω(γ) with shape Ω0 and scaling center
c, accuracy parameter ε ∈ (0, 1), confidence level δ̄ ∈ (0, 1), tightening parameter
τ ∈ [0, 1), and non negative integers M,L and s, with L > s and

B(s;L, τε)M ≥ 1 − δ̄. (4.14)

Denote zi ∈ WL each pack of constraints, where i ∈ [M ] and define each pack
of random constraints as g(θ, w(j)) ≤ 0,∀w(j) ∈ zi. Define also the pack scaling
factor of Ω(γ) relative to each pack of random constraints as

γi = γs(c,Ω0, zi).

Suppose γ ≥ γ1:M > 0, then with probability no smaller than 1 − δ̄,

c⊕ γΩ0 ̸⊆ Xτε,

Proof. Let p = B(s;L, τε). According to Property 4.8 in Appendix , if we choose
the parameters according to (4.14), we have that γ ≥ γ1:M > 0 satisfies, with
probability no smaller than 1 − δ̄,

PrWL{c⊕ γΩ0 ⊆ Φg
s(z)} ≤ p.

This can be rewritten as

PrWL{Igs (θ, z) = 0, ∀θ ∈ c⊕ γΩ0} ≤ p.

We know from Property 4.7 in Appendix that

PrWL {Igs (θ, z) = 0} ≤ p ⇐⇒ PrW {Ig(θ, w) = 0} ≤ 1 − τε.

Therefore, we conclude that

PrW {Ig(θ, w) = 0} ≤ 1 − τε, ∀θ ∈ c⊕ γΩ0.

Equivalently, with probability no smaller than 1 − δ̄

c⊕ γΩ0 ̸⊆ Xτε.

Notice that we are using the tightening confidence 1− δ̄ instead of the original
confidence 1 − δ. This tightening confidence is user-defined and can be set lower
than the original confidence to limit the sample complexity.

Given probabilistic parameters ε, δ and tightening parameters τ, δ̄, we denote
tight immersed pack-based probabilistic scaling (TI-PBPS) to the process of cal-
culating γ̄ according to Properties 4.3 and 4.5 and using it to obtain the set
c⊕ γ̄Ω0. In the next section we show how to sample the constraints to meet both
properties.
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4.6.1 Design of the pack parameters

In this section, we show how to design the parameters of the pack-based approach
to meet tight immersion with confidences δ and δ̄ respectively. From Properties
4.3 and 4.5, we know that conditions (4.13a) and (4.13b) hold when:

M lnB(s;L, ε) ≤ ln δ (4.15)

M lnB(s;L, τε) ≥ ln(1 − δ̄). (4.16)

Remember that equation (4.13a) embeds the probabilistic guarantees, whereas
(4.13b) is only used to tighten the solution.

From equation (4.15) we know that

M ≥ ln δ

lnB(s;L, ε)
.

Thus, to guarantee (4.15), it suffices to take

M =

⌈
ln δ

ln B(s;L, ε)

⌉
. (4.17)

Equation (4.16) can also be expressed as

M ≤ ln(1 − δ̄)

lnB(s;L, τε)
. (4.18)

For a given set of probabilistic and tightening parameters (ε, δ, τ, δ̄), there exist
multiple combinations of (M,L, s) that meet (4.17) and (4.18). In particular, we
propose two different criteria ζ:

� Minimize the number of possible combinations of s+ 1 constraints, i.e. ζ =
M
(

L
s+1

)
.

� Minimize the total sample complexity, i.e. ζ = ML.

The computation of the pack parameters can be formally formulated as the
solution of the following optimization problem:

(Mo, Lo, so) = arg min
M,L,s

ζ

s.t. M ≤ ln(1 − δ̄)

lnB(s;L, τε)

M =

⌈
ln δ

lnB(s;L, ε)

⌉
L ≥ s + 1

M,L ∈ N>0

s ∈ N≥0.

(4.19)
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Because of the complexity of problem (4.19), we propose to use exhaustive
search to find a good solution.

Starting from s = 0 and going all the way up to s = 30, we set M according
to (4.17), test the values L = s + 1, · · · , s + 300 and check if the pairs (L, s)
satisfy (4.18). Among all the pairs that do satisfy (4.18), we select the one that
minimizes ζ.

Table 4.2, shows the pack parameters obtained by solving problem (4.19) with
this approach using both ζ criteria, i.e. minimize combinatorics M

(
L

s+1

)
and

minimize total sample complexity Nγ .

Table 4.2: Pack parameters, sample complexity and number of possible combi-
nations of TI-PBPS for ε = 0.05, δ = 0.001, δ̄ = 0.1 and different values of τ
minimizing the different criteria.

Criterion: Minimize M
(

L
s+1

)
τ M L s Nγ M

(
L

s+1

)
0.2 43 27 2 1.16e+03 1.25e+05

0.3 155 27 3 4.19e+03 2.72e+06

0.4 2681 20 4 5.36e+04 4.16e+07

0.5 15033 29 6 4.36e+05 2.35e+10

Criterion: Minimize Nγ

τ M L s Nγ M
(

L
s+1

)
0.2 2 195 4 3.90e+02 4.46e+09

0.3 2 303 8 6.06e+02 1.05e+17

0.4 4 278 10 1.11e+03 6.28e+19

0.5 8 309 14 2.47e+03 9.68e+25

4.7 Branch-and-bound based heuristic for PBPS

In this section we present an alternative method to those presented in chapter
3 (Section 3.5) to obtain a simple approximating set (SAS) of the chance con-
strained set which is guaranteed to be non-empty, even when the robust safe
region is empty. Then, we propose a branch-and-bound based heuristic to scale
this region with pack-based probabilistic scaling using the parameters obtained in
the previous section.

4.7.1 Obtaining an ellipsoidal SAS

Despite not offering any probabilistic guarantees, a good characterization of the
SAS allows a tighter approximation of the CCS upon scaling it with (pack-based)
probabilistic scaling (see Figure 4.4). If prior knowledge about the geometry of
the CCS is known, it could be used to build the SAS.
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In this section, we use a sample-based approach to design an ellipsoidal SAS
of the form

c⊕ Ω0 = {θ : (θ − c)TP (θ − c) ≤ 1}.

The number of random samples NS used in the computation of the SAS is
defined by the user. A larger number of samples may lead to a better charac-
terization of the geometry of the CCS. If the constraints are linear, one could
compute the analytic center and its associated ellipsoid, as proposed in [113].
However, this problem is infeasible when the constraints form an empty interior
region, even if the chance constrained set is non-empty. The elimination of some
restrictive constraints makes the geometry of the initial region more insensitive to
extreme values.

We propose the following greedy procedure to remove the most restrictive
constraints:

1. Compute the minimum value of margin υ that makes the sampled region
non-empty solving an optimization problem of the form

υ∗ = arg min
υ,θ

υ

s.t. Aθ ≤ b + υ

2. Remove the most restrictive constraint, which corresponds to the one with
the maximum value for A− b− υ∗.

3. Repeat the procedure until rS constraints have been removed. The number
of removals rS is a tuning parameter, but it is reasonable to choose it similar
to the number of expected violations, i.e. rS ≈ εNS .

After rS constraints have been removed, the initial region should be non-empty
(otherwise one should increase rS). That means we can now compute the analytic
center c and its associated ellipsoid Ω0 by means of an infeasible Newton start
method as shown in [121, 122].

The proposed approach does not rely on any information of the ε-CCS. This
makes it suitable for any problem, at the expense of not taking advantage of that
information when it is available.

4.7.2 Computing the scaling factor

Now we show how to compute the pack-based scaling factor so that the scaled
SAS constitutes a tight inner approximation of the ε-CCS.

Given the SAS and the pack parameters M,L, s computed in the previous sec-
tions, we propose a branch-and-bound strategy to address the pack-based prob-
abilistic scaling for the case of linear constraints. This strategy lies in the fact
that every point in the scaled SAS must violate at most s constraints (Section
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4.5), therefore, the pack scaling factor of each pack i can be computed at the
contact point θ∗i between the scaled SAS and the border of Φg

s(zi), i.e. the set
of points that violate exactly s + 1 constraints. Because of the non-convexity of
Φg
s(zi), approaching the previous problem in a direct fashion can be cumbersome.

We know from Theorem 4.2 that if the dimension of the problem is nθ and we
consider s constraint violations, the contact point θ∗i can always be expressed as
the intersection of at least one single constraint and at most min({s + 1, nθ})
constraints, known as the set of active constraints.

The set of active constraints is computed with a expansion procedure, which
we introduce in the following definition.

Definition 4.6. The expanding procedure consists on adding a new active con-
straint to a given set of active constraints.

Now, we show how to efficiently solve the scaling problem given a set of active
constraints and present a ray based methodology to upper bound the scaling
factor. Then, the full heuristic will be detailed, in which the expanding procedure
is used to compute the optimal set of active constraints.

Scaling

Given a set of active constraints Aθ = B, in the scaling step we compute the
minimum scaling factor so that the scaled SAS (c⊕ γ̄Ω0) touches them. To do it,
we solve the following optimization problem

θ∗ = arg min
θ

1

2
(θ − c)TP (θ − c)

s.t. Aθ = B.

(4.20)

In the expanding procedure (see definition 4.6), every new instance of the
scaling problem is built adding one new constraint ãTj θ ≤ b̃j to the given set of
active constraints Aθ ≤ B. This is expressed as:

θ∗ = arg min
θ

1

2
(θ − c)TP (θ − c)

s.t. Aθ = B

ãTj θ ≤ b̃j .

(4.21)

We can rewrite (4.21) to take advantage of the optimal solution of (4.20),
which is obtained beforehand. As a result, each instance of the problem can be
solved faster, especially when the dimension of the problem is high.

The dual problem of (4.21) is defined as:

max
η,λj

min
θ

1

2
(θ − c)TP (θ − c) + ηT (Aθ −B) + λT

j (ãTj θ − b̃j), (4.22)
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and its solution is determined by:P AT ãj
A 0 0
ãTj 0 0

θ∗η∗
λ∗
j

 =

Pc
B

b̃j

 . (4.23)

From the first two rows we have that:[
P AT

A 0

] [
θ∗

η∗

]
+

[
ãj
0

]
λ∗
j =

[
Pc
B

]
[
θ∗

η∗

]
=

[
P AT

A 0

]−1([
Pc
B

]
−
[
ãj
0

]
λ∗
j

)
(4.24)

Substituting this into the third row, we have:

[
ãTj 0

] [P AT

A 0

]−1([
Pc
B

]
−
[
ãj
0

]
λ∗
j

)
= b̃j .

We observe that the dual variable λ∗
j for the set expanded with constraint j

can be written as:

λ∗
j =

[
ãTj 0

] [P AT

A 0

]−1 [
Pc
B

]
− b̃

[
ãTj 0

] [P AT

A 0

]−1 [
ãj
0

] (4.25)

Quick Note

The following two expressions are equivalent and can be used to compute
the P -norm of multiple vectors expressed as the rows of X at the same
time:

γ = diag(XPXT )

γ = ((XP ).∗X)1nP ,

where nP is the dimension of the square matrix P and .∗ stands for the
element by element multiplication.

Denote G =

[
G1,1 G1,2

G2,1 G2,2

]
=

[
P AT

A 0

]−1

and Gext = G1,1Pc + G1,2B, where

G1,1 ∈ Rnθ×nθ and G1,2 ∈ Rnθ×m. Let all the m̃ new constraints in the expansion
procedure be denoted by:

ãTj θ = b̃j , j = 1, . . . , m̃, (4.26)

and consider they are collected in the matrices Ã and B̃, such that:
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Ã =

ã
T
1
...
ãTm̃

 , B̃ =

 b̃1...
b̃m̃

 . (4.27)

Then, one could compute at the same step the dual variable for each one of
the new constraints λ∗

j , j = 1, . . . , m̃ in the expansion as:

Λ∗ =
[
λ∗
1 . . . λ∗

m̃

]T
= (ÃGext − B̃)./

(
((ÃG1,1).

∗Ã)1nθ

)
, (4.28)

where Gext = G1,1Pc + G1,2B and 1nθ
corresponds to a column vector of ones

of dimension nθ. From (4.24) and (4.28), we can compute the contact points
associated to all the new sets created in the expansion procedure:

Θ∗ =
[
θ∗1 . . . θ∗m̃

]
= G1,1(Pc− ÃT .∗(Λ∗)T ) + G1,2B =

=Gext − (G1,1Ã
T ).∗(Λ∗)T .

(4.29)

Finally, we can compute the scaling factors associated to all the new sets
created in the expansion procedure:

Γ∗ =
[
γ∗1 . . . γ∗m̃

]T
= ((Θ∗ − c)TP ).∗(Θ∗ − c)T1nθ

. (4.30)

Ray search

The ray based methodology provides upper bounds for the scaling factor γ which
will be used as the stop condition for the heuristic.

Given a point θ∗ (e.g. the intersection point of a number of constraints), we
throw a ray that starts at the center of the SAS c and passes through θ∗. Then,
we calculate the first point where the ray violates more than s constraints. The
scaling factor γub associated to that point is used as an upper bound of γ.

Let the ray be given by θ = c+αvd, where vd denotes its direction. Then, the
intersections between the ray and the constraints are defined by:

Ac + αAvd = B

α =
B −Ac

Avd
.

Since the ray has a sense, we take the positive values of α, partial sort them and
choose the s-th smallest one αs. Then, we calculate the minimum factor by which
we need to scale our geometry to include the point θ = c+αsvd. That value is an
upper bound of the scaling factors. This single ray search procedure is depicted
in Figure 4.5.

In the context of an expansion procedure, multiple contact points are identified
(equation (4.29)), so we can perform multiple ray searches at the same time.

All the unit vectors associated to the contact points Θ∗ can be computed as:
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Figure 4.5: Ray search scheme given the SAS center c and the point x∗. Inequal-
ity constraints are shown as black lines and the yellow region represents their
violation. More intense yellow indicates that a larger number of constraints are
violated. The ray is represented by the dashed red line. Blue circles highlights
the points of the ray at which the number of constraint violations changes.

Vd = (Θ∗ − c)./
√

((Θ∗ − c).∗(Θ∗ − c))T1nθ
. (4.31)

All the intersections between the rays and the constraints are defined by:

ᾱ = (B̃ − Ãc)./(ÃVd), (4.32)

where each column represents each of the rays and each row represents each of
the constraints. Since no more than s constraint violations are allowed, we partial
sort the columns of ᾱ and create the vector ᾱs from their s-th smallest values.
Then, we compute the contact points for all the rays as:

Θs = c + ᾱs.
∗Vd. (4.33)

The associated scaling factors are computed as:

Γs = ((Θs − c)TP ).∗(Θs − c)T1nθ
. (4.34)

Therefore, an upper bound of the algorithm is obtained as:

γub = min(Γs). (4.35)

4.7.3 Heuristic

Once we have detailed the computation of the pack parameters, the scaling prob-
lem and the ray search, we now present the branch-and-bound heuristic used to
compute the pack-based probabilistic scaling and achieve tight immersion for the
case of linear constraints and ellipsoidal SAS.
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Algorithm 4 details the branch-and-bound based heuristic used to compute
the tight immersed pack-based probabilistic scaling (TI-PBPS) introduced in Sec-
tion 4.6 given the parameters M,L, s that satisfy the tight immersion constraints
(4.15)-(4.16).

Algorithm 4 Branch-and-bound based heuristic for computing a probabilistic
inner approximation using pack-based probabilistic scaling.

For each j-th pack, with j ∈ [1,M ]:

Init

1) Set up L sets of constraints Ck, each containing one different individual con-
straint from the pack j.

2) For each set Ck, compute γCk
and x∗Ck

according to Scaling (4.28)-(4.30).

Loop

3) Among all the available sets, select Cmin as the most restrictive one, i.e. the
set with the smallest value of γ (γCmin

), and identify its contact point θ∗Cmin
.

4) Compute a ray search using the point θ∗Cmin
and the L constraints from pack j

according to (4.31)-(4.35). Then make γub equal to the smallest known upper
bound.

5) IF γCmin
= γub, THEN end the loop of pack j and return γCmin

as its scaling
factor.

6) Set up all the possible different sets Ck that have the same constraints as Cmin

plus one additional new constraint from the pack j, then remove the set Cmin.

7) For the sets of constraints set up in step 4, compute γCk
and θ∗Ck

according to
Scaling (4.28)-(4.30).

End Loop
End For

8) Given the scaling factor for each pack, use the smallest one γ̄ to scale the SAS
as: c⊕ γ̄Ω0.

To visualize the heuristic described in Algorithm 4, we apply it to the simple
problem shown in Figure 4.6, where the four constraints represented as lines are
indeed closed half-spaces containing Ω0 in its safe region. The aim is to scale the
initial set Ω0 such that the resulting geometry is as large as possible and every
point in it violates no more than one constraint (s = 1).

The evolution of the branch-and-bound tree for this simple problem is shown
in Figures 4.7-4.9. White nodes indicate expandable sets of active constraints, red
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Figure 4.6: Initial SAS (Ω0) and a set of four constraints labelled from {1} to {4}.

ones indicate the ones with a scaling factor greater than the upper bound, and
green ones indicate that the set can be no longer expanded and the scaling factor
is no larger than the upper bound.

In step 5) of Algorithm 4, exiting the loop before reaching the optimal solu-
tion, i.e. γCmin

< γub, would result in a scaled SAS that is a probabilistic inner
approximation of the ε-CCS but may not be τ -tight immersed in it. This stems
from the fact that the tight immersion constraints (4.13) are guaranteed only for
the final (optimal) result. While at any iteration γCmin

makes the scaled set violate
at most s pack constraints, the tight immersion constraint also requires that at
least one point of the scaled set violates at least s pack constraints, which would
not be guaranteed in early exit scenarios.

Algorithm 4 relies on the expanding procedure, which is used to enlarge the
scaled SAS. This property of the expanding procedure is formally stated in the
following theorem.

Theorem 4.1. Expanding the set of active constraints cannot decrease the scaling
factor.

Proof Given a set of active constraints defined by the general function h1(θ) =
0, the scaling factor associated to them is computed as:

min
θ,γ

γ

s.t. θ ∈ c⊕ γΩ0

h1(θ) = 0

(4.36)

If one were to expand this set (See Expanding Procedure in Definition 4.6)
with a new active constraint h2(θ) = 0, the associated scaling problem would
transform into:
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{ }

{1} {2} {3} {4}

γ = 1.5

s = 0

γmax = ∞

γ = 1

s = 0

γmax = 2.3

γmin = 1
γmax = 2

γ = 2

s = 1

γmax = 2

γ = 3

s = 2

γmax = 2

Figure 4.7: Evolution of γ and its upper bound γmax in the branch-and-bound
tree. Phase 1.

{ }

{1} {2} {3} {4}

{2,3} {2,4}

γ = 2.4

s = 2

γ = 4.3

s = 3

γmin = 1.5
γmax = 2

γ = 2

s = 1

γmax = 2

γ = 3

s = 2

γmax = 2

γ = 1.5

s = 0

γmax = ∞

Figure 4.8: Evolution of γ and its upper bound γmax in the branch-and-bound
tree. Phase 2.
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{ }

{1} {2} {3} {4}

{2,3} {2,4}

γ = 1.6

s = 1

γmax = 1.6

{1,2} {1,3} {1,4}

γ = 2.5

s = 2

γ = 3.4

s = 3

γmin = 1.6
γmax = 1.6

γ = 1

s = 1

γmax = 2

γ = 2

s = 2

γmax = 2

γ = 2.4

s = 1

γ = 4.3

s = 2

Figure 4.9: Evolution of γ and its upper bound γmax in the branch-and-bound
tree. Phase 3 (final).

min
θ,γ

γ

s.t. θ ∈ c⊕ γΩ0

h1(θ) = 0

h2(θ) = 0.

(4.37)

It is clear that problem (4.37) is more constrained than (4.36). Therefore, the
optimal scaling factor obtained from (4.36) is never larger than that of (4.37).

According to Theorem 4.1, if the set with the smallest value of γ (γCmin
) in

step 3) of Algorithm 4 has an associated contact point that violates no more than
s constraints, then its scaling factor constitutes a lower bound of the branch-and-
bound tree. The upper bounds of the tree are computed using the ray search
procedure described in Section 4.7.2.

Note that, since we are only interested in the smallest scaling factor, we can use
the upper bounds from previously computed packs in the step 4 of Algorithm 4.
This can speed up the heuristic, since upper bounds do not need to be computed
from the ground up for each pack.
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4.8 Results

In this section, we use the illustrative example presented in Section 4.2.1 and
calculate approximations of its 0.05-CCS using both regular probabilistic scaling
and TI-PBPS with different values of the tightening parameter τ . We use the
unit ball as the SAS Ω0 and the origin as the scaling center c. Therefore, both
the resulting approximating sets and the 0.05-CCS are scaled versions of the unit
ball.

Table 4.3 and Figure 4.10 show the radii of the approximation obtained for
regular probabilistic scaling (PS) and tight immersed pack-based probabilistic
scaling (TI-PBPS) presented in this chapter. These radii are compared with the
radius of the real 0.05-CCS, which has been computed by means of a Monte-Carlo
simulation.

To reduce variability, the radii of the TI-PBPS results corresponds to the
median radius of five experiments, each of which containing different realizations
of the constraints.

Table 4.3: Comparison of the radius of the approximation set for different dimen-
sions nθ of the problem given by the different approaches with ε = 0.05, δ = 0.001,
δ̄ = 0.1.

Real Radii nθ = 10 nθ = 20 nθ = 30

PS 1 1 1

TI-PBPS τ = 0.2 1.04 1.13 1.23

TI-PBPS τ = 0.3 1.17 1.36 1.48

TI-PBPS τ = 0.4 1.25 1.50 1.72

TI-PBPS τ = 0.5 1.41 1.80 2.15

Real 1.92 2.71 3.32
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Figure 4.10: Comparison of the radius (r) of the approximation set for different
dimensions (nθ) of the numerical example obtained by the different approaches
with ε = 0.05, δ = 0.001, δ̄ = 0.1.

In Figure 4.10, we can observe how for this particular problem, the tight
immersed pack-based probabilistic scaling is able to substantially improve the
result from regular probabilistic scaling, offering a radius more similar to the 0.05-
CCS represented by the dashed red line. As expected, the tightening of the new
approach improves as the tightening parameter τ increases. As shown in Table 4.2,
the tightening improvement comes at the expense of a larger sample complexity
and number of possible combinations, which turns into a higher computational
cost. It is because of this high computational cost that larger values of τ have not
been tested in this thesis.

4.9 Conclusions

In this chapter we have presented the pack-based probabilistic scaling (PBPS)
approach to compute sample-based approximations of a chance constrained set.
Similar to regular probabilistic scaling, PBPS allows the user to first choose any
set and then apply a linear transformation to obtain an approximation of the safe
region which meets the given probabilistic guarantees. As a result, complexity of
the approximation is tuned a priori. The novel pack-based approach arranges the
constraints in packs, which allows to decrease the required number of samples to
achieve the same probabilistic guarantees.

We have also introduced a measure of tightening of the approximation of the
probabilistic safe region called tight immersion, which allows to design a tightening
constraint with which the fitting of the approximation is tuned. This presents a
trade-off, since tighter approximations come at the expense of a higher sample
complexity and a more intricate procedure to compute the approximation.
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To solve the pack-based probabilistic scaling problem, we have presented a
branch-and-bound heuristic. It computes the (exact) optimal solution for the
pack-based scaling problem and can improve the computational times with respect
to an exhaustive search.

Finally, the tight immersed pack-based probabilistic scaling has been tested
against an academic numerical example. The proposed approach is able to com-
pute approximations with moderate values of the tightening parameter, and it
shows how it can vastly improve the tightening of the approximation with respect
to regular probabilistic scaling.

Future research may study how to extend the proposed heuristic to nonlinear
setups.

4.10 Appendix

4.10.1 Property 4.6

Property 4.6. Consider the integer parameters L > s ≥ 0, the multisample
z ∈ WL and the sample w ∈ W and the probability parameter ε ∈ (0, 1), then, for
any constraint g(·),

PrWL {Igs (θ, z) = 1} ≤ 1 −B(s;L, ε) ⇐⇒ PrW {Ig(θ, w) = 1} ≤ ε. (4.38)

Proof. Let E(θ) = PrW {Ig(θ, w) = 1}, then

PrWL{Igs (θ, z) = 0} =
s∑

i=0

(
L

i

)
E(θ)i(1 − E(θ))L−i = B(s;L,E(θ)). (4.39)

Denote q = 1 −B(s;L, ε). Since B(s;L, ε) is strictly decreasing with respect of ε
(Property 4 of [78]), we have

B(s;L,E(θ)) ≥ B(s;L, ε) = 1 − q ⇐⇒ E(θ) ≤ ε. (4.40)

Equivalently,

1 −B(s;L,E(θ)) ≤ 1 −B(s;L, ε) = q ⇐⇒ E(θ) ≤ ε. (4.41)

Therefore,

PrWL {Igs (θ, z) = 1} ≤ q ⇐⇒ PrW {Ig(θ, w) = 1} ≤ ε. (4.42)
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4.10.2 Property 4.7

Property 4.7. Consider the integer parameters L > s ≥ 0, the multisample
z ∈ WL and the sample w ∈ W and the probability parameter ε ∈ (0, 1), then, for
any constraint g(·)

PrWL {Igs (θ, z) = 0} ≤ B(s;L, τε) ⇐⇒ PrW {Ig(θ, w) = 0} ≤ 1 − τε. (4.43)

Proof. Let E(θ) = PrW {Ig(θ, w) = 1}, then

PrWL{Igs (θ, z) = 0} =
s∑

i=0

(
L

i

)
E(θ)i(1 − E(θ))L−i = B(s;L,E(θ)). (4.44)

Since B(s;L, τε) is strictly decreasing with respect of τε (Property 4 of [78]), we
have

PrWL{Igs (θ, z) = 0} = B(s;L,E(θ)) ≤ B(s;L, τε) ⇐⇒
PrW {Ig(θ, w) = 1} = E(θ) ≥ τε.

(4.45)

Therefore,

PrWL {Igs (θ, z) = 0} ≤ B(s;L, τε) ⇐⇒ PrW {Ig(θ, w) = 0} ≤ 1 − τε. (4.46)

4.10.3 Property 4.8

Property 4.8. Given the accuracy parameter p ∈ (0, 1) and the confidence level
δ̄ ∈ (0, 1), suppose that M is chosen such that

1 − pM ≤ δ̄,

For each pack of constraints i = 1, . . . ,M , draw the i.i.d. sets zi ∈ PrWL and
define

γi
.
= γs(c,Ω0, zi)

and suppose that γ ≥ γ1:M > 0. Then, with probability no smaller than 1 − δ̄,

PrWL{c⊕ γΩ0 ⊆ Φg
s(z)} ≤ p.

Proof. The proof is similar to that of Property 4.1.

Consider the following optimization problem:

min
γ

γ (4.47)

s.t. c⊕ γΩ0 ̸⊆ Φg
s(zi), i = 1, . . . ,M.
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From the definition of γs(·), if problem (4.47) has a feasible solution, we can
rewrite it as

min
γ

γ (4.48)

s.t. γ > γs(c,Ω0, zi), i = 1, . . . ,M.

As seen in [54] and [55], if one discards no more than M − 1 constraints
and the number of decision variables is one, then the probability of violating the
constraints with the solution obtained from the random convex problem (4.47) is
no larger than p ∈ (0, 1), with probability no smaller than 1 − δ̄, where

δ̄ =

(
M − 1

M − 1

)
B(M − 1;M,p)

=
M−1∑
i=0

(
M

i

)
pi(1 − p)M−i

= 1 −
i=M∑
M

(
M

i

)
pi(1 − p)M−i

= 1 − pM .

Let γ̄ be the optimal solution of problem (4.48) with no more than M − 1
constraint removal. Then

PrWL{γ̄ ≤ γ(c,Ω0, z)} ≤ p.

We conclude from this, and the definition of γs(·), that with probability no smaller
than 1 − δ̄,

PrWL{c⊕ γ̄Ω0 ⊆ Φg
s(z)} ≤ p.

The optimization problem under consideration (4.47) can be solved directly
by ordering the values γi = γs(c,Ω0, z). It is clear that if M − 1 violations are
allowed, then the optimal value for γ is γ̄ = γ1:M . Smaller values of γ would no
longer meet the exclusion constraint, while larger values would still meet it.

4.10.4 Theorem 4.2

Theorem 4.2. The optimal scaling factor for any given pack can be computed at
the intersection of at most min({s + 1, nθ}) active constraints.

Proof. First we prove that the optimal scaling factor for any given pack can be
computed at the intersection of active constraints.

Let all the L constraints in a given pack be expressed by the linear expression
Ak(θ) ≤ bi, k = 1, 2, · · · , L. The optimal scaling factor obtained from the pack
based methodology guarantees that the scaled SAS is as large as possible while
none of the points in it violate more than s constraints of that pack.
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Let T be a subset of constraint indexes, i.e. T ⊆ {1, 2, . . . , L}, then, the
optimal scaling factor corresponds to the solution of the following optimization
problem:

γ∗ = min
x,γ,T

γ

s.t. x ∈ c⊕ γΩ0

Ai(θ) > bi, ∀i ∈ T

Aj(θ) ≤ bj , ∀j ̸∈ T

card(T ) ≤ s,

(4.49)

where card(T ) refers to the cardinality of the set T .
Since the constraints are linear, the optimal solution of (4.49) lies in the in-

tersection of active constraints.
Any point in an Rnθ space can be expressed as the intersection of nθ surfaces

of dimension Rnθ−1. Therefore, nθ constitutes an upper bound to the number of
active constraints to consider.

Constraints being active at one point implies that the number of constraint
violations changes in the infinitesimal neighborhood of that point. This change
depends on the number of active constraints. Thus, if s constraints are active, the
difference on the number constraints violations in this neighborhood is at most
s. Since only s constraint violations are allowed, the maximum number of active
constraints to consider is s+1, where the number of violations could change from 0
to s+1 in the infinitesimal neighborhood (there might be more active constraints,
but they would be redundant). Therefore, s+ 1 constitutes another upper bound
to the number of active constraints to consider.
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Chapter 5

Periodic Modifier-Adaptation

5.1 Introduction

Economic optimization plays a major role in most industries, since it allows to
optimize the performance of the real plant operation [123]. To achieve optimal
performance, optimization problems leverage system data and models to com-
pute the trajectory that minimizes the economic cost. To arrange the system
information into an optimization framework, multidisciplinary teams are often
involved. They must have deep knowledge about the real systems and be able to
build detailed models that mirror their behaviour. The complexity and possible
change over time of real systems (e.g. due to deterioration) make the identifica-
tion task expensive and prone to errors, which leads to plant-model mismatch and
ultimately may lead to a loss of performance in the controlled system.

In two-layer control schemes (see section 1.2.2), the economic optimization is
splitted in the real-time optimization layer (RTO), which computes the optimal
steady behaviour, and the advanced control layer, which calculates the inputs
required to take the system to that reference. To transform the optimal reference
computed by the RTO into a valid reference to the advance controller, often an
intermediate layer known as the steady-state target optimization (SSTO) [124] is
used.

One of the strengths of two-layer control schemes is their ability to use dif-
ferent models with different time scales for the different layers, being the model
from the RTO layer usually more complex and global, while the one from the ad-
vanced control layer is generally faster and able to quickly react to disturbances.
This allows to keep the high steady performance from the detailed RTO, while
maintaining the control fast thanks to the advanced control.

Standard formulations of the RTO deal with the optimization of the plant
operated at equilibrium points. However, there exist many scenarios where the
plant operates optimally with a periodic behaviour, such as HVAC systems, solar
plants, water distribution networks, electric networks, among others. For these
systems with periodic nature, a dynamic RTO is better suited because of its

93



94 Chapter 5. Periodic Modifier-Adaptation

ability to calculate not only the optimal steady-state, but also the optimal periodic
trajectory. This constitutes a generalization of the standard RTO and usually
comes at the expense of an increased complexity in the control problem because of
the larger number of variables and constraints. While dynamic RTO schemes may
theoretically converge to the optimal steady operation, they are still sensitive to
plant-model mismatch, thus making them susceptible to a performance decrease.

In order to cope with the issues derived from the plant-model mismatch,
modifier-adaptation (MA) formulations of the RTO emerged and have been stud-
ied over the last decades [10, 125, 126, 127] with promising results. They update
the model-based RTO problem with affine modifiers that incorporate information
of the real system. Upon convergence of the modifiers, the modified problem is
able to calculate either a steady operation of the real system that satisfies the
necessary conditions of optimality or the an input profile of a batch process that
satisfies the first order necessary conditions of optimality (NCO) [128] from an
initially inaccurate model. Modifier-adaptation schemes have been mainly built
upon the standard RTO to compute the optimal steady-state of a system. In
this work we present a periodic modifier-adaptation scheme which is built upon
a dynamic RTO and is able to calculate, upon convergence of the modifiers, the
periodic trajectory of a real system that satisfies the NCO of the real plant. The
proposed approach can be seen as a generalization of the MA scheme proposed in
[9] to include optimal periodic behaviour.

This chapter is structured as follows: In Section 5.2 we introduce the problem
under consideration, along with the two-layer control scheme. Then, in Section
7.2.3 we show how to modify the dynamic RTO so that, upon convergence, its
solution matches the NCO of the optimal control problem. Then, in Section 5.5
we detail how to transform the optimal operation computed by the dynamic RTO
into a valid reference for the advanced control layer. Section 5.4 shows a way
to design the advanced layer to follow a dynamic reference. In Section 5.6 we
present the full algorithm required to implement the two-layer control scheme
with periodic modifier-adaptation. A simplified version of this algorithm is used
in Section 5.7 on the quadruple tank benchmark example to test the performance
of the proposed approach. Finally, Section 5.8 discusses the conclusions.

This chapter is based on the results of the published paper [125] and the
manuscript [129].

5.2 Problem formulation

Consider the following discrete system:

xk+1 = fp,k(xk, uk), (5.1)

where xk ∈ Rnx and uk ∈ Rnu are respectively the states and inputs of the system
at time k, and fp,k : Rnx×nu → Rnx represents the dynamics of the real system at
time k. Each step in k represents tT seconds.
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Let system (5.1) be periodic with known period TtT seconds, i.e. fp,k = fp,k+T ,
and let x0 be the initial state. At the first step of each period, given the sequence of

T next inputs uT =
[
uT0 uT1 · · · uTT−1

]T ∈ RTnu , then the T following states of
the system (5.1) are defined by the time-invariant function Fp : Rnx×Tnu → RTnx

so that:

xT =
[
xT1 xT2 · · · xTT

]T
= Fp(x0,uT ). (5.2)

At any time k, the states and inputs of system (5.1) can be subject to (possibly
nonlinear) constraints of the form:

gk(xk, uk) ≤ 0, (5.3)

which are also periodic with period TtT seconds. Considering the periodic con-
straint x0 = xT , at the first step of each period the constraints (5.3) can also be
expressed by its compact form:

G(xT ,uT ) ≤ 0,

where G : RTnx×Tnu → R.

Let the economic cost of operating the previous system at any given time k be
given by the stage cost function ϕk(xk, uk). The optimal economic control problem
calculates the infinite sequence of inputs that, when applied to the system (5.1),
minimizes the economic cost given by the stage cost function ϕk(xk, uk) over time.
Let the stage cost function ϕk be periodic with period TtT seconds and consider
the periodic constraint x0 = xT , then at the first step of each period, the time-
invariant cost function Φ represents the sum of stage cost functions ϕk over the
T future steps and is defined as:

Φ(xT ,uT ) =

T−1∑
i=0

ϕi(xi, ui). (5.4)

Given the initial state x0 of the system, the optimal economic control problem
is formulated as follows:

min
u∞

∞∑
k=0

ϕk(xk, uk)

s.t. xk+1 = fp,k(xk, uk), for all k = 0, 1, . . . ,∞
gk(xk, uk) ≤ 0, for all k = 0, 1, . . . ,∞.

(5.5)

In real applications, the previous fomulation is seldom implemented because
of two main reasons: (i) the real system dynamics (i.e. fp,k) are usually unknown,
and (ii) the infinite number of decision variables hinders the implementation for
most practical cases.
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Figure 5.1: Control diagram of the two-layer scheme.

5.2.1 Two-layer control scheme

In practice, problem (5.5) is often tackled using a two-layer control scheme (Figure
5.1). In this scheme, the upper layer, also known as real-time optimization (RTO),
calculates the optimal operation of the system. Whereas the lower one, known as
advanced control, computes the input sequence required to take the system from
its current state to a given reference. These layers are separated and are solved
with different time scales, they usually use different models and time horizons, so
we consider also an intermediate layer called steady trajectory target optimization
(STTO) which turns the optimal operation computed by the upper layer into a
valid steady reference for the lower layer.

The basis of the two layer architecture is to split the main control problem into
two smaller problems of different complexities and which are solved with different
frequencies. On one hand, the RTO usually works with a complex and accurate
model of the global plant. This model typically describes the fundamental and
static behaviour of the plant, which results in large time scales and low update
frequency for the RTO. On the other hand, the advanced control generally uses a
local dynamic model of system. It uses simple and fast models and its time scales
are short. One of the benefits of this scheme is that the upper layer does not
need to be recalculated with the same frequency as the lower one. This reduces
computational costs, while keeping the control fast.

5.2.2 Dynamic real-time optimization for periodic operation

In this work we use dynamic real-time optimization (DRTO) as the upper layer.
Unlike standard RTO, which aims to calculate the optimal steady setpoint (xs, us),
the objective of the DRTO is to compute the optimal periodic trajectory with a
predefined period of TtT seconds (x̂drto

T ,udrto
T ). The optimal periodic trajectory

can be seen as a generalization of the optimal steady setpoint, since they lead to
the same solution for T = 1. Consequently, the DRTO can lead to better steady
performance than the standard RTO, at the expense of it being a more intricate
problem. In the case of periodic systems, it has been proven that unlike the RTO,
the DRTO formulation is able to capture their optimal steady operation [130].

The DRTO uses a model of the real system Fm, instead of the real system
dynamics Fp described in (5.2):

x̂T =
[
x̂T1 x̂T2 · · · x̂TT

]T
= Fm(x0,uT ), (5.6)

where x̂k is the state predicted by the model at time k. Like (5.2), each step in k
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equals tT seconds. Because of the complexity of real systems, models are usually
unable to perfectly capture the real dynamics, leading to plant-model mismatch,
i.e. xk+1 ̸= x̂k+1. If not treated correctly, this discrepancy causes performance
and stability issues and may render the control unusable.

In the two-layer scheme, one iteration of the DRTO is solved every tD =
D(TtT ) seconds. For simplicity, we consider parameter D to be a positive integer.
Given the period T , the DRTO problem can be formulated as:

(xdrto0 , x̂drto
T ,udrto

T ) =

arg min
x0,x̂T ,uT

T−1∑
i=0

ϕi(x̂i, ui)

s.t. x̂T = Fm(x0,uT )

G(x̂T ,uT ) ≤ 0

x̂T = x0.

(5.7)

The aforementioned formulation of the DRTO computes the optimal periodic
operation for the available model of the system. However, due to plant-model
mismatch, we know that this operation may not be optimal for the real system
and might even lead to constraint violation. In the next section we present a
reformulation of (5.7) which uses gradient-based modifiers to update the base
model so that, upon convergence, the solution of the modified DRTO matches
the NCO of the optimal periodic operation. Later, in Sections 5.4 and 5.5, the
advanced control and the steady trajectory target optimization layers will be
detailed.

5.3 Periodic modifier-adaptation

Modifier-adaptation (MA) methodologies arose to correct the plant-model mis-
match at the RTO level [9, 10]. They use measures and gradients from the system
to build modifiers that update the RTO with affine terms. Upon convergence,
MA schemes guarantee the satisfaction of the first order necessary conditions for
optimality of the optimal problem. Traditionally, MA schemes have been built
upon the standard RTO, which ultimately calculates the steady setpoint that sat-
isfy the plant’s NCO. In this section we generalize state-of-the-art approaches and
show how to apply modifier-adaptation to the DRTO problem (5.7) and correct
(locally) the plant-model mismatch for the case of optimal periodic trajectories.
Zeroth and first order modifiers will be presented to update the dynamic model
and ensure that, upon convergence, the optimal solution of the modified DRTO
matches the NCO of the optimal periodic trajectory of the real system.

Let each iteration of the DRTO be labelled by index l. Then, given the
modifiers λx

l ∈ RTnx×nx , λu
l ∈ RTnx×Tnu and ϵl ∈ RTnx , we introduce the periodic

modifier-adaptation (P-MA) formulation of the DRTO at iteration l:
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(xdrto0 , x̂drto
T ,udrto

T ) =

arg min
x0,x̂T ,uT

Φ(x̂T ,uT )

s.t. x̂T = Fm(x0,uT ) + λx
l x0 + λu

l uT + ϵl

G(x̂T ,uT ) ≤ 0

M x̂T = x0,

(5.8)

where M represents the constant matrix that ensures that the periodic constraint
meets, i.e. x̂T = x0.

Assumption 5.1. At every iteration l, Problem (5.8) is feasible and has an
unique minimizer.

After solving problem (5.8), the DRTO identifies a set of variables rdrtoe ∈ RTnr

that univocally defines the (model) optimal economic trajectory

rdrtoe = re(x̂
drto
T ,udrto

T ) (5.9)

and passes it to the STTO, which then transforms it into a valid reference for the
MPC (ẑrefN,j ,v

ref
N,j) (See Figure 5.1).

Now, we show how to calculate the modifiers λx
l , λ

u
l and ϵl so that, upon

convergence, the NCO conditions of problem (5.8) converge to those of the optimal
problem.

5.3.1 KKT matching

In this section we show how to update the modifiers λx
l , λ

u
l and ϵl so that the first

order necessary conditions of optimality (NCO), also known as KKT conditions,
of the P-MA formulation of the DRTO (5.8) match with those of the optimal
economic problem.

In order to make the KKT matching possible, we make the following assump-
tion:

Assumption 5.2. Both the real system F θ
p and the base model F θ

m are C1 con-

tinuous on θ ∈ Θ ⊂ Rnx×Tnu, being Θ the feasible region of θ. This means that
their partial derivatives in this region are both defined and continuous.

Given period T , the real optimal periodic trajectory (xopt
T ,uopt

T ) can be com-
puted as the optimal solution of the following optimization problem:

(xopt0 ,xopt
T ,uopt

T ) =

arg min
x0,xT ,uT

Φ(xT ,uT )

s.t. xT = Fp(x0,uT )

G(xT ,uT ) ≤ 0

MxT = x0.

(5.10)
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For the sake of simplicity and comparison, we define θ =

[
x0
uT

]
and reformulate

(5.10) as:

min
θ

Φθ(F θ
p (θ), θ) (5.11a)

s.t. Gθ(F θ
p (θ), θ) ≤ 0 (5.11b)

M1F
θ
p (θ) + M2θ = 0, (5.11c)

where Φθ, F θ
p , Gθ, M1 and M2 are functions derived from rewritting the ones in

(5.10) in terms of θ, e.g. xT = F θ
p (θ), and (5.11c) corresponds to the periodic

constraint.
We also define the modified version of the dynamic RTO (5.8) at step l:

min
θ

Φθ(F θ
m(θ) + (Λθ

l )
T θ + ϵl, θ)

s.t. Gθ(F θ
m(θ) + (Λθ

l )
T θ + ϵl, θ) ≤ 0

M1(F
θ
m(θ) + (Λθ

l )
T θ + ϵl) + M2θ = 0,

(5.12)

where ϵl and Λθ
l =

[
λx
l λu

l

]T
refers to the zeroth and first order modifiers respec-

tively at step l.
The Lagrangian function associated to the problem (5.11) is:

 Lp(θ) =Φθ(F θ
p (θ), θ) + πT

1

(
Gθ(F θ

p (θ), θ)
)

+

πT
2

(
M1F

θ
p (θ) + M2θ

)
,

and its gradient with respect to the decision variable θ is:

∂  Lp

∂θ
=
∂Φθ

∂F θ
p

(
∂F θ

p

∂θ
) +

∂Φθ

∂θ
+ πT

1

[∂Gθ

∂F θ
p

(
∂F θ

p

∂θ
) +

∂Gθ

∂θ

]
+

πT
2

(
M1(

∂F θ
p

∂θ
) + M2

)
.

Analogously, the gradient of the Lagrangian function associated to problem
(5.12) is the following:

∂  Lm

∂θ
=
∂Φθ

∂F θ
m

(
∂F θ

m

∂θ
+ Λθ

∞) +
∂Φθ

∂θ
+

πT
1

[ ∂Gθ

∂F θ
m

(
∂F θ

m

∂θ
+ Λθ

∞) +
∂Gθ

∂θ

]
+

πT
2

(
M1(

∂F θ
m

∂θ
+ Λθ

∞) + M2

)
.

Let θ∗ be the (a priori unknown) optimal operation of the system, then the
KKT conditions associated to problem (5.11) are:
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∂  Lp

∂θ
(θ∗) = 0 (5.13a)

Gθ(F θ
p (θ∗), θ∗) ≤ 0 (5.13b)

M1F
θ
p (θ) + M2θ = 0 (5.13c)

π∗
1, π

∗
2 ≥ 0 (5.13d)

(Gθ(F θ
p (θ∗), θ∗))π∗

1 = 0 (5.13e)

(M1F
θ
p (θ) + M2θ)jπ

∗
2,j = 0, j = 0, 1, . . . , nx. (5.13f)

Analogously, the KKT conditions associated to problem (5.12) are:

∂  Lm

∂θ
(θ∗) = 0 (5.14a)

Gθ(F θ
m(θ∗) + (Λθ

l )
T θ∗ + ϵl, θ

∗) ≤ 0 (5.14b)

M1(F
θ
m(θ∗) + (Λθ

l )
T θ∗ + ϵl) + M2θ

∗ = 0 (5.14c)

π∗
1, π

∗
2 ≥ 0 (5.14d)

(Gθ(F θ
m(θ∗) + (Λθ

l )
T θ∗ + ϵl, θ

∗))π∗
1 = 0 (5.14e)(

M1(F
θ
m(θ∗) + (Λθ

l )
T θ∗ + ϵl) + M2θ

∗
)
j
π∗
2,j = 0, j = 0, 1, . . . , nx. (5.14f)

Therefore, the KKT conditions of both problems match upon convergence of
the modifiers (represented by l = ∞) if and only if:

∂  Lp

∂θ
(θ∗) =

∂  Lm

∂θ
(θ∗) = 0 (5.15a)

F θ
p (θ∗) = F θ

m(θ∗) + (Λθ
∞)T θ∗ + ϵ∞. (5.15b)

To meet (5.15a), we need to set the first order modifiers Λθ so that:

∂F θ
p

∂θ
(θ∗) =

∂F θ
m

∂θ
(θ∗) + Λθ

∞.

Thus, the optimal modifiers (λx
∞, λu

∞) must be computed as:

Λθ
∞ =

[
λx
∞ λu

∞
]T

=
∂F θ

p

∂θ
(θ∗) − ∂F θ

m

∂θ
(θ∗). (5.16)

To converge to the optimal modifiers, we follow an update policy similar to
the one proposed in [9]. Let θdrtol be the solution of the DRTO (5.8) at iteration
l, then the modifiers at iteration l + 1 are calculated as:

Λθ
l+1 =

[
λx
l+1 λu

l+1

]T
=

∂F θ
p

∂θ
(θdrtol ) − ∂F θ

m

∂θ
(θdrtol ). (5.17)
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While the gradients of the model can usually be easily computed with user-
defined precision, e.g. by numeric or analytical differentiation (Section 5.3.2), the
gradients of the real system often are cumbersome and rely on noisy measures to
carry out estimations. The estimation of such gradients is currently a focal point
in the modifier-adaptation research [131, 132]. In chapter 7, an approach to the
computation of the gradients of real-systems will be proposed.

Given the modifiers Λθ
∞ computed in (5.16), in order to meet (5.15b), the

modifier ϵ∞ must be set as:

ϵ∞ = F θ
p (θ∗) −

(
F θ
m(θ∗) + (Λθ

∞)T θ∗
)
. (5.18)

Applying an update like the one from (5.17), we get to the following update
for ϵl:

ϵl+1 = F θ
p (θdrtol ) −

(
F θ
m(θdrtol ) + (Λθ

l )
T θdrtol

)
. (5.19)

5.3.2 Gradients of a linear model

In this section, we derive the analytical expression for the gradients of a linear
model.

Given the discrete-time linear model

x̂k+1 = fm,k(xk, uk) = Akx̂k + Bkuk, (5.20)

we have that

x̂T = Fm(x0,uT ) = Fxx0 + FuuT , (5.21)

or equivalently

x̂T = F θ
m(θ) =

[
Fx Fu

]
θ, (5.22)

where

Fx =


A0

A0A1
...∏T−1

i=0 Ai

 , Fu =


B0

A1B0 B1
...

...
. . .

(
∏T−1

i=1 Ai)B0 (
∏T−1

i=2 Ai)B1 . . . BT−1

 .

(5.23)

Therefore, the gradients of the model are constant and can be explicitly com-

puted as ∂F θ
m

∂θ =
[
Fx Fu

]T
.
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5.4 MPC for periodic operation

Model predictive controllers (MPCs) are one of the multiple choices for the bot-
tom layer of the two-layer scheme introduced in Section 5.2, often referred to as
advanced control. Their objective is to calculate the control sequence that takes
the system from its current state zj to the reference given by the STTO.

Contrary to the DRTO, the MPC generally has a more local and fast nature,
which may make its correspondent real system different from the one presented
in (5.1). Let the (real) local system be defined as

zj+1 = fmpc
p,j (zj , vj), (5.24)

where zj ∈ Rnz and vj ∈ Rnv represent respectively the states and inputs of the
local system at time j, and fmpc

p,j : Rnz×nv → Rnz represents the dynamics of the
real system at time j. Note that the local system is parameterized by j to indicate
that the discretization time of the local system (tN seconds) is generally different
than that of the global system parameterized by k (tT seconds). Therefore, the
system is periodic with period tNL = tTT seconds.

The MPC solves an optimization problem at each time step j to calculate the
sequence of control inputs that minimize a given cost function. Given a reference
at time j (ẑrefN,j ,v

ref
N,j), we use an offset-free MPC formulation based on [133, 134].

Let the MPC model of the local system (5.24) be defined as

ẑj+1 = fmpc
m (ẑj , vj , dj), (5.25)

where fmpc
m is usually a linear model which allows fast MPC implementations and

dj ∈ Rnz is the so-called disturbance at time j. In contrast to the local system
(5.24), we consider that the model fmpc

m is time-invariant and its dependence of
time comes through the disturbances dj . Local constraints are also considered,
but for the sake of simplicity, only as box constraints on the inputs vj , i.e. vL ≤
vj ≤ vU . More general constraints require robust formulations of the MPC to
guarantee recursive feasibility [135, 136, 137] and are out of the scope of this
work.

In order to match the MPC model with the real periodic system, the distur-
bances dj should be periodic over the periodic horizon L and satisfy the following
equality:

fmpc
m (zj , vj , dj) = fmpc

p,j (zj , vj). (5.26)

Now we present a simple way to estimate the disturbances

dj+L = dj + Kd
(
fmpc
p,j (zj , vj) − fmpc

m (zj , vj , dj)
)
, (5.27)

where Kd ∈ Rnz×nz is a filtering matrix that must be designed so that (5.27) is
stable.
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Given the current state zj and the sequence of future disturbances dN =[
dj dj+1 . . . dj+N−1

]
, the offset-free periodic MPC at time step j is formulated

as follows:

(z∗N ,v∗
N ) =

arg min
ẑN ,vN

ℓmpc(ẑN ,vN , ẑrefN,j ,v
ref
N,j)

s.t. ẑi+1 = fmpc
m (ẑi, vi, dj+i), for all i = 0, 1, . . . , N − 1

vL ≤ vi ≤ vU , for all i = 0, 1, . . . , N − 1

ẑ0 = zj ,

(5.28)

where ℓmpc is a cost function that penalizes the distance between the reference
sequences of states and inputs, and the sequences ẑN =

[
ẑ1 ẑ2 . . . ẑN

]
, vN =[

v0 v1 . . . vN−1

]
. The current local state zj is considered known. The MPC

follows a receding horizon scheme, which means that only the first computed input
v∗0 is applied to the system at each iteration of the MPC.

5.5 Steady trajectory target optimization (STTO)

The optimal solution of the DRTO presented in Section 7.2.3 leads to the refer-
ence trajectory rdrtoe . The objective of the STTO is to transform this reference
trajectory into a valid target (ẑrefL,j ,v

ref
L,j) for the MPC defined in Section 5.4, i.e.

one that is feasible for the MPC constraints.

The first step is to match the time scale of the DRTO (tT ) with that of the
MPC (tN ). Usually, the DRTO works with longer time steps than the MPC
(tT > tN ). Therefore, one must transform the reference given by the DRTO into
one with the same time scale of the MPC. The reference given by the DRTO spans
a total duration of TtT seconds. To transform it into the time scale of the MPC,
just divide it into segments of tN seconds and check which value of the reference
trajectory rdrtoe corresponds to each segment. To avoid dealing with segments that
comprise two or more values, we assume that the DRTO sampling time tT is a
multiple of the MPC sampling time tN . The new reference with time scale tN
is denoted rsttoe and its length is L. Then, this reference is shifted to match the
current time step j.

Let ℓstto : RLnz×Lnv×Lnr → R be a function that penalizes the distance be-
tween the trajectories of states and inputs of the MPC (ẑL,vL) and the reference
trajectory (rsttoe ). Then, the STTO problem at each step j can be formulated as:



104 Chapter 5. Periodic Modifier-Adaptation

(ẑrefL,j ,v
ref
L,j) =

arg min
ẑL,vL

ℓstto(ẑL,vL, r
stto
e )

s.t. ẑi+1 = fmpc
m (ẑi, vi, dj+i), for all i = 0, 1, . . . , L− 1

vL ≤ vi ≤ vU , for all i = 0, 1, . . . , L− 1

ẑL = ẑ0,

(5.29)

where dL =
[
dj dj+1 . . . dj+L−1

]
are the disturbances estimated in (5.27).

Finally, we usually have that the periodic horizon is larger than the control
horizon, i.e. L > N and therefore the obtained reference (ẑrefL,j ,v

ref
L,j) must be

trimmed to match the control horizon N . In the opposite case, i.e. L < N ,
the obtained reference must be repeated until it matches the control horizon N .
The new reference trajectory will be referred to as (ẑrefN,j ,v

ref
N,j) and constitutes a

valid reference for the MPC layer which is guaranteed to be feasible for the MPC
constraints.

As commented in Section 5.2, the STTO layer needs to be computed before
every MPC iteration to guarantee that the reference trajectory is admissible for
the most recent values of disturbances. Since the DRTO reference rdrtoe is periodic
by definition, endless shifting is possible and the STTO/MPC loop can always
control the system to the latest available reference trajectory.

In the next section, we detail the full algorithms for the DRTO/STTO and
the MPC layers.

5.6 Periodic modifier-adaptation algorithm

In this section, we go through the full periodic modifier-adaptation algorithm. As
commented in Section 5.2, the full scheme can be splitted into two main layers
with different time scales. Algorithm 5 goes through the DRTO layer, which
updates each tD seconds. It shows how to compute the reference for the STTO
and MPC layers. Besides, Algorithm 6 details the STTO and the MPC layers
which work with a shorter time scale tN and calculates every control signal that
is applied to the system. Both algorithms run as long as automatic control of the
system is required. Upon convergence to the optimal predicted trajectory, the
controlled system is guaranteed to reach a periodic behaviour that satisfies the
necessary conditions of optimality of the real system.

Remark 5.1. An optional filtering of the modifiers can be performed after step
(iv) of Algorithm 5. Filtering the modifiers is used to influence on the speed and
stability of the convergence process:

λ̃x
l+1 = Kxλx

l+1 + (I −Kx)λ̃x
l

λ̃u
l+1 = Kuλu

l+1 + (I −Ku)λ̃u
l

ϵ̃l+1 = Kϵϵl+1 + (I −Kϵ)ϵ̃l,
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Algorithm 5 DRTO algorithm (executed each tD seconds)

Init

(i) Initialize l = 0 and the modifiers λ̂x
0 , λ̂

u
0 , ϵ̂0 to zero.

Loop

(ii) Given the modifiers λ̂x
l , λ̂

u
l , ϵ̂l, compute the optimal trajectory with the

DRTO defined in (5.8) and (5.9) and obtain rdrtoe .

(iii) Pass rdrtoe as a reference to the STTO and MPC Algorithm.

(iv) Estimate the gradients of the model and the real system and update the
modifiers according to (5.17) and (5.19):

λx
l+1 =

∂Fp

∂x0

∣∣∣
(xdrto

0 ,udrto
T )

− ∂Fm

∂x0

∣∣∣
(xdrto

0 ,udrto
T )

λu
l+1 =

∂Fp

∂uT

∣∣∣
(xdrto

0 ,udrto
T )

− ∂Fm

∂uT

∣∣∣
(xdrto

0 ,udrto
T )

ϵl+1 =Fp(x
drto
0 ,udrto

T )−(
Fm(xdrto0 ,udrto

T ) + λ̂x
l x

drto
0 + λ̂u

l u
drto
T

)
.

(v) Wait until next iteration and update l = l + 1.

End Loop
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Algorithm 6 STTO and MPC algorithm (executed each tN seconds)

Init

(i) Initialize disturbances of the first period to zero, i.e. dj = 0, where j =
0, 1, . . . , L− 1, and set j = 0.

Loop

(ii) Get the current state zj .

(iii) Given rdrtoe from the DRTO Algorithm, shift it to match the current time
step j and solve the STTO layer detailed in Section 5.5 to obtain (ẑrefN,j ,v

ref
N,j).

(iv) Given the reference trajectory (ẑrefN,j ,v
ref
N,j), compute the MPC control input

vj from (5.28).

(v) Apply input vj to the local system.

(vi) Estimate the disturbance for the next period dj+L using (5.27).

(vii) Wait until next iteration and update j = j + 1.

End Loop

where Kx,Ku and Kϵ are stable filter matrices and ( ˜ ) notation refers to the
filtered modifiers.

Remark 5.2. The formulations of the STTO and the MPC in steps (iii) and
(iv) of Algorithm 6 are not required to achieve optimal steady performance and
alternatives to the ones presented on this chapter may be equally acceptable.

In the next section, we show the performance of P-MA in a periodic version
of the quadruple tank benchmark.

5.7 Illustrative example: Periodic quadruple tank

In this section we show the performance of the periodic modifier-adaptation for-
mulation of the DRTO introduced in this chapter. For the sake of clarity, we focus
on showing how the reference trajectory computed by the P-MA formulation of
the DRTO converges to the optimal periodic trajectory.

To study the performance of the proposed approach, we test it against a pe-
riodic version of the quadruple tank process. This benchmark was first proposed
in [138], it has been studied in multiple ocasions due to its interest as a control
problem [139, 140, 125] and has been proposed as a benchmark in [141]. The
quadruple-tank system scheme is shown in Figure 5.2 and consists of four inter-
connected tanks that share water according to the following physical equations:
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Figure 5.2: Quadruple-tank system diagram, reproduced from [141].

S
dh1
dt

= −a1
√

2gh1 + a3
√

2gh3 +
γaqa
3600

S
dh2
dt

= −a2
√

2gh2 + a4
√

2gh4 +
γbqb
3600

S
dh3
dt

= −a3
√

2gh3 + (1 − γb)
qb

3600

S
dh4
dt

= −a4
√

2gh4 + (1 − γa)
qa

3600
.

(5.30)

And are subject to the following box constraints:

hmin ≤


h1
h2
h3
h4

 ≤ hmax, qmin ≤
[
qa
qb

]
≤ qmax. (5.31)

The quadruple tank process has some properties that makes it both an inter-
esting and a challenging benchmark for control systems:

� It presents large coupling between its subsystems.

� It dynamics are nonlinear.

� States can be measured.

� States and inputs are hard constrained.
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Value Unit Description

S 0.03 m2 Cross-section of the tanks

a


1.31
1.51
0.927
0.882

 10−4 m2 Discharge constants

hmax


1.36
1.36
1.30
1.30

 m Maximum water level

hmin


0.2
0.2
0.2
0.2

 m Minimum water level

qmax

[
3.6
4.0

]
m3/h Maximum water flow

qmin

[
0
0

]
m3/h Minimum water flow

g 9.81 m/s2 Gravity acceleration

Table 5.1: Parameters of the plant

� Its real gradients can be analytically computed with the physical equations.

We use a compact notation to define the parameters of the plant:

a =


a1
a2
a3
a4

 ,x =


h1
h2
h3
h4

 ,u =

[
qa
qb

]
,γ =

[
γa
γb

]
,

where water levels x corresponds to the states and water flows u to the inputs
of the system. Information about the parameters is collected in Table 5.1 and
(5.32). The periodic nature of the system is induced through parameter γ, whose
cycle is shown in (5.32), where each column represent a constant value of γ for
tT = 3600 seconds. Therefore, the plant is periodic with period T = 7 hours.

γcycle =

[
0.3 0.4 0.5 0.7 0.6 0.4 0.2
0.6 0.5 0.4 0.2 0.3 0.5 0.7

]
. (5.32)

The model of the system (5.30) is a discrete stationary linear model with
discretization time set to 5 seconds and linearized at the point:
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x0 =


0.7293
0.8102
0.6594
0.9408

 , u0 =

[
1.948
2.00

]
, γ0 =

[
0.3
0.4

]

Therefore, the model can be written as:

xk+1 =


0.945 0 0.040 0

0 0.940 0 0.032
0 0 0.959 0
0 0 0 0.967

 (xk − x0)+


0.0135 0.0006
0.0005 0.0180

0 0.0272
0.0319 0

 (uk − u0) + x0.

(5.33)

At every time step, the system is subject to the box constraints on inputs and
states from (5.31), i.e.

hmin ≤ x ≤ hmax, qmin ≤ u ≤ qmax. (5.34)

Given the economic parameters c = 1 and p = 20, the economic cost of
operating the plant at each discrete time step is given by

ϕ(xk, uk) = (q2a + cq2b ) + p
0.012

S(h1 + h2)
.

We apply Algorithm 5 to compute the optimal periodic trajectory for the
system. The control process, i.e. step (iii) and Algorithm 6, is omited for the sake
of clarity. The periodic constant is taken as T = 7 and the optional filtering of
the modifiers proposed in Remark 5.1 has not been taken into account.

The integration of the real process as well as the computation of the optimal
trajectory and the P-MA DRTO reference trajectory have been computed using
the CasADi optimization tool in Matlab [142]. The gradients of the real process
have been computed using numerical differentiation on the real system (5.30),
while those of the linear model have been computed using the results from Section
5.3.2.

Figures 5.3 and 5.4 show the optimal trajectory computed by the DRTO with
no first order modifiers. The inclusion and convergence of the zeroth order modifier
ϵl guarantees that the predicted trajectory matches the response of the real system.
However, the lack of first order modifiers entails that, upon convergence, the
computed input sequence is not optimal. Moreover, since the KKT conditions of
this DRTO does not change with time, the sequence of inputs predicted at each
iteration is constant over time.

Notice how in Iteration 1 (Figures 5.3 and 5.4), all the modifiers are set to
zero and the optimal predicted behaviour is a single steady-state. This is due to
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Figure 5.3: Sequence of states computed by the DRTO with the zeroth order
modifier in different iterations (solid lines) vs optimal sequence of states (dashed
lines).

the time-invariant model used by the DRTO, which differs vastly from the real
periodic behaviour of the system.

Figure 5.5 shows how the P-MA DRTO achieves convergence to the optimal
sequence of states, and Figure 5.6 shows that this convergence is also achieved
with the optimal sequence of inputs. After 15 iterations, the sequences of states
and inputs computed by the P-MA DRTO are sufficiently close to the optimal
sequences.

5.8 Conclusions

In this chapter we have presented a control scheme which is able to control a
periodic system given inaccurate models of it.

First, a reference trajectory is computed by the P-MA DRTO. This layer uses
information of the real system to modify the dynamic real-time optimization layer
with first and zeroth order modifiers so that, upon convergence of these modifiers,
the necessary conditions of optimality of the P-MA DRTO converge to those
of the optimal operation of the real system. Then, a steady trajectory target
optimization (STTO) translates the trajectory computed by the P-MA DRTO
into a feasible reference for the MPC. Finally, the MPC layer uses a disturbance
estimator to adapt its model to the real system and be able to converge to the
optimal reference.

The proposed P-MA DRTO has been tested against a periodic version of the
quadruple tank process, showing that its solution can converge to the optimal
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Figure 5.4: Sequence of inputs calculated by the DRTO with the zeroth order
modifier in different iterations (solid lines) vs optimal sequence of inputs (dashed
lines).
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Figure 5.5: Sequence of states computed by the P-MA DRTO in different itera-
tions (solid lines) vs optimal sequence of states (dashed lines).

periodic behaviour given that the gradients of the real system are computed with
enough accuracy.
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114 Chapter 5. Periodic Modifier-Adaptation



Chapter 6

Robust One-Layer
Modifier-Adaptation

6.1 Introduction

The main focus of the hierarchical scheme detailed in section 1.2.2 is to take the
system to the minimum cost setpoint. Often, the transient cost is overlooked
and traditional MPCs regulate the system to the optimal steady-state as fast as
possible. While this can be a good solution when the transient is cheap compared
to the steady-state operation, an optimization of the transient cost is essential
to further improve the performance. The economic MPC [143, 144] arised to
take into account the economic cost of the transient behaviour. Similar to the
standard MPC, it requires an RTO to compute the optimal steady operation. But
in order to take the plant to this target, the economic MPC takes into account the
economic cost of the transient behaviour. While this approach has been studied
and used for some time, inconsistencies between control layers may still worsen
the economic performance of the transient compared to the optimal control. The
integrated one-layer approach proposed in [145] eliminates these inconsistencies
by solving the full control problem in a single layer at every sample time and
shows an improvement in the overall economic performance. This means that the
integrated approach always remains feasible, even in the case of changing economic
criteria. However, in order to solve the full control problem at each sample time,
the control needs to be fast, and therefore the models need to be very simple.
One consequence of using simple models is that the integrated approach struggles
to capture the intricate dynamics of real systems, leading to large plant-model
mismatch. This mismatch in turn causes a deficient calculation of the optimal
operation and ultimately leads to suboptimal control.

One soft spot of model-based methods is how to deal with the mismatch that
arises from model inaccuracy. Since the available models used in the RTO and the
MPC differ from the real system, not only the optimality may be lost, but even
the feasibility. To adress this, multiple solutions have been proposed. In the RTO

115
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layer, we have solutions like parameter adaptation [146, 147], modifier-adaptation
[9, 10] and direct input adaptation [148, 149, 150]. In the MPC layer, the mismatch
correction, better known as offset-free control, has also received much attention.
Most formulations of offset-free control are based on observers and disturbance
models [133, 134, 151, 152], but there are also alternative approaches based on
variations between different time steps [153].

In this chapter, we propose an integrated one-layer MPC approach to the con-
trol problem, which uses modifier-adaptation techniques to update a base control
model and achieve an economic steady operation of the plant that satisfies the
necessary conditions of optimality of the real economic problem. When a linear
base model is considered, we show that the proposed control problem boils down
to solving a quadratic programming at each time step, which facilitates a very
fast control. Moreover, given an outer compact approximation of the uncertainty
(which includes the mismatch between the real plant and the base model), the
robustness and convergence to the optimal operation of the proposed controller
can be guaranteed.

This chapter is organized as follows: Section 6.2 introduces the control prob-
lem and the notation used to adress the inaccuracy of the models. Sections 6.3
and 6.4 introduce the integrated one-layer formulation of the control problem and
presents the robust one-layer (ROL) and the robust one-layer modifier-adaptation
(ROLMA) formulations of the control problem. Section 6.5 studies the recursive
feasibility and convergence of the proposed approach. In Section 6.6, the quadru-
ple tank benchmark is used to test the performance of the ROLMA controller.
Finally in Section 6.7 conclusions about the proposed formulations are drawn.

The results of this chapter extend those presented in the published paper [127].

6.2 Problem definition

Consider that we want to control the following discrete and time-invariant system:

xi+1 = fm(xi, ui) + d∗(xi, ui) = Axi + Bui + d∗(xi, ui), (6.1)

where xi ∈ X ⊂ Rnx and ui ∈ U ⊂ Rnu are the state and input of the system
at step i, A ∈ Rnx×nx and B ∈ Rnx×nu are parameters of the known base model
fm : X × U → X , and d∗ : X × U → Wf is a deterministic and unknown function
that gathers the mismatch between the base model and the real system and maps
it into the known compact region Wf ⊂ Rnx , which can be seen as an outer
approximation of the effect of the mismatch.

Assumption 6.1. All the mismatch between the base model and the real system
is deterministic and confined in a known compact region Wf containing the origin
in its interior.

Consider also an alternative formulation of the previous system at time i given
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Figure 6.1: Visualization of the mismatch region Wf . The state predicted by the
base model lies in the origin, while the one predicted by the modified model and
the real next state lie in the neighbourhood Wf .

by a modified model fΛ
m defined as:

xi+1 =fΛ
m(xi, ui, pk) + dΛ(xi, ui, pk) =

=fm(xi, ui) + Λf (xi, ui, pk) + dΛ(xi, ui, pk),
(6.2)

where Λf (xi, ui, pk) ∈ Wf is a modifier term that depends on the parameters
pk ∈ P and which will ideally converge locally to d∗(xi, ui) as k increases. Index
k being different from i indicates that the update of the modifiers does not need
to coincide with the update of the states. The mismatch between the real plant
and the modified model fΛ

m is captured by dΛ ∈ Wf ⊕−Λf (x, u, p) and is 0 when
the modified model matches the real system dynamics.

The modifications made in the modified model fΛ
m may sometimes handicap

the base model, however, the real system will always lie within the robust region
defined in (6.1). Figure 6.1 shows all the possible values for the mismatch d∗. At
each step, the next state from both the real dynamics and the modified model
can be expressed as the sum of the base model plus a mismatch value from the
safe region Wf .

Analogously to the states definition, consider the outputs of the system are
given by:

yi = hm(xi, ui) + d∗h(xi, ui) = Cxi + Dui + d∗h(xi, ui), (6.3)

where yi ∈ Rny represents the outputs of the system at time i, C ∈ Rny×nx and
D ∈ Rny×nu are parameters of a known base model hm : Rnx × Rnu → Rny ,
and d∗h : Rnx × Rnu → Wh is a deterministic and unknown function that gathers
the mismatch between the base output model and the real output system. We
consider the plant-model mismatch for the ouputs d∗h is bounded in the compact
set Wh ⊂ Rny , i.e. d∗h ∈ Wh.

Consider the feasible outputs are bounded in the compact region y ∈ Y, then,
we can use (6.3) to tighten up the constraints and define the robust safe region

Zm
.
= {(x, u) : hm(x, u) ∈ Y ⊖Wh}, (6.4)
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such that, for any (x, u) ∈ Zm, the output of the system stays in Y. The robust
safe region is assumed to be time-invariant.

Safe regions have also been studied in a probabilistic way when the system is
subject to chance constraints. Probabilistic safe regions are guaranteed to meet
the constraints with a prespecified probability (see e.g. chapter 3) and are used
in practice to reduce conservativeness.

The objective of the control problem is to take the system (6.1) from its initial
state to the equilibrium point that minimizes a given economic function J(x, u),
while satisfying the original constraints y ∈ Y at every step.

Assumption 6.2. The gradient of the cost function J is Lipschitz continuous in
the feasible region of equilibrium points of the real plant.

One common approach to automatic control is to compute the fastest path
to the optimal setpoint. This usually makes the advanced control simpler, since
the cost function consists of a user-defined distance to the target, which often is a
quadratic function. This approach is simple and performs very well in cases where
the optimal control trajectory involves a cheap transient behaviour. However, to
further improve the performance, the economic cost of the transient should also
be taken into account. This is the main objective of the economic control, which
is the focus of this chapter. While this may increase the difficulty of the problem,
economic control constitutes a better solution in terms of economic performance.

6.3 One-layer approach

In this work, we take a similar approach to the one proposed in [145] known as
the one-layer approach, in which both the target setpoint and the control signal
are computed in the same optimization problem. First, we define the equilibrium
constraint of both the modified and the base models.

Given the steady-state xs, its associated steady input us and the modification
term Λf , the following constraint defines the equilibrium for the modified model:

xs = fm(xs, us) + Λf (xs, us, pk). (6.5)

We also define the equilibrium points for the base linear model, which are
defined by the following expression:

(xs, us) = Mθθ ⇐⇒ xs = Axs + Bus,

where θ ∈ Rnθ is the variable that defines the equilibrium point and Mθ ∈
R(nx+nu)×nθ is a matrix that characterizes the equilibrium points of the nomi-
nal base model.

One of the reasons why the optimization of the setpoint is traditionally im-
plemented in a different layer of control is because the optimization of the steady
operation point is usually nonlinear and highly complex. This means that op-
timizing it in an online setting could result in a very slow control. A way to
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circunvent this issue is to use a quadratic approximation of the economic cost to
speed up the solution [145]. Since the original cost function is available, quadratic
approximations can be computed with ease and will offer similar performance in
a neighborhood of the approximation point.

The one-layer cost function VN is defined in the same way as in [145]: a
weighted sum of the economic cost of an artificial reference (x̃s, us) and a tracking
cost to this reference.

VN (x̃,u, x̃s, us;xek, u
e
k) =

N−1∑
j=0

||x̃j − x̃s||2Q + ||uj − us||2R + ∥x̃N − x̃s∥2P + J(xek, u
e
k)+

∇xJ(xek, u
e
k)T (x̃s − xek) + ∇uJ(xek, u

e
k)T (us − uek)+

ρx
2
||x̃s − xek||2 +

ρu
2
||us − uek||2,

(6.6)

where (x̃,u) stands for the predicted state and input trajectories and (xek, u
e
k)

stands for the approximation point of the economic cost function at step k. Matri-
ces Q, R and P are design parameters that weight the states, inputs and terminal
state respectively.

As suggested in [145], a sensible choice for the approximation point is to take
the optimal artificial target state and input from the previous iteration of the
controller, i.e.

(xek, u
e
k) = (x̃sk−1, u

s
k−1). (6.7)

ρx and ρu are the Lipschitz constants of the cost function with respect to the
states and inputs. We assume that suitable choices for the initial parameters p0
and approximation point (xe0, u

e
0) are available.

The cost function VN can be splitted into its regulation (Vℓ) and economic
(VO) parts as follows:

VN =Vℓ + VO (6.8a)

Vℓ =

N−1∑
j=0

∥x̃j − x̃s∥2Q + ∥uj − us∥2R + ∥x̃N − x̃s∥2P (6.8b)

VO =J(xek, u
e
k) + ∇xJ(xek, u

e
k)T (x̃s − xek)+

+∇uJ(xek, u
e
k)T (us − uek) +

ρx
2
∥x̃s − xek∥2 +

ρu
2
∥us − uek∥2.

(6.8c)

The main disadvantage of the one-layer approach presented in [145] is that, due
to the simplicity of the models used, it may control the system to a non optimal
steady-state. Furthermore, it does not take into consideration the robustness
of the controller. In the next section we will propose a robust formulation of
this integrated approach that modifies the model so that, upon convergence, the
necessary conditions of optimality are guaranteed.
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6.3.1 Robust one-layer (ROL) control for inaccurate models

In this section, we generalize the approach taken in [127] to the case of inaccurate
models updated online and propose a robust framework to the one-layer control
problem. In particular, we propose a robust tube-based approach which is guar-
anteed to be recursively feasible. Under the assumption that the modified model
eventually converges locally to the real dynamics, convergence to the necessary
conditions of optimality (NCO) can also be guaranteed. Note that no assumption
is made on the improvement rate of the model, so the modification could tem-
porarily worsen the model without compromising the steady operation. There are
no assumptions on the structure of the modification term, but in Section 6.4 an
affine update policy based on gradients will be proposed and the benefits of using
it will be discussed.

To achieve robustness, we follow the approach described in [154, 155], which
tightens up the constraints through the propagation of the uncertainty. Safe tubes
are derived from assumption 6.1, which states that all the uncertainty of the base
model is constrained in a compact set d∗ ∈ Wf . Therefore, given a control law we
can compute the potential region of the states where the system could lie at the
following step. We know that, since Λf (xi, ui, pk) ∈ Wf , this potential region will
contain both the state given by the real system and the state predicted by any
possible modified model. If the propagation of the potential region through an
horizon N is always contained in the admissible region Zm, then the controlled
system will always meet the constraints.

Now we introduce the two different trajectories we will use in the formulation
of the controller. The robust trajectory, denoted by x̄ stands for the sequence of
N states predicted using the base model fm. Since the uncertainty region Wf is
defined around the base model, the robust trajectory will constrain the system, for
all possible realizations of the uncertainty, into the admissible region. Secondly,
the performance trajectory, denoted by x̃ is the sequence of N states predicted by
the modified model fΛ

m. It is labelled performance because this trajectory should
make the system converge to an economic steady operation that satisfies the NCO
of the real problem.

The sequence of inputs for both trajectories is shared and determined by the

same variable c =
[
cT0 cT1 · · · cTN−1

]T
. The control law is based on a pre-

stabilization of the system and is defined as:

uk = Kx̄k + Lθθ + ck, (6.9)

where Lθ =
[
−K Inθ

]
Mθ with Inθ

being the identity matrix of dimension nθ.

Given the economic cost function J(x, u) and the base (6.1) and modified (6.2)
models, we present the Robust One-Layer (ROL) controller, which uses tubes to
propagate the uncertainty and grant robustness to the control.
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PN :V o
N (xk, x

e
k, u

e
k, pk) =

min
c,θ

VN (x̃,u, x̃s, us;xek, u
e
k) (6.10a)

s.t. x̃i+1 = Ax̃i + Bui + Λf (x̃i, ui, pk) (6.10b)

x̃s = Ax̃s + Bus + Λf (x̃s, us, pk) (6.10c)

x̃0 = xk, (6.10d)

x̄i+1 = Ax̄i + Bui (6.10e)

(x̄i, ui) ∈ Zm ⊖ (H(i) ×KH(i)) (6.10f)

(x̄N , θ) ∈ Ωt (6.10g)

ui = Kx̄i + Lθθ + ci (6.10h)

x̄0 = xk (6.10i)

for all i = 0, 1, . . . , N − 1,

where H(i) is the feasible region for the mismatch through the control horizon
given by:

H(i) =
i−1⊕
j=0

(A + BK)jWf , (6.11)

and H(0) is the empty set. K is a linear feedback gain, such that AK = (A+BK)
is Hurwitz. The design of the control gain K is not immediate, as it should
maximize the domain of attraction while ensuring the stability of the control.
The computation of K is out of the scope of this thesis, but the reader can refer
to [156] for a detailed explanation of this parameter and how to design it.

We also define the set

X i = {(x, θ) : (x,Kx + Lθθ) ∈ Zm ⊖ (H(i) ×KH(i)),Mθθ ∈ λZm
s },

where Zm
s

.
= {(x, u) ∈ Zm : (A− In)x + Bu = 0nx}.

Note that both X i and Zm
s depend only on the base model, which makes them

time-invariant and can therefore be computed offline.
Taking this into account, the invariant set Σt is described by:

Σt =

{
(x, θ) :

[
AK BLθ

0 Inθ

]i [
x
θ

]
∈ X i, for all i ≥ 0

}
.

In order to reach the previous set no matter the mismatch, the safe terminal
set is defined

Ωt .
= Σt ⊖ (H(N) × {0}).

As we will proof in section 6.5, the recursive feasibility of the ROL controller
(6.10) is guaranteed despite the modification policy Λf used. Furthermore, it
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converges to the optimal setpoint as long as the modifier term eventually converges
and makes the base model match locally the real system’s dynamics.

Besides, should one use a modifier term with a complex structure, the control
problem would become very hard and finding a solution could become very time
consuming, which would make it ill-suited for most real-time applications.

6.4 Modifier-adaptation update

Online updated models can achieve a good performance without requiring high
complexity models. An example of simple and effective update policy are modifier-
adaptation (MA) techniques, which use gradient information to update the model
with affine terms. Provided that the gradients of the plant are estimated with
enough accuracy, MA techniques are able to modify the RTO so that the opti-
mal solution of the model-based problem matches the NCO of the true optimal
solution.

MA techniques have been thoroughly studied during the last years, especially
in the context of the classical two-layer control scheme. There, the MA modifiers
are implemented in the RTO layer to lean its solution towards the optimal steady-
state. Most of the research has been driven by the estimation of the real system
gradients [132], which are vital in the success of these methods and much progress
has been achieved in this area, mainly exploiting the information of past steady-
states [157, 158, 159]. To a lesser extent, methods for estimating the gradients
using transient measures [131, 160] and gradient-free modifiers [60] have also been
proposed, but the application of the latter is still limited because they are either
slow or require knowledge/tuning of many unknown parameters.

While the research of gradient estimation techniques is still of much interest,
in this chapter we put the focus on the formulation of a robust controller which is
able to control the system in a single control layer and converges to the optimal
steady operation. The reader is referred to chapter 7 of this document as well
as the literature cited in the previous paragraph to learn how to compute the
gradient-based modifiers.

6.4.1 Robust one-layer modifier-adaptation (ROLMA)

We can use the MA scheme proposed in [161] as the modifier term in (6.10). The
following controller, denoted as Robust One-Layer Modifier-Adaptation (ROLMA),
is able to economically control the system to a setpoint that satisfies the NCO of
the real economic problem and constitutes the main contribution of this chapter.
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PN (xk, x
e
k, u

e
k, pk) = (6.12a)

min
c,θ

VN (x̃,u, x̃s, us;xek, u
e
k) (6.12b)

s.t. x̃i+1 = Ax̃i + Bui + λx
kx̃i + λu

kui + ϵfk (6.12c)

x̃s = Ax̃s + Bus + λx
kx̃

s + λu
ku

s + ϵfk (6.12d)

x̃0 = xk (6.12e)

x̄i+1 = Ax̄i + Bui (6.12f)

(x̄i, ui) ∈ Zm ⊖ (H(i) ×KH(i)) (6.12g)

(x̄N , θ) ∈ Ωt (6.12h)

ui = Kx̄i + Lθθ + ci (6.12i)

x̄0 = xk (6.12j)

for all i = 0, 1, · · · , N − 1.

Denote fp(xi, ui) = fm(xi, ui) + d∗(xi, ui) the real plant dynamics, then the

modifiers λx
k, λu

k and ϵfk are computed as follows:

λx
k+1 = ∇xfp(xk, uk) −∇xfm(xk, uk)

λu
k+1 = ∇ufp(xk, uk) −∇ufm(xk, uk)

ϵfk+1 = xk+1 −
(
Axk + Buk + λx

kxk + λu
kuk + ϵfk

)
.

(6.13)

Assumption 6.3. Both the real system fp and the base model fm are differentiable
on x ∈ X and u ∈ U .

The modifiers can be filtered in order to make the convergence smoother. The
following remarks highlight relevant information about the ROLMA controller.

Remark 6.1. If both Zm and Wf are polytopes, problem PN boils down to a
quadratic programming (QP). This family of problems can be solved in a low com-
putational time with many solvers, e.g. [162, 163].

Remark 6.2. The modifiers do not need to be computed at each sampling time.
The only requirement required to converge to the NCO of the real problem is that
the modifiers eventually converge and that the gradients are perfectly computed
upon convergence. The modifiers can be e.g. computed in parallel and update the
system with the gradient information from several time steps prior.

In the next section, we will go through the robustness and the performance of
the proposed controllers.
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6.5 Robustness and performance

In this section we prove that, upon convergence, both ROL and ROLMA con-
trollers proposed in sections 6.3.1 and 6.4.1 reach a setpoint that matches the
NCO the real control problem. First, we prove that ROL and ROLMA controllers
are both recursive feasible. Then, we define the optimal economic operation and
show how the modification scheme leads to it upon convergence.

Given a feasible control sequence at any given time k, the following theorem
shows that a feasible control law for the ROL controller (6.10) at time k+1 always
exists.

Theorem 6.1 (Recursive feasibility). Let vo
k = {cok, θok} be the sequence that

defines the optimal control law computed by the ROL controller at the current
step k, then should one apply the control sequence defined by v̄k+1 = {c̄k+1, θ̄k+1}:

c̄k+1 =
[
co(1|k) co(2|k) · · · co(N − 1|k) 0

]
(6.14a)

θ̄k+1 = θok (6.14b)

at the next step (k + 1), the system would remain feasible.

Proof.

The recursive feasibility of the ROL controller can be derived from lemmas
1-4 from [155]. Notice that, even though the ROL controller follows a one-layer
scheme with dual trajectory (robust and performance), feasibility is only deter-
mined by the constraints (6.10e)-(6.10i), which are the ones considered in [155].
The additional constraints only affect the cost function and will therefore be con-
sidered in the convergence to the NCO of the real control problem.

Remark 6.3. Since the ROLMA controller is a particular case of the ROL con-
troller, the recursive feasibility will also be guaranteed for the ROLMA controller.

Now, we define the optimal steady operation of system (6.1) subject to con-
straints (6.4).

Definition 6.1 (Optimal steady operation). The optimal steady economic oper-
ation of system (6.1) subject to constraints y ∈ Y is defined as:

(x∗, u∗) = arg min
x,u

J(x, u)

s.t. x = fm(x, u) + d∗(x, u)

hm(xi, ui) + d∗h(xi, ui) ∈ Y.

(6.15)

Assumption 6.4 (Unique optimal solution). The optimal steady operation (x∗, u∗)
of the real system is unique.
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Assumption 6.5 (Feasible optimal solution). The optimal steady operation (x∗, u∗)
is contained within the robust region, i.e.

(x∗, u∗) ∈ Zm.

Definition 6.2. The optimal value of the modifier parameter p∗ is defined such
that, for the optimal operation point, the modification Λf matches locally the real
mismatch between the base model and the real system (d∗). That is, p∗ satisfies
the following equations:

Λf (x∗, u∗, p∗) = d∗(x∗, u∗) (6.16a)

∇xΛf (x∗, u∗, p∗) = ∇xd
∗(x∗, u∗) (6.16b)

∇uΛf (x∗, u∗, p∗) = ∇ud
∗(x∗, u∗). (6.16c)

Assumption 6.6. Given the modifier function Λf and the optimal setpoint (x∗, u∗),
there exists a unique value p∗ that satisfies equations (6.16).

Assumption 6.7. Given the optimal value of the modifier parameter p∗ as defined
by Definition 6.2, then the solution to the following real-time optimization exists
and is unique:

min
x,u

J(x, u)

s.t. x = fm(x, u) + Λf (x, u, p∗)

(x, u) ∈ Zm.

(6.17)

Theorem 6.2. Consider assumptions 6.1-6.5 meet, then if the states of ROL
(6.10) converge to the artificial trajectory (xs, us) and the modifier term Λf (x, u, p)
converges locally to the mismatch at the optimal operation d∗(x∗, u∗), then the
controlled system converges to the optimal steady operation.

Proof. The predicted performance trajectory converges to the artificial reference
(xs, us), so the regulation part of the cost function vanishes and the cost function
can be expressed as the second order approximation of the economic function

VN =J(xek, u
e
k) + ∇xJ(xek, u

e
k)T (x̃s − xek) + ∇uJ(xek, u

e
k)T (us − uek)+

+
ρx
2
∥x̃s − xek∥2 +

ρu
2
∥us − uek∥2.

(6.18)

Given that the linearization point (xek, u
e
k) follows the update policy proposed

in (6.7), then when the system converges to the artificial trajectory, we have that
(xek, u

e
k) = (xs, us) and the cost function (6.18) can be further simplified as
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Figure 6.2: Quadruple tank system diagram, reproduced from [141].

VN = J(xs, us). (6.19)

Therefore we can write problem (6.10) as

min
xs,us

J(xs, us)

s.t. xs = fm(xs, us) + Λf (xs, us, p∗)

(xs, us) ∈ Zm.

(6.20)

Taking into account assumption 6.5, the feasibility constraints have been sub-
stituted with (xs, us) ∈ Zm.

Notice that if Λf approximates locally the mismatch d∗ at the optimal opera-
tion (x∗, u∗), then the solution of (6.20) matches that of (6.15).

6.6 Numerical example

In this section we revisit the quadruple tank process presented in chapter 5 to
illustrate the ROLMA controller proposed in Section 6.4.1. This system consists
of four interconected tanks (as shown in Figure 6.2) which share water according
to the following first principle equations:
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Value Unit Description

S 0.06 m2 Cross-section of the tanks

a


1.34
1.53
0.932
0.906

 e−4 m2 Discharge constants

hmax


1.36
1.36
1.30
1.30


T

m Maximum water level

hmin


0.3
0.3
0.3
0.3


T

m Minimum water level

qmax

[
3.4
3.8

]T
m3/h Maximum water flow

qmin

[
0
0

]T
m3/h Minimum water flow

g 9.81 m/s2 Gravity acceleration

Table 6.1: Parameters of the quadruple tank process.

S
dh1
dt

= −a1
√

2gh1 + a3
√

2gh3 +
γaqa
3600

S
dh2
dt

= −a2
√

2gh2 + a4
√

2gh4 +
γbqb
3600

S
dh3
dt

= −a3
√

2gh3 + (1 − γb)
qb

3600

S
dh4
dt

= −a4
√

2gh4 + (1 − γa)
qa

3600
.

The parameters of the previous equations are given in a compact form by
Table 6.1, where:

a =


a1
a2
a3
a4

 ,x =


h1
h2
h3
h4

 ,y =

[
h1
h2

]
,u =

[
qa
qb

]
,γ =

[
γa
γb

]
. (6.21)

The economic cost function to be minimized depends on the given cost pa-
rameters c and p and is given by the following formula:

J(x, u) = 10(q2a + cq2b ) + p
0.12

S(h1 + h2)
. (6.22)
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In this example, we consider four different pairs of cost parameters to study
how the ROLMA controller adapts to a changing operating point. These pairs
are: (c, p) = {(1, 35), (1.1, 40), (0.8, 30), (0.9, 30)} and will be changed each 1000
time steps. The aim of keeping the cost parameters constant during long periods
of time is to bring it closer to reality, where systems usually spend the majority
of the time in a steady-state rather than in a transient behaviour. Note that, due
to the inaccurate nature of the base model, it can be impossible to optimize the
transient behaviour.

The considered base model is a linearization of the system at the equilibrium

point x0 =
[
0.627 0.636 0.652 0.633

]T
, u0 =

[
1.643 2

]T
discretized with a

sampling time of 10 seconds. The resulting base model is:

xk+1 =


0.939 0 0.040 0

0 0.932 0 0.040
0 0 0.958 0
0 0 0 0.959

xk +


0.0135 0.0006
0.0007 0.0179

0 0.0272
0.0317 0

uk.

As detailed in Section 6.4.1, the control actions are computed in a receding
horizon fashion solving the ROLMA optimization problem (6.12) at each sampling
time. The constraints of the system are box constraints given by hmax,hmin,qmax

and qmin and the plant-model mismatch is given by

|Wf | ≤
[
6.25 6.25 6.25 6.25

]T
10−3.

This bound is a bit more conservative than the one computed in [164]. Since
both Zm and Wf are polytopes, the ROLMA optimization problem is a QP
according to Remark 6.1 and is solved using the Multi-Parametric Toolbox 3.0
[165]. The numerical integration of the real dynamics is done with the Sundials
Suite [166].

The value of the gain K is:

K =

[
−5.9997 −18.7429 6.2544 −37.0666
−20.6414 −12.8487 −29.7042 −3.0337

]
, (6.23)

and the control horizon is set to N = 5.
The response of the system controlled by both the ROLMA controller and

the ROL controller without any modifier term is presented in Figure 6.3. Figure
6.4 shows a measure of the economic cost associated to both controllers. This
measure stands for the cumulative economic cost of the controlled systems minus
the economic cost of the optimal setpoint. Even though both controllers take into
account the economic cost of the transient, the results show how, using ROLMA,
the system converges to the economic optimum, while when the modifiers are taken
out (non modified ROL), the system reaches a non optimal steady-state. This
means that even if the transient cost may be lower, suboptimal steady behaviour
turns into steady losses that accumulate through time.
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Figure 6.3: Response of the controlled systems. The optimal steady-state is rep-
resented with a dashed line, the ROLMA response with a solid line and the ROL
without modifiers response with a dot-dash line. Each state is assigned a different
colour.
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Figure 6.4: Cumulative economic cost of the controlled systems minus the cost
of the optimal setpoint. The cumulative cost is reset each time the economic
parameters are changed.
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6.7 Conclusions

In this chapter we have presented an integrated approach that controls a system
to its economic steady optimal operation. Given a (possibly inaccurate) dynam-
ical model of the system and a method to compute gradients of the real plant
dynamics, the proposed approach is able to control the system to its optimal
steady operation by solving a single optimization problem (which boils down to a
quadratic programming when affine modification terms are used). This opens the
door to the economic control of quick systems without sacrificing the performance
of the steady-state setpoint. The proposed controllers denoted ROL and ROLMA
are proven to converge to the optimal steady operation and be recursive feasible
under certain circumstances. Tested against the quadruple tank system, ROLMA
control shows an improved performance compared to the non modified approach.



Chapter 7

Digital Twins in
Modifier-Adaptation Schemes

7.1 Introduction

Digital twins have experienced a surge in popularity in recent years as an integral
component of Industry 4.0. The number of scientific publications focusing on
digital twins is exponentially rising, leaded by the growing interest and presence
in the industry [167]. Digital twin is a framework which contains, among others
elements, a digital replica of the real physical system. They can include measure
information and are used for multiple purposes, e.g. design of the final system,
anomaly detection, optimization... and in plenty of fields, e.g. biochemistry,
aeronautical, mechanical... [168]

The core of digital twins lies in a digital framework embedded into the real
process (physical entity) which takes continuous measures of the real system,
and updates the virtual entity through process analytical technologies (PAT) and
advanced mathematical modeling tools. Not only the physical entity has a virtual
equivalent, but also does the physical environment. This guarantees that the
virtual process describes perfectly the physical one.

In this chapter, we do not focus on building and updating the digital twins.
Instead, we consider them available and we take advantage of their ability to
accurately reflect the real system behaviour in a virtual process.

Modifier-adaptation (MA) schemes [9] arose to improve the calculation of the
optimal steady operation. As commented in previous chapters, these method-
ologies update the RTO with affine terms, which generally include information
of the dynamics and gradients of the real plant. Given that this information is
accurate, modifier-adaptation schemes are able to converge to the optimal steady
operation of the real plant. However, the practical unavailability of the real plant
gradients usually makes MA methodologies struggle and resort to alternatives to
approximate them. These approximations based on empirical data generally bring
further issues. Reformulations of the real-time optimizer to excite the system and
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estimate gradients can make the problem more complex and the control slower.
Furthermore, under the presence of disturbances, gradient estimation often re-
quires filtering and can be both slow and inaccurate. These issues exacerbate as
the number of gradients to estimate increases.

The aim of this chapter is to study how modifier-adaptation schemes can take
advantage of the digital twin framework and overcome their main challenges.

7.2 Modifier-Adaptation

As shown in previous chapters, modifier-adaptation schemes update the real-time
optimization problem with affine terms in order to make its optimal solution con-
verge to the necessary conditions of optimality of the real plant steady operation.

Over the years, multiple formulations based on modifier-adaptation have been
proposed. In this chapter, we recapitulate three of them, which require modifiers
with different plant and gradient information: standard MA, output MA and
periodic MA. These RTO formulations are simple and do not include the gradient
computation, so that modifiers can be computed independently.

Let the inputs, states and outputs of a system be given by u ∈ Rnu , x ∈ Rnx

and y ∈ Rny respectively. Consider the economic cost function J : Rny×nu → R
and the constraint function g : Rny×nu → R such that every admissible pair
(y, u) satisfies g(y, u) ≤ 0. Let fs

p : Rnu → Rny be a function that maps every
feasible steady input into its correspondent steady output, and define the steady
cost function Φp(u) = J(fs

p (u), u) and the steady constraint Gp(u) = g(f s
p (u), u).

Then, the optimal steady input (usopt) for the plant can be calculated as

usopt = arg min
u

Φp(u)

s.t. Gp(u) ≤ 0

uL ≤ u ≤ uU ,

(7.1)

where uL and uU are the lower and upper bounds respectively for the steady
input.

Problem (7.1) involves the knowledge of fs
p , which is usually unknown. Conse-

quently, the cost and constraint functions Φp and Gp are also unknown. Modifier-
adaptation schemes presented in the remainder of this section use a model of the
real system and reformulate problem (7.1) with modifier terms built from infor-
mation of the real system. Under certain assumptions, the model-based modified
problem converges to the optimal steady operation.

7.2.1 Standard MA (MA)

First, we cover the standard formulation proposed in [9].

Let fs
m be the model for fs

p . Then, models for Φp and Gp can be calculated as
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Φm(u) = J(fs
m(u), u)

Gm(u) = g(fs
m(u), u)

(7.2)

respectively. The standard MA RTO is formulated as follows

usma = arg min
u

Φm(u) + λΦ
k u

s.t. Gm(u) + λG
k (u− uk) + ϵGk ≤ 0

uL ≤ u ≤ uU .

(7.3)

At each time k, the modifiers λΦ
k , λ

G
k and ϵGk change the problem in an adap-

tive fashion. It is proven that, under certain assumptions, if the modifiers are
computed as

ϵGk+1 = Gp(uk) −Gm(uk)

λG
k+1 =

∂Gp

∂u
(uk) − ∂Gm

∂u
(uk)

λΦ
k+1 =

∂Φp

∂u
(uk) − ∂Φm

∂u
(uk),

(7.4)

then the optimal solution of (7.3) converges to the one of (7.1) as k → ∞.

7.2.2 Output MA (MAy)

In MAy [9], the modifiers update the model of the static characteristic fs
m instead

of the cost and constraints (which are also updated, but in an indirect fashion).
Therefore, at each time step k, we define

fs
m,k(u) = fs

m(u) + λy
k(u− uk) + ϵyk

Φm,k(u) = J(f s
m,k(u), u)

Gm,k(u) = g(fs
m,k(u), u),

(7.5)

where the modifiers are computed as

ϵyk+1 = fs
p (uk) − f s

m(uk)

λy
k+1 =

∂fs
p

∂u
(uk) − ∂fs

m

∂u
(uk),

(7.6)

and the MAy RTO is formulated as

usmay = arg min
u

Φm,k(u)

s.t. Gm,k(u) ≤ 0

uL ≤ u ≤ uU .

(7.7)

Uncer certain assumptions, the optimal solution of (7.7) converges to that of
(7.1) as k → ∞.



134 Chapter 7. Digital Twins in Modifier-Adaptation Schemes

7.2.3 Periodic MA (P-MA)

The last formulation of MA considers the case where the optimal steady operation
is a periodic trajectory, covered in chapter 5. Given the current state xk and the
next input uk, the unknown function fp,k : Rnx×nu → Rnx defines the state of the
system at step k + 1 and h : Rnx → Rny corresponds to the relation between the
states xk and the outputs yk, which for the sake of simplicity we assume to be
known.

xk+1 = fp,k(xk, uk)

yk = h(xk).
(7.8)

Let the system (7.8) be periodic with period T . Then, at k = 0, given the

initial state x0 and the sequence of T next inputs uT =
[
uT0 uT1 · · · uTT−1

]T
,

the function Fp : Rnx×Tnu → RTnx describes the T future states of the system
and is built so that

xT =
[
xT1 xT2 . . . xTT

]T
= Fp(x0,uT ).

Similar to (7.1), let the optimal periodic trajectory of period T be calculated
as

{xopt0 ,xopt
T ,uopt

T } =

arg min
x0,xT ,uT

T−1∑
i=0

J(yi, ui)

s.t. xT = Fp(x0,uT )

yi = h(xi), for all i = 0, · · · , T − 1

g(yi, ui) ≤ 0, for all i = 0, · · · , T − 1

uL ≤ ui ≤ uU , for all i = 0, · · · , T − 1

x0 = xT .

(7.9)

Let Fm be an available model of Fp, then the P-MA dynamic RTO is formu-
lated as follows

{xpma
0,k ,xpma

T,k ,upma
T,k } =

arg min
x0,xT ,uT

T−1∑
i=0

J(yi, ui)

s.t. xT = Fm(x0,uT ) + λx
k(x0 − xpma

0,k−1) + λu
k(uT − upma

T,k−1) + ϵk

yi = h(xi), for all i = 0, · · · , T − 1

g(yi, ui) ≤ 0, for all i = 0, · · · , T − 1

uL ≤ ui ≤ uU , for all i = 0, · · · , T − 1

x0 = xT ,

(7.10)
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where the modifiers ϵk, λx
k and λu

k are computed at each iteration as

ϵk+1 = Fp(x
pma
0,k ,upma

T,k ) − Fm(xpma
0,k ,upma

T,k )

λx
k+1 =

∂Fp

∂x0
(xpma

0,k ,upma
T,k ) − ∂Fm

∂x0
(xpma

0,k ,upma
T,k )

λu
k+1 =

∂Fp

∂uT
(xpma

0,k ,upma
T,k ) − ∂Fm

∂uT
(xpma

0,k ,upma
T,k ),

(7.11)

and {xpma
0,k ,xpma

T,k ,upma
T,k } corresponds to the optimal solution of the dynamic RTO

(7.10) at step k. Under certain assumptions, the optimal solution of (7.10) con-
verges to the optimal steady behaviour from (7.9) as k → ∞.

7.2.4 Issues

All the previous approaches involve the computation of gradients of both the real
system and the model. On the one hand, obtaining gradients of the model is
generally easy, since they can be computed by numerical or symbolic procedures.
The model typically describes the nominal behaviour of the system, which means
that noise is not present and unmeasured disturbances are estimated. Therefore,
they do not interfere in the computation of the gradients. On the other hand,
gradients of the real plant are usually estimated from online measurements, which
brings some challenges. Approximating the real plant gradients and proposing
alternative formulations to bypass gradient estimation constitute two major pillars
of the research in modifier-adaptation [59, 159, 60, 10].

These lines of work ultimately solve the problem of estimating the modifiers.
However, because of the fact that they are based on measures taken straight from
the real system, they introduce some issues:

� Gradient approximation based on measured data is usually sensitive to noise.

� Some states of the system may not be measurable, so accurate estimation
of their gradients is seldom possible.

� The computation of the gradients requires sufficient excitation of the system.

� To guarantee that the system is excited enough in the next step, usually
more complex formulations of the control problem are presented [59].

� Gradient-free methodologies involve prior tuning of parameters which do
not hold any physical meaning and are unknown to the user [60].

� The need of an estimation step may lead to a slower control.

� Gradient estimation based on data measurements does not scale well to large
systems (with many inputs, states and outputs).

In the next section, we propose to use the digital twin framework to obtain gra-
dient information and compute the modifiers without any of the aforementioned
issues.
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Figure 7.1: Scheme of the digital twin.

7.3 Digital Twin for gradient computation

The fourth industrial revolution, also known as Industry 4.0, describes the latest
trend in manufacturing systems [169]. It takes advantage of the progress made
in multiple fields like Cyber-Physical Systems (CPS), Artificial Intelligence (AI)
or Internet of Things (IoT) and use it to optimize the design, production and
technical support of the products. The digital transformation described in the
Industry 4.0 paradigm has already made its way into the industry, and major
companies like IBM, Airservices Australia or Bridgestone have embraced it and
made substantial investments in it [170, 171].

One of the key components of Industry 4.0 is the digital twin framework, which
is the focus of this chapter. First, we give a formal definition to the concept of
digital twin based on the ones given in [167, 172].

Definition 7.1. Digital twin is a framework in which a virtual entity is created as
a replica of the physical system via process analytical technologies (PAT) and other
advanced mathematical tools. In this framework, virtual and physical entities are
linked together though the entire lifetime of the system and share data to ensure
that the virtual process remains identical to the physical one, including the system’s
degradation.

Figure 7.1 shows the main structure of the digital twin framework. In this
scheme, the digital twin is constituted by the virtual entity and environment,
which are modeled using: 1) information of the sensors installed in the real system,
2) information of the last known iteration of the digital twin and 3) additional
knowledge of the system, such as first principle equations or physical bounds.
The resulting digital twin can be used to analyze and test the system without
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compromising the stability and performance of the real system. Therefore, it is
possible to test on the digital twin changes (such as control formulations) prior
to implementing them into the real system, since it acts as a perfect replica.

The digital twin framework has proliferated in the industry over the last years
[171, 173]. In terms of revenue, Marketsandmarkets estimates that digital twin
market was worth USD 6.9 billion in 2022 and is expected to reach 73.5 billion
by 2027 [174]. Today, digital twins are present in many sectors (e.g. automotive,
health care, aircraft, robotics...) and their applications are diverse, ranging from
prototyping to interrogating the virtual processes about their current states.

Since the digital twin framework is already adopted in many industry appli-
cations, we can use the existing infrastructure and take advantage of its ability to
reflect and predict the states and gradients of the physical system. Furthermore,
in the context of automatic control, digital twins can also be useful in other tasks
such as model identification or testing the controllers. In systems where a digital
twin is available, neglecting its information and using alternative methods to es-
timate the gradients of the real system, identify models and test controllers may
not only be less accurate, but also less efficient.

Contrary to state-of-the-art gradient estimation, obtaining the gradients from
the digital twin can be considered exact given that the fidelity of the digital twin
is high enough (Definition 7.1). Now, we introduce two assumptions required to
use the digital twin in modifier-adaptation schemes.

Assumption 7.1. The states, outputs and economic cost of the RTO model, as
well as their gradients with respect of the model inputs are available on the virtual
entity.

Remark 7.1. Assumption 7.1 meets e.g. when the states of the RTO model are
autoregressive or have a physical meaning.

Assumption 7.2. Simulations on the virtual entity are made under nominal
conditions.

Note that no assumption on the physical system is made. While only assump-
tion 7.1 is required for standard MA approaches, for more intricate schemes like
the Periodic MA, the assumption 7.2 can also be necessary to guarantee that the
prediction includes only the nominal behaviour and consequently the noise does
not interfere with the computation of gradients.

The virtual process is parallel to the control scheme. Therefore, obtaining
the gradient information from it does not result in any slowdown in the control.
Furthermore, the gradient calculation task can be carried out in the background,
while the virtual process remains linked to the operating physical one.

7.3.1 Benefits

Using the virtual process of the digital twin allows to obtain the gradients required
for the modifier-adaptation schemes presented in this dissertation without any of
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the issues presented in Section 7.2.4:

� Gradient information obtained from the virtual process is not sensitive to
noise.

� The virtual process includes all the information from the physical process,
so it is possible to obtain their associated gradients.

� The computation of the gradients is independent from the excitation of the
system.

� There is no need to change the original formulation of the control problem.

� The modifiers are still based on gradients, so there is no need to tune
gradient-free cumbersome parameters.

� Obtaining the gradients is done in parallel with the control scheme, which
does not slow down the control.

� Consulting the real plant information through its virtual counterpart scales
well to large systems.

In systems where a digital twin is available, it is straighforward to use it to
calculate the gradients of the real system in modifier-adaptation schemes. On the
other hand, building a digital twin from the ground up in systems where it is
not yet implemented is also a reasonable alternative. Compared to state-of-the-
art modifier-adaptation formulations, the digital twin framework does not only
improve the performance and efficiency of gradient calculation, but it also serves
for many different purpuses such as analysis or anomaly detection.

7.4 Conclusions

In this chapter we have reviewed three formulations of modifier-adaptation. While
all of them can theoretically compute the optimal steady operation of a system,
they require information about the gradients of the real systems, which gives rise
to a number of problems.

We take advantage of the digital transformation of industry 4.0 and the dig-
ital twin framework, which is already present in many industries, and propose a
workaround to gradient estimation, using the information available in the digital
twins. This new paradigm applies directly to many modifier-adaptation schemes
and replaces the gradient estimation step. As a result, it solves the main issues
associated with modifier-adaptation techniques, leading to a more accurate and
efficient gradient estimation.

Besides the gradient estimation in real-time optimization, the digital twin
framework may also be used for a wide variety of applications, such as anomaly
detection or system modification design. This versatility makes the digital twin
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framework an appealing alternative to state-of-the-art modifier-adaptation ap-
proaches.
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Chapter 8

Conclusions and Future Lines

This chapter provides a recapitulation the thesis contributions while also delin-
eating potential future research direction to advance the work presented in this
dissertation.

8.1 Summary of contributions

The contributions of this thesis can be categorized in two different fields: safe re-
gion estimation and automatic control under plant-model mismatch. These fields
represent major pillars within the automatic control research, where extensive
study has been carried out for decades, highlighting their foundational relevance.
In what follows, the contributions of this thesis to both of these fields are stated:

� In chapter 2, a series of methods to bound the absolute value of the predic-
tion error have been presented. They all share a probabilistic maximization
scheme that uses available samples of the systems to set probabilistic bounds
on the prediction error. The different methods presented in this chapter vary
in the size of the bound, which can be fixed or varying, and the number of
predictors taken into account. Contrary to other state-of-the-art methods,
the ones presented in this chapter do not depend on the complexity of the
prediction model.

� In chapter 3, a general sample-based approach to calculate inner approxi-
mations of the chance-constrained set has been presented. This approach
called classical probabilistic scaling is able to scale a set of reduced complex-
ity until it is contained in the desired chance-constrained set with a given
confidence. The required number of samples depends only on the desired
probabilistic guarantees, and not on the dimension of the problem or the
probabilistic distribution of the uncertainty.

� In chapter 4, an extension to the classical probabilistic scaling called pack-
based probabilistic scaling has been presented. This new approach is able to
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not only calculate inner approximations of the chance-constrained set, but
it also guarantees a degree of tightening. A branch-and-bound heuristic to
compute the pack-based probabilistic scaling is also detailed.

� In chapter 5, a scheme that optimizes the steady behaviour of periodic sys-
tems under plant-model mismatch has been presented. This scheme is a
generalization of modifier-adaptation schemes to the case of periodic opti-
mal behaviour and uses affine periodic modifiers to update the optimization
problem.

� In chapter 6, a robust integrated scheme that controls systems under plant-
model mismatch to their optimal setpoints has been presented. Unlike other
state-of-the-art solutions, the proposed approach integrates the control in
a single layer that optimizes the target setpoint and computes the control
sequence at the same time.

� In chapter 7, the use of the digital twin framework in modifier-adaptation
schemes has been proposed. This framework makes it trivial to obtain the
gradients of the real systems at any operating points and can therefore
potentially solve the main challenges of modifier-adaptation schemes.

8.2 Future research

In the previous section we have reviewed the contributions of this thesis to the
fields of safe region estimation and automatic control under plant-model mis-
match. Now, we will go through what can be built upon the foundations presented
in this dissertation.

The first major contribution of this work has been the proposal of a series
of methods to probabilistically bound the prediction error, which can be used
to make intervalar predictions. However, the classification problem has not been
included in this work. Extending the prediction error quantification to the mul-
ticlass prediction problem is possible and rather straightforward and remains an
interesting line to explore.

This work constitutes the birth of the probabilistic scaling methodology. Major
advances have been made in this topic, yet, there is still much research to be
done to exploit its full potential. As for the simple approximating sets (SAS), we
have proposed a few families with simple shapes that should perform well in many
problems. However, it would be interesting to study new custom initial geometries
which may potentially outperform the proposed ones for specific problems.

In the probabilistic scaling, some other interesting research lines would be the
extension to mixed-integer programming (MIP) and the extension of the pack-
based probabilistic scaling heuristic to nonlinear setups. The improvement of the
probabilistic scaling algorithm would also be very beneficial and could lead to
better tightenings of the approximations of the chance-constrained sets.
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As for modifier-adaptation, it has been proved that upon convergence, the
optimal setpoint or steady periodic trajectory may be reached. Future work could
focus on the convergence rate to that steady behaviour and the conditions under
which the modified system converges. Furthermore, the proposal of digital twins
to obtain gradient information useful for modifier-adaptation methodologies has
been purely theoretical. Its use in real applications merits attention in future
investigations.

Finally, future reseach could also explore the use of the advances in uncertainty
quantification and safe sets approximations in robust schemes such as the ROLMA
controller presented in chapter 6.



144 Chapter 8. Conclusions and Future Lines



Bibliography

[1] Z.-H. Zhou, Machine learning. Springer Nature, 2021.

[2] B. Mahesh, “Machine learning algorithms-a review,” International Journal
of Science and Research (IJSR).[Internet], vol. 9, no. 1, pp. 381–386, 2020.

[3] N. C. Giri, Multivariate Statistical Analysis. Marcel Dekker, second, revised
and expanded ed., 2004.

[4] S. M. Idrees, M. A. Alam, and P. Agarwal, “A prediction approach for
stock market volatility based on time series data,” IEEE Access, vol. 7,
pp. 17287–17298, 2019.

[5] G. Alfonso, A. D. Carnerero, D. R. Ramirez, and T. Alamo, “Stock fore-
casting using local data,” IEEE Access, vol. 9, pp. 9334–9344, 2020.

[6] G. Falkovich, Fluid Mechanics: A Short Course for Physicists. Cambridge:
Cambridge University Press, 2011.

[7] T. H. Broholt, M. D. Knudsen, and S. Petersen, “The robustness of
black and grey-box models of thermal building behaviour against weather
changes,” Energy and Buildings, vol. 275, p. 112460, 2022.

[8] J. A. Borja-Conde, K. Witheephanich, J. Coronel, and D. Limon, “Thermal
modeling of existing buildings in high-fidelity simulators: A novel, practical
methodology,” Energy and Buildings, vol. 292, p. 113127, 2023.

[9] A. Marchetti, B. Chachuat, and D. Bonvin, “Modifier-adaptation methodol-
ogy for real-time optimization,” Industrial & engineering chemistry research,
vol. 48, no. 13, pp. 6022–6033, 2009.

[10] A. Marchetti, G. François, T. Faulwasser, and D. Bonvin, “Modifier adap-
tation for real-time optimization—methods and applications,” Processes,
vol. 4, no. 4, p. 55, 2016.

[11] A. Bemporad and M. Morari, “Robust model predictive control: A survey,”
in Robustness in identification and control, pp. 207–226, Springer, 1999.

145



146 Bibliography

[12] D. Q. Mayne, M. M. Seron, and S. Raković, “Robust model predictive con-
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